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The importance of skeletal muscle for metabolic health and obesity prevention is gradually gaining recognition. As a result, interventions are being
developed to increase or maintain muscle mass and metabolic function in adult and elderly populations. These interventions include exercise,
hormonal and nutritional therapies. Nonetheless, growing evidence suggests that maternal malnutrition and obesity during pregnancy and
lactation impede skeletal muscle development and growth in the offspring, with long-term functional consequences lasting into adult life. Here we
review the role of skeletal muscle in health and obesity, providing an insight into how this tissue develops and discuss evidence that maternal
obesity affects its development, growth and function into adult life. Such evidence warrants the need to develop early life interventions to optimise
skeletal muscle development and growth in the offspring and thereby maximise metabolic health into adult life.
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Introduction

Skeletal muscle plays a central role in metabolic health. It accounts
for about 40% of bodymass, 20% of energy expenditure and is an
important contributor to postprandial glucose disposal.1–4

Therefore, any defects in the development and growth of this
tissue can potentially lead to permanent metabolic disruptions
lasting into adult life. It is well documented that skeletal muscle
fibre number, a determinant of muscle mass, is irreversibly
reduced in offspring exposed to undernutrition in utero.5,6

These offspring are also prone to developing insulin resistance
and obesity in adult life.7 The effects of maternal obesity and/or
excessive gestational weight gain on skeletal muscle develop-
ment, growth and function into adult life are much less well
characterised but appear to be just as detrimental. This review
brings evidence in support of targeting maternal nutrition to
optimise skeletal muscle development and growth in order to
maximise offspring metabolic health into adult life. Evidence
that exercise in early life may prove beneficial is also presented.

Obesity prevalence and cost

Current figures from the World Health Organization indicate
that obesity rates have nearly doubled since 1980.8 In 2008,
35% of adults were classed as overweight or obese worldwide.9

Children are also affected with over 40 million under the age of
five classed as overweight in 2011.8 Overweight and obesity are
causing major health concerns because of their strong associa-
tion with a range of non-communicable diseases such as

cardiovascular disorders, type 2 diabetes and some cancers.
Consequently, obesity and overweight are the fifth leading
cause of death with 2.8 million adult deaths attributed to being
overweight or obese each year.8 Besides causing major health
and welfare concerns, obesity and overweight constitute a
substantial economic burden through healthcare cost, reduced
productivity at work and sick leave. The annual economic cost
has been estimated at $215 billion in the United States in
2010,10 over €10 billion in some European countries11 and
$58.2 billion in Australia in 2008.12

Obesity and changes in dietary habits since the 1980s

Obesity develops as a result of chronic energy imbalance
whereby energy intake exceeds energy expenditure. There is an
ongoing debate over which side of the equation has the greatest
bearing on the obesity epidemic.13 It has been suggested that
sedentary lifestyle rather than increased energy intake was to
blame.14,15 However, studies using the doubly labelled water
technique indicate that energy expenditure has not decreased
since the 1980s, thereby implying that increased energy intake
rather than sedentary behaviour has fuelled the doubling of
obesity rates.16 The latter findings are in line with a report that
energy supply per capita has increased along with obesity pre-
valence in Western countries between the early 1980s and the
mid 1990s.17 Furthermore, dietary habits have dramatically
shifted in western nations over the same period. For instance,
consumption of ‘away from home’ foods has increased in the
United States and these foods contain more calories and fat but
fewer fibres and minerals compared with foods prepared at
home.18 Moreover, the consumption of snacks, soft drinks and
pizza has increased at the expense of homemade meals, water
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and milk.19,20 It is well characterised that fat and sugar are
potent boosters of food palatability, particularly when added
together, and drive overconsumption through addiction-like
mechanisms.21,22 Taste is the first factor influencing consumers’
food choice followed by cost and convenience, which implies that
palatability is a primary driver of overeating-induced obesity.23

Alarmingly, similar shifts in dietary habits are occurring on a
global scale and are causing obesity and non-communicable dis-
eases in both high- and low-income countries.24 As a result, 60%
of the world’s population currently live in countries where
overweight and obesity kill more people than undernutrition.8

Cordain et al.25 have proposed that such dramatic and sudden
changes in eating habits have triggered a discordance between the
ancient human genome and the contemporary diet and that this
discordance is fuelling obesity and associated non-communicable
diseases. These authors have also identified profound alterations in
seven key components of the ancestral hominin diet including
glycaemic index, micronutrient density, acid–base balance,
sodium–potassium ratio and fatty acid, macronutrient and fibre
content. They suggest that complex interactions between all of
these nutritional characteristics are causing non-communicable
diseases as opposed to individual macro- or micronutrients acting
in isolation.25 It is therefore important to take these nutritional
characteristics into account when developing animal models of
human obesity.

