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The evolution from a linear temperature gradient to a detonation is investigated for
combustible materials whose chemistry is governed by chain-branching kinetics, using
a combination of high-activation-temperature asymptotics and numerical simulations.
A two-step chemical model is used, which captures the main properties of detonations
in chain-branching fuels. The first step is a thermally neutral induction time, repre-
senting chain initiation and branching, which has a temperature-sensitive Arrhenius
form of the reaction rate. At the end of the induction time is a transition point where
the fuel is instantaneously converted into chain-radicals. The second step is the main
exothermic reaction, representing chain termination, assumed to be temperature in-
sensitive. Emphasis is on comparing and contrasting the results with previous studies
that used simple one-step kinetics. It is shown that the largest temperature gradient
for which a detonation can be successfully ignited depends on the heat release rate
of the main reaction. The slower the heat release compared to the initial induction
time, the shallower the gradient has to be for successful ignition. For example, when
the rate of heat release is moderate or slow on the initial induction time scale, it was
found that the path of the transition point marking the end of the induction stage
should move supersonically, in which case its speed is determined only by the initial
temperature gradient. For steeper gradients such that the transition point propagates
subsonically from the outset, the rate of heat release must be very high for a det-
onation to be ignited. Detonation ignition for the two-step case apparently does not
involve the formation of secondary shocks, unlike some cases when one-step kinetics
is used.

1. Introduction
Detonation waves are powerful and rapid (supersonic) combustion waves. The

power of detonations may be harnessed for engineering applications, for example
in pulse detonation engines, whereas unplanned detonations represent an extreme
explosion hazard. In either case, understanding how a detonation can arise from
some quiescent initial conditions is crucial. There are two main ways a detonation
may be ignited: either by direct ignition from a high-energy source producing a blast
wave which, as it decays, transitions to a detonation, or by the creation of a small
non-uniformity (in the temperature, for example) in the fuel (e.g. by slowly heating
the fuel, the passage of a shock wave, the creation of a hot-spot by an accelerating
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268 G. J. Sharpe and M. Short

turbulent flame in a deflagration-to-detonation process or the injection of a turbulent
jet into the fuel). We will be concerned with the case where the ignition process
produces a temperature gradient in a region of the explosive.

A model which has been widely studied is simply that of an initial linear temperature
gradient in the fuel. Most of the previous work has considered a simple chemical
model in which the reaction proceeds via a single exothermic reaction, fuel→ product,
with Arrhenius kinetics (Jackson, Kapila & Stewart 1989; Makhviladze & Rogatykh
1991; He & Clavin 1992; Khokhlov, Oran & Wheeler 1997; Kapila et al. 2001). See
Kapila et al. (2002, henceforth referred to as KSQH) for a recent review and a very
detailed numerical study of the problem. The main result is that for a detonation to
be ignited the temperature gradient must be sufficiently shallow to create a balance
between the acoustic and reaction times at some point in the evolution. For such
temperature gradients one or two shocks may be formed in the evolution process.
For high gradients the balance is between diffusive and reactive times and the result
is a subsonic combustion wave (flame).

Another major outcome from one-step kinetics studies is the development of
diagnostic tools for interpreting the output of numerical simulations, which involve
plotting snapshots of the flow profiles in the pressure–specific volume (p, V ) and
pressure–concentration phase planes. Clarke and co-workers (Clarke et al. 1990;
Singh & Clarke 1992; Clarke & Nikiforakis 1999) have shown that straight lines
with negative slope in the (p, V )-plane represent a quasi-steady wave phenomenon
(waves whose speed and structure evolve on a much slower time scale than the time
it takes a particle to transit through the wave), with the slope of the line being
proportional to the (square of the) mass flux through the wave. This has been very
successfully exploited in a number of ignition studies (Clarke et al. 1990; Singh &
Clarke 1992; Dold et al. 1995; Nikiforakis & Clarke 1996; KSQH) which show that
the reaction zone evolution may involve decelerating quasi-steady weak detonations
(shockless reaction waves through which pressure and density increase and the flow is
everywhere supersonic in the wave’s rest frame), quasi-steady fast flames (diffusionless
subsonic combustion waves through which pressure and density decrease), as well as
shocks and completely unsteady reactive regions, their interactions and transitions
from one to another. The pressure–concentration diagrams clearly reveal the location
of events inside the reaction zone, such as the birthplace of shocks. In this paper we
exploit these diagnostic tools throughout to classify the ignition evolution.

