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FOUR IDENTITIES FOR THIRD ORDER
MOCK THETA FUNCTIONS
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Abstract. In 2005, using a famous lemma of Atkin and Swinnerton-Dyer
(Some properties of partitions, Proc. Lond. Math. Soc. (3) 4 (1954), 84-106),
Yesilyurt (Four identities related to third order mock theta functions in
Ramanujan’s lost notebook, Adv. Math. 190 (2005), 278-299) proved four
identities for third order mock theta functions found on pages 2 and 17 in
Ramanujan’s lost notebook. The primary purpose of this paper is to offer new
proofs in the spirit of what Ramanujan might have given in the hope that a
better understanding of the identities might be gained. Third order mock theta
functions are intimately connected with ranks of partitions. We prove new
dissections for two rank generating functions, which are keys to our proof of
the fourth, and the most difficult, of Ramanujan’s identities. In the last section
of this paper, we establish new relations for ranks arising from our dissections
of rank generating functions.

81. Introduction

On pages 2 and 17 in his Lost Notebook [26], Ramanujan recorded four
identities involving the rank generating function. Of course, Ramanujan
would not have used this terminology, because the rank of a partition was
not defined until 1944 by Dyson [13]. He defined the rank of a partition to
be the largest part minus the number of parts. For example, the rank of the
partition 4 + 1 is 4 — 2 =2. Let N(m,n) denote the number of partitions
of the positive integer n with rank m. Dyson showed that the generating
function for N(m, n) is given by

o0 o0 nzm_ [ee] qn2 B i
(1.1) m_z_:oo;)mm, n)q _nz:%(zq)n(q/z)n = G(z,q), lq/<1.
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Ramanujan’s four identities involve special cases of G(z, q). Here, we use
the standard notation

(@) = (a; @)n = (1 = a)(1 —agq) -+ (1 = ag"™"),
n>1, (a):=(a;q)o:=1.

Ramanujan’s four identities were first proved in a wonderful paper by
Yesilyurt [29]. Although Yesilyurt’s proofs using the Atkin—Swinnerton-
Dyer lemma [7] are ingenious, it is doubtful that Ramanujan would have
used such an approach. First, in his voluminous work in g-series, there is
no evidence that he would have used such a means via complex analysis.
Second, the Atkin—Swinnerton-Dyer lemma was established many years
after Ramanujan died in 1920, although, of course, it is conceivable that
he could have discovered an equivalent theorem himself. Third, to apply
the Atkin—Swinnerton-Dyer lemma, it would seem that prior knowledge of
the identities’ existence would be necessary. For these reasons, the authors
were compelled for several years to find more natural proofs using methods
from the theory of ¢-series. The purpose of this paper is indeed to provide
such proofs, which also lead us to a better understanding of these identities.
Moreover, as emphasized above, these functions are intimately connected
with ranks of partitions, and our work has also led to the discovery of some
new facts about ranks.

In the sequel, we also use the notation

(a1, a2, ..., am; On = (a1; Onlaz; On -+~ (@m; @)n, 120,
(@)oo = (a3 @)oo := lim (a; q)n,
(a1, a2, - -, Gm; Qoo = (015 Qoo (025 Qoo * * * (Am; @)oo,
[a; qln == (a; @)n(q/a; @)n, n=0,a7#0,
a1, az, . .., am; qln = [a1; qlnlaz; qln - - - [ami qln, 120,
[aloo = [a; gloo = Tim [a; g]n,
a1, @z, . . ., am; gl = [a15 @loo[a2; qloo + + + [Ams loo-

Throughout this paper, |¢| < 1.
To state the aforementioned four identities of Ramanujan, we need to
define Ramanujan’s theta function v (q),

2. .2
(1.2) Z q"" 2 = (—g; )20 (@ @)oo = (é;’q%));o,
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by the Jacobi triple product identity (given in its general form in (3.1)
below) and Euler’s theorem. Appearing in each of the four identities are
instances of

0 n2

L q
(13) fa(Q) —ngo (1+aq+q2)(1+aq2+q4)“_(1+aqn+q2n)7

where a is any real number. Observe that

fa(Q) =G <_a:t2a2_4a Q>

I

where G(z, q) is defined in (1.1). A focus in this paper is the special case
when a = /2, for which we can write

00 n2
_ 3mi/4
(14) Z 637rz/4 657”/4 ) B G(e ,Q)-
n*O
Furthermore, define
o] 2 o] 2

n

(1.5) é(q):=> (_qug)n = Z_;) (Zq)nq(w =G(i,q),

which is featured in Ramanujan’s fourth identity.
We are now ready to state the four identities of Ramanujan, which were
first proved by Yesilyurt [29].

ENTRY 1.1. [26, p. 2] Suppose that a and b are real numbers such that
a? + b% = 4. Recall that f,(q) is defined by (1.3). Then

b— b b
%Jrzfa(—fﬁ - %Hf—a(—fﬂ — 5 5l@)

q q o 1—bg" + ¢*"
1.6 — .
( ) H 1 _|_ a2b2 )q4n _|_q8n

ENTRY 1.2. [26, p. 2] Let a and b be real numbers with a® + ab + b* = 3.

Then, with fq(q) defined by (1.3),
(a+1)f-alq) + (0+1)f-p(q) — (a+b—1)fass(q)

(1.7) O

) +
3)00 H 1
(Q7 Q)oo 1+ ab(a + b)q3n + qﬁn
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ENTRY 1.3. [26, p. 17] Let fo(q) and 1(q) be defined by (1.3) and (1.2),
respectively. Then

1++v3 3+3
2 6

fi(=q)

n2

-\ q
_z:;)(1+\/§q+q2)"'(1+\/§q"+q2”)

n

f-1(=q) +

)oo ﬁ 1
Joo 12 14 /3¢ + ¢

2 (a* ¢*
(18) +ﬁ¢(—Q)( 6;q6

ENTRY 1.4. [26, p. 17] Let ¢(q) be defined by (1.5) and 1(q) be defined
by (1.2). Then

S (13 ia) + 51+ e 3(ig)
1 oo

(1.9) = fyala) + \ﬁzﬁ(*q)(*qz; e [

1
1+V2¢" + ¢

n=1

Yesilyurt’s proofs [29] of Entries 1.1-1.4 depend upon the following
famous lemma of Atkin and Swinnerton-Dyer [7].

LEMMA 1.5. Let q, |q| <1, be fized. Suppose that ¥(z) is an analytic
function of z, except for possibly a finite number of poles, in every annulus
0<z <|2| <2 If

V(zq) = AZF9(2)

for some integer k (positive, negative, or 0) and some constant A, then
either ¥(z) has k more poles than zeros in the region |q| < |z| <1, or 9(2)
vanishes identically.

Since it is very unlikely that Ramanujan would have given proofs of
Entries 1.1-1.4 using complex analysis, in particular, using Lemma 1.5,
as stated earlier, the primary purpose of this paper is to give completely
different proofs using g¢-series, perhaps more in line with what Ramanujan
might have devised. However, although our proofs of Entries 1.1-1.3 are not
difficult, our proof of Entry 1.4 is considerably more difficult. Our proof of
Entry 1.4 relies on 2-dissections for two special cases of the rank generating
function G(z, q), when z =i and when z is a primitive eighth root of unity.
These two 2-dissections of the rank, with their immediate consequences,
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comprise a second major focus of this paper. Their proofs will be given in
Sections 4-6.