Intrauterine and neonatal origins of obesity

The aetiology of chronic energy imbalance that ultimately leads
to overweight and obesity is complex. Genetic, environmental
and socio-economic factors have been implicated together with
interactions between these factors.26

In addition to these factors, growing evidence suggests that
the intrauterine milieu and neonatal nutrition play important
roles in initiating obesity and related disorders in the offspring,
as reviewed by others.27–29 For example, maternal pre-pregnancy
obesity is associated with macrosomia, childhood obesity and
the metabolic syndrome, while excessive gestational weight
gain is linked with offspring overweight and adiposity,
irrespective of pre-pregnancy body mass index (BMI).30–34

More importantly perhaps, the maternal obesogenic effects on
the offspring have been shown to persist into adolescence and
adult life.35,36 In addition to the intrauterine environment,
lactation also appears to be an important period for the priming
of obesity.37 Breastfeeding has been shown to offer some pro-
tection against childhood obesity over formula feeding.38

However, the evidence is sometimes conflicted due to numer-
ous confounding factors.39 Direct analysis of milk quality and
correlation with infant body composition may provide more
robust evidence. For instance, high maternal BMI is associated
with changes in breast milk quality and increased fat mass in
children.40,41 Furthermore, human and animal studies have
shown that milk from diabetic mothers affects the development
of hypothalamic appetite regulation, promotes overweight and
impairs glucose tolerance in progeny.42,43 Animal studies have

begun to elucidate the underlying mechanisms linking mater-
nal obesity and offspring ill health. Rat studies carried out by
our group have helped to establish that maternal overnutrition
in pregnancy and lactation promotes the early onset of obesity
in the offspring through exacerbating preference for energy
dense foods rich in fat, sugar and salt.44 This is likely mediated
through alternations in the development of hedonic appetite
regulation in the central nervous system.45 Such changes in
feeding behaviour reflect those currently occurring on a global
scale in the human population24 and are causing non-
communicable diseases in both humans and clinically relevant
animal models.44,46–49

The prevalence of overweight and obesity in women of
childbearing age has been increasing in parallel with global
obesity rates. In Australia, around 35% of these women are
classed as overweight or obese.50,51 Moreover, the prevalence of
excessive gestational weight gain is high in women with both
normal and high pre-pregnancy BMIs.52 These alarming figures
warrant the development of interventions aimed not only at
preventing maternal obesity and/or excessive gestational weight
gain but also at reversing any developmental defects associated
with being born to an obese/overnourished mother. Under-
standing the underlying biological mechanisms involved is
crucial for the development of targeted interventions.

Importance of skeletal muscle fitness for general health

Although the detrimental effects of maternal obesity and/or
excessive gestational weight gain on the offspring are beginning
to be well documented, most studies to date have been pre-
dominantly focussed on appetite regulation, adiposity and
cardiovascular dysfunction.27–29,53 Very few studies have con-
sidered the impact on skeletal muscle development and health
into adult life. In fact, the role of skeletal muscle in general
health and obesity prevention has long been overlooked, albeit
it is gradually gaining recognition.54,55

Numerous studies have shown strong associations between
poor skeletal muscle health and non-communicable diseases.
For example, cardiac failure, cancer and type 2 diabetes are all
associated with loss of muscle mass and/or strength.56–58

Conversely, muscle mass is a key determinant of recovery in
patients with cardiac failure and cancer.57,59

In middle-aged adults, muscular strength, a non-invasive
measure of skeletal muscle fitness, is inversely associated with
premature death as well as obesity, hypertension, dyslipidae-
mia, cardiovascular disease and the metabolic syndrome.60

Furthermore, muscle mass index, namely, muscle mass mea-
sured by bioelectrical impedance divided by height squared,
predicts longevity.61 In the elderly, sarcopenia, which is defined
by the age-related loss of muscle mass, is associated with loss of
muscle strength, physical disability, falls, insulin resistance and
death.62 In sarcopenia, the loss of muscle mass is accompanied
by myosteatosis, the accumulation of lipids and connective
tissue within muscle tissue. Myosteatosis reduces the net con-
tractile muscle area, which partly explains muscle weakness.62
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Furthermore, intramuscular lipid infiltrations are believed to
promote skeletal muscle insulin resistance and contribute to the
development of type 2 diabetes.62,63 Muscle weakness and
insulin resistance are further exacerbated in ‘sarcopenic obesity’
whereby the loss of muscle mass is accompanied by increased
adiposity, although the condition remains to be thoroughly
defined.64–66 Evidence of a direct cause and effect relationship
between obesity and sarcopenia has been shown experimentally
in an animal model whereby ageing rats rendered obese with a
high fat diet exhibit exacerbated sarcopenia and myosteatosis
compared with age-matched rats fed a lean diet.67

The association between skeletal muscle fitness and general
health is not solely reported in the elderly, the middle-aged or
in those suffering from chronic diseases. Several studies have
shown similar associations in children and adolescents, as
summarised in Table 1. In 9–15-year-olds, skeletal muscle fit-
ness assessed by measurements of explosive, isometric and
endurance strength is inversely associated with metabolic
health.68 The metabolic parameters measured include blood
pressure, triglyceride, cholesterol, insulin resistance and weight
circumference. The inverse association is further exacerbated in
overweight children with low muscle fitness scores.68 In line
with these findings, a study of the HELENA cohort comprising
709 adolescents aged 12.5–17.5 years shows an inverse asso-
ciation between muscular fitness (handgrip strength and long
jumps) and metabolic health parameters69 (Table 1). There
again, metabolic health is improved in overweight children
with greater muscle fitness scores.69 Similarly, muscle strength
in 10–15-year-old children and adolescents is inversely asso-
ciated with insulin resistance and central adiposity.56

