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ABSTRACT

This paper examines various forms of individual claim model for the purpose of loss
reserving, with emphasis on the prediction error associated with the reserve. Each form of model
is calibrated against a single extensive data set, and then used to generate a forecast of loss
reserve and an estimate of its prediction error.

The basis of this is a model of the “paids” type, in which the sizes of strictly positive
individual finalised claims are expressed in terms of a small number of covariates, most of which
are in some way functions of time. Such models can be found in the literature.

The purpose of the current paper is to extend these to individual claim “incurreds” models.
These are constructed by the inclusion of case estimates in the model’s conditioning information.
This form of model is found to involve rather more complexity in its structure.

For the particular data set considered here, this did not yield any direct improvement in
prediction error. However, a blending of the paids and incurreds models did so.
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1. INTRODUCTION

Conventional actuarial methods of loss reserving are commonly of the
“triangulation” type. By this is meant the following.

Let X denote some measure of claims experience, e.g. claim payments,
incurred losses, etc. The observations on X are summarised into values X,
labelled according to i= origin period (often accident period) and
j = development period. The array {X;} will usually be triangular:
i=1,2,...,Lj=0,1,..., 1 —i

A model of the X; is chosen, fitted to the data array, and then used to
forecast future values of X, j=1—i+1,1—i+2,...,1. The forecast claims
experience is then manipulated into an estimate of liability for incurred but
unpaid claims, and hence a loss reserve. Taylor (2000) provides a summary of
this type of methodology.
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This sort of approach was undoubtedly useful in the days of manual
computation. It remains useful today as a simple approach to lines of
business that are either of borderline materiality and/or highly stable
statistical structure. It is evident, however, that the summary “triangulation
data’ discard a great deal of information, some, or even much, of which may
be relevant to the forecast required.

From the viewpoint of a forecaster who is not laden with the baggage of
loss reserving history and convention, there is no clear reason for using such
summary data, and the loss of information provides an incentive (at least
prima facie) for not doing so.

From this viewpoint, a more natural approach is to forecast future claims
experience on the basis of the data in the fullness with which it is available.
When the data are presented separately by claim, this will imply the
modelling of individual claims. The model is used to forecast the ultimate
outcome of individual claims or specified groups of them, again leading to an
estimate of the liability for incurred but unpaid claims (henceforth referred
to as the loss reserve liability), and hence a loss reserve.

A model of individual claims will be called an individual claim model, and
loss reserving derived from it individual claim loss reserving. These are to be
distinguished from aggregate claim models, which are those based on the
aggregate data described in the opening paragraphs of this section, and
aggregate claim loss reserving.

In view of the large volume of data and model complexity involved in
individual claim modelling, it seems pointless for the model to be other than
stochastic. Stochastic models are assumed throughout this paper. A
stochastic model is capable of delivering the stochastic properties of its
forecasts. It will also be assumed throughout that this is an objective.

The natural units of claims experience may not be claims as such. For
example, it is common in Motor Bodily Injury insurance to distinguish
between “claimants”, the injured individuals, and “claims™, the accident
events that cause one or more of these injuries. In this case, the claimants
might be the natural units of experience for analysis. Throughout this paper,
“individual claim model”” will be taken to include this wider interpretation.

It appears that Norberg (1986, 1993) and Jewell (1989, 1990) were the
first to attempt to lay down a comprehensive architecture for individual
claims loss modelling. This framework has recently been developed by Larsen
(2007). Other specific individual claim models appearing in the literature are
due to Hachemeister (1980) and Haastrup and Arjas (1996).

The papers of Norberg and Jewell are (quite properly) very general,
whereas some of the others just mentioned are very specific applications. The
present paper will attempt a compromise by discussing a very broad family
of models, but without particular reference to the general frameworks of
Norberg and Jewell.

The family of models is broad in that it will be formulated very generally
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in terms of survival analysis and generalised linear models (GLMs). In this,
the work will develop previous research by the same authors on individual
claim modelling (Taylor and Campbell, 2002; Taylor and McGuire, 2004),
and similar research from other authors (Brookes and Prevett, 2004).

What is being attempted here is the creation of a broad framework within
which an individual claim model may be formulated. In this framework, the
“model” may consist of a number of components, each a survival analysis or
GLM sub-model.

The paper will also address a persistent problem faced in loss reserving,
specifically whether to rely on paid loss or incurred loss data. The model will
attempt to integrate both. This subject has received attention in relation to
aggregate claim loss reserving (e.g. Taylor, 1985; Quarg and Mack 2004), but
not previously in relation to individual claim loss reserving.

The arrangement of the paper is as follows:

e Section 2 establishes some basics of individual claim reserving.

e Section 3 considers individual claim models that do not depend on
case estimates. These can already be found in the literature and are
discussed here in order to set the background for Section 4.

e Section 4 takes up the subject of individual claim models that do
depend on case estimates, the main subject of the paper.

e Section 4.1 points out (Figure 4.1) that a model of
development of a case estimate to its ultimate value needs to
consist of a number of sub-models. It needs to consider the
separate cases in which the observed case estimate takes zero
and non-zero values respectively. In each of these cases, a sub-
model is required of the probability that the claim is completed
at zero cost. If not, a model of the amount of ultimate
incurred loss is required.

e Section 4.2 discusses a novel form of observation of case
estimate development aimed at minimising dependency between
observations.

e Section 5 notes that, as a model of individual claim case estimate
development predicts ultimate claim sizes at finalisation, a separate
model of the timing of finalisations is required. This is constructed as
a survival model, each claim’s lifetime consisting of the interval from
commencement of its period of origin to its finalisation.

e Section 6 formulates the estimation of the prediction errors of the
various models. These will be used for estimating the prediction error
of the forecast ultimate incurred loss of an individual claim, and
aggregates of these, based on combination of the above sub-models.
Different approaches are required, of course, for GLM sub-models
(Section 6.1) and survival sub-models (Section 6.2).

e Section 7 considers the situation in which separate forecasts have
been produced by:
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e a model that does not depend on case estimates (a “paids”
model); and

e a model that does depend on case estimates (an “incurreds”
model).

Two approaches to blending these two sets of results into a single one
are formulated:

e In the first approach, the ultimate cost of each claim is
estimated as a weighted average of the estimates from the two
models. The required weights are defined.

e In the second approach, the paids and incurreds models are
merged into a single model which produces a merged forecast.

e Section 8 provides numerical examples based on real data. The
various models discussed in the foregoing sections are applied to
produce forecasts. The forecast of the Mack model is also produced
for comparison.

2. INDIVIDUAL CLAIM MODELS AND L0OSS RESERVING

2.1 Basic Concepts and Definitions
All loss reserving procedures consist of three major components:
e Model specification;
e Parameter estimation (model calibration);
e Forecast of liability.

The first and third of these components will be examined since an individual
claim model may appear in the first, and individual claim loss reserving may
appear in the third.

Individual claim model

Consider a data set consisting of n claims labelled i=1,2,...,n. The
information in respect of claim i includes some response variable Y, of
interest, and it is assumed that

Y~ F(: X, 0) 2.1)

where the Y, are stochastically independent, F is a specific d.f., X, is a

1

vector of claim-dependent covariates, and 0 is a vector of parameters.
Denote

w = E[Y]. (2.2)
Explicitly
= (X, 0) (2.3)

for some unique function .
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According to the discussion in Section 1, (2.1) is an individual claim
model. Models with other response variables, consisting of summaries of the
Y, are aggregate claim models.

Individual claim loss reserving

Now consider a second set of m claims labelled j=1,2,...,m with
covariate vectors X}, but whose responses Y, will be observable only in the
future. These clalms are subject to (2.1) but with X; replaced by X;. A
forecast Y =} " Y is required. If Y is forecast by

J
Y* = function(X?, ..., X%, 0) (2.4)

where 0 is an estimate of 0, then, again by the discussion in Section 1, a loss
reserve based on this forecast is an individual claim loss reserve. See Sections
4 and 5 for specifics on parameter estimation.

A more specific form of (2.4) is

=> Y (2.5)
j=1
where
Y = w(X;, 0). (2.6)

Here, Y" is a forecast of the response of individual claim j, and is a special
case of 1nd1V1dual claim loss reserving that will be referred to as statistical
case estimation, such as discussed by Brookes and Prevett (2004) and Taylor
and Campbell (2002). In short, statistical case estimation consists of
estimating the ultimate cost of each claim.