THEOREM 1.6. The 2-dissection of the rank function G(i, q) is given by

> G

TL

(iq)n(q/i)n

n—O
2
_ 9 io: (_1)nq24n +8n B [q4; q16]go(q16; q16)oo
("% ¢"%)c  — 1402 [—¢% —¢% —¢% ¢'%]
2
(1 10) N 2 i (_1>nq24n +24n+5 y [q4; q16]go(q16; qu)oo
(% ¢")o0 £~ 1+g'0nt6 [=a% —4% —4% ¢'%]

THEOREM 1.7. Let a be a primitive eighth root of unity. Then

2 ( l)nq24n2+8n

> q" 2—a—1/a =~ (-
Z (@)n(a/a)n (g% 1) o0 Z 1 — gl6n+2

n=—oo

L (a+1/a—Dlg% a1 (0% ¢
[4%, 4%, 45; ¢*%] o

11) 4 g% 1) atl/a i
[42, 45, ¢%; ¢'6] (€5 416V

(_ 1)nq24n2+24n+5

1 — gl6n+6

n=—oo

Atkin and Swinnerton-Dyer [7] gave the generating functions for the rank
differences modulo 5 and 7. In a sequel, Atkin and Hussain [6] established
the rank differences modulo 11. From Garvan’s paper [14], we know that
these are equivalent to the 5, 7, and 11-dissections of the rank modulo 5, 7,
and 11, respectively. Except for a 3-dissection of the rank modulo 3 by the
third author and Mao [12], there have been no further results on dissections
for the rank besides those obtainable from [7] and [6].

Subsequent to our proofs of Theorems 1.6 and 1.7, Mortenson [25] found
shorter proofs based on 2-dissections for deviations of ranks, which we now
define. Let

N(a, m;n) := the number of partitions of n with rank =a (mod m).

Then the deviation of ranks from the expected value is defined by

(e}

Dla,mig)i= 3 (Nemm) =22 ) gl <1,
n=0
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where p(n) denotes the number of ordinary partitions of n. (It is understood
that p(0) =0.)
§2. Proofs of Entries 1.1-1.3

Our starting point is a corollary of Lemma 2.3.2 from [3, p. 19]. (It is to
be assumed in the sequel that parameters, such as z and ¢ below, are chosen
so that all relevant expressions are well defined.)

THEOREM 2.1. For any complex numbers z, (,

e ) ( ) <3n n(3n+1)/ C 3n n(3n+1)/
R(Z, ¢, Q) =C nz_:oo 1—z(q" + ¢ nz—:oo - Z(I"/C
(CQ Q/C q n n3n+1)/2
T dG D nzoo 1_"’q

— Z(C’ q/C? C27 q/C ’ Q7 qa q>oo
(2/C,a¢/z, 2,9/, 2C, 4/ (20); @)oo

Proof. Define

(2.1)

o 00 ( )nc?m 3n(n+1)/ nC 3n 3n(n+1)/2
(C2 Q/C q n 3n(n+1)/
TG e Z T

Then from [3, p. 19, Lemma 2.3.2],

(¢,q/¢,¢%a/C 4, ¢ @)oo
(2/¢,q¢/ 2, 2,4/ 2, 2¢, 4/ (2€); @)oo

Hence, to conclude the proof of Theorem 2.1, we are required to show that

S(z,¢,q) =

S(z ¢, q)Z%R(% ¢, q)-

Using the pentagonal number theorem in the second equality below, we
find that

o0 _1\ns3n,n(3n+1)/2
Stac) =¢ 3 ST (L - wan)

e S
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nC 3n n(3n+1 )/2 ¢ ¢ z .
e o CH D)

(CZ Q/<2 n n(3n+1)/2 1 1 .
(6 a/G D) :Z 1—zq (Z_z(l_zq ))

= 1 R(z, ¢, )_C(g Z (_1)nc3nqn(3n+1)/2

n=—oo

sngnianin/2 _ (C 0/ @)oo
s C /G E V=

n=—oo

= _R(.Ga)

because the expression inside the large parentheses equals 0, as it is a
formulation of the quintuple product identity [3, p. 221, equation (8.2.18)],
[9, p. 18]. In particular, if we take the formulation from [9, p. 18]

o0
3n2+n/_3n,,—3n —3n—1_3n+1
> ¢ (z°"q " — 2 q")

n=-—00

(2:2) = (0% 6")20(42 67004/ 2 €)oo (2% €100 (0" /2% ),

replace ¢ by ,/q, and then set z = —(,/q, we find that the sum of the

expressions within large parentheses on the far right side above equals 0.
We frequently use the observation that if a = —t — 1/¢, then

0 n n(3n+1)/2

@ 1t X (-
23 2 @ 2 1t

(@)oo ,
by [2, p. 263, equation (12.2.3)].

Proof of Entry 1.1. First we note that we may parameterize the circle
a’? +b>=4by
b= —2cos¥, a=—2sin6,

and with z = ¢’ we find that

(2.4) b=—z—z"! and a=i(z—2z71).
Hence,
(2.5) a?b? — 2=zt — 274
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Let us now set ( =i (=+/—1) in Theorem 2.1. Thus, by (2.3), (2.4), and

2.5)
n §3n n(3n+1 n j—3n n(3n+1)/

-y iy ©

= 1 — zign = 14 zig"
(=1, —¢;¢) (45 ¢
- (. — Joo )oofb(Q)
(Zv —1q; Q)OO (1 - Z)
— Z(ia _iqa _17 —4,4, 4; Q)oo

(—iZ, qZ/Z, 2, Q/Za iZ, _’LQ/Za Q)oo

26 = 20006 -dx(d’ Yo = (1—bg" +¢*")

(1+22)(1-2)(—-¢ ¢ (14 (ab? — 2)¢* + ¢¥)°

n=1
Multiply both sides of (2.6) by
(1423 (1 - 2)
22(1 =) (¢ —q)oo

Upon doing so, we then see that the right-hand side of (2.6) becomes the
right-hand side of (1.6). The third expression on the left-hand side of (2.6)
then becomes

(14 2*)(1 = 2)(=) (=1, =¢; Q)oo(q; D)oo b
2201 — ) (—¢; @)oo (s —i¢; @)oo (1 — 2) fola) = =5 fola)-

Therefore, we will complete the proof if we can show that

(1 +Z2)(1 _ z) < i (—1)n’i3nqn(3n+l)/2

22(1=4)(-¢; oo \ . 1 — zig"
0 _1)nj—3nn(3n+1)/2
Ly ()"
2 14 zig"
b—a+2 b+a+2
=T )+ T el 0)

Lotrat? (1—1i2) i (1) (—q)"Bn+1/2

27) 4 (¢~
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where we have twice used (2.3). Proving (2.7) is equivalent to proving that

o (_1)ni3nqn(3n+1)/2 0 (_1)ni—3nqn(3n+l)/2

a Z 1— zig" e Z 1+ zeg™

n=—oo n=—oo

n(3n+1)/2 > (_1)n(_q)n(3n+l)/2

e (D)"(=q)
@8 =i ) g T 2 i nar

n=—0oo n=—0oo

Combining sums on each side of (2.8), we see that our task has been reduced
to proving that

00 —1)?gn(3n+1)/2 3n . n .1—3n P
> ( 1)+qzzqzn (=" (1 + zig") +i'77"(1 = zig")

n=—oo

o0 —1)" n(3n+1)/2 ' .
-y ! 1)+qz2q2n (=102 (1 — iz (—q)")

n=—oo

_(_1)n(3n+1)/2(1 —i—iZ(—q)n)) 7

and this follows immediately because

_43n + j1=3n — (_1)n(3n+1)/2(i . 1)

and
—qbSn 280 ynGBntl)/24n g 4 ),

The last two assertions are most easily proved by noting that each expression
is periodic with period 4, and that the assertions hold for n =0, 1, 2, 3.