A study of the AVENA cohort reports that muscle fitness
rather than physical activity levels is associated with a better
cardiovascular and metabolic profile in adolescent girls aged
13–18.5 years.70 The authors propose that ‘innate physical
constitution’ rather than lifestyle is a key determinant of
metabolic health.70 However, physical activity in childhood has
been shown to improve cardiovascular and metabolic health in
adolescence and to reduce intramuscular fat; therefore, some
plasticity exists.71,72 Indeed, Fernandes and Zanesco73 have
reported that physical activity in early life is associated with
improved metabolic health parameters in adulthood.

Skeletal muscle, obesity and insulin resistance

Skeletal muscle accounts for about 20% of energy expendi-
ture.74,75 However, this contribution varies considerably
depending on skeletal muscle mass and metabolic require-
ments.1,54 As reviewed by Wolfe, resting energy expenditure is
the largest component of total energy expenditure and is
dependent upon muscle mass and protein turnover rates.54

Muscle mass varies among individuals and can range from 35 to
50 kg in a young man to <13 kg in an elderly woman. On that
account, the energy required to support muscle protein synth-
esis is around 485 kcal/day in a muscular young man but only
120 kcal/day in an elderly woman. If activity and diet were T
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equal between these two individuals, the difference in energy
expenditure due to muscle mass would lead to a net gain or loss
of 1.4 kg of fat per month, although it is unclear whether the
energy required to convert excess energy into fat was taken into
account in these calculations. A more modest and realistic
10 kg difference in lean mass leads to a difference in energy
expenditure of about 100 kcal/day, which translates into
∼ 4.7 kg of body fat mass accumulated over 1 year, if activity
and diet remain constant. Therefore, maintenance of adequate
muscle mass and protein turnover contributes to body weight
maintenance and the prevention of obesity.54

Nonetheless, muscle mass and protein turnover are affected
in obesity, as reviewed by Guillet et al.76 Human obesity is
generally associated with increased lean mass along with
fat mass, except in sarcopenic obesity.77–79 However, lean
mass measurements do not reflect muscle quality and the
non-contractile muscle compartment, which is indicative of
myosteatosis, is not usually assessed or taken into account in
these measurements.62 In fact, muscle strength relative to fat-
free mass or body weight is reduced in obese individuals.78,80

Furthermore, intermuscular adipose tissue (adipose tissue
located between muscle fibres), is associated with obesity,
insulin resistance and reduced contractile function but not with
muscle mass in humans.81–83 In animal models, where muscle
mass measurements are perhaps more direct and accurate,
obesity is usually associated with either reduced or unchanged
muscle mass depending on whether obesity is genetic (leptin or
leptin receptor mutants) or diet-induced, respectively.84–88

The effects of obesity on skeletal muscle mass may depend on
how long an individual has been affected by obesity. In rats, if
obesity is maintained over an extended period (16 weeks), it
leads to skeletal muscle fibre atrophy.89 Furthermore, Masgrau
et al.90 have studied the chronological effects of diet-induced
obesity on skeletal muscle mass and protein synthesis in adult
rats. They have shown that as obesity develops, namely during
the ‘dynamic phase’ (1–16 weeks), muscle mass and protein
synthesis are initially increased. This is probably an anabolic
adaptation to mechanical overload as a result of increased body
mass. However, once obesity is established or ‘static phase’
(16–24 weeks), weight gain stabilises, adipose tissue ceases to
expand and muscle mass and protein synthesis decrease. The
static phase is also characterised by reduced mitochondrial
protein synthesis and increased intramuscular lipid infiltrations.
These defects are muscle specific and occur in the fast glycolytic
tibialis anterior muscle but not in the slow oxidative soleus.90 This
implies that the greater capacity for lipid oxidation in the soleus
muscle may offer some protection against the deleterious effects of
obesity on skeletal muscle health. Nonetheless, several studies have
shown that the maintenance of oxidative metabolism is compro-
mised in skeletal muscles of obese individuals and the condition is
associated with a fibre type shift characterised by an increased
proportion of type 2B (glycolytic) and/or a reduction in type 1
(oxidative) muscle fibres.91–95

As well as being an important site of energy expenditure,
skeletal muscle plays a significant role in regulating whole-body

glucose metabolism. In the post-absorptive state, around 20%
of whole-body glucose disposal occurs in skeletal muscle, with
non-insulin-responsive tissues such as the brain accounting for
the majority of glucose uptake96,97 (Fig. 1a). In the post-
prandial state, about a third of ingested glucose is taken up and
disposed of by skeletal muscle96,97 (Fig. 1b). Of the glucose
taken up by muscle, 15% is released as glycolytic intermediates
such as lactate and alanine, 50% is oxidised and 35% is stored
as glycogen.98 In patients with type 2 diabetes, the rate of
glucose disposal following a meal is reduced,99 which may be