An individual claim loss reserve (2.4) is a more general concept than a
reserve consisting of statistical case estimates (2.6). An example of individual
claim loss reserving that is not statistical case estimation appears in Taylor
and McGuire (2004), and the same type of model appears in Section 3 below.
Briefly, these models are characterised by the following properties:

e the response variable is size of completed claim (open claims are
excluded from the data);

e this enables the forecast of the ultimate claims cost of each accident
period, since this is the total cost of all its claims, when completed;

e this forecast of ultimate cost does not require dissection between claims
that are reported at the point of forecast and those that are unreported;

e hence there are no separate forecasts for these two groups of claims,
and certainly no forecasts for individual reported claims.
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These models are individual claim models since they are formulated
according to (2.1). However, the last two of the above points set them apart
from statistical case estimation models.

2.2 Static Covariates

Consider the covariate vector X,. Certain of its components X, may
assume values which do not change over the life of a claim. For example, the
type of vehicle in which a motor accident claimant was an occupant would
be such a covariate. These will be called static covariates.

2.3 Dynamic Covariates

Covariates which are not static will be called dynamic covariates. By
definition, they are liable to change over the lifetime of a claim. An example
would be the case estimate (variously called the manual estimate or physical
estimate) of ultimate incurred loss associated with a claim.

There are two fundamentally different categories of dynamic covariate,
which are discussed in the following two sub-sections.

2.3.1 Time covariates

A number of covariates are likely to be time-related. Some may change
with the passage of time. Development period would be such a covariate.
However, the changes in their values are predictable. In the example just
given, the value of development period is known for each future calendar
period. If the development period last observed is d, then future periods will
bed+1,d+ 2, etc.

These covariates will be called time covariates. They may be included
among model covariates in such a way that model forecasts depend on their
future values, X}, in the notation of Section 2.1, since these values are
predictable.

2.3.2  Unpredictable dynamic covariates

Other dynamic covariates will change over time in a manner that is not
predictable with certainty. The case estimate referred to above provides such
an example. Such covariates will be called unpredictable dynamic covariates.

Inclusion of these among model covariates in such a way that model
forecasts depend on their future values X, needs to be approached with
much greater caution. If they are included, then a further model will be
required to make predictions of these uncertain quantities.

Whether this is fruitful will depend on whether the formulation of the
additional model, with its own prediction error, will improve or degrade the
reliability of the ultimate forecasts. The more essential the covariate concerned
is to an accurate model specification, and the smaller its prediction error,
the greater the likelihood that it will improve the ultimate predictions.

Conversely, the inclusion of covariates that are of only moderate structural
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relevance and whose prediction is difficult is likely to degrade the performance
of the overall model.

On the basis of the above discussion, the covariate vector X; may in

general be decomposed as X; = [X ® x" x ,(-U)] where X%, X'V X' denote
static, time and unpredictable dynamic covariate vectors respectively.
The meaning of the forecast (2.6) is straightforward if X; contains only
static covariates, but not otherwise. If it contains unpredictable dynamic
covariates, their values will be unknown. Even time covariates, though
predictable, may be unknown at the point of measurement of the response
variable. For example, if X is the time variable, development period of
finalisation of the claim, its value will be unknown ahead of that time.

Hence the forecast u(X;, 0) in (2.6) is a stochastic quantity when X} contains
non-null entries for X" and possibly for X" In these circumstances it will
be reasonable to forecast by means of a probability-weighted average of the
stochastic forecasts, so that (2.6) is extended to the following:

= [, apcer. x0) @7

where X" is the subset of X" requiring prediction, and P is a measure on
X(T )’ X(U).

3. INDIVIDUAL CLAIM L0OSS RESERVING WITHOUT CASE ESTIMATES

Henceforth in this section it will be supposed that the response variable Y,
is the ultimate cost of the ith claim when finalised. If the vectors X7, ..., X,
appearing in (2.4) relate to the claims incurred in a portfolio prior to some
valuation date but unfinalised at that date, then Y* given by (2.4) is a
forecast of the ultimate cost of those claims.

The unpaid cost of these claims at the valuation date is equal to Y* less
the amount paid to date in respect of the same claims. The loss reserve is
based on this quantity, perhaps with discounting for investment return,
addition of a safety margin, etc.

The following few sub-sections formulate various models, all of which are
specific applications of the general formula (2.1). Thus all of these models are
stochastic loss reserving models but they will have the common property
that their predictors do not include case estimates.

This enables them to be formulated in reasonably concise fashion. It will
be seen in Section 4, where case estimates are introduced into the predictors,
that the form of model requires considerable extension.

3.1 Individual Claim Models Dependent on Only Time Covariates
Consider initially a model based just on time covariates. In this case, (2.1)
becomes
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Y~ F(; X{".0). (3.1)

One may be able to invent many components of X", but there are several

obvious candidates that play a central role in conventional loss reserving

models, namely

a;, = accident period;

d; = development period of finalisation;

p; = a; + d; = experience period of finalisation (calendar period in which
finalisation occurs);

where in each case the subscript i indicates that the value of the time
variable concerned is that observed for the ith claim.

To this small collection may be added operational time, denoted ¢,. This
concept from stochastic processes (see e.g. Feller, 1971) was introduced into
the actuarial literature by Biithlmann (1970), and first applied to loss
reserving by Reid (1978).

It is defined as follows. Suppose that, for a given but arbitrary accident
period with a count N of claims incurred, a development time scale o is
defined to commence (6 = 0) at the beginning of the accident period. Suppose
that the ith claim is finalised at 6 =7,,i=1,2,..., N. Now define a new
time scale

t,(0) = #{r; < 6}/N. (3.2)

This is the operational time. It takes values in the interval [0, 1], and maps
development time 0 to the proportion of the accident period’s incurred claims
that have been finalised at or before that time.

For many purposes, a;, d;, p;, t; form an adequate set of time variates for
individual claim modelling. They will continue to occupy a central position in
models constructed in the remainder of the paper.

3.2 Individual Claim Models Dependent on Only a; and t,
Consider the special case of (3.1) in which

Y, ~ F(;a,t;0). (3.3)

Such models have very special properties. Consider a single accident period
a with N claims incurred, some possibly unreported as yet, and suppose that
F of these have been finalised at some chosen valuation date.

This means that operational time for the accident period stands at F/N
and, over the future, will traverse the values (F+1)/N,(F+2)/N ..., 1.
Hence, if U, denotes the ultimate cost of claims unfinalised at the valuation
date, then
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N

E[U]= ) ua,j/N;0) (3.4)
j=F+1
which is estimated by
N A
Us= ) n(aj/N:0). (3.5)
j=F+1

Note that this quantity is fully determined by a and 0. These parameters
determine the ultimate costs of the last (N — F) claims finalised, and in fact
the cost of each of those claims taken in order. However, the order of
finalisation of the claims open at the valuation date (including claims then
unreported) is not specified, and so no individual forecasts are associated
with them.

The forecast (3.5) is, therefore, not an example of (2.5) and (2.6), and
so does not represent statistical case estimation, as it was defined in
Section 2.1.

3.3 Individual Claim Models Dependent on Time Variates other than a; and t;

Consider now the case in which model (3.5) is enlarged to include either
or both of d,, p; among its covariates. The case of p, may be considered
without loss of generality:

Y~ F(;a;,t, p; 0) (3.6)

with p, known for past observations but a stochastic variate for future
observations.

It is necessary therefore to integrate over all possibilities for future values
of p, taking into account the associated measure P(p), just as in (2.7). The
forecast (3.5) now becomes:

N

Ui = Y [ utaisN.pi 0ap(r) (3.7

j=F+1
where p; now denotes the experience period of finalisation of the jth claim

taken in order of finalisation, and P(p) is the distribution associated with the

vector [pry; - - ,pN].' . .
For example, the integrand in (3.7) might take the form:

wa, j/N, p;; 9) = exp[function(a, j/N; 9) + Bl (3.8)
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where the term involving p; represents inflation at the rate exp f per
period.

The forecast U; still does not require a component forecast to be
associated with each of the claims open at the valuation date, and still does
not represent statistical case estimation. It is, however, fundamentally
different from (3.5) in requiring a (stochastic) mapping of the operational
times j/N to real times p;.

This requires a further model of the connection between these two time
scales. This is commonly achieved by modelling finalisation rates (with
respect to real time), and is discussed further in Section 5.

3.4 Individual Claim Models Dependent on Time and Static Variates
If static variates are incorporated in the model, it becomes:

Y, ~ FC: X7, X1, 0). (3.9)

For example, x® might denote gender of claimant i. This means that the
forecast U, depends on the composition of the (N — F) unfinalised claims

with respect to X\”. A natural way of recognising this composition is to put
U’ in statistical case estimation form, i.e. consisting of a forecast claim size
for each individual claimant i that recognises the specific characteristics of
the claimant, including gender. Other approaches, which forecast claim costs
in aggregate but separately for each gender, tend to be cumbersome.