Proof of Entry 1.2. First we note that we may parameterize the ellipse
a?+ab+b>=3 by a=2cos(d + %71’), b=2cosf. So with z=¢¥ we find

that
1

b=z+21! and a=zw+ (zw) ",
where w = €27/3_ Hence,

(2.9) a+b=—2w® — (20?7}

and
ab(a +b) = —23 — 273,
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Therefore, we now set ( = w in (2.1). Thus, the resulting right-hand side,
by (2.9), equals

21— )1 - ek g
(1= 2%)(2%% 273¢% ¢%)oc
REUTN S P
(1 - 23) (Q5 Q)oo Hzo:l(l + ab(a + b)an 4 an)
We now observe that the latter quotient on the right-hand side of (2.10) is

the same as the right-hand side of (1.7). We are thus led to multiply the
left-hand side of (2.1) with ( =w by

(2.10)

(1-2°)
2(¢5 @)oo
to deduce, with the help of three applications of (2.3), that
1 _ 23) nqn(3n+1 n q" (3n+1)/2
2(q; @)oo ( = L awgr T nz_:oo 1-— zw2
w( w ( 1)nqn(3n+l)/2
C (l-w) n_z_:oo 1 —zq"
(1= 2)w? (1 - 23w (1 - 23)w(l —w?)
- Z(l — (.UZ) f,a(q) + Z(l — w2z) fa+b(Q) Z(l - (.U)(l — Z) f—b(Q)

= (a + 1)f—a(Q) - (a +b— 1)fa+b(Q) + (b + 1)f—b(q)7
which is the left-hand side of (1.7). This completes the proof.
Proof of Entry 1.3. Let a=1 and b= /3 in Entry 1.1 to deduce that

Lt \/gfl(_Q) L2 \/gf—l(_Q) - \ffﬁ(Q)

1— 2n
(2.11) :qqooH V3¢" + ¢
1+q4n+q8n

Now multiply both sides of (2.11) by 2/4/3 to arrive at

i “gm—q) L1 \/gf-l(—q) ~ f 5a)

_lq q' OOHI—fq +¢*"
e

1_|_q4n_|_q8n :

(2.12)
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Examining (1.8) and (2.12) we see that we are required to show that

H (1= V3¢" +¢*)(1+ V3" +¢*")

(213) 7/1(—<J) 1+q4”+q8”

To that end,

(—4:4%)oo L+¢* +¢*
( 6

(4% ¢°)oo ﬁ (1—V3¢" + ¢*)(1 4+ V3q" + ¢*")
(

6 2n 4n
q;q)oonl—q +q
n—=

G oo oy L4 ¢ + ¢

_ (% %) ﬁ (14"
(=4 @)oo ;55 (14" +¢*) (1 —¢*)
_ (0% ¢ (%50 _ (%60 — (=)
TGP (O (P
by (1.2). Thus, we have shown that (2.13) holds, and so the proof of Entry 1.3
is finished.

83. Proof of Entry 1.4; part 1

We show in this section that Entry 1.4 follows from the two 2-dissections
for two special cases of the rank generating function G(z,q) given in
Theorems 1.6 and 1.7.

Proof of Entry 1.4. We need knowledge of theta functions. After

Ramanujan, set, for |ab| <1,
[ee]
(3.1) fla,b):= > a2 = (—a; ab)oo (—b; ab) s (ab; ab)ec,
n=—oo

where the latter equality is the Jacobi triple product identity [8, p. 35, Entry
19]. To simplify the product on the right side of (1.9), use (1.2) and (3.1)
to deduce that

1 2. 4 1
ﬁw (=47 q") HllJ”/Qanqu
1 (%%, o
L T T
(32) _ L (@8 fe —ge Y
| 2 (g% qh% (1 —emi/d)

https://doi.org/10.1017/nmj.2018.35 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2018.35

184 G. E. ANDREWS ET AL.

We need a special case of an identity of Ramanujan for theta functions
[8, p. 48, Entry 31]. To that end, if U, := Mt )/2pn(n=1)/2 and v, .=
a(=1/2pn(n+1)/2 fo1 each integer n, then

(3.3) f(UL, V1) ZUJ(W ")

We apply (3.3) with a = U; = —e™/4, b=V; = —ge~™/* and n = 4 to the
theta function in the last equality of (3.2). Thus,
f(_em'/ll’ _qe—wi/4)
= f(— %, —¢") - ”“f(— 0, —¢®) +iqf(—¢", —4%)
71'1/4 3f( —2)

= (1 - 67”/4)]"(—(16, —qlo) +(i—e ™ Mg f(—¢% —").

Hence,
f(_eﬂ'i/4’ _qe—ﬁi/4)
(1 —emi/4)
=f(=¢% —¢"%) = (V2+ D) f(—¢"", —¢*)
= (4% ¢"%)oo (" ¢' ) (4" 4"
(f+1)( 7")00 (0" ") (0"% ¢'%) o0
(3.4) =[¢% 4" ("% ¢ ) — (V2 +1)qld*; "0 ("% ¢") oo

where we made two applications of (3.1). Hence, inserting (3.4) into (3.2),
we deduce that

o0

1 - 1
N LA )oon]_[1 RV s
1 q4; q8 2 . . . . . . .
= ﬂwf ([qﬁ; 7"100(0"% ¢"%)o0 — (1 + V2)q[g%; 4" (¢"; q16)oo>
Y o0
R R R S Uik o (1 N 1) q[q4;q16]§o(q16;q16)oo
V2 % 6%, 45 ¢ V2 [4, 4%, 4% ¢"%]

Therefore, identity (1.9) is equivalent to

~ - 4. 1612 (,16. 16
fale) = % <1+ \2) (Bliq) + d(—iq)) — ~= 19307 1(07% 4 P)oc

2 (4% 4% 45 "%
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1 - ~ 1 4. 1612 (416, (16
o+ - (1 ) Mg
We now apply Theorem 1.6 twice, with ¢ replaced by iq and —iq, obtaining,
by (1.5), ¢(iq) and (Zg(—iq), respectively. We next apply Theorem 1.7 with
a = e™/* thereby obtaining, by (1.4), fy3(@). If we substitute these three
representations into (3.5), we see indeed that (3.5) is valid. It therefore
remains to prove Theorems 1.6 and 1.7, which we do in the following
sections.

84. Proof of Entry 1.4; part 2, identities for theta functions and
Lambert series

We offer the following lemmas that are needed to simplify the dissections
in the proofs of Theorems 1.6 and 1.7.