Fig. 1. Contribution of skeletal muscle in glucose disposal
in the post-absorptive (fasted) and post-prandial (fed) states.
(a) Post-absorptive glucose metabolism. The liver and kidneys
contribute ∼ 80% and 20% of glucose output, respectively. Most
glucose is then removed from the circulation by non-insulin-
sensitive tissues such as the brain (50%), renal medulla (10%), blood
cells (10%) and the splanchnic bed (10%). The remaining 20–25%
are taken up by skeletal muscles and adipose tissue. (b) Post-prandial
glucose metabolism. Following an oral glucose load of 100 g, ∼30 g
are taken up by the liver and 70 g are released into the circulation.
Of these 70 g, 27 g (40%) are taken up by skeletal muscle, 5 g (7%)
by adipose tissue, 15 g (20%) return to the liver and the remaining
23 g (33%) are taken up by the kidneys, skin and blood cells. Figure
adapted from Shrayyef and Gerich.97
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related to defects in skeletal muscle glucose handling due to the
presence of insulin resistance. Indeed, post-prandial skeletal
muscle glucose clearance is reduced in type 2 diabetic indivi-
duals100 and is associated with impaired storage of glucose
as glycogen.101 In fact, it has been proposed that impaired
glycogen synthesis in skeletal muscle is the primary defect that
precedes pancreatic β-cell failure and leads to type 2 diabetes.4

Although the mechanisms leading to impaired glucose meta-
bolism are not entirely clear, there is an association between
insulin resistance and defective lipid handling in skeletal
muscle.102–104 Actually, there is strong evidence linking the
accumulation of intramyocellular lipids such as triacylglycerol,
diacylglycerol, long-chain fatty acyl-CoAs and ceramides with
defects in muscle insulin action.54,103 It is thought these lipid
intermediates cause activation of inflammatory and/or stress
signalling pathways, which ultimately impinge on the ability of
insulin to stimulate muscle glucose metabolism (Fig. 2).

Given the importance of skeletal muscle fitness for metabolic
health, various strategies are being developed in adults to
maintain or increase skeletal muscle mass, protein synthesis and
lipid oxidation, with the aim of increasing energy expenditure
to treat obesity and insulin resistance. These strategies include

hormonal therapy, exercise and nutritional interventions as
reviewed by Wolfe.54 However, muscle mass and metabolism
are influenced by maternal nutrition during pregnancy and
lactation (see later). Consequently, efforts should also be targeted
at optimising maternal nutrition to maximise skeletal muscle
development and health in the developing offspring.

Skeletal muscle development and postnatal growth

To understand how maternal obesity may affect skeletal muscle
development, growth and function into adult life, it is important
to get an insight into how this tissue develops (Fig. 3).

Early myogenesis

During embryonic development, mammalian skeletal muscles
originate from the condensation of paraxial mesoderm into
epithelial structures called somites (reviewed by Bismuth
et al.105 and Buckingham et al.106). The sclerotome (ventral
part of the somite) gives rise to cartilage and bone of the
vertebral column and ribs, while the dermomyotome (dorsal
part of the somite) forms skeletal muscle progenitor cells and

Fig. 2. Model of skeletal muscle insulin-resistance in obesity. Excess plasma free fatty acid (FFA) leads to the intramuscular accumulation
of long-chain fatty acid (LCFA)-Acyl CoAs. Because of low energy demand, LCFA-Acyl CoAs are incompletely oxidised by mitochondria
thus form large lipid droplets. Lipolysis of these droplets generates lipotoxic precursors such as diacyglycerol (DAG) and ceramide. Both
LCFA-Acyl-CoA and DAG activate protein kinase C (PKC), which stimulates serine phosphorylation. This decreases the association between
insulin receptor substrate 1 and phosphatidylinosytol (PI3K). Ceramide impair insulin signalling via decreased Akt/protein kinase B (PKB)
phosphorylation. The resulting downregulation of insulin signalling prevents the translocation of glucose transporter (GLUT) 4 to the plasma
membrane and glucose uptake into skeletal muscle (adapted from Shaw et al.,102 Consitt et al.103 and Coen and Goodpaster104).
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the dermis.106,107 The borders of the dermomyotome undergo
a transition from an epithelial to a mesenchymal structure and
forms a third compartment called the myotome.105 The dorsal-
medial (epaxial) parts of the myotome and demomyotome
generate the back muscles, whereas the ventro-lateral parts
(hypaxial) give rise to muscles of the limbs and the rest of the
trunk.105 Somitic cells are therefore pluripotent and their spe-
cification to a particular lineage is a competitive process that is
modulated by a number of signalling pathways including sonic
hedgehog (skeletal muscle specification), Notch (smooth
muscle), Nkx3.2 (cartilage), TGFβ and Bmp2 acting through
Smad3 and Smad1/5 (bone) and Prdm16 (brown adipocytes);
for a review see Buckingham et al.108 For example, TGFβ and