Detonations in fuels such as hydrogen–oxygen and hydrocarbon–oxygen have
well-defined induction zones followed by exothermic main reaction zones (Fickett,
Jacobson & Schott 1972). The ratio of the length scale of the induction zone to that
of the main reaction zone in these detonations depends on the initial conditions.
For example in hydrogen–oxygen at low pressures the main reaction zone is much
longer than the induction zone, but at higher pressures the two length scales become
comparable (Fickett et al. 1972). The chemistry in these fuels is governed by chain-
branching kinetics, with the induction zone corresponding to slightly endothermic but
temperature-sensitive chain initiation and branching reactions and the exothermic
main reaction zone to that of chain recombination or termination reactions. For
many condensed-phase (solid and liquid) explosives the reactions proceed in a similar
manner, with an initial induction stage in which molecular bonds are broken down,
followed by a state-insensitive exothermic recombination stage (Dremin 1999). In
powerful condensed-phase explosives the induction zone may be extremely short
compared to the main reaction zone length, perhaps due to the creation of active
particles in non-equilibrium processes inside the leading shock wave (Dremin 1999).
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Detonation ignition 269

A single Arrhenius reaction model cannot reproduce the features of detonations
governed by chain-branching kinetics described above because, in order to have
a well-defined induction zone for one-step chemistry, the activation temperature
must be high, but then the main reaction layer becomes exponentially thin. Indeed,
it has been shown that for shock ignition of detonations, qualitatively different
results may be obtained using chain-branching chemistry models than found for
one-step chemistry (Dold & Kapila 1991; Sharpe 2002). It is therefore important to
investigate and understand the qualitative differences in the ignition process from
a temperature gradient between chain-branching kinetics and the predictions from
one-step models.

In order to investigate the ignition of detonation in fuels with chain-branching
kinetics a model is used in this paper which is based on a widely used two-step
chemistry description, which mimics the essential features described above. The model
consists of a temperature-sensitive induction stage, at the end of which the fuel
is converted instantaneously into chain-radicals, followed by an exothermic main
reaction (or chain recombination) stage. Such two-step induction time–heat release
models are used for numerical simulations of unstable detonations in hydrogen–
oxygen mixtures or liquid nitromethane (e.g. Taki & Fujiwara 1978; Guirguis, Oran &
Kailasanath 1986). For numerical simulations of shock-induced ignition, such models,
when fitted to data from homogeneous explosion calculations, can give very good
agreement with full reaction kinetics of hydrogen–oxygen–argon mixtures (Clifford et
al. 1998). Hence, while this model is simple, it does retain the essential ingredients of
chain-branching kinetics, and importantly it preserves the main qualitative difference
between chain-branching and one-step kinetic models, i.e. that the temperature-
sensitive initiation reactions and the main exothermic reactions are decoupled into
separate stages (Fickett et al. 1972), the ratio of the length or time scales of which
can be prescribed. In this paper the induction stage is assumed to be thermally
neutral, reflecting the fact that chain initiation and chain branching are usually only
weakly endothermic (Short & Quirk 1997), and since chain-recombination reactions
tend to be temperature insensitive (Short & Quirk 1997), the exothermic reaction
rate is assumed to be independent of temperature. The model used here has recently
been employed by Short (2001) and Short & Sharpe (2002) to investigate pulsating
detonations and also by Bdzil & Kapila (1992) to investigate the transformation of a
shock into a detonation.

2. The model
The governing equations are the one-dimensional Reactive Euler equations, i.e. the

equations of conservation of mass, momentum and energy in the reactive fluid,

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0, (2.1)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0, (2.2)

∂e

∂t
+ u

∂e

∂x
− p

ρ2

[
∂ρ

∂t
+ u

∂ρ

∂x

]
= 0, (2.3)

coupled to a set of chemical reaction rates. Here u is the fluid velocity, ρ the density,
p the pressure and e the internal energy per unit mass.

In this paper, a two-step reaction model, representing chain-branching kinetics, is
considered. The first step represents a thermally neutral chain initiation and branching
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270 G. J. Sharpe and M. Short

stage, or induction zone (IZ), with a temperature-sensitive Arrhenius form of the
reaction rate given by

∂ξ

∂t
+ u

∂ξ

∂x
= k1 exp

[
1

ε

(
1

T0

− 1

T

)]
, (2.4)

where ξ is an induction time parameter, which depends on the temperature history
of a particle, k1 is a constant rate multiplier, ε is the inverse activation temperature,
T0 is the initial temperature and

T =
µp

Rρ
(2.5)

is the temperature, with µ the (constant) mean molecular weight and R the universal
gas constant. Initially ξ = 0 and the end of the induction period corresponds to ξ = 1,
at which point the second step begins.

The second step is a temperature-insensitive but exothermic chain recombination
reaction stage, or main reaction zone (MRZ). The reaction rate for this step is
assumed to be of the form

∂λ

∂t
+ u

∂λ

∂x
= k2(1− λ)1/2H(ξ), (2.6)

where λ is the chain recombination reaction progress variable (with λ = 0 at the start
of the second step, while the completely burnt (all product) state corresponds to
λ = 1), k2 is the constant rate multiplier and

H(ξ) =

{
0 if ξ < 1
1 if ξ > 1,

(2.7)

so that the second step is switched on for a particle only once the induction time has
passed for that particle.

Here we define an ‘overall’ reaction progress variable, Y , by

Y =

{
ξ if ξ < 1
λ+ 1 if ξ > 1,

(2.8)

so that the unburnt state corresponds to Y = 0 and the fully burnt state to Y = 2, with
0 6 Y < 1 corresponding to the IZ of the reactions and 1 6 Y 6 2 corresponding to
the MRZ.