LEMMA 4.1. We have

16. 16
(4.1) ((500 = (?q2; ZQ);:’ ([=¢% ¢"%loe + al=¢%; ¢"%lo0) -

Proof. By (1.2) and (3.3) with a = ¢, b= ¢>, and n =2,

1 = 1 (4% ¢%)ox = 1 i qn(2n+1)
@Woe (0% (@) (%5075
(¢'% ¢'%)
= szoo ([-¢% ¢")oc + a[—4% ¢"%])
’ o0

and so the proof is complete.

Next, we state Halphen’s identity [16, p. 187] in the form discovered and
presented in [5],

2
H(ab,cv): = 7l
(4.2) =1+ F(a,q)+ F(b,q) + F(c,q) — F(abc, q),
where
— g’ — q¢"/z
(4.3) F(z):=F(z,q):= kz_o el ; T lq| < 1.

Below are three identities that are consequences of Halphen’s identity
[11, Corollary 4.4].
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COROLLARY 4.2. We have
(4.4) H(a,b,c,q*) — H(a,b,d, ¢*) = H(c, 1/d, abd, ¢°),
(4.5)  H(a,a,q/a,q*)+ H(b,b,q/b,q°) = 2H(a, q/a, b, ¢*),
(4.6)  H(a,a,q/a,q*) — H(b,b,q/b,¢*) = 2H(a, q/a, b/q, ¢°).

Setting 7 = 0 and s = 3 in [10, Theorem 2.1] and then replacing ¢ by ¢*°,
we derive the generalized Lambert series identity

(qlﬁ;qlﬁ)go 1 i (_1)nq24n(n+1) (b2>”

b, d; 4o [c/b, d/b; '] 1= b\ cd

[b/c,d/c; q"%] 1—cq'®  \bd

=—00

[b/d,c/d; ¢"0)oc “— — 1—dg'®" be

Multiplying both sides by [¢/b, d/b; ¢*%] and rearranging, we deduce the
following lemma.

LEMMA 4.3. We have

o0 (_1)nq24n(n+1) B2\ " d/b q n 24n(n+1) 2A\"
nz_:oo 1 — bglbn <cd> d/c q16 Z 1 _ Cq16n (bd)

_ (@"% "% [e/b, d/b; g%

[b, ¢, d; ¢*]oc
d C/b q oo n 24n(n+1) 2\ "
4. a4 LSl (e
@+ ble/d; ¢1]s Z 1 —dq16” be
Let
B o0 (_1>nq24n(n+1)<n
S(Z, C) T nzoo 1— Zq16n )
(4.8) -

n 24n(n+1) &

o, _1
R

n=—oo

where the prime in the second sum denotes the omission of the term
n = 0. Then by substituting (b, ¢, d) = (¢%, ¢'2, —¢?) and (¢%, ¢'?, —¢~%) in
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Lemma 4.3, we find that, respectively,

a*S(¢®, —¢*) — ¢**S(q"%, —¢')

(4.9) = (4'% ¢ [—4% ¢"%l _ lg*; ¢")o0 S(—q% q716),
[—4*, 4% ¢"%]sc [—¢% 4"
quS(qg, _qlo) o q225(q12’ _q22)
Y Ul e e S U P i (—1)rgn’ s
[—4% ¢% ¢"%)sc (=% 4"0 A=, 140
16. ,16\2 2. 16 4. 16
(110) =t Eijqﬁ),of}ﬁ[; qq“”]fo e [E]qé;qq“];])ooo St 0%,

where we replaced n by n+ 1 in the previous line. Similarly, substituting
(b7 C, d) - (_17 _q47 q18)7 (_q87 _q127 q2)7 <_17 _q127 q6)7 and (_q47 _q87 qG)
in Lemma 4.3, we obtain, respectively,

S(—1,—¢*) — ¢*S(—¢*, —¢ ')

(@592 =% 0" ¢ % 32 [4% 4" S, ¢)
-1, ¢%, —¢*; ¢*%] [—4?%; ¢"%] o ’
a1) = @ e | (0500 g sy
(-1, ¢, —¢* ¢'%) (6% ¢ ’
6 8 2 14 12 14
¢°S(=q¢°, —q¢°) — ¢ S(=q"*, —¢'")
(a12) =050 %0 e 1650 ) g0 ey
' = 2 _ 8 _12. 16 — 6. .16 4549 )
(42, —q®, —q'%; ¢'%] [—4%; ¢'%]
S(—1,—¢ %) — ¢"®5(—¢"%, —¢"®)
(413) = (¢'% ¢ ld", =% ¢"%s 5[4 4" S 1)
' T —gh b 16 — 6 416 a2
1, —¢*, ¢% ¢'%] [—¢%; ¢"%]
S(—¢*, —q7% — ¢°S(—¢*, —¢°)
(@522 b e 5 (6% 0 %% o 6
4.14 —_ S(q5.1
(4.14) = — 1 .6 __8. 16 475 16 (¢, 1).
[—q*, 4%, —¢%; ¢*%] [—¢%; ¢'%]
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LEMMA 4.4. We have

i,(_l)nq24n(n+l) i n . [d, q16]oo i (_1)nq24n(n+1) é n
1 — gibn cd [d/c; q10] o 1 — cqlbn d

n=—00 n=—o00
Z N q16n+16/c B dq16n N q16n+16/d
1— cq16n 1— q16n+16/c 1— dqlﬁn 1— q16n+16/d

Ll i (=gt (a?
[C/d; qIG]OO = 1— dq16n c )

where the prime on the sum on the left-hand side denotes the omission of
the term n = 0.

Proof. Multiply both sides of (4.7) by (b — 1), differentiate with respect
to b, and let b — 1. We find that the only terms that remain are those in
Lemma 4.4.

LEMMA 4.5. Recall that S(z, () and S*(C) are defined in (4.8). Then

1 . _ _ _ _
5 8 (=) = 8" (=7 = ¢*S(¢", ") + " S, —a7)
_ [q4§q16oo 2 16 16 [q q ] 10 16
_[_q2§q16]ooS(_q )t [~ qﬁ,qlﬁ]oos(_q a7)
(4.15) 1[q4 q8’ q8; q16]oo(q16; q16)go.
2 [—¢% —¢2, —¢% — 4% ¢

Proof. Substituting ¢ = ¢* and d = —¢'® in Lemma 4.4, we find that

S*(—¢ ) — ¢*S(q*, —¢7 ')

o0 16n+4 16n+12 16n+18 16n—2
1 q n q . q
Z qlontd T 1 — gl6n+12 T 1 4 gl6nt1s 1 4 1602
n=0
2
2104 i (=1)" g +oon
_ 2. .16 16n+18
[—4% q"%)c , c=  144g'0"
. i - q16n+4 . q16n+12 N q16n+2 - q16n+14
- =~ 1— q16n+4 1— q16n+12 1+ q16n+2 1+ q16n+14
[q4'q16] 2 16
(416) + ; qlﬁTooS(_q » 4 )
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Similarly, substituting ¢ = ¢* and d = —¢'° in Lemma 4.4 gives

S*(—¢ ") = ¢*S(¢", —q7?)

16n+4 16n+12 16n+10

16n+6
_ Z 44 44 g
1— q16n+4 1— q16n+12 1 + q16n+10 1 + q16n+6

q;9  |oo
(4-17) - q16[[_(f6;q1]6]005(_q107 q16)-

Taking the difference between (4.16) and (4.17), we obtain

S*(—q~ %) = S*(=¢ ") = *S(¢*, =) + ¢*S(¢*, —¢7?)