Bmp2 signalling promotes osteogenesis and inhibits myogen-
esis,109 whereas Prdm16 favours differentiation of common
Myf5 expressing precursors down the brown adipose lineage at
the expense of skeletal muscle.110 It is unknown whether
maternal obesity affects stem cell commitment shift during the
early stages of development.
During limb myogenesis, muscle precursor cells delaminate

and migrate from the hypaxial part of the dermomyotome into
the limb buds; this is under the control of c-met, whose tran-
scription is regulated by the paired box gene product Pax3, and
its ligand hepatocyte growth factor.106 During migration,
muscle precursors proliferate until they reach their final desti-
nation in the limb.105 They then begin to express the myogenic
regulatory factor Myf5 followed by MyoD, myogenin and
MRF4, which regulate myoblasts fusion and differentiation
into multinucleated muscle fibres that ultimately express
functional contractile proteins such as myosin heavy chains.105

Muscle fibre formation

The formation of skeletal muscle fibres (hyperplasia) occurs in
two waves in most mammalian species but a third wave has
been reported in larger mammals such as humans and
pigs.111,112 The first wave of myoblast fusion gives rise to primary
(embryonic) muscle fibres, which define the future muscle by
extending from tendon to tendon. This occurs in the early stages
of development, namely, around embryonic days 14–17 in rats
and mice and between gestational weeks 8–10 in humans.112–116

Primary fibres then act as scaffolding for secondary (foetal) fibres as
shown in Fig. 3. Secondaries initially form beneath the basal lamina
of the primaries then grow longitudinally to reach the tendons and
acquire their own basement membranes.117 Secondary fibres form
between embryonic day 17 and the early neonatal period in rats
and mice113,115,118 and between gestational weeks 10 and 18 in
humans.114 In humans, tertiary fibres begin to form around
embryonic weeks 16–17 and become independent by week 23.112

Myogenesis ends with the cessation of de novo fibre forma-
tion (hyperplasia), such that the majority of muscle fibres that
constitute a given muscle is usually set by birth or shortly
thereafter; this will determine adult muscle fibre number and
influence adult muscle mass.5,6,113,115,119 From the neonatal
period, skeletal muscles continue to grow predominately by
hypertrophy, namely, through an increase in skeletal muscle
fibre size rather than an increase in their number.115,118

Postnatal muscle growth

Muscle fibre hypertrophy during postnatal muscle growth
involves the addition of new myonuclei together with protein
accretion.120,121 New myonuclei come from satellite cells,
which are a subset of myoblasts that form during the later stages
of embryogenesis.112 These myoblasts do not initially fuse with
muscle fibres. Instead, they remain in a quiescent state under-
neath the basal lamina of adjacent fibres and act as a pool of ‘stem’

cells that are recruited during growth and regeneration.112,122

During postnatal growth, some satellite cells are activated

Fig. 3. Skeletal muscle development. During early embryogenesis,
skeletal muscle precursor cells delaminate from the somites located
on either side of the neural tube and migrate into the limb buds and
trunk (a). Muscle fibre formation occurs in waves and ends before
birth or shortly thereafter depending on species. Primary myofibres
form first and act as scaffolding for secondary myofibres (b). After
birth, myofibres continue to grow by hypertrophy, which initially
involves the activation of satellite cells located under the basal
lamina (c). Figure adapted from Partridge121 and Maltin et al.5
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and proliferate. Some daughter cells return to quiescence to
replenish the pool of satellite cells while others fuse to adjacent
muscle fibres.120 Fused satellite cells thereby donate their nuclei
to the myofibres and contribute to protein synthesis and
hypertrophy.120 Although satellite cells are not essential for
muscle hypertrophy,123 under normal physiological conditions,
the rate of satellite activation and fusion is high during the first
3 weeks postpartum in mice.118 Beyond this point until adult-
hood, muscle fibre volume increases without further addition of
myonuclei.118 In humans, the contribution of satellite cells to
postnatal muscle growth is a bit more complicated to study than in
mice but appears to continue until 15–18 years.124

Along with satellite cell activation, muscle fibre hypertrophy
involves a net increase in protein synthesis over protein degra-
dation. This is mostly regulated by two antagonist pathways,
namely, the insulin-like growth factor 1-phosphoinositide-3-
kinase-Akt/protein kinase B-mammalian target of rapamysin
(IGF1-PI3K-Akt/PKB-mTOR), which promotes growth, and
the myostatin-Smad3 pathway, which acts as an inhibitor of
growth120 (Fig. 4). The role of the IGF-1 pathway in muscle
hypertrophy is particularly evident in mutant mice that lack
IGF-1 receptors in skeletal muscle. These mice exhibit growth
restriction together with a reduction in both skeletal muscle
fibre number and size, with a preferential loss of type 1
fibres.125 This is accompanied with severely impaired con-
tractile performance.125 Conversely, evidence that the myos-
tatin pathway is a strong inhibitor of muscle growth is
illustrated in myostatin null mice that exhibit an accelerated
myogenic programme with increased fibre number and size
into adult life.126

It is important to note that differentiated skeletal muscle
tissue is heterogeneous and not only consists of skeletal muscle
fibres but also of vascular and connective tissues, including
intramuscular adipocytes. Differentiated muscle tissue also
contains a heterogeneous population of resident progenitors
capable of adopting diverging cell fates.127 Some of these resi-
dent progenitors contribute to excessive ectopic adipogenesis in
a number of muscle pathologies including muscular dystro-
phies, obesity, type 2 diabetes and sarcopenia.128 Evidence
suggests that early life nutrition may affect specification and
differentiation of these resident progenitors (see later).