Equations (2.1)–(2.7) are closed by specifying an equation of state for the internal
energy e. Here we use a polytropic equation of state

e =
p

(γ − 1)ρ
− Qλ, (2.9)

where Q is the heat of reaction of the exothermic reaction step and γ is the (constant)
ratio of specific heats. The sound speed, c, is then given by

c2 =
γp

ρ
. (2.10)

We will consider uniform initial conditions apart from a linear temperature gradient,
with constant pressure (and hence non-uniform density) and zero velocity with the
gas initially in the completely unburnt state. The temperature is assumed to be
a maximum at x = 0 and decreasing in the positive x-direction. As usual we will
assume x = 0 represents a wall or a plane of symmetry (KSQH). We will assume
that the temperature non-uniformity is large enough for a detonation to ignite or fail
inside the non-uniformity, so we are not concerned by the conditions outside it.
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The equations are non-dimensionalized by using the self-consistent scalings

ρ =
ρ̃

ρ̃0

, p =
p̃

p̃0

, T =
p

ρ
=
R̃ρ̃0

µ̃p̃0

T̃ , u =

(
ρ̃0

p̃0

)1/2

ũ, c =

(
ρ̃0

p̃0

)1/2

c̃,

t = k̃1t̃, x =

(
ρ̃0

p̃0

)1/2

k̃1x̃, Q =
ρ̃0

p̃0

Q̃, k1 = 1, k2 = k =
k̃2

k̃1

, ε =
µ̃p̃0

R̃ρ̃0

ε̃,

 (2.11)

where p̃0 is the initial pressure and ρ̃0 is the initial density at x = 0 and a tilde denotes
dimensional quantities. The dimensionless initial state is given by

p = 1, T = 1− εax, u = 0, c2 = γ(1− εax), ξ = 0, λ = 0. (2.12)

Note that here x and t have been scaled using the rate constant for the induction
step k̃1, so that these represent IZ length and time scales. However, since there are
two distinct time scales in the problem corresponding to the IZ and MRZ, one could
alternatively non-dimensionalize space and time using the MRZ rate constant, k̃2,
to give scaled variables, xMRZ and tMRZ say, as measured on the MRZ scales. The
relation between the IZ and MRZ scaled variables are simply

tMRZ = kt, xMRZ = kx, (2.13)

where k is the ratio of the main reaction step rate constant to that of the induction
step (i.e. the ratio of the reaction times of the two steps), and then the temperature
gradient as measured on the MRZ scale, aMRZ, is given by

aMRZ =
a

k
. (2.14)

In the two-step model, there is no heat release during the induction stage (repre-
senting the fact that this stage is usually only very slightly endothermic). Hence until
the induction time parameter first reaches unity (which occurs at x = 0 since the
temperature is a maximum there), the temperature, pressure and gas velocity remain
unchanged. This is markedly different from the one-step model, for which there is a
small amount of heat release during the induction stage that nevertheless switches
on gas dynamics due to the temperature-sensitive nature of the reaction (KSQH).
Hence, for the two-step model, during this stage the induction time parameter is
simply governed by

∂ξ

∂t
= exp

[
1

ε

(
1− 1

1− εax
)]

, (2.15)

which integrates to give

ξ = exp

[
1

ε

(
1− 1

1− εax
)]

t, (2.16)

Hence ξ first reaches unity at x = 0 at time t = 1. It is hence convenient to shift the
timescale by defining

τ = t− 1, (2.17)

so that ignition first occurs at τ = 0.
In order to determine what happens subsequent to ignition, consider first the

spontaneous wave concept of Zeldovich (1980), i.e. suppose that the gasdynamics
is switched off, and hence the induction time for a particle is determined only by
the initial conditions for that particle. Then (2.16) remains valid for τ > 0, and the
transition point marking the end of the IZ and the start of the MRZ (which may
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272 G. J. Sharpe and M. Short

properly be termed the ignition point when the heat release is very rapid, k � 1), i.e.
the point where ξ(x, τ) = Y (x, τ) = 1, would propagate along the path in (x, τ)-space
given by

τ = exp

[
−1

ε

(
1− 1

1− εax
)]
− 1. (2.18)

The speed of the transition point is hence given by

dx

dτ
=

(1− εax)2

a
exp

[
1

ε

(
1− 1

1− εax
)]

. (2.19)

For large activation temperature (ε� 1) and ax = O(1),

dx

dτ
≈ 1

a
e−ax. (2.20)

The transition point thus decelerates as it propagates to the right, but it propagates
supersonically (faster than the local sound speed) if

dx

dτ
> (γ(1− εax))1/2, (2.21)

i.e. if

x <
1

a
ln

(
1

γ1/2a

)
(2.22)

for large activation temperature. Hence if the temperature gradient is sufficiently
shallow, a < γ−1/2, then the transition point will initially move away from x = 0
supersonically, but decelerates until it becomes sonic at x ≈ ln(1/γ1/2a)/a, and subse-
quently propagates subsonically. For steeper gradients, however, the transition point
will propagate subsonically from the outset.