If this is done, the forecast is changed fundamentally from (3.5) and (3.7).
It becomes (2.5) with

o= Ju(a, ((p), o X19: 0)dP(p, | X1 (3.10)

where
e u(.) is the statistical case estimate in respect of the kth unfinalised
claim (taken in any order, as distinct from the jth above, taken in
chronological order of finalisation), conditional on a, 1,, p,, X;*;
e tis the mapping of real time p to operational time; and
e the measure P(.) on p, (see Section 5) may now depend on X|*.

3.5 Individual Claim Models Dependent on Unpredictable Dynamic Covariates

As mentioned in Section 2.3.2, the inclusion of these covariates generates
a need for further models over which forecasts must be averaged, as in (2.7).
This adds considerably to the complexity of the modelling and forecasting,
and models of this type are not pursued further here.

An example of unpredictable dynamic covariates occurs in Section 7.6 of
Taylor and McGuire (2004), where forecasting with an individual claims
model requires a side-forecast of rates of claim finalisation.
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3.6 IBNR Claims

The forecasts in Sections 3.2 and 3.3 assume that the ultimate number of
claims incurred in each accident period, and hence the number of IBNR
claims, is known. These numbers are, of course, the subject of a separate
estimation exercise. However, we regard this as peripheral to the focus of the
present paper, and assume that this modelling has already been done and
the necessary IBNR numbers forecast.

As a result, the loss reserve prediction errors estimated later in this paper
treat forecast numbers incurred as certain. In practice, they would need to be
increased to allow for prediction error in the numbers incurred.

It is necessary for any valuation system to assign a value to the IBNR
claims. However, any forecast of the statistical case estimate type, as in
Section 3.4, assigns a forecast just to each known claim, and therefore
includes no allowance for IBNR claims.

Since it is supposed that the number of these claims has already been
estimated, a model will be required to forecast their sizes. This will need to be
a simplified version of (3.9), because none of the covariates X:® will be
available before a claim is reported.

The simplest approach to IBNR claims would be to forecast their sizes on
the basis of a model formulated by simply deleting X} ) from (3.9), i.e. by re-
fitting the data {Y;} with a model of the form (3.1). As a simple example,
one might assume, that X} consisted of just operational time. The IBNR
claims would then be assigned operational times, e¢.g. on the basis of an
assumption that all reported unfinalised claims are equally likely at any
particular operational time, irrespective of when reported. In this way, a
sequence of estimated claim sizes could be associated with the estimated
number of IBNR claims.

4. INDIVIDUAL CLAIM L0OSS RESERVING CONDITIONED BY CASE ESTIMATES

4.1 Model Structure

The models discussed in Section 3 fall generally within the family that
actuaries think of as “paids’ models. They depend on only paid losses, and
not at all on the insurer’s various estimates of those losses through the
lifetimes of the claims.

A conventional alternative form of model forecasts ultimate losses on the
basis of the insurer’s estimates at the valuation date. This is usually referred
to as an “incurreds’” model. A statistical case estimation form of it will now
be considered.

In the following, the term case estimate will be used to mean a subjective
estimate of ultimate incurred loss placed by an insurer on an individual
claim. The estimate will usually be made by a claims assessor, and is often
referred to as a physical estimate or manual estimate.
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I=0?
Yes No
Model 1 Model 2
F(U|I=0,U>0) F(R|I>0,U>0)
Model 3 >
Prob[U=0] >
v v
Estimate of Estimate of
F(U|I=0) F(R|>0)

Figure 4.1. Sub-model structure of a case estimate model

The general thrust of a model that uses case estimates as predictors of
ultimate incurred cost will be concerned with the factor relating these two
quantities. This is the ratio usually referred to as the age-to-ultimate ratio,
defined as:

Expected ultimate incurred loss

Age-to-ultimate ratio = 4.1)

Current case estimate

where the “Expected” in the numerator is used in its statistical sense of mean
value. Such a model will be referred to here as a case estimates model. It
corresponds to the conventional “incurreds’ model.

However, the possibility of zero numerator or denominator in (4.1)
complicates the situation, with the result that the model needs to consist of a
number of sub-models as illustrated in Figure 4.1, where I denotes the
current case estimate, U the ultimate incurred loss, and R = U/I. F(.)
denotes a distribution function.

Note that the cases I = 0 and I # 0 are dealt with separately in the figure,
as are the cases U= 0 and U # 0. This is because:

e In the case I =0, the ratio R does not exist, and so the size of U
must be modelled directly, rather thanas U = I x R.
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e The distribution of U, with a discrete mass at U = 0, is best modelled
by separate recognition of the mass and the remainder of the
distribution (assumed continuous).

This creates the need for three separate numbered sub-models, indicated
by the heavily outlined boxes in the figure. Further sub-models will be
required for IBNR claims (Section 3.6) and finalisation rates (Section 5).
Note, however, that only one model for estimation of Prob[U = 0] is
required. There is no difficulty in accommodating the cases of predictors
I =0 and I # 0 within that one model.

The three sub-models are subject to the same considerations as discussed
in Sections 3.2 to 3.4. In addition, Model 3 for estimation of Prob[U = 0]
requires formulation as binomial.

It is worth noting that a model with the structure of Figure 4.1 is of the
statistical case estimation type (see Section 2.1). In the notation of the figure,
the statistical case estimate is:

E[U] = Prob[U # 0]E[U | U # 0].

4.2 Form of Observations

The ith observation was described at the start of Section 3 as comprising
the ultimate cost of the ith claim when finalised. The data set thus consists of
one record per claim finalised. The data set for a case estimate model
requires a different format because each claim involves a whole sequence of
case estimates through its lifetime.

Consider a claim from accident period a, reported in development period
r, and finalised in development period f. It will carry a case estimate I, at the
end of development period d =r,r+1,..., f — 1, and then the ultimate cost
U. This implies a total of f — r records.

It would be possible to organise these as f — r records, each relating to a
single development period, tracking the development of the case estimate
from I, to I,,. However, this would create difficulties of two types.

First, the case estimates would become unpredictable dynamic covariates
of the sort discussed in Section 2.3.2, generating difficulties of the sort
hinted at there. Second, any feasible means of forecasting future case
estimate development would be likely to involve a highly dubious Markovian
assumption.

It seems preferable to create observations of case estimate development,
each taken over a number of periods from the end of some development
period d (=r,r+1,...,f —1) to finalisation in development period f. Thus,
all observation periods would end at finalisation, and would be of an “age-to-
ultimate” nature, as illustrated in Figure 4.2.

While this data structure solves the two problems mentioned above, it
calls for comment on one other point. It is that the observations are unlikely
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ith claim 1, U
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L1 U
* 3
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L, U
o ¥
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Figure 4.2. Structure of case estimate development observations

to be stochastically independent. For example, in the data set that forms the
subject of Section 8§, case estimates typically remain constant for a number of
consecutive quarters.

The GLM vehicle mentioned in Section 1 assumes independence of
observations and so is not applicable to the data set. By the above argument,
this independence assumption would be violated in the model whose
response variable was some form of case estimate development, and whose
data set took the form illustrated in Figure 4.2.

Accommodation of a dependency structure on observations would require
the replacement of GLMs by Generalised Estimating Equations (GEEs)
(Liang and Zeger, 1986; Zeger and Liang, 1986), but this has not been done
here. Instead, one record from the multi-period observations corresponding
to each claim has been sampled at random.

Specifically, an integer is selected randomly from the set {d+ u,
d+u+1,...,f — 1} where d + u is the least value for which I, > 0. If this
integer is denoted d-+ v, then the value R=U/I,, is taken as the
observation to be modelled, as in Model 2 of Figure 4.1. This removes the
dependency while retaining a selection of records over different period
lengths. A GLM may then be applied to these records.

5. MODELLING CLAIM FINALISATION RATES

It is typical actuarial practice for the finalisation rates to be measured
over single periods. Each rate is defined as the number of claims finalised
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in the period divided by some measure of exposure to finalisation, such as
the average number open over the period. From these future operational
times may be derived and thus finalisation of claims corresponds to the
advancement of operational time.

Making use of this fact, a very simple model of future claim finalisation
has been constructed in the form:

At(d) = t(d) — 1,(d — 1) = w;0,(d) (GRY

where t;(d) denotes the operational time at the end of development period d
of origin period i, and At,(d) denotes the increment in operational time over
that development period.

The model on the right of (5.1) consists essentially of selected increments
0.(d), specific to origin periods, accompanied by an adjustment factor w;
which is usually close to 1 and such as to ensure that

t(o0) = t,(d”) + i At(d) = t,(d”) + o, i o(d)=1 (5.2)

d=d*+1 d=d*+1

where d* is the value of d (for origin period i) at the valuation date. The
effect of (5.2) is to ensure that the forecast numbers of finalisations for origin
period i account for all claims unfinalised at the valuation date.