Effects of maternal diet-induced obesity on skeletal muscle
development and growth

Maternal obesity, skeletal muscle development and function

The negative effects of maternal undernutrition on skeletal
muscle development, growth and function into adult life are quite
well documented and have been reviewed by others.5,129,130

For example, several studies have shown that severe maternal
undernutrition during pregnancy permanently reduces skeletal
muscle fibre number and size in both small and large mammals,
including humans.131–135 This is of significance because
reduced skeletal muscle fibre number is associated with low

birth weight, slower postnatal growth rate and lower muscle
mass into adult life.5,6,136–138 When undernutrition occurs
after weaning in rats, no such permanent deficit in muscle fibre
number is observed, implying that there is a window of devel-
opment during which muscle tissue is particularly vulner-
able.131 Maternal undernutrition during pregnancy does not
appear to affect the number of primary fibres that form in a
given muscle but secondary fibre number is reduced.113,131,132

In addition to alterations in muscle fibre number, maternal
undernutrition and/or protein restriction during pregnancy
have been shown to affect skeletal muscle fibre metabolic pro-
file,139–141 while intrauterine growth restriction through pla-
cental surgery affects insulin signalling in offspring skeletal
muscle.142

The effects of maternal obesity and gestational overnutrition
on skeletal muscle development in the offspring are much less
well characterised but appear to be just as detrimental. Using a
clinically relevant animal model that reflects the current global
changes in dietary habits in humans, our group has shown that
weanling rats born to mothers fed a palatable obesogenic diet
during pregnancy and lactation exhibit reduced skeletal muscle
cross-sectional area with a deficit in skeletal muscle fibre
number along with increased intramuscular fat content.44

These structural defects observed at weaning progress towards
impaired muscle contractile function, characterised by reduced
twitch and tetanic tensions at the end of adolescence.143 Taken
together the data show that the healthy contractile muscle
compartment is compromised at the expense of ectopic adi-
pogenesis in offspring born to overnourished dams. In these
offspring, limb skeletal muscle mass was not significantly
affected, however, other rodent studies, whereby maternal
overeating was induced before conception using diets either
rich in both fat and sugar or in sucrose alone, have reported a
reduction is skeletal muscle mass relative to body weight.48,144

Underlying mechanisms

Du and colleagues have begun to study some of the underlying
mechanisms that mediate the effects of maternal obesity on
skeletal muscle development in the offspring. Using a sheep
model, they have shown that maternal obesity induced by
increasing food ration ad libitum in pregnant ewes led to
increased foetal skeletal muscle mass, however, muscle quality
was impaired.145 More specifically, at 75 days of gestation,
foetuses from obese ewes had smaller primary fibre diameters,
which is usually associated with fewer secondary fibre number,
although these were not yet identifiable this early in develop-
ment.145 Along with primary fibre atrophy, these foetuses
exhibited increased intramuscular space that progressed
towards fibrosis and ectopic adipogenesis by 22 months of
age.145,146

Reduced myogenesis in 75-day sheep foetuses from obese
ewes appears to be partly mediated through downregulation of
myogenic factor expression (MyoD and myogenin) and
alterations in Wnt/β-catenin signalling.145 The concomitantly
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increased fibrosis is characterised by intramuscular collagen
accretion and cross-linking and appears to be mediated through
low-grade inflammation and increased TGF-β signalling.147

Fibrosis, which is also a feature of muscle aging, is linked to
impaired skeletal muscle contractile function, however, muscle
force measurements have not been reported in this model.148–153