16n+42 q16n+6 q16n+10 q16n+14 >

_ 4q
=-1 +n:0 (1 + ql6n+2 + 1+ ql6nt6 1 4 g16n+10 — 1 4 ¢16n+14

[q4;q16]oo 2 16 [q q ] 10 16
I8 gl SO T T g S0

Note that by Halphen’s identity (4.2) with ¢ replaced by ¢'¢ and (a, b, ¢) =
(_q27 _q27 _q6)7

1 0 q16n+2 q16n+6 q16n+10 q16n+14
9 <1 + gl6n+2 T 1+ ql6nt6 1 4 gl6n+10 1 +q16n+14>

5+
=0
1[q", ¢% ¢% ¢"%oo(q"% ¢"%)2
2 [-¢? —¢% =45, —¢% ¢"%]

Therefore, (4.18) is equivalent to

1 * — * — — —
5+ (—a 2) — S (¢ — ¢*S(qh, —¢7 ) + ¢*S(¢*, —q7?)
[q ] 2 16 16 [q4;q16]oo 10 16

= T G g 10) 4 g1 5 (g1,
4% g0 (—¢°q ") +q g0 ] (—¢"”, ¢°)
Y Y S U e
2 [—¢%, —¢%, —¢5, —¢5; ¢'%)

which is identical with (4.15).

85. Proof of Entry 1.4; part 3, proof of Theorem 1.6

Proof of Theorem 1.6. Invoking the partial fraction identity (2.3) with
t =1, we find that the left side of (1.10) is
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- q"2 1 ( 1)nqn(3n+1)/2
nZ:;) (i0)n(a/Dn (D)oo nz_:oo 1 —ign
_ 1—i & (_1)nqn(3n+l)/2(1 +iqn)
= (q)oo n_z_:oo 1 +q2n
B 1 00 (_1)nqn(3n+1)/2[(1 + qn) _ i(l . qn>]
(5.1) = (q)wn:zoo o ‘

Replacing n by —n and multiplying both the numerator and denominator
by ¢*", we see that

o0 ( 1)nqn(3n+1)/2 0 (_1)nqn(3n+3)/2

Z — 1+q2n = Z 1+q2n

n=—oo n=—oo

Therefore, the identity (5.1) simplifies to

i~ nn(3n+1)/2

= 2 (—1)"q
(5:2) Z q/Z " (@) 2 1+¢

= n=—00

We focus our attention on the series on the right side above. By
subdividing the index of summation into residue classes modulo 4 and using
the definitions (4.8), we find that

oo (_1)nqn(3n+1)/2 o0 q24n2+2n oo q24n2+14n+2
Z 1+ q2n = 1+ an o 1+ q8n+2

n=—oo n=—oo n=—oo
o0 q24n2+26n+7 0 q24n2+38n+15
v Y T - X e

1 + q8n+4 1+ q8n+6

n=—oo n=—oo

1 ,q24n2+2n(1 q24n2+14n+2(1 —q
=57" Z 1— 16n Z 1 glon+a

n=—oo n=—oo

8n+2)

[\)

2 2
> q24n +26n+7(1 _ q8n+4) & q24n +38n+15(1 —q

+ 1 — ql6n+8 N 1 — gl6n+12

n=—oo n=—oo

8n+6)

1 - - ~
=5+ 8 (=) = 8§ (=) = ¢*S(¢", —a7) + " S(q", —¢7)
+4'8(¢% —¢*) — ¢"'S(¢®, —4'%) — ¢"°S(¢"*, —¢'")

(5.3)  +¢'S(q"% —¢*).
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Therefore, by (5.2), (4.1), (5.3), (4.9), (4.10), and (4.15),

2
i q" 48 —d" 0% ) (=% 4" 6% ")
: .

+4q
(4% ¢®)% (% ¢®)%

[—¢%; ¢"9) [—¢5; ¢'%] o

@, 4% ¢'% (¢'%; %), 49 (¢"% ¢"9)% [—4°% ¢"%
=% —q% "% -4, ¢%; ¢"] 0

_9 g% 4o S(—¢?, ¢~16) — 243 (4'% ¢")%[-0% 4"
’ [—4%, ¢%; ¢'%)

4. 16 4. 16
X{Q 9% q ]600 S(_q27q716)+2q16 4% 4]0 S(_qw,qlﬁ)
[

4. 16
15 14" ¢°loo 10 16

We now prove two identities that we use in our collection of the even
powers from (5.4). First, we prove the identity

(5.5) [—¢% a2 = P[-% "% = 0% ', d*. &8, 0% 0"

Replacing ¢* by —¢ and noting that [~¢, —¢°; ¢*|oc = [¢%; ¢°Jeo/ [, ¢*; ¢°] o0
we see that (5.5) is equivalent to

2 2 2 4. 8
(56) 0% q" P+ algs P = L e
) ) (e.e]
9, 4% ¢°]

Dividing (5.6) throughout by [q, ¢, ¢*; ¢®]oc and rearranging, we see that
(5.5) is in turn equivalent to

@ % Pl (6% % PPl 1 (2. %, ¢°; ¢¥] o

_—q _=
0, a9, 4% ¢* Ble 0,0, a0, 8% ¥l 0% ®le (6% 1/a, 43, ¢ @Bl

and this follows from (4.4) with ¢ replaced by ¢* and (a, b, ¢, d) = (q, q, ¢%, q).
Second, we establish the identity

[, % ") — 2¢°[-¢%, —*. ¢, ¢, &% ")
(5.7) =% ¢*, ¢* ¢* ¢* &% ¢°, ¢% ).
Replacing ¢% by —¢, we find that (5.7) is equivalent to
ld*, % ¢®lo + 2dla, 4, —a, ¢, —0°; ¥l
= [_Q7 —-q, q27 q2’ q27 _q37 _q37 q4; qs]ocn
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which in turn is equivalent to

(5 8) [q4 q4'q8] _|_2q[q’ qQ’QQ;qg]OO — [q27q27q27q2aq2,q4;q8}oo
y ) 00 [q3; q8]oo [q’ q, q3’ q3; q8]

We thus want to prove (5.8). We apply (4.6) with ¢ replaced by ¢* and with
(a,b) = (q, ¢*) to obtain the identity

[4%, a*, a* ¢®loc(@® ¢®)3  la*, a* 0¥ @¥loo(d®; 0°)%
9.9, 6%, ¢*; ¢®leo (4%, 4% 4%, ¢*; 6o

la7" 4, 4% ¢*lo (6% ¢®)%

[0, 4% a2, 6% ¢®]s
4, 4% ¥ (¢ )%

[4, 4%, 4% ¢®)oc
Multlplymg both sides by [¢%; ¢®]%, and then dividing both sides by [¢*; ¢%]s
(¢%; ¢®)%,, we see that (5.9) is (5.8) upon rearrangement.