The model values J,(d) have been selected simply by inspection of historical
increments. While they are in principle specific to individual origin periods,
as a practical matter the same values are sclected for groups of origin
periods.

This is an aggregate model, in the sense of Section 1, in that it does not
seek to assign probabilities of finalisation to an individual claim that depend
on the attributes of that claim. Such simple aggregate models often operate
very satisfactorily in conjunction with aggregate models of claim sizes.
However, the more individualised become the latter, the greater the need for
individualisation of the former.

If, for example, the claim size model is capable of differentiating claim
attributes sufficiently to produce high and low forecasts of size for some
claims, then it may not be reasonable to assume that all claims are subject to
the same schedule of probabilities of finalisation. To do so may produce
unreliable forecasts of liability.

It is then preferable to model such probabilities for each claim as
dependent on the attributes of that claim. This is most naturally done by
means of survival analysis (see e.g. Lee, 1992). This means that the ith claim,
with vector X, of covariates, just as in earlier sections, has a lifetime T;,
from reporting to finalisation, assumed subject to a survival function S(.)
such that
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Prob[T; > 1] = Si(t; X)). (5.3)

The hazard rate associated with the ith claim is h(t) = —Si(t)/S,(t). A
convenient form for the present application is the proportional hazards form
(Cox, 1972):

hi(t) = hy(t) exp[ X ] (5.4

where hy(t) is a baseline hazard rate, f§ is a vector of parameters and the
upper T denotes matrix transposition.

Note that, according to (5.4), the probability of a claim’s finalisation in a
specific period depends on the characteristics of the claim. For example, a
claim carrying a larger case estimate might have a lower probability than one
carrying a smaller case estimate, all other things equal.

The fitting of a survival model of this sort to survival data is called Cox
regression. This has been applied to the survival of claims, with each claim
regarded as:

e commencing its life when reported to the insurer;

e dying when finalised;

e having observation of its lifetime right censored (terminated other
than by finalisation) if still open (alive) at the valuation date.

The model was fitted by maximum likelihood using the SAS procedure
PHREG.

6. ESTIMATION OF PREDICTION ERROR

Taylor (2000, Chapter 6) discusses a couple of components of the prediction
error associated with a loss reserve. Generally this prediction error can be
dissected into three components:

e Model specification error (self-explanatory);

e Parameter error (due to sampling error in the estimates of model
parameters);

e Process error (random noise within the model).

The last two of these three components are usually regarded as quantifiable
from the data, and they will be addressed here. Specification error is ignored,
not because it is insubstantial but because it does not fit readily into the
quantitative framework applied here.

For advice on how to estimate it, sce O’Dowd, Smith and Hardy (2005).
In any event, it should be remembered that specification error needs to be
added to all of the estimates of prediction error reported in Section 8.

Prediction error can often be estimated by means of the bootstrap (Efron
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and Tibshirani, 1993). Here an abbreviated form of re-sampling is applied
to each GLM and, for succinctness, it will be referred to here as the
bootstrap. The framework for estimating prediction error is discussed
below.

6.1 Prediction Error of GLM Forecasts
Consider a GLM of form:

Y =h'(X[P) +e (6.1)

where Y, is the response variable, X; is a vector of covariates of the ith
claim, f is a vector of parameters and the upper T denotes matrix
transposition. Let i~ (X7 ) denote E[Y]] so that ¢, is a centred stochastic error
term with d.f. F(.).

Suppose that one is concerned with forecasting a quantity:

U, = g(Z{B) +n; (6.2)

where ¢(.) is some function, Z; is some new vector specific to U,, and 5, is
another centred stochastic error term with d.f. F(.).

Let f and C denote the GLM (maximum likelihood) estimate of the
vector f# (assumed unbiased) and the estimated covariance matrix of 3.

A forecast U, of U, is given by

U, =gz ). (6.3)

Diagonalise C:
C=P'DP (6.4)
for orthogonal P and diagonal D. If y denotes Pﬁ, then E[y] = Pf and

Var[y] = D.
Since large-sample maximum likelihood estimates are asymptotically
normal, assume a normal distribution for f3, so that

7 ~ N(PB, D). (6.5)

An alternative approach to this diagonalisation that is often used is
Choleski decomposition, in which C is expressed in the form LL" with L
upper triangular with strictly positive entries. Then (6.5) is replaced by
y=L"B~NL'B 1.

Random realisations 7" of y are drawn in accordance with (6.5), and
random realisations U; of U; drawn from the uncentred form of F(.) with
mean g(Z] P"y*). This random realisation of U, may be represented in a form
parallel to (6.2):
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Ui =g(Z/P"y") +n; (6.6)

where 7} is a random drawing from F(.).

These are re-sampled values of U, that allow for both parameter and
process errors. The collection of replicates U; may be considered as forming
the empirical distribution of U,.

This procedure is similar to that discussed by England and Verrall (2002,
Section 8.3). Section 8.4.1 of the same paper cautions about non-normality of
B in the case of non-normal error structure and non-identity link. If the
sample size involved in the modelling is insufficient for normality of f to
be relied upon, then one may replace the procedure (6.1)-(6.6) by full
bootstrapping.

6.2 Prediction Error of Cox Regression Forecasts

Consider a survival model of the form (5.4), applied to claim finalisations
in the way described at the end of Section 5. Again, let f and C denote the
estimate of the vector B (again assumed unbiased) and the estimated
covariance matrix of f.

Let Si(t; X;) denote the survival function estimator obtained by replacing
p by fin (5.4), and consider the discrete probabilities:

Gy = [S,(t + 7 X)) = S,(¢t + 7+ 1; X)I/S.(; X)) (6.7)

which is an estimate of the probability that the ith claim, currently open, is
finalised in the (r + 1)th period ahead.

Random realisations g;, of g, can be obtained by sampling the parameter
vector f in the same way as described in Section 6.1. Process error
(corresponding to #; in (6.2)) is added by recognising that, for given S;(t; X)),
finalisation period is a multinomial variate with probabilities ¢, and
sampling it as such. This provides a set of replicates R} of the number of
quarters ahead that the ith claim is finalised.

7. COMBINATION OF MODELS

7.1 Blending of Models Based on Paid and Incurred Losses

Sections 3 and 4 discuss various forms of model that may be fitted to the
same data set. If forecasts are produced from more than one of these models,
the question will arise as to how a single final forecast is obtained from
them.

This question is discussed by Taylor (1985, 2000), who optimises convex
combinations of the various forecasts. Specifically, suppose that there are m
estimates of loss reserve, each by accident period a. Let LY, s =1,2,..., m;

https://doi.org/10.1017/51748499500000518 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499500000518

Individual Claim Loss Reserving Conditioned By Case Estimates — 233

a=1,2,..., A, denote the estimate for accident period a from the sth
model. The final estimate is the weighted average

L,=) wlLy (7.1)
s=1

where the weights w’ are chosen, with 3" w} =1 for each a, so as to

minimise the following loss function that compromises between low
prediction error and smoothness of the forecasts over periods of origin:

L"™L + J,(KR)"(KR) + 2, Zm:(Kw<S>)T(KW<S>) (7.2)

s=1

where L=[L,,L,,...,L,]"; M = Cov[L], the predictive covariance matrix of
L;R=[R,,R,,...,R,]" with R, = L,/0Q,, and Q, denoting the case estimate
of L,; K a matrix that takes dth differences of its operand; w" is the vector of
weights w'¥; and /,, 4, > 0 are constants that set the compromise between
low prediction error, smoothness of the ratios R, over a, and smoothness of
the weights w' over a.

Note that R, has a meaning here slightly different from that assigned to it
in Model 2 of Figure 4.1, where it represents the ratio of ultimate to case

estimate of total incurred loss, not outstanding liability as here.

7.2 A Unified Model Based on Paid and Incurred Losses

Consider the case of a =1,2 in Section 7.1, where Models 1 and 2 are
“paids” and “incurreds’ models of strictly positive finalisations respectively,
in the terminology of Section 4.1. Consider only claims with strictly positive
current case estimates of incurred loss.