Of course, the heat release of the second step will disturb the initial state and
switch on the gasdynamics, increasing the pressure and temperature and driving
fluid motion. This disturbance will then initially propagate away from x = 0 at
the local sound speed. For shallow gradients such that the transition point initially
propagates supersonically, no disturbances (apart from shocks) from the MRZ behind
the transition point can overtake it and hence it will continue to propagate along
the path given by (2.18) until it slows to sonic speed (or is overtaken by a shock
wave formed in the MRZ). Hence during this time the transition point follows
the path of the spontaneous wave. Again, this is different to the one-step model
where the small amount of heat released during the induction stage switches on the
gasdynamics before ignition (thermal runaway) occurs at x = 0. Hence for one-step
kinetics the gasdynamical state ahead of the ignition point is not the initial state. Due
to the temperature-sensitive nature of the reaction this can lead to the ignition point
propagating along a path quite different from that predicted by the spontaneous wave
path (KSQH).

During the early stages the heat release in the MRZ increases the pressure and
hence drives fluid motion forward. However, there must then be a rarefaction wave
near x = 0 to reduce the gas velocity back to zero there. The strength of this expansion
wave depends on the temperature gradient (KSQH), but at early times before the gas
at x = 0 is fully burnt, the MRZ must span the compressive and expansive regions
between the transition point and x = 0. Thus in the early stages the MRZ must
consist of a compressive region immediately behind the transition point, followed
by an expansive region back to x = 0. Only once the fuel at the wall is completely
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burnt (which takes an O(1/k) time) and the MRZ subsequently moves away from the
region x = 0 and the associated rarefaction can the MRZ become a fully compressive
region.

Once the transition point speed becomes subsonic, the disturbances from the
MRZ will overtake it. For sufficiently steep temperature gradients this will occur at
τ = 0 since then the transition point propagates subsonically from the outset. The
temperature in the IZ region ahead of the transition point will then be increased,
causing a decrease in the induction time and hence accelerating the transition point,
so that it will move ahead of the path given by (2.18).

What happens for a given temperature gradient depends on how fast the exothermic
reaction is (i.e. how rapid the heat release is). In this paper we will investigate the
behaviour for three cases: when the rate of heat release is slow (i.e. the reaction time
of the second step is long) compared to the initial induction time (represented by
k = 0.25); when the rate of heat release is comparable to the initial induction time
(represented by k = 5) and when the heat release is rapid compared to the initial
induction time (represented by k = 100).

In this paper we fix the heat release and ratio of specific heats to be Q = 4
and γ = 1.2, respectively, while for the numerical simulations the inverse activation
temperature is set to be ε = 1/20, and then vary a and k.

3. Slow heat release: high-activation-temperature asymptotics
It is instructive to first consider the case k = k̃2/k̃1 � 1, so that the heat release time

is long compared to the initial induction period. In this case it is possible to carry
out a high-activation-temperature asymptotic analysis, i.e. it is assumed that ε� 1,
for τ = O(1). The long heat release period is then expressed by assuming k ∼ O(ε)
(k = εK , say). The dependent variables are then expanded as

ρ = 1 + ερ1, p = 1 + εp1, T = 1 + εT1, u = εu1, λ = ελ1. (3.1)

Note that at τ = 0,

p1 = u1 = λ1 = 0, T1 = −ax. (3.2)

For O(1) times, (2.1)–(2.3) can be written to leading order as

∂ρ1

∂τ
+
∂u1

∂x
= 0, (3.3)

∂u1

∂τ
+
∂p1

∂x
= 0, (3.4)

∂T1

∂τ
− (γ − 1)

∂ρ1

∂τ
= β

∂λ1

∂τ
= βKH(ξ), (3.5)

where β = (γ − 1)Q, and since T = p/ρ,

T1 = p1 − ρ1. (3.6)

Defining

χ =
x

γ1/2
, U1 = γ1/2u1 (3.7)
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(note that χ is then distance scaled using the initial sound speed at x = 0), (3.3)–(3.5)
can be re-written in characteristic form as(

∂

∂τ
± ∂

∂χ

)
(p1 ±U1) = βKH(ξ), (3.8)

∂T1

∂τ
=

(γ − 1)

γ

∂p1

∂τ
+
βK

γ
H(ξ). (3.9)

Hence, at leading order, the positive characteristics are straight lines in the (χ, τ)-plane
on which dχ/dτ = 1, and represent waves travelling to the right at the initial sound
speed (unity in (χ, τ)-coordinates), on which

d

dτ
(p1 +U1) = βKH(ξ). (3.10)

Similarly, the negative characteristics are straight lines in the (χ, τ)-plane with slope
−1, representing waves travelling to the left at the leading-order sound speed, on
which

d

dτ
(p1 −U1) = βKH(ξ). (3.11)