Fig. 4. Mechanisms of postnatal skeletal muscle growth. (a) Satellite cells are quiescent muscle precursors located under the basal lamina. Upon
activation, they proliferate. Some daughter cells return to quiescence to replenish the satellite cell pool, whereas others fuse with the adjacent
muscle fibre and donate their nuclei to contribute to protein synthesis and thereby skeletal muscle fibre growth. Each stage of satellite cell
differentiation is regulated by factors involved in myogenesis. RBP-J and miR-489 are required to maintain satellite cells in a quiescent state
while Spry1 and Notch-3 regulate their return to quiescence from a proliferating state. Myf5 is involved in satellite cell proliferation while
MyoD and myogenin regulate their differentiation and expression of functional contractile proteins such as MyHCs. (b) Various signalling
pathways are believed to converge around Akt/mTOR to regulate skeletal muscle hypertrophy through transcriptional regulation (arrow linking
mTOR to a myonucleus). The two major regulatory pathways are IGF-1 acting through PI3K and follistatin acting through myostatin inhibition
(heavy dotted lines). Additional pathways include SRF, PA and nNOS. miR-489, mouse micro RNA-489; Myf5, myogenic factor 5; myHC, myosin
heavy chain; MyoD, myogenic differentiation; Notch-3, neurogenic locus notch homologue protein 3; Pax7, paired box protein 7; RBP-J,
recombination signal binding protein for immunoglobulin kappa J region; Spry1, protein sprouty homologue 1. Figure adapted from Brack and
Rando.122; ACVRI/II, activin receptor I/II; akt, serine/threonine protein kinase; Fzd7, frizzled family receptor 7; IGF1, insulin-like growth factor-1;
IGF1R, insulin-like growth factor-1 receptor; IL, interleukin; mTOR, mechanistic target of rapamycin (serine/threonine kinase); new mn, newly
fused myonucleus; nNOS, neuronal nitric oxide synthase; NO, nitric oxide; PA, phosphatidic acid; PI3K, phosphatidylinositol-4,5-bisphosphate 3-
kinase; SC, satellite cell; SRF, serum response factor; SSC, satellite stem cell; TRPV1, transient receptor potential cation channel subfamily V
member 1; wnt7a, wingless-type MMTV integration site family, member 7A. Figure adapted from Schiaffino et al.120
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Along with fibrosis, sheep offspring born to overnourished
mothers exhibit increased intramuscular fat accumulation
together with raised expression of peroxisome proliferator-
activated receptor gamma (PPARγ), a nuclear receptor that
regulates adipocyte differentiation;146 our group has reported
similar findings in rats.44 Both studies therefore indicate
that maternal obesity may impair myogenesis via stem cell
commitment shift away from myogenesis in favour of ectopic
adipogenesis.154,155 It is well characterised that ectopic adipo-
genesis is associated with myofibre destruction and is present in
several muscular pathologies such as type 2 diabetes and sar-
copenia.128 Mesenchymal platelet-derived growth factor
receptor α (PDGFRα) positive progenitor cells, distinct from
satellite cells, have been identified as major contributors to
ectopic fat accumulation in skeletal muscle.156 Their differ-
entiation into adipocytes is inhibited by factors released by
satellite cells in vivo, which further highlights the competition
between myogenesis v. adipogenesis.156 High insulin condi-
tions promote the adipogeneic differentiation of these cells
in vitro.128 Furthermore, high glucose conditions drive
uncommitted muscle-derived precursors to form adipose
depots and this appears to be mediated via increased levels of
reactive oxygen species and downstream effectors such as pro-
tein kinase C-β.157 It is unclear whether these progenitor cells
also express PDGFRα. In addition to high glucose and insulin
conditions, fatty acid overload also impedes myogenesis.
Overexpression of lipoprotein lipase, a regulator of fatty acid
transport, in the murine C2C12 myoblast cell line induces
intramyocellular accumulation of free fatty acids.158 This leads
to an almost complete loss of myogenic potential characterised
by impaired fusion and reduced expression of Pax7, a paired
box transcription factor involved in myogenic specification,
and of the myogenic factors MyoD and myogenin.158 When
lipoprotein lipase is overexpressed in skeletal muscle tissue
in vivo, it leads to reduced skeletal muscle mass, impaired
physical endurance, increased protein degradation and apop-
tosis. Moreover, skeletal muscle regenerative capacity is
diminished in these mice, which further illustrates the lipotoxic
effects on satellite cell activation.158 The negative effects of
other lipid species such as ceramides on myogenesis have been
demonstrated in a number of in vitro studies and increased
mitochondrial lipid oxidation appears to protect against such
lipotoxicity.159–161 Some of these lipotoxic effects on myoblasts
have been reviewed by Akhmedov and Berdeaux.162

Evidence that obesity impairs the myogenic programme
in vivo is further supported by muscle regeneration studies in
animal models of obesity.162 Following injury, muscle stem
cells and satellite cells are activated to form new muscle fibres
and replace damaged ones.122,163 Upon activation, these stem
cells recapitulate some aspects of the embryonic myogenic
differentiation programme122,163 and several studies have
shown that these processes are impaired in obese rodents.162

For example, mice fed a high fat diet over 8 months exhibit
reduced muscle weight and smaller regenerated fibres following
cardiotoxin injury.164 Intramuscular fibrosis is concomitantly

increased.164 Similarly, early life high fat feeding leads to a
reduction in skeletal muscle precursor cells frequency and,
following freeze injury, there are fewer regenerating fibres with
centrally located nuclei.165 In this model, impaired regenera-
tion is further exacerbated if the high fat-fed mice are exposed
to undernutrition in utero.165

In light of the above, we propose that overnutrition in utero
and during early postnatal life, namely, at a time of extensive
myoblast proliferation, fusion and differentiation, may increase
glucose, insulin and fatty acid levels in developing skeletal
muscle tissues, thereby impeding the myogenic programme in
favour of adipogenesis, as shown in Fig. 5.166 This may lead to
excessive ectopic fat accumulation, compromised skeletal
muscle compartment, impaired contractile function and
increased insulin resistance. Indeed, several studies using sheep
and rodents have shown that offspring born to overnourished
mothers develop insulin resistance.48,144,146 A number of
molecular pathways appear to be involved including those that
regulate insulin signalling, mitochondrial function, oxidative
metabolism and inflammation in skeletal muscle.167 The det-
rimental effects of maternal obesity on skeletal muscle glucose
and lipid metabolism are further exacerbated if offspring con-
tinue to be fed an obesogenic diet post-weaning.168