Suppose also that both models are GLMs with log link. Then Model 1
takes the form:

Y = exp[X]" ] + & (7.3)
and Model 2:

R, = exp[X"p"] + &" (7.4)
where R; now has the meaning assigned in Section 4.1, the P and I suffixes
denote “paids” and “incurreds™ respectively, the X’ denote the covariates of

the ith finalised claim, the ﬁ(') the vectors of model parameters, and the &
centred stochastic error terms.
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If I, denotes the current case estimate of incurred loss for the ith claim,
then Y, = I,R;, and (7.4) may be re-written as

Y, =exp[in I, + X" "] + &, (7.5)

The model blending procedure of Section 7.1 takes weighted averages of the
model predictions:

Y =wexp[X; P8P+ (1 = wyexp[In I, + X7 "] (7.6)

where the weight w is temporarily assumed the same for all claims.

The expression on the right side of (7.6) is an arithmetic weighted average
of the model predictions. A geometric weighted average would be an equally
valid choice, and yields the more convenient form:

Y =exp(wX]"p7 + (1 = wlin I+ X757
= exp{X; w1+ (1 — w)In I, + X;"[(1 — w)B]). (7.7)

The exponent on the right side is a very special form of linear combination
ofInl, X ‘" and X", which may now be generalised to the following:

Y =exp[(l —w)nI, + XV (7.8)

where the upper U denotes a unified paids and incurreds model with xY
the union of X and X' 5”, and w, ﬁ(u) are the model parameters.
This implies that the unified model takes the form:

Y, = exp[(1 — w)InI, + X"V + & (7.9)
where & is a centred stochastic error term with distribution suitably
chosen as in some sense “between’’ those of SEP) and 651).

This model is more general than that underlying (7.7), and so certainly
includes (7.7). It should therefore provide more efficient forecasts. Since it is
more general than (7.7), it is no longer precisely a weighted average of paids
and incurreds models. However, to the extent that one chooses to view it as
such, (7.9) implies weights of w for paids and 1-w for incurreds.

As discussed in Section 3.4, it is necessary to deal with the dependency
between the multi-period observations of the same claim. The same procedure
is followed here as above; one multi-period observation is sampled at
random for each claim.

It was assumed at the start of the present sub-section that both I, and R,
are strictly positive. Other cases require separate treatment, just as in Models
1 and 3 of Figure 4.1.
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8. NUMERICAL EXAMPLES

8.1 Data Set

The data set is taken from a long tail portfolio from a Liability line of
business that includes risks underwritten on both Occurrence and Claims-
Made bases over a period of about 30 years. It consists of roughly 23,000
unit records in respect of claims completed at strictly positive cost, and
another 38,000 completed at nil cost.

There were no Claims-Made risks underwritten in the earliest 7 or 8
origin years. Subsequently, such risks constituted a steadily increasing
proportion of those underwritten, though the proportion of Occurrence
coverages has always remained substantial, and risks of this type still
dominate the loss reserve.

Each claim record consists of:

e Certain time covariates;

e Certain static covariates;

e Final cost of claim; and

e Quarterly history of case estimates of incurred loss.

Paid losses are heavily concentrated at the date of completion. Indeed,
paid losses to date in respect of open claims are less than 3% of the estimated
outstanding liability in respect of notified claims.

The data set is used to illustrate the models discussed in the foregoing
sections. In the interests of brevity, much of the numerical detail has been
omitted here, but can be found in a more comprehensive version of the paper
(Taylor, McGuire and Sullivan, 2007).

8.2  Conventional (Mack) Stochastic Model

Paid and incurred losses have been summarised by origin quarter and
development quarter. Origin quarter means that in which the claim originates.
For coverages of the Occurrence type, this may be thought of as accident year,
but such terminology is not appropriate to Claims-Made coverages.

Development quarter is defined relative to origin quarter, and has its
usual meaning.

This leads to the conventional triangular representation of the data set,
which has been subjected to a chain ladder analysis. The resulting chain
ladder estimate of loss reserve is taken as a baseline against which later
estimates may be compared.

The Mack method (Mack, 1993) has been used to estimate the mean
square error of prediction (MSEP) associated with the chain ladder estimate.
In order that the chain ladder estimates be objective, the method has been
applied blindly, in that age-to-age factors have been averaged over all origin
quarters, and not subjected to any smoothing. This has three major
consequences.
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First, the paid chain ladder produces obviously false results. Its estimate
of loss reserve, including IBNR, is about treble those produced by
demonstrably reasonable methods. This appears to occur because of the
shifting composition of Occurrence and Claims-Made exposures.

The latter increase relative to the former over origin periods, but are
subject to a shorter payment pattern. This means that the correct age-to-age
factors fall increasingly short of the historical averages as origin period
increases, and the averages therefore cause dramatic over-estimation of loss
reserve for the more recent origin periods.

This difficulty might have been overcome by separate chain ladder
modelling of the two coverage types. If this were done, however, the absence
of Claims-Made exposures in the earliest origin periods would leave this
coverage type with no experience on which to estimate the payment tail.

In view of these difficulties the paid chain ladder has been discarded.

Second, the incurred chain ladder yields negative estimates of loss
reserves for the earlier origin periods. The difficulties associated with the
paid chain ladder do not necessarily affect the incurred chain ladder.
However, age-to-age factors in this portfolio tend to be substantially less
than unity, and even slight under-estimation of them can send ultimate
incurred losses for an old origin period below losses paid to date.

Third, blind application of the chain ladder (or, for that matter, of any
other model) can be expected to produce less efficient prediction than more
considered modelling, and so can be expected to generate unnecessarily high
prediction error.

Ultimately, the incurred chain ladder estimates of loss reserve have been
retained here as baseline estimates, with all negative estimates of liability for
individual origin years reset to zero. These estimates need to be read as
subject to qualification on the above grounds.

An incurred chain ladder forecast includes allowance for IBNR claims.
As noted in Section 3.6, forecasts of the type described in Sections 3.2 and 3.3
also naturally do this. However, it is remarked in Section 4.1 that forecasts
based on models of case estimate development, such as discussed there,
include no IBNR allowance.

It is necessary to place all forecasts on the same footing with respect to
IBNR claims if they are to be compared. An “excluding IBNR basis” has
been chosen for this purpose. All individual claim loss reserves estimated in
Section 8.3 exclude IBNR allowance by the procedure outlined in Section
8.3.1. The chain ladder forecast has been placed on the same basis by
subjecting the “including IBNR” estimate to the adjustment:

Forecast liability excluding IBNR = Forecast liability including IBNR

><Section 8.3.2 forecast liability excluding IBNR
Section 8.3.2 forecast liability including IBNR

(8.1)
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where the adjustment is applied separately to each origin quarter within
coverage type, and each of the required numbers of IBNR claims has been
separately estimated.

This adjustment invokes an implicit assumption that the open reported
claims and the IBNR claims are sampled from the same size distribution.
This may involve some approximation, and the comparisons between
forecasts below may be slightly distorted as a result. A more complete
treatment would incorporate an explicit forecast of the cost of IBNR claims,
where needed, along the lines discussed in Section 3.6.

Table 8.1 reports this loss reserve estimate in total and its prediction
error. The corresponding information on origin years is represented in Figure
8.1. Origin years (“Accident years” in this and subsequent figures) are
numbered just 1, 2, etc., starting at the earliest.

For the sake of anonymity of the insurer providing the data set, all
forecasts of loss reserve have been scaled in proportion so that the one in
Section 8.3.2 totals $1,000M. The relativities between them are thus

preserved.
Table 8.1. Chain ladder loss reserve
Estimated loss reserve $888M
Predictive coefficient of variation (“CoV”) 10.5%
250
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Figure 8.1. Chain ladder loss reserve
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The figure refers to the chain ladder estimates as “Mack’ because the
Mack method has been used to estimate the prediction CoV. It shows the
chain ladder forecasts with an envelope of one CoV in each direction. The
envelope is seen to grow wide (27%) in relation to the most recent origin years.

8.3 Individual Claim Models
8.3.1 Forecast procedure
For each of the individual claim models discussed in Sections 8.3.2 to

8.3.5, the same broad outline of forecast procedure was followed. This

consisted of the following steps. Let the valuation date be taken as the end of

calendar quarter q.

Step 1: The simple aggregate model described in (5.1) and (5.2) was used to
forecast, for each origin quarter a, operational times ¢, ,, f,,.,, . ..at
the ends of quarters g+ 1, g+ 2, etc. These forecast operational
times included allowance for claims that were IBNR at the valuation
date so that finalisation numbers derived from these forecasts will
include IBNR claims. In other words, the total number of finalisations,
past and forecast future, for an origin quarter was equal to the
estimated total number incurred.