The leading-order particle paths are lines of constant χ on which

d

dτ

(
T1 − (γ − 1)

γ
p1

)
=
βK

γ
H(ξ). (3.12)

As we shall see, for a detonation to be ignited when k is small, the temperature
gradient has to be sufficiently shallow on the IZ scale, such that the transition point
initially propagates supersonically. Indeed, the temperature gradient a has to be very
small for detonation ignition in this case, and hence the initial speed of the transition
point rather high. Therefore we will only consider the case of a supersonic transition
path, which is then determined only by the initial conditions, and from (2.18), to
leading order for ε� 1, is given by

τ = exp(aγ1/2χ)− 1. (3.13)

The IZ consists of the region of (χ, τ)-space ahead of the transition point, τ <
exp(aγ1/2χ) − 1, and remains undisturbed since there is no heat release there, while
the MRZ occupies the region τ > exp(aγ1/2χ)− 1. All the negative characteristics
originate from the initial state at τ = 0. The initial disturbance from the heat release
due to ignition at χ = 0 at τ = 0 propagates along the positive characteristic τ = χ.
This first characteristic from the disturbed region separates two different regions of
the MRZ. For any point in the region of the MRZ ahead of this characteristic,
exp(aγ1/2χ)− 1 < τ < χ, the positive characteristic through that point originates from
the initial state at τ = 0. However, for any point in the region of the MRZ behind
this characteristic, τ > χ, the positive characteristic originates at χ = 0 at some time
τ > 0.

Consider first a point (χ, τ) in the region of the MRZ ahead of the positive
characteristic from (0, 0). The negative characteristic through this point intersects the
transition path given by (3.13) at the point (χ−, τ−) given by

exp(aγ1/2χ−) + χ− − 1 = χ+ τ, τ− = exp(aγ1/2χ−)− 1 (3.14)

(note that (3.14) requires the straightforward numerical solution for χ−). On this
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negative characteristic, (3.11) can be integrated to give

p1 −U1 = βK(τ− τ−), (3.15)

where the matching condition with the undisturbed IZ region that p1 −U1 = 0 there
has been employed on the transition path.

The positive characteristic through the point (χ, τ) intersects the transition path at
(χ+, τ+) given by

exp(aγ1/2χ+)− χ+ − 1 = τ− χ, τ+ = exp(aγ1/2χ+)− 1. (3.16)

On this positive characteristic, (3.10) integrates to give

p1 +U1 = βK(τ− τ+), (3.17)

again employing the matching condition with the undisturbed IZ on the transition
path.

Equations (3.15) and (3.17) give

p1 = βKτ− βK

2
(τ− + τ+), U1 =

βK

2
(τ− − τ+) at (χ, τ). (3.18)

Alternatively, consider a point (χ, τ) behind the positive characteristic from (0, 0).
On the negative characteristic through this point, (3.14) and (3.15) still hold. However,
the positive characteristic through this point now originates from χ = 0 at time τ0

given by

τ0 = τ− χ (3.19)

and does not intersect the transition path.
At χ = 0, U1 = 0 due to the symmetry condition there, while the value of p1 at

(0, τ0) needs to be determined. The negative characteristic through (0, τ0) intersects
the transition path at (χ′−, τ′−) given by

exp(aγ1/2χ′−) + χ′− − 1 = τ0 = τ− χ, τ′− = exp(aγ1/2χ′−)− 1. (3.20)

Integrating (3.11) along this negative characteristic gives

p1 = βK(τ0 − τ′−) at (0, τ0). (3.21)

Now, integrating (3.10) along the positive characteristic through (χ, τ) gives

p1 +U1 = βK(τ− τ′−), (3.22)

after applying (3.21) at (0, τ0). Equations (3.15) and (3.22) give

p1 = βKτ− βK

2
(τ− + τ′−), U1 =

βK

2
(τ− − τ′−). (3.23)

Once the pressure perturbation has been determined everywhere, the temperature
is determined by integrating (3.12) along the particle path (line of constant χ) through
any point (χ, τ). The full solution is then

p1 =


0, τ < exp(aγ1/2χ)− 1

βKτ− βK(τ− + τ+)/2, exp(aγ1/2χ)− 1 < τ < χ

βKτ− βK(τ− + τ′−)/2, χ < τ,

(3.24)
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U1 =


0, τ < exp(aγ1/2χ)− 1

βK(τ− − τ+)/2, exp(aγ1/2χ)− 1 < τ < χ

βK(τ− − τ′−)/2, χ < τ,

(3.25)

T1 =

{−aγ1/2χ, τ < exp(aγ1/2χ)− 1

(γ − 1)p1/γ + βK(τ− τp)/γ − aγ1/2χ, exp(aγ1/2χ)− 1 < τ,
(3.26)

λ1 =

{
0, τ < exp(aγ1/2χ)− 1

K(τ− τp), exp(aγ1/2χ)− 1 < τ,
(3.27)

where τp is the intersection of the particle path through any point (χ, τ) in the MRZ
with the transition path, given by

τp = exp(aγ1/2χ)− 1, (3.28)

while τ−, τ+ and τ′− are given in terms of χ and τ by (3.14), (3.16) and (3.20),
respectively, all of which require straightforward numerical solution. Note that the
spatial pressure, velocity and temperature gradients are discontinuous along χ = τ
(although the pressure, velocity and temperature themselves are continuous there).
Such a weak discontinuity must propagate along a characteristic; in this case it
propagates along the positive characteristic originating from χ = 0 at τ = 0.