Invoking (5.5) in the second equality below and (5.7) in the last equality
below, we find that the even powers from (5.4) are equal to

=2

(5.9) =2q

4% 4o (0% 0" {2 4540 g2 o)
[

. q
(4% ¢®)% —¢2; 1%
1210 [4%; "o S(—q0. 41%) [4*, 4% &% ¢"%)oo(q"%; ¢"%)2,
[—4¢%; 4] ’ [—¢%, —q%, —45, —¢%; ¢'%]

+q[—q2;q16]w(q16;q16)w ><{Qq(q 5 0'9)2.1—¢% ¢

(¢% ¢*)% [—¢%, ¢%; ¢
5 ("% ¢! ) [—¢%; ¢
[—¢°, ¢%; 4]

[q4§q16]oo 2 16
— 20— —5(—q%, q — 24
[—4%; ¢*%]oo ( )

4 16
15 [q yq ]oo 10 16

_2q [_q27q16]ooS(_q , q )}

2(q16. q16) _

=@ ’(q4,;1) S(—=¢*, a7 '%) ([-¢% ¢"1% — *[—% ¢"°)%)

9 (o) bl (oo}
I Y Y P VT o

(4% ¢%)2, [—q2 —q2 —q5; ¢'%]

%)%

T )( o (I=4% ¢"%1% — ¢*[—4% ¢"1%)

+2q
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_ 2(q16’ q16>oo
(4% ¢*)oo(q; ¢4 oo
[a*, 4%, 4% ¢*%] (g
(@ ®) % =% —a%, —45 ¢'%)
(¢'%; ¢1°)
(@2 ¢*)2.[—45, 6% ¢*6]
2(q16. q16) _
= (qQ, qg) : (q4' (();1) S(*q27 q 16)[(12’ q47 q4v q6a q8; qlﬁ]oo
bl [o¢] bl o0
[¢%; ¢*%)0(¢'%; ¢
(¢% ¢»)2% 4% —% —4¢% ¢'%)
x ([¢% &% €' — 26°[— 4, =%, ¢*, 4", 4% ¢"%])
[¢*; ¢"%1%(¢"%; ¢'%) oo
[_q27 _q2a _qG; qlﬁ]oo

S(—¢* a7 "¢ ¢*, ¢, 4%, ¢% 4"

16; qlﬁ)go

3
+ 24 = 4%, ¢*, 4%, d°, % ¢*%)wo

16; 16)2o

(5.10) S(—¢* q7'%) -

- 2
(4% ¢"%)o0
We now collect the odd powers of ¢ from (5.4). In the analysis below, we

need to use the identity

2(¢%, ¢, 4%, —4%, —4°% ¢"%) — [¢%, ¢%; ¢*9]

(5.11) =[¢* ¢* ¢* ¢* ¢*, &% ¢°, ¢% %),

o0

which we now prove. Replacing ¢? by —¢ and rearranging, we see that (5.11)
is equivalent to

[q4.q8]2 [qz;qg]go[q4;q8]00 _2[(12,(]2&3;(]8]00
9 o0 .

(5:12) 0,6 ®)% 45 ¢®]

Multiplying both sides of (5.12) by [¢%; ¢®]o(¢%; ¢®)%, and dividing both
sides by [¢?%; ¢®]%,, we obtain

0 °13(a% ¢*)% |, [¢% 4% 0% 0 loo (0% 05 _ [0 4% 0¥loo (0% 475
[4%; ¢®]% g, 4% ¢®1% 9, ¢, 4% ¥l oo

(5.13)

If in (4.5), we replace ¢ by ¢* and set (a, b) = (¢?, q), we arrive at (5.13).
Hence, (5.11) has been established.

In the first equality below, we employ (5.5) twice, and in the penultimate
equality below, we utilize (5.11). Thus, collecting the odd powers of ¢ from
(5.4), we find that

https://doi.org/10.1017/nmj.2018.35 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2018.35

194 G. E. ANDREWS ET AL.

7"l (q % q )oo S(_qlo q16)([_q6.q16]2 _q2[_q2.q16]2 )
s a2)%[—4%, —45; ¢ ’ T T
(¢ ¢')3,
(4% )4 [—4% 6% ¢'%

q
[¢*, ¢, ¢%; 4"%]c (¢'%; ¢*6)3,
)2[
2

+2¢ (=% ¢"9% — ¢*[—¢% ¢"1%)

q
(¢ a®) % [—¢% —45, —45; ¢'%]
15 10 .16

=—q¢"——95(—¢". ¢

(qlﬁ;qlﬁ)oo ( ’ )

(q16. q16)3

) [ee]
7). -2, ¢%; ¢"5)
(7%, 4%, &% 1% (¢%%; ¢'6)3,
)2 =42, —45, —45; ¢1%]

4%, q*, ¢*, 4%, ¢% 4"

[ ¢"%)o0 (¢"%; ¢"0)3,

15 10 16
=—q 16,716005(—6] 1 q )—i—q(

(¢'%; ¢16) @ q? )oo[ ¢?, —4¢% —¢% ¢"%]
x (2[¢%, ¢, ¢°, —4%, —¢% ¢"%)0e — 4%, ¢%; ¢*%)0)
2
15
=—q S(—q', ¢'%)
(¢%6; ¢'%) o
[4,6116]00( aQ) 2 2 4 4 4 6 6 8. 16
+q 0. q¢% 44" 4,¢,4",¢°q¢"]
( Z)go[ q27 6,—(1 7(1 ]oo *
P (g0 g9 1 g [q"; ¢"%15(4"%; 4"%) o
(4% ¢1%) ’ [—q%, =45, —¢% ¢'%]
5 2 [a*; ¢"%1% (¢ ¢'%)

_ 6
=q (qu; qu)ooS(_q ) 1) + q

(5.14)

[—a?, —4¢%, —¢5; ¢*%]

We now return to (5.4). On the right side of (5.4), we substitute
the expressions that we found for the even powers in (5.10) and the
representation for the odd powers from (5.14). We immediately obtain the
proposed identity (1.10), thus completing the proof of Theorem 1.6.

86. Proof of Entry 1.4; part 4, proof of Theorem 1.7

Proof of Theorem 1.7. Let a be a primitive eighth root of unity. Then
by the partial fraction identity (2.3),
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i qn2 1—a io: (71)nqn(3n+1)/2
n=0 (CLQ)H(Q/G/)n B (q)oo n——oo 1-— aq”

- fé(_D%M%HN%L+W"+ﬁf"+&fW

(@)oo T g
1 X (—1)ngnBnt1)/2 : )
- (W Z ( )1 + gt [(1 —a*¢®) —a(l — a®¢*")

(6.1) +aq"(1 —d’q") — a®¢"(1 - ¢")].