Step 2: For each claim i open at the valuation date, the probability of
finalisation in quarters g + 1, ¢ + 2, etc., was estimated from one of
the models of Section 5. The first model is that used in Step 1 (the
future operational time increments being used to form a probability
distribution in this case) but the second (the Cox regression model)
produces probabilities that are claim-specific and relate to open
claims, and so do not necessarily relate to the forecasts in Step 1
(which related to all unfinalised claims open or IBNR). More detail
on the derivation of the probabilities appears in the sub-sections
relating to the different models below. Let the probabilities be
denoted f,., figi2s - - -

Step 3: For each of these claims, the probability of a finalisation for zero
cost, given that finalisation occurs in quarters g + 1, ¢ + 2, etc., was
estimated from the model of Section 4.1 (see also Section 8.3.4).
These probabilities are also claim-specific. Let them be denoted z,,,,
Zi412s - - - They depend on the t;,,y, t;;,5, . .. from Step 1.

Step 4: For each of these claims, the claim size, given that finalisation
occurs in quarters g+ 1, g+ 2, etc., and the cost is non-zero, was
estimated from the relevant model. The precise forms of the models
are discussed in the sub-sections relating to the different models
below. These claim sizes are also claim-specific. Let them be denoted
Sigt1» Sigras - - - - They also depend on the ¢, t;,,,, ... from Step 1.

Step 5: Combine the results of Steps 3 to 5 to produce forecast expected
claim cost in respect of the ith claim for experience quarter
q +rr= 11 29 etc., as Ci:q+r :ﬁ:q+r(1 - Zi:q+r)si:q+r-
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Step 6: Collate the C,,, over relevant values of i, r. For example, the loss
reserve for open claims in respect of origin quarter a is obtained by
summation over all r and all claims i belonging to origin quarter a.

8.3.2  Time covariates only

A model of the type discussed in Section 3.3 has been fitted to the data
set of strictly positive finalised claim sizes. It takes the form (6.1) with log
link, i.e. h(.) =In(.). The error term has a quasi-likelihood from the
exponential dispersion family (EDF), characterised by

Varfe] = ¢{E[e]}". (8.2)

The design X, is restricted to time covariates. The model is economical,
involving just 9 parameters, including:
e An intercept;
e 3 describing the operational time effect;
e 4 giving rates of claims inflation over different past periods
(coefficients of covariates defined in terms of finalisation year);
e 1 describing variation in the rate of claims inflation as operational
time varies.

Claims inflation is estimated at a constant rate of 3.9% per annum over
the 15 years 1990 to 2004 for operational times above 70%. For lesser
operational times, the rate of inflation (strictly the inflationary coefficient in
the linear predictor) increases linearly with decreasing operational times.
These rates have been extrapolated into the future for the purpose of
forecasting loss reserve.

The inclusion of claims inflation in the model necessitates a forecast of
finalisation rates. This is done on the basis of the simple model described in
(5.1) and (5.2). Indeed, both loss reserve estimates described in this and the
following section are based on the same forecasts of future numbers of
finalisations by origin period and development period.

Note that the forecast of finalisation rates has only a second order effect
on estimated loss reserve. If claims inflation were zero, it would have no
effect, as explained in Section 3.2. The uncertainty induced in the loss reserve
by the schedule of finalisation rates is therefore of the order of the
uncertainty in the average term to finalisation multiplied by the claims
inflation rate.

This influences the choice of model for forecast of numbers of
finalisations in Step 1 of the protocol set out in Section 8.3.1. Two models are
available from Section 5, the “simple aggregate model” and the “Cox
regression model”.

In principle, the second of these, being the more comprehensive, is
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preferable for any loss reserve forecast that requires a forecast of
finalisations. In fact, however, the simple aggregate model has been used for
the models of the present sub-section in view of the observed relative
insensitivity of the loss reserve estimate to this choice.

The finalisation probabilities for the open claims of an origin quarter,
introduced in Step 2 of Section 8.3.1, are taken as proportional to the
numbers of finalisations in Step 1. This is equivalent to assuming that the
distribution of finalisations over future quarters is the same for open and
IBNR claims respectively.

This introduces an error but, on the basis of the insensitivity of the loss
reserve estimate to the forecast of finalisations reasoned above, it has been
ignored. Some control testing of the loss reserve estimates showed that they
did, in fact, change little when the Cox regression model replaced the simple
aggregate model in Step 3.

Table 8.2 reports this loss reserve estimate in total and its prediction
error. The corresponding information on origin years is represented in
Figure 8.2. These results are compared with their chain ladder counterparts,
reproduced from Table 8.1.

In the case of the individual claim model, the predictive CoV is dissected
into a number of component parts. The CoV is shown as it accumulates
various contributions, denoted as follows:

e CoVlI: Claim size parameter error only;

e CoV2: Claim size process error added in;

e CoV3: Finalisations process error added in;

e CoV4: Probability of zero finalisation process error added in.

The final CoV is taken as CoV4, whence it can be seen that certain,
apparently minor, contributions to CoV (e.g. parameter error in finalisations
model) have been omitted on the grounds of materiality.

The individual claim model estimates a quite different (by 12%) loss reserve
from the chain ladder, but is virtually twice as efficient in terms of prediction
error. As mentioned in Section 8.1, this comparison is somewhat unfair to

Table 8.2. Loss reserve based on time covariates only

Chain ladder and Individual claim model based
Mack on time covariates only
Estimated loss reserve $888M $1,000M
Predictive CoV 10.5% 5.3%
CoVl 4.0%
CoV2 4.1%
CoV3 4.3%
CoV4 5.3%
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Figure 8.2. Loss reserve based on time covariates only

the chain ladder, but it seems unlikely that the latter method could be
refined to an extent where its efficiency would challenge that of the individual
claim model.

In Figure 8.2, “Mack” refers to the chain ladder and “Time Paids™ to the
individual claim model. It shows that the latter has a much narrower
confidence envelope for the recent origin years. A plot of the individual claim
model results on a log scale, displaying more detail for the early origin
years, appears in Figure 8.3.

8.3.3  Static covariates included
The individual claim model of Section 8.3.2 has been extended to include
several static covariates, generically described as follows:
e The risk class (6 of them) to which the policy generating the claim
belongs;
e The geographic district (3 of them) in which the risk generating the
claim is located;
e The type of entity covered (2 of them) by the policy generating the
claim.

The model now has 20 parameters rather than the earlier 9. Claims
inflation over recent years for higher operational times is estimated as 4.0%,
rather than 3.9% per annum as formerly. The simple model of finalisations
was retained here.
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Table 8.3. Loss reserve based on time and static covariates

Individual claim model Individual claim model based
based on time covariates on time and static
only covariates
Estimated loss reserve $1,000M $978M
Predictive CoV 5.3% 5.7%
CoV1 4.0% 4.3%
CoV2 4.1% 4.3%
CoV3 4.3% 4.7%
CoV4 5.3% 5.7%

Table 8.3 reports this loss reserve estimate in total and its prediction
error. The corresponding information on origin years is represented in Figure
8.3. These results are compared with their counterparts from the individual
claim model based on just time covariates, reproduced from Table 8.2.

The inclusion of the static covariates, despite their statistical significance,
appears to degrade the predictive efficiency of the model, as measured by
smallness of predictive CoV of the loss reserve. Most of the loss of efficiency
relates to parameter error, i.e. to the additional forecast variability arising
from the additional parameters in the model.

It should be recognised, however, that this comparison is very likely false.
The omission of significant static covariates from the model would shift some
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Figure 8.3. Loss reserve based on time and static covariates
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prediction error from parameter error into process error and model error,
and the last of these components would be lost.

The vertical scale of Figure 8.3 is logarithmic in order to display detail of
the earlier origin years. The results of the two models are seen to be quite
similar.

8.3.4  Case estimates included in covariates
The general form of a model that includes case estimates of ultimate
incurred loss in its covariates is discussed in Section 4.1. It is pointed out
there that the model in fact consists of three sub-models, in addition to the
further models required to forecast future numbers of finalisations and the
sizes of IBNR claims.
The three sub-models relate to:
e The probability that a claim settles for zero, given a current estimate
of incurred loss (which can be zero or non-zero);
e The distribution of non-zero ultimate claim size given a zero current
estimate of incurred loss;
e The distribution of non-zero incurred age-to-ultimate factor given a
non-zero current estimate of incurred loss.

The last two of these could have been merged into a single model of
ultimate incurred loss conditioned by current estimate. However, the
separate sub-models were considered likely to lead to greater forecast
efficiency since the range of ratios required to be forecast by the last of them
(which accounts for the majority of claims) is considerably narrower than
the corresponding range of claim sizes.

All three sub-models are GLMs. The response variate in the first consists
of an individual claim marker as to whether or not the claim was finalised at
zero cost. It involves a binomial error with a logit link.

The other two models have response variates of ultimate claim size and
age-to-ultimate factor respectively. Both have log links and EDF quasi-
likelihoods of the form:

Varlg] = o{E[s]}" (8.3)

with p = 2.1 and 1.85 respectively.