Note however that when the temperature gradient is sufficiently shallow, we can
determine an approximate solution to (3.24)–(3.27), since if a � 1, χ = O(1) for the
MRZ, we can linearize (3.13) so that the transition path is approximately given by
τ ≈ aγ1/2χ (note that this requires τ = O(a), i.e. small time, but the transition point
has propagated an O(1) distance) and then

p1 ≈
{
βK(τ− aγ1/2χ), aγ1/2χ < τ < χ

βK(1− aγ1/2)τ, χ < τ,
(3.29)

U1 ≈
{
βKaγ1/2(τ− aγ1/2χ), aγ1/2χ < τ < χ

βKaγ1/2(1− aγ1/2)χ, χ < τ,
(3.30)

T1 ≈
{
βK(τ− aγ1/2χ)− aγ1/2χ, aγ1/2χ < τ < χ

βK
[
(γ − (γ − 1)aγ1/2)τ− aγ1/2χ

]
/γ − aγ1/2χ, χ < τ.

(3.31)

Hence at a given O(a) time for a� 1, the MRZ approximately consists of a com-
pressive region between the transition point at χ ≈ τ/(aγ1/2)� τ and the point χ = τ,
in which pressure, velocity and temperature all increase linearly from the transition
point back to χ = τ. This region is followed by a relatively small expansive region
between χ = τ and χ = 0 in which the pressure is almost constant (independent of
χ), the velocity decreases again so that it is zero at χ = 0 (independent of τ) and
the temperature continues to increase linearly but with a slightly lower gradient
than in χ > τ. The pressure and velocity perturbations both reach maxima at χ = τ
of approximately βK(1− aγ1/2)τ and βKaγ1/2(1− aγ1/2)τ, respectively (note that the
velocity perturbation therefore remains O(a)), while the temperature and λ pertur-
bations are maximum at χ = 0 where T1 ≈ βK(γ − (γ − 1)aγ1/2)τ and λ1 ≈ Kτ. Note
also that the density perturbation p1 − T1 in the region aγ1/2χ < τ < χ is approxi-
mately aγ1/2χ, which is its initial value at a given χ, independent of τ. Hence in this
region each particle is undergoing a constant-volume explosion.
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It is worth noting that a similar small-time analysis is also possible when k is not
small. For instance if k = O(1), then rescaling time and space by τ = ετ̂, χ = εχ̂
and substituting these rescalings, together with the expansions (3.1), into (2.1)–(2.3)
once again results in equations of the form (3.10)–(3.12) (with K replaced by k and
τ replaced by τ̂, etc.), while the transition path again linearizes to τ̂ = aγ1/2χ̂ (even
for a = O(1) in this case). The results and main points are then very similar to
those described above for small a and k = O(ε) (but note that the O(ε) temperature
perturbation is zero in this case). If the heat release is rapid, k = O(1/ε), a very
small-time analysis is then possible by rescaling time and space as τ = ε2τ̂, χ = ε2χ̂
with similar results.

4. Rapid heat release: weak detonations
In the limit k →∞, the MRZ lies within an O(1/k) distance of the transition

point which signals the end of the induction zone (ξ = 1). In this case, it can be
shown that in a coordinate system fixed to the transition point, the following reaction
wave should be quasi-steady and satisfy the usual Rankine–Hugoniot relations for
a reaction discontinuity with heat addition (Bdzil & Kapila 1992; Dold, Kapila &
Short 1991; Short 1997). Moreover, when the transition point moves supersonically
such that its speed is greater than the Chapman–Jouguet speed, the following reaction
wave must adopt the structure of a classical weak detonation (Fickett & Davis 1979).
If, however, the transition point slows below Chapman–Jouguet speed, the weak
detonation cannot survive, and a weak shock will form close to end of the MRZ.
As the transition point continues to slow, the shock rapidly propagates through the
reaction zone, and transitions the weak detonation to a strong detonation initially
running close to the Chapman–Jouguet speed. This sequence of events has been
described in detail by Bdzil & Kapila (1992) for a reaction model similar to that used
here in the MRZ, (2.6).