Early life exercise and other preventive measures

Gatford et al.169 have reviewed the benefits of exercise inter-
ventions to improve metabolic health in individuals affected by
intrauterine growth restriction, however, very few exercise
interventions have been carried out in offspring born to obese
dams. Early and late onset exercise appear effective at improv-
ing metabolic health in these offspring through amelioration of
body weight, adiposity, plasma leptin, insulin, triglycerides and
glucose intolerance.170,171 Other types of interventions have
been reviewed by Nathanielsz et al.172 Nevertheless, it is
unclear whether and to what extent early life exercise restores
skeletal muscle structure and function in individuals born to obese
mothers. Therefore, further research is required. Interventions on
obese mothers during pregnancy may also prove beneficial.
Indeed, Tong et al.173 have shown that maternal metformin
administration during pregnancy prevented the downregulation of
β catenin and myogenic markers and the upregulation of adipo-
genic marker PPARγ in skeletal muscle of neonatal mice born to
obese mice. Meftformin is an antidiabetic drug that acts through
AMPK signalling, which implies that the negative effects of
maternal obesity on skeletal muscle development may be medi-
ated via maternal insulin resistance and/or gestational diabetes.173

Evidence in humans

Most of the evidence to date that maternal obesity and/or
excessive gestational weight gain affects skeletal muscle devel-
opment and health into adult life comes from animal studies.
There is a general lack of human data partly because the con-
tribution of skeletal muscle to general health has been largely
overlooked by the scientific community but also because
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measuring skeletal muscle mass is difficult to achieve outside of
the laboratory.54,55 Furthermore, methods to directly and
accurately assess skeletal muscle quality are invasive. These
techniques often require whole muscle dissection thus are not
applicable to humans for obvious ethical reasons. Several
methods are currently being used to assess ‘fat free’ or ‘lean’
mass in neonates and children; these include dual energy X-ray
absorbency (DEXA), bioelectrical impendence, magnetic reso-
nance imaging and air-displacement plethysmography.174–176

Based on these methods, the evidence as to whether maternal
obesity and/or excessive gestational weight gain impairs lean mass
in children is conflicted. For example, Hull et al.176 have reported
that infants born to obese mothers exhibit increased absolute fat
mass but decreased absolute fat-free mass, which is in line with
data presented by Ruager-Martin et al.177 at the Neonatal Society
Meeting in the United Kingdom. However, other studies report
that absolute lean mass is unchanged in neonates and children
born to overweight and obese mothers175,178,179 or in those
exposed to excessive gestational weight gain.32

These discrepancies may be due to measurement errors
across the various techniques currently used to assess body
composition in humans.180 DEXA scanning has been shown to
overestimate fat-free mass and underestimate fat mass com-
pared with more direct dissection methods.181 Discrepancies
also exist between the DEXA and bioelectrical impedance
methods.182 Nevertheless, McCarthy et al., have recognised the
importance of assessing skeletal muscle fitness in childhood and
have developed new skeletal muscle mass reference centile

curves based on bioelectrical impedance measurements to be
used in epidemiological studies.55,174 These curves, in con-
junction with other measures of muscular fitness such as grip
strength (Table 1), should help to increase our understanding
of the effects of maternal obesity and/or excessive gestational
weight gain on skeletal muscle health in humans.

Conclusion

Many lifestyle interventions that aim to reduce obesity rates
have limited success. This may be because such interventions
are instigated too late in adult life when metabolic organs such
as skeletal muscle are fully developed and thus have diminished
plasticity and capacity for adaptation. Furthermore, growing
evidence suggests that maternal obesity impedes the develop-
ment of skeletal muscle with negative functional consequences
lasting into adult life. Consequently, lifestyle interventions
targeted at pregnant women and young children may prove
more successful at preventing and/or decreasing obesity rates.
Further characterisation of the mechanisms by which maternal
nutrition and early life exercise influence skeletal muscle
development and function in the offspring is crucial for the
development of such evidence-based interventions.
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Fig. 5. Maternal obesity may affect stem cell specification in the developing offspring. Skeletal muscle and adipose tissues (white and brown)
derive from a common mesenchymal precursor. Specification to each lineage is a competitive process regulated by a number of regulatory
factors shown in blue (adapted from Park et al.).166 Growing evidence suggests that maternal diet-induced obesity may promote a
mesenchymal cell differentiation-shift down the adipogenic lineage at the expense of myogenesis in the developing offspring. As a result,
the skeletal muscle compartment is compromised and contractile and metabolic functions are altered. CD24, cluster of differentiation 24;
C/EBPα, CCAAT-enhancer-binding proteins α; MyoD, myogenic differentiation; PGC-1, peroxisome proliferative-activated receptor gamma
coactivator 1; PPARγ, peroxisome proliferator-activated receptor γ; PRDM16, PR domain containing 16; RIP140, receptor-interacting protein
140; SRC1/2, Proto-oncogene non-receptor tyrosine kinase.
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