The model of age-to-ultimate factors involves many covariates and
interactions, all of which are statistically significant and either decrease the
Akaike Information Criterion or are approximately neutral with respect to it.
The model has 72 parameters.

The modelling of future numbers of finalisations has been carried out in
rough and ready manner in Sections 8.3.2 and 8.3.3. A more careful
approach is required here, however, for the following reason.

According to the indications of the data, the model of age-to-ultimate
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factor recognises that this factor tends to increase with the delay in
finalisation. Since separate modelling of claim sizes shows that large claims
will tend to finalise later than small claims, it is necessary to make claim-
specific forecasts of finalisation periods. The Cox regression model does so,
and has been used here.

Recall the form of data input to the third of the sub-models, discussed in
Section 4.2. The response variable consists of observations on age-to-ultimate
factors for closed claims. Applied to an open claim, the model produces a
forecast of this factor for the claim concerned, and then the ultimate claim
size of the claims is forecast as follows:

Forecast ultimate claim size = Current case estimate of incurred loss

x Forecast age-to-ultimate factor.

The loss reserve in respect of open claims has been estimated as the
aggregate of the individual ultimate costs, forecast in this manner, of all
claims open at the valuation date.

The inclusion of finalisation period in model covariates is worthy of
comment. While it is reasonable to interpret coefficients of finalisation period
as representing claims inflation in the earlier models, this is not so obvious
for the present one.

Age-to-ultimate factors already incorporate allowances for inflation, and
so any trend in them over finalisation periods reflects change over time in the
strength of case estimates relative to ultimate cost. Any such trend might
reflect claims inflation in some way, but is more general than this.

The model of age-to-ultimate factors estimates that they experienced a
downward trend of about 0.8% per quarter over the most recent 7 or 8 years
of finalisation. This has not been extrapolated in forecasts of ultimate claim
sizes of open claims; a nil trend has been assumed for future finalisation
periods.

Table 8.4 reports this loss reserve estimate in total and its prediction

Table 8.4. Loss reserve based on model of case estimate development

Individual claim model based Individual claim model based
on time covariates on case estimate
only development
Estimated loss reserve $1,000M $1,062M
Predictive CoV 5.3% 6.0%
CoV1 4.0% 5.2%
CoV2 4.1% 5.2%
CoV3 4.3% 5.6%
CoV4 5.3% 6.0%
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Figure 8.4. Loss reserve based on model of case estimate development

error. The corresponding information on origin years is represented in Figure
8.4. These results are compared with their counterparts from the individual
claim model based on just time covariates, reproduced from Table 8.2.

The comparison here is very interesting in a couple of respects. First, the
difference between the two forecasts is roughly one standard deviation of
either forecast, and so appears acceptable. The difference could be partially
due to the chosen projection of past trends in to future such as discussed in:

e Section 8.3.2 in relation to claims inflation;
e The present sub-section in relation to age-to-ultimate factors.

Second, the inclusion of current case estimates in the predictors of
ultimate claim size achieves no apparent increase in prediction efficiency. At
the level of individual origin periods, the standard errors of prediction are
similar for both models, except in the early accident periods where the paids
model predicts no outstanding liability, unlike the model based on case
estimates. Overall, the model based on case estimates has somewhat lower
apparent predictive efficiency.

However, in view of the omission of specification error (see the beginning
of Section 6), this conclusion may be misleading. It is possible that the
omission of case estimates as explanatory variables, while reducing the sum
of parameter and process errors, would also increase specification error,
causing an increase in total prediction error,

A further point to note is that, for the present model, CoV2 accounts for
the prediction error of the “main” model, that of age-to-ultimate factors. The
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error contributed by the open cases carrying a zero case estimate has been
omitted, as there are few such cases.

Figure 8.4 plots the loss reserves estimated by this model (“Incurreds’)
against year of origin, and compares them with the corresponding estimates
from Section 8.3.2 (“Time paids’).

8.3.5 Combination of models of paid and incurred losses

Model blending

The procedure described in Section 7.1 has been applied to blend the
models of Sections 8.3.2 and 8.3.4. After some experimentation, values of
2, = A, = 10" were chosen.

The predictive covariance M defined in Section 7.1 is estimated on the
assumption that the results of the two models are stochastically independent.
The matrix M then has block diagonal form. There are two blocks,
representing the predictive covariance matrices associated with the two
respective models. These matrices are obtained directly from the same re-
sampling results as those used to produce the CoVs in Tables 8.2 and 8.4.

The weights calculated according to Section 7.1 are not constrained to
non-negativity as such constraints would destroy the linearity of the problem
set out there. However, where a negative weight is calculated, it has been
set to zero here, and the weight for the opposing model set to 100%.

Figure 8.5 displays the resulting weights of the models of Sections 8.3.2
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Figure 8.5. Model blending weights
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Table 8.5. Loss reserve based on model of case estimate development

Individual claim Individual claim Blended
model based on model based on model
time covariates case estimate
only development
Estimated loss reserve $1,000M $1,062M $1,022M
Predictive CoV 5.3% 6.0% 4.0%

(“Time Paids”) and 8.3.4 (“Incurreds’). The latter set commence at 100%
for the earliest origin year.

As one might expect, high weight is assigned for the early periods of
origin to the model that relies on case estimates. Here, where there are
relatively few claims remaining to be finalised, the average size associated
with any origin year may differ from a typical value, in which case the case
estimates will provide useful predictive information.

A little surprising, perhaps, is the result that the model based on case
estimates continues to receive approximately 40% weight even for the most
recent years of origin. One might reasonably expect the case estimates for
these years to be of little predictive value, and it is indeed common to see
models based on case estimates assigned low weight in respect of the most
recent years. The results indicate that the data set analysed here is different in
that its development of case estimates is less erratic in the early
development periods than is typical.

Table 8.5 reports the blended loss reserve estimate in total and its
prediction error. The corresponding information on origin years is
represented in Figure 8.6. These results are compared with their counterparts
from the models of Sections 8.3.2 and 8.3.4, reproduced from Table 8.4.

Figure 8.6 shows that the blended results are quite similar to those
produced in Section 8.3.4 (similarly for those of Section 8.3.2). It also shows
the narrower confidence envelope for the blended results, leading to the lower
CoV that appears in Table 8.5.

Indeed, while the model based on case estimates did not, of itself, decrease
the prediction error associated with estimated loss reserve, it does so when
taken in conjunction with the model of Section 8.3.2.

Recall from Section 7.1 that one of the criteria accommodated in the loss
function minimised by the blending process was smoothness over years of
origin of the ratios of the blended to the case estimates of loss reserve (on
open claims). Figure 8.7 plots these ratios against year of origin.

As is typical, one observes higher ratios for the more recent origin years.
The grid lines in the plot are separated by intervals of 20%, so reasonable
smoothness in the progression of ratios has been achieved. The break in the
plot reflects one origin year for which there were no open claims at the
valuation date.
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Figure 8.6. Loss reserve based on blending of models of paid and incurred
losses
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Unified model

Section 7.2 describes how a single model may be constructed, unifying (as
opposed to blending) the models of Sections 8.3.2 and 8.3.4. As noted in
Section 7.2, the response variate is individual finalised claim size, where the
data set is restricted to those claims that have been finalised for strictly
positive cost.

The error terms in those earlier sub-sections suggest a quasi-likelihood of
the form (8.3) for the unified model, with p between 1.85 and 2.2. A
convenient choice is p = 2 (gamma distribution). The Cox regression model
of claim finalisation of Section 5 was used.

Although Section 7.2 remarks that the unified model is more general than
a weighted average of the paids and incurreds models, it may nevertheless be
useful sometimes to regard it in this way. This is particularly so in the
selection of an allowance for future inflation for incorporation in forecasts.

Section 7.2 suggests that w may be interpreted as the weight assigned to
the paids model in the unified one. Model calibration indicates this weight to
be roughly 20%, or equivalently an 80% weight on the incurred model.

Table 8.6 indicates that this interpretation is a reasonable one. Covariates
are grouped here by type. Their general meanings are as follows:

e “finalisation quarter’variates refer to the the calendar quarter in
which claim finalisation occurred;

e “development quarter” variates refer to the number of quarters over
which development of incurred cost is observed;

e the “development ratio” is the ratio of incurred cost (according to
case estimate) to the corresponding estimate 4 quarters earlier.