Replacing n by —n and multiplying both the numerator and denominator
of the summands by ¢**, we see that

o (_1)nqn(3n+1)/2qkn (_1)nqn(3n+1)/2q(3—k‘)n

00
Z 1_|_q4n = Z 1+q4n

n=—oo n=—oo

Therefore, we deduce that

(6 2) i (_1)nqn(3n+1)/2(1 _ a4q3n) .y io: (_1)nqn(3n+1)/2
' el 1+ q4n = 1 + q4n ’
oo (_1)nqn(3n+1)/2(1 _ a2q3n) e ) 00 (_1)nqn(3n+1)/2
Z 1_|_q4n _( —CL) Z 1_|_q4n ’
(6.3)
oo (_1)nqn(3n+1)/2qn(1 _ a2qn) _a ) 00 (_1)nqn(3n+3)/2
Z 1+q4n _( —CL) Z 1+q4n ’
(6.4)
and

=0.

i (_1)nqn(3n+1)/2qn(1 _ qn)

6.5

n=—oo

Thus, noting that —a® = 1/a and putting (6.2)—(6.5) in (6.1), we find that

° q"2 2_q— 1/(1 > (_1)nqn(3n+1)/2
2 (a)n(@/a)n (@) D
1 o0 —1)" n(3n+3)/2
+a+ /a Z (—1)"q -
(@)oo 1+ qgin

n=0 n=-—00

n=—oo
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We now proceed as we did in the proof of Theorem 1.6. We first work out
the dissections of the relevant Lambert series. For each of the two Lambert
series below, we divide the index of summation n into residue classes modulo
4 and express each sum in terms of S(z, (), defined in (4.8). By applying
(4.11) and (4.12) in the first case and (4.13) and (4.14) in the second, we

find that
o0 —1)" n(3n+1)/2 B B
Z ( )151“]4” =S(~1,—¢"2) — @S(—q¢*, —¢~1)
+q75(_ 8 _q2)_ 155(_ 12,—6114)
(¢'% ¢*9)2, [qqq} [0 0% o 2 16
= — + S(q°,
(-1, 4%, —¢*; ¢*%] [—4%; ¢*%] o (@)
N (¥ A T L U LTy P,
(4%, —q*, =45 ¢*%] (=455 ¢1%)e 7
and
o0 —1)" (3n2+3n)/2 B 3
> ( )1q+q4n =S(-1,-¢ %) = ¢’S(—¢", —¢%)

+4°S(=4*, —¢°) — ¢"*S(—¢"%, —¢"*)
16. ,16N2 (4 _ 6. ,16 4. 16
(0% 0°)5%ld" =" 0l 6 (070" S(°.1)

[_17 _q47 q6. q16] [_q6; q16]oo
16. ,16\2 4. 16
(6.8) 3 (q [7 (Z] )q [ q ‘i] EJ ] q5 [B] Qqu]6C]>ooo S(q6, 1)'

To study (6.7), we first verify two theta function identities, both used in
the second equality of (6.13) below. The first equality that we shall employ is

6.9 6% "% — -1 ¢ =[0* ¢*, ¢ &%, ¢°; "%)o0 (% 'O) oo

which, after multiplying both sides by (¢'%; ¢*®)o and utilizing the Jacobi
triple product identity (3.1), is equivalent to the elementary identity

() 9] ) (9]
Z q8n2 _ 2q2 Z q8n(n+1) _ Z q2(2n)2 . Z (12(2n+1)2
n=-—00 n=0 n=—00 n=-—00
00
— Z (_1)nq2n
n=—00
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The second equality that we shall use is given by

(-1, =¢% =% 4" = [-¢%, —¢*, —¢% ¢"°)x
(610) = [q27 q2a q47 q4; q16]00(q8; q16)ooa
. T : 4. 16 16. 1162
which we now prove. Multiplying both sides of (6.10) by [¢*; ¢"°]ec(¢"°; ¢ °) 5%
and then dividing both sides by [~1, ¢%, ¢, —¢*, —¢%; ¢'%]s, we see that
(6.10) is equivalent to

", =% =% 4"l ("% 05 [=¢%, —¢%, 4" ¢"%le(d"; ¢"0)5,
[4?, %, —¢* —¢% ¢'%) [-1,¢% ¢ —¢* ¢'%)
B U Y el DS O O P Ut SO F O U W T i U
-1, —¢* —¢8 ¢'%) -1, —¢*, —¢*, —¢%; ¢*%]
(6.11)
Note that
g% 4] (4 41)0 = (6% ¢"%)o0 (6% ¢"%) 0 (9%
bl oo bl oo T - - bl
(=05 Mo (=04 )05 %o [—0% 0%
(6.12)

which we use on the right side of (6.11). Then (6.11) follows from (4.4) upon
replacing ¢ by ¢® and setting (a, b, ¢, d) = (¢%, ¢%, —¢*, —1).

We now focus on (6.7). By invoking (4.1) and using (5.5) in the second
equality below and, as we mentioned above, (6.9) and (6.10) as well, we find

that
1 i (_1)nqn(3n+1)/2
(@oo = 1+g™
[q4;q16]oo(q16§916)oo 2 —16 6. 1612 2 2. 1612
= S ¢ ) [—a” a5 — a5 a°)%)
(@25 ¢%)2.[— 4%, —4% ¢'%] > >
(6" "3 =% ¢t =4 4" ([= 4% 4"%)oe — P15 ¢")0)
(@% ®)% -1, 6%, —¢*, —¢® ¢*%
N q(q16; 7'93 (0% ¢ (-1, —¢%, =% ¢"%)o0 — [ %, —% —¢%; ¢"%] )
(4% ¢*)2[-1, ¢%, —¢*, —¢%; ¢'%]
4 16 16 16
7% 0 °]eo(q %) _
= (q2[- q;)2 []ioqQ _’q6,q(1>§] S(@® ¢ "% ¢* ', d% % 0"
Y o0 bl b) oo

https://doi.org/10.1017/nmj.2018.35 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2018.35

198 G. E. ANDREWS ET AL.

C (6"%4")3[-e% at —d% 4" 0t . % 4 (5 419
(@% a)%[=1, 6% —a*, —a% ¢'0le ™ 77 7T T T

(4" ¢'9)2.[¢* ¢'%)

+4q 4%, ¢* ", ¢*; ") (% ')
(4% ¢*)2%[-1, 4%, —¢*, —¢% ¢"6] > >
B 1 o 16y (@%@l 1% | (@ %) oala? )%
= 1S5, ¢ 0) - q
(¢ ¢1%) e 2[q%, ¢%, ¢%; ¢ 2[q%, ¢%, ¢5; ¢"%]

(6.13)

To study (6.8), we again need to first establish a certain theta function
identity, namely,

[—4¢% —¢% —¢® 4" — ¢*[-1, —¢*, —¢% "%
(6.14) =[q* q*, ¢° 4% 4" (¢®; ¢'%) o0

Multiplying both sides of (6.14) by [¢*; ¢*%]e0(q'%; ¢'%)%, and then dividing
both sides by [~1, —¢*, ¢%, ¢5, —¢%; ¢'%], we see that (6.14) is equivalent to

l[q*, % —¢% ¢l (@'% ¢')3  [-d* —¢% ¢ ") (d'% ¢'0)%
(-1, 4% ¢° —¢% 4"l 4%, 45 —a7*, —¢®; 4"
(615) — la*, ¢*, 6% 4" (4'% 4"

(1, =" —¢* —¢% ']
where we applied (6.11) and the elementary identity

[—4* ¢"%)oc = ¢*[~07*; ¢"%) .
In (4.4), replace ¢ by ¢® and set (a, b, ¢, d) = (¢5, ¢®, =1, —¢~*). Then (6.15)
follows immediately.