For the initial temperature gradient problem considered above, there are a number
of scenarios that could occur when k � 1. Let us denote the Chapman–Jouguet
velocity at x = 0 by DCJ, where

DCJ =
(2Q(γ2 − 1) + 4γ)1/2 + (2Q(γ2 − 1))1/2

2
(4.1)

under the current scalings, with DCJ = 2.38 when Q = 4 and γ = 1.2. Provided the
temperature gradient is sufficiently small, the transition point will emerge from
x = 0 supersonically (a < γ−1/2). However, according to the description above, a weak
detonation will emerge only if the speed of the transition point is above the Chapman–
Jouguet speed, i.e. dx/dτ > DCJ or a < 1/DCJ = 0.42. In this case, the reaction wave
will retain its weak detonation form until x = xCJ , where xCJ is given by

(1− εaxCJ)2

a
exp

[
1

ε

(
1− 1

1− εaxCJ
)]

= DCJ, (4.2)

using (2.19), or for high activation temperature

xCJ =
1

a
ln

(
1

aDCJ

)
. (4.3)

A transition to strong detonation is then predicted to occur near x = xCJ, with a shock
first forming close to the rear of the MRZ. If, on the other hand, γ−1/2 > a > 1/DCJ,
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the emerging wave from x = 0 will still be supersonic, but below the Chapman–
Jouguet speed. Thus the local flow near the rear of the emerging wave will be
subsonic and the whole of the MRZ cannot be a quasi-steady weak detonation in
this case. Since the rear of the wave is subsonic, its structure can then be influenced
by both expansion and compression waves and a transition to detonation is not
guaranteed. The various scenarios for the regimes identified above when k � 1 are
explored numerically below.

5. Numerical simulations
5.1. Numerical method

To perform the numerical simulations in this paper we use the hierarchical adaptive
second-order Godunov code µCobra, which has been developed for industrial ap-
plications by Mantis Numerics Ltd. The code is fully described in Sharpe & Falle
(2000). The code uses a hierarchical series of Cartesian grids G0, . . . , GN , so that grid
Gn has mesh spacing h/2n, where h is the mesh spacing on the base grid G0. Grids
G0 and G1 cover the entire domain, but the higher grids only occupy regions where
increased resolution is required. In most of the calculations the base grid spacing is
1000 mesh points per unit x, i.e. h = 0.001. The exception was Case III described in
§ 5.4 below with a = 0.005, k = 0.25 for which the transition point propagates a very
large distance before detonation formation, x ≈ 1000. Since this case required such
a large domain, the base grid size was reduced to 31.25 mesh points per unit x, but
with a larger number of refinement levels to compensate.

The number of refinement levels N was chosen to ensure that the results were grid
independent and all the scales in the problem were fully resolved in each case. This
was achieved by a set of convergence studies. It was found that the number of levels
required depends on k (which determines the MRZ length scale) and a. In general
larger values of a and k require more refinement levels. Between 2 and 6 refinement
levels were needed for the cases considered below. The grid is refined to the highest
level whenever λ 6 0.99 provided p > 1 to ensure that both disturbed IZ and MRZ
regions are refined on this level.

The initial conditions are given by those at τ = 0 just prior to ignition at x = 0. The
boundary condition at x = 0 is a reflective boundary condition so that this boundary
is a solid, reflecting wall or a plane of symmetry.

For the cases where a was sufficiently small such that the transition point initially
propagated supersonically, it was found that ‘steps’ in the numerical λ profile (and
hence in the other variables) were produced due to the fact that the transition point
propagated across several numerical cells during a time step. A simple cure for this
was to make the Courant number sufficiently low during the early stages.

5.2. Case I: a = 0.5

We begin by considering a moderate value of the temperature gradient, as measured
on the IZ scale, represented by a = 0.5. For this temperature gradient, the transition
point initially propagates supersonically (for the spontaneous wave the transition point
becomes subsonic at x = 1.1, τ = 0.75), with an initial speed 2, so no disturbances
can initially propagate from the MRZ into the IZ ahead of the transition point. Thus
at early times the gasdynamical state of the IZ will remain undisturbed; only the
MRZ behind the transition point (corresponding to Y > 1) will be disturbed from
the initial state. However, in this case a > 1/DCJ , so that the high-k analysis of § 4
predicts that the MRZ cannot consist completely of a quasi-steady weak detonation.
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Figure 1. (a) Pressure profiles, (b) temperature profiles, (c) p, V diagrams and (d ) p, Y diagrams
for a = 0.5 and k = 100.0 at times 0.002, 0.010, 0.019, 0.034, 0.047, 0.059, 0.071, 0.08 and 0.104 (p, V
diagrams only shown at times 0.019, 0.047, 0.071 and 0.104 for clarity).