Table 8.6. Comparison of linear predictors of incurreds and unified models

Coefficient in linear predictor

Covariate Incurreds Unified Ratio:
model model Unified/Incurred

Finalisation quarter:

Covariate 1 —0.042 —0.063 148

Covariate 2 0.001 0.000 44

Covariate 3 0.009 0.007 72
Development quarter:

Covariate 4 —0.039 —0.036 92

Covariate 5 0.015 0.018 123
Operational time:

Covariate 6 —0.098 —0.083 84
Development ratio:

Covariate 7 0.053 0.054 101
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The table shows that, for a sample of influential covariates that occur in
the incurreds but not the paids model, their contribution to the unified model
is not too different from 80% of that to the incurreds model. The
comparison becomes erratic as one proceeds to covariates of more marginal
influence.

The paids model estimated claims inflation to have been 3.9% per annum
over recent years (Section 8.3.2). Section 8.3.4, on the other hand, pointed
out that temporal trends in the age-to-ultimate factors of the incurreds model
generally represent something other than inflation. Age-to-ultimate factors
were estimated to have exhibited a slight downward trend over recent years,
but this was not extrapolated beyond the valuation date in forecasts.

Hence, the allowance for inflation over future years incorporated in the
unified model was, in broad terms, 20% of that included in the paids model.
More precisely, the contribution of finalisation period to the linear
predictor:

e is scaled down by a factor of 20% at operational times above 70%,
and

e its slope with respect to lower operational times is preserved from the
paids model.

It is evident that this treatment of future inflation is heuristic, and it is
identified as the major weakness of the unified model. Greater rigour would
be a worthwhile objective of any future research.

Table 8.7 reports this loss reserve estimate in total and its prediction
error. The corresponding information on origin years is represented in
Figure 8.8. These results are compared with their counterparts from the
blended model, reproduced from Table 8.5.

In view of the licence taken in the treatment of future inflation, the
estimated loss reserve may be slightly suspect. The prediction error is similar
to, though materially higher than, that based on the blended model.
However, in creating the blended results, an assumption is made that the two
models are independent; this assumption is not strictly true and may cause
under-estimation of the prediction error.

Table 8.7. Loss reserve based on unified model of paid and incurred losses

Individual claim model Individual claim model
based on unified model based on blended model
Estimated loss reserve $1,091M $1,022M
Predictive CoV 4.8% 4.0%
CoV1 3.7%
CoV2 3.7%
CoV3 4.1%
CoV4 4.8%
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Figure 8.8. Loss reserve based on unified model of paid and incurred

8.4

losses

Summary

30

Table 8.8 summarises the estimates of loss reserve and predictive CoVs
from Section 8.3.

The re-sampling procedure for estimating prediction error (Section 6)
yields not only the predictive CoVs reproduced in Section 8.3, but also
estimates the entire distribution of the loss reserve forecast. Figure 8.9 plots
this distribution for the unified model.

The estimate of the distribution is based on 1,000 replications of the loss
reserve forecast. The figure compares this empirical distribution with normal,
gamma and log normal distributions having the same mean and variance. It
is seen that:

Table 8.8. Summary of loss reserves and estimated prediction errors

Model Estimated loss Predictive CoV
reserve %
M

Mack 888 10.5
Paids:

Based on time covariates only 1,000 5.3

Including other static covariates 978 5.7
Incurreds 1,062 6.0
Blended 1,022 4.0
Unified 1,091 4.8
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Figure 8.9. Estimated distribution of loss reserve forecast

e The skewness of the empirical distribution is low, despite its long
tailed nature and the high skewness of the individual claim size
distribution (see e.g. (8.2)), so that there is relatively little difference
between the normal and log normal approximations to it.

e In fact all three distributions (normal — small dotted line, log
normal — solid line and gamma — broken line) fitted to the curve are
virtually indistinguishable. Even in the tail there are only small
differences between the curves.

9. DISCcUSSION

This paper examines various forms of individual claim model for the
purpose of loss reserving, with emphasis on predictive efficiency in the sense
of reduced prediction error in the reserve.

Models of this sort use more information than aggregate models and so
may be capable of higher predictive efficiency. Examples of this are given in
Section 8.3.2.

https://doi.org/10.1017/51748499500000518 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499500000518

Individual Claim Loss Reserving Conditioned By Case Estimates 253

It is often possible to achieve high efficiency with a model of the “paids”
type that has a small number of parameters (see the example in Section
8.3.2), certainly fewer than in most conventional actuarial models. The issues
involved in the construction of such a model are relatively simple. Further
improvements are possible, but possibly with considerable effort (Section
8.3.3).

It is likely that any reasonable “paids” models will include time covariates,
as defined in Section 2. Such models may or may not include other static
covariates (as defined in the same section).

The construction of an individual claim “incurreds’ model involves rather
more modelling complexity. For the particular data set considered here, this
did not yield any direct improvement in the sum of parameter and process
errors though, as remarked in Section 8.3.4, there may have been a decrease
in the (unquantified) specification error.

However, a different conclusion would be obtained for other data sets. If,
for example, claim payment experience were highly erratic (unpredictable)
but case estimates developed regularly (were predictable), it seems obvious
that the loss reserve forecast conditioned by case estimate information would
out-perform that which discarded this information.

Even though, in relation to the present data set, the loss reserve forecast
conditioned by case estimates did not, of itself, improve predictive efficiency,
it did provide an alternative model that was largely stochastically
independent of the paids model. The two models could then be used to
produce a blended estimate of greater efficiency than either one (Section
8.3.5).

The blended model is a certain type of weighted average of its component
models. Section 8.3.5 generalises this to a genuine unification of the paids
and incurreds models in which forecasts of ultimate individual claim sizes are
conditioned by their current case estimates in addition to other covariates.

The unified model, while more general than a weighted average, retains
certain features related to it. It produces high predictive efficiency, in relation
to the present data set at least.

The current weakness of this model is its lack of rigour in the
interpretation of claims inflation, and the consequent lack of guidance as to
the future values of this parameter. This area would merit further research.

Section 6 identifies the components of prediction error. It is to be
emphasised that, as stated in that section, model specification error is not
quantified in this paper. This is not to minimise its significance. It is likely to
be a substantial addition to the prediction errors quantified here, but needs
to be addressed by different means, outside the scope of this paper. As noted
in Section 8.3.4, its absence needs to be borne in mind as simply ignoring it
may lead to misleading comparisons between models.

Individual claim modelling, including conditioning by case estimates, is
thus seen to offer, in some circumstances, improved performance over more
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traditional actuarial approaches to loss reserving. However, it obviously
requires a much more extensive data set than the simple triangles required by
the traditional approaches. It also requires extensive and detailed modelling
of the data.

In return for the finer structure of the analysis, there may be side benefits
in addition to improved statistical efficiency. If the individual claim approach
is of the statistical case estimation type (see Section 2.1), then by definition
one obtains a forecast of the ultimate cost of each (reported) claim.

This will be extremely helpful if there is a need to transform a gross loss
reserve to net, taking account of an excess of loss reinsurance program. The
program can simply be applied to the forecast ultimate gross cost of each
claim.

Note that all of the examples in Section 8 fit the estimation procedure set
out in Section 8.3.1. It is evident from Step 5 of that procedure that all are
examples of statistical case estimation.

At the most general level, the concept of individual claim estimation is
applicable to any portfolio, but naturally it is necessary for the specific form
of model to reflect the nature of the claims experience. The models
described in this paper are all of the type in which operational time is a
strong predictor of claim size. These are usually appropriate to lines of
business, such as Motor Liability, in which a large proportion of the cost of a
claim is typically paid on a single date.

Other lines of business do not fit this description. The cost of a workers
compensation claim, for example, is often dispersed over the life of the claim.
In this case operational time is no longer such a decisive event, and it might
be desirable to model claim costs in a different way that better reflects the
claim payment process (see e.g. Taylor and Campbell, 2002).

As with all estimation processes, it is appropriate to consider the issue of
outlying observations. These have been accorded no special treatment in the
present paper. Large claims have not, for example, been capped or
censored.

The flexibility of the variance structure set out in (8.3) is helpful in this
respect as it can accommodate relatively long tailed distributions. Ultimately,
however, the EDF does not contain genuinely long tailed distributions such
as sub-exponential. A GLM in the presence of one of these distributions will
generate outliers.

If the sampling distribution were known, outliers could be eliminated by
the appropriate data transformation. If it is not known, however, data
transformations can, in the authors’ experience, prove dangerous. The
difficulty is that each data transformation requires a subsequent inverse
transformation and bias correction. The latter is dependent on the sampling
distribution, and may generate extreme estimates if the two are not properly
matched.

For example, the bias correction factor associated with the distribution
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log N(u, 0°) is exp(t 6°), which can generate large estimates for even moderate
values of ¢. )

It may be preferable to deal with GLM outliers by robustification of the
GLM rather than data transformation. This is the subject of an existing
research project.
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