We now give our attention to (6.8). As before, we utilize (4.1), and then
applying (5.5), (6.14), and (6.9) in the second equality below, we find that

o~ n n(3n+3)/2

1 (=1)"q
(o) Z 1+q4n

(@)oo ,
[q4§q16]oo(q16;q16)oo 6 6. 1612 2 2. 1612
S, V)([~a5q7 5% — ¢ [-a750715)
7% ?)2%[—¢% —q% ¢*%] > >
(¢'% ¢*9)3, (0% 4" (=%, =45, =% ¢*%)o0 — ¢*[—1, —¢% —¢%; ¢'%) )
(0% ¢®)2 -1, =%, ¢%, —¢%; ¢

_ .5
_q(

+

https://doi.org/10.1017/nmj.2018.35 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2018.35

IDENTITIES FOR MOCK THETA FUNCTIONS 199

(¢'% ¢')2.[— %, ¢*, —¢% ¢"%)oc ([— % ¢*%]0 — ¢*[—1; ¢"%)c)

+4q
(@2 ¢®)2.[-1, —q*, 45, —¢%; ¢*%]
4. 16 16. 16
_5[‘];(1]00(1;(1)00 6 2 4 4 6 8. 16
_q (q2,q2)go[*q23*q67q16]008(q ,1)[(] 7q aq 7q 7q aq ]OO
(qlﬁ;qm)go[qll;qw}oo [q4 q4 qﬁ qﬁ.qlﬁ] (qs.qm)
) M 9 b) o ) (o0}
(a2 ¢*)2.[-1, —¢*, ¢5, —¢%; ¢*F]

(q16; q16)oo[ 4; qlﬁ]go

+4q
2(¢%, 4%, 4% ¢"%)sa
b gy g (0 )elah s (0% 0ol T
(4% ¢ 2[2, 2, 4% ¢%]n0 202, 45, 4% g1
(6.16)

We can now complete the proof of Theorem 1.7 by substituting (6.13)
and (6.16) into (6.6).

87. Some consequences of Theorems 1.6 and 1.7

In this final section, we give some immediate consequences of Theo-
rems 1.6 and 1.7 related to ranks and to mock theta functions. First, let
N(k,t,n) denote the number of partitions of n with rank congruent to k
modulo ¢. Denote

Ryo(t,1,d)=> [N(b,t,In+d) — N(c,t,In + d)lg".
n=0

Then the following results follow from Theorems 1.6 and 1.7.

COROLLARY 7.1. We have

(7.1) Ro2(4,4,0) = Ro4(8,4,0),

(7.2) Ro2(4,4,2) = —Ro4(8,4,2),

(7.3) Ro2(4,4,1) = Ro4(8,4,1) + 2R, 5(8, 4, 1),
(7.4) Ro2(4,4,3) = —Ro4(8,4,3) — 2R13(8, 4, 3),
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that is, for n >0,
(7.5)  N(0,4,2n) — N(2,4,2n)=(—1)"[N(0,8,2n) — N(4, 8, 2n)],
N(0,4,2n+1) — N(2,4,2n+1)
=(—1)"[N(0,8,2n+ 1) +2N(1,8,2n+ 1)
(7.6) —2N(3,8,2n+1) — N(4,8,2n+1)] .

Proof. On page 72 of [14], Garvan explains how one can obtain results
on rank differences from the dissections of the rank generating functions.
We follow his argument here. First, note that

oo

Z( q/z ZZNk4nzq—Z( (0,4,n) — N(2,4,n))q"

n=0 k=0 n=0
since N(1,4,n) = N(3,4,n) [14, equations (1.09), (1.10)] and i* = —i. By
extracting the terms with even powers of ¢ on both sides of (1.10), we deduce

that
o0
D (N(0,4,2n) — N(2,4,2n))¢*"
n=0
) _ 9 i (_1)nq24n2+8n B [q4; q16]c2>o(q16; q16)0o .
(¢'6; q16) oo e 1 + gl6nt2 [—q2, —¢2, —¢% q1%]

As above, let a denote a primitive eighth root of unity. Using the relations
a?=—ab% N(2,8,n)= N(6 8,n), and a® + a® = —(a + a”), we see that

o] n2 0o
N(k,8,n)a
2 Gl nzo >

—Z{ (0,8, n) (4,8,n)]+(a+a7)[]\7(1,8,n)—N(3,8,n)]}q”

Since 1 and a+a” are linearly independent over the set of integers,
extracting the terms with even powers of ¢ on both sides of (1.11), we
obtain the two identities

> (N(0,8,2n) — N(4,8,2n))¢*"
n=0
(78) = i (=15 (g% ¢ 2 (4" 4% oo
' ~ (¢; ¢16) o 1= gl (2, ¢, 4% q'6] oo
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0.)
> (N(1,8,2n) — N (3,8, 2n))¢™
n=0
—— e i L N Y S U
(q16; q16)oo = 1 — q16n+2 [q27 q27 q6; qu]OO

We see that the right side of (7.7) is exactly (7.8) but with ¢? replaced by
—q?. This implies (7.1), (7.2), and (7.5). Equations (7.3), (7.4), and (7.6)
are proved similarly by selecting the terms with odd powers of ¢ on both
sides of (1.10) and (1.11).

REMARK 7.2. Santa-Gadea and Lewis proved many results on ranks and
cranks modulo 4 and 8. See, for example, [18-24, 27, 28]. Equation (4.5) of
Santa-Gadea’s Thesis [27] gives the generating function of the relation

(7.9)  N(0,4,n) — N(2,4,n) = N(0,8,n) — 2N (2, 8,n) + N(4, 8, n).

Through (7.9), the relations given in [27, equations (4.1)—(4.4)] are imme-
diately seen to be equivalent to (7.5) and (7.6). The relations (4.1)—(4.4) in
[27] were originally conjectured by Lewis in two papers [18], [20]. They were
proved again in a later paper by Santa-Gadea and Lewis [24].

Each of Ramanujan’s mock theta functions satisfies a transformation
formula involving the rank function G(z, q), defined in (1.1). For example,
the famous mock theta conjectures, first proved by Hickerson [17, equations
(0.9), (0.10)], are given by

)

S qn 2 LG 2 10 (q5; q5)oo(q5§ qlo)oo
n=0 (_Q)n 1— [Q7 q ]oo
qn2+n 2 )

22 (0% )00 (2% ") o0
= (-a)n q q(l—g¢*) '

(4% ¢°)

G(q*, ¢"°) +

M8
|

By summing the odd and even indices n’s separately, we can write down
the 2-dissection of the rank function modulo 4 directly as

> an oo an o0 q4n2 © q4(n2+n)
TN N T 2T e 2T e T4 :
Z:: (1q)n(q/i)n nZ:O (=% ¢*)n nzzo (=a% ¢*)2n HZ:O (—a% q%)2nt1
By applying (2.3) and the identity [14, equation (7.10)]
[e.e]
P (_1)nq3n(n+l)/2 1
S — 14— Gz q)
()0 nz_:oo 1— 2" ¢4
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in Theorem 1.6, we can then derive analogous identities.

COROLLARY 7.3. We have

2
i 2 gy (0 6
= (g @)  1+qg 7 ¢, -4, —¢% ¥l

g2 2 4%, 4% ¢°]oo (@ ¢°)ox

—¢,—¢% =3 ¢®loo

o0
A = LG )+
nzo (¢ D21 a a1+
This is not the first time these two functions have been studied. For
example, in [1, equations (1.14), (1.15)]), the first author gave Hecke-type

series representations for the two functions

2n2 n

9] &9]
q 1 2 S 2
2 = o A=) 3 (e
0% q%)oo £

= (=4 q)2n =,

q2(n2+n) n

oo o
1 2 . 9
Z - (¢% @) Zq4n I =gt Z (=1)7q¢7".
1% ¢*)os =,

= (¢ D2nta =,
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