Figure 1 shows the early time behaviour when the rate of heat release in the MRZ is
rapid (k = 100, so aMRZ = 0.005). In the initial stages, before the fuel at x = 0 is fully
burnt, the MRZ consists of a compressive region immediately behind the transition
(ignition) point, followed by an expansive region back to x = 0 (at very early times
the pressure is approximately constant in this region, in agreement with the early time
analysis in § 3). These two regions are joined at a point where the pressure gradient is
discontinuous. This weak discontinuity moves along the positive characteristic from
x = τ = 0 in the (x, τ)-plane (cf. § 3). Both the compressive and the main part of
the expansive regions appear as straight lines in the p, V diagram and hence these
are part of a partially reacted quasi-steady weak detonation and a quasi-steady fast
flame, respectively. Evolutions which are composed of a quasi-steady weak detonation
connected to a quasi-steady fast flame were first recognized by Singh & Clarke (1992)
(although there is also an unsteady reactive region connecting the two quasi-steady
waves in their case). The state at the pressure gradient discontinuity, which separates
the weak detonation from the fast flame, initially becomes more burnt (Y increases
there). Shortly after the gas at x = 0 becomes fully burnt, a shock can be seen to form
in the interior of the MRZ, just ahead of the pressure gradient discontinuity, at about
Y = 1.5 in the p, Y diagram. The shock quickly strengthens due to the heat release
behind it, and begins to propagate through the weak detonation region of the MRZ,
towards the ignition point. The slope of the fast flame increases in the p, V diagram,
indicating that the mass flux through it is increasing and hence it is accelerating and
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Figure 2. (a) Pressure profiles, (b) temperature profiles, (c) p, V diagrams and (d ) p, Y diagrams
for a = 0.5 and k = 100.0 at times 0.125, 0.319, 0.507 and 0.695 (p, V diagrams only shown at times
0.125, 0.319 and 0.695 for clarity).

driving the shock. At this stage then, the MRZ consists of the remaining portion of
the weak detonation behind the ignition point, followed by a shock which is in turn
followed immediately by the accelerating fast flame, and finally an inert expansion
wave connects the end of the MRZ to x = 0.

The profiles shown in figure 1 bear some resemblance to the case of a = 0.38 studied
for one-step chemistry in KSQH. However the weak detonation does not decelerate
as rapidly while the shock forms much further from the end of the reaction zone in
the two-step case. Indeed the shock formation shown in the p, Y diagrams is very
similar to that in the pressure–progress variable diagram for a = 1 in KSQH for
one-step kinetics.

Figure 2 shows the later time behaviour for k = 100. The shock overtakes the
decelerating ignition point and catches up with it at τ = 0.10, x = 0.16. Subsequently
the shock propagates ahead of the ignition point, into the IZ region Y < 1, and hence
the ignition path is no longer given by (2.18). The p, V diagrams in figure 2 show
that both the shock and the fast flame continue to accelerate (the slope, and hence
mass flux through both increase in the diagrams). The fast flame accelerates more
quickly, however, until the shock and fast flame lie along a common line in the (p, V )-
plane, i.e. they become fully coupled. At this point a quasi-steady Chapman–Jougnet
(CJ) detonation is born. As the shock wave propagates into lower temperatures, the
induction time, ξ, at the shock position decreases exponentially (if the shock is located
at position x at time t, the induction time there is given by (2.16)). The shock raises
the temperature and hence shortens the remaining induction time considerably. As
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Figure 3. (a) Pressure profiles, (b) temperature profiles, (c) p, V diagrams and (d ) p, Y diagrams
for a = 0.5 and k = 5.0 at times 0.025, 0.115, 0.213, 0.303, 0.386, 0.464 and 0.538 (p, Y diagrams
shown at additional times 0.483, 0.501 and 0.520 to clarify shock formation).

it propagates through decreasing values of ξ, the length of the IZ behind the shock
continually increases. Note from the p, Y diagrams that the IZ of the detonation
occurs at constant pressure (and temperature), attesting to the quasi-steady nature of
the detonation. The pressure and temperature profiles are again very similar to the
cases a = 0.38 and a = 1 described in KSQH for one-step kinetics.

Figure 3 shows the early time behaviour when the MRZ time-scale is longer
and more comparable to the initial induction time (k = 5, so aMRZ = 0.1). At very
early times the situation is very similar to that described above for k = 100, with
a compressive region of the MRZ followed by an expansive region, and a sharp
demarcation between them at a discontinuity in the pressure gradient propagating
along the characteristic originating from τ = χ = 0. However, as the reaction proceeds
in this case, although the expansive region for the most part lies along a straight line in
the (p, V )-plane and hence represents a quasi-steady fast flame, the compressive region
is unsteady (this region is curved in the p, V diagram), and so cannot be identified
as a quasi-steady weak detonation process in this case. Again, the maximum pressure
point first moves back to a more burnt state in the p, Y diagram, before moving
forward towards the transition point so that more and more of the MRZ becomes
located in the fast flame. The transition point has travelled much further before the
state at x = 0 becomes fully burnt than for k = 100, due to the much slower time
scale of the MRZ. The fast flame accelerates while the compressive region steepens,
and shortly after the gas becomes completely burnt at x = 0 a shock forms in
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Figure 4. (a) Pressure profiles, (b) temperature profiles, (c) p, V diagrams and (d ) p, Y diagrams
for a = 0.5 and k = 5.0 at times 1.43, 2.53, 3.57, 4.62, 5.16 and 5.73 (p, V diagrams only shown at
times 3.57, 5.16 and 5.73 for clarity).

the compressive part of the MRZ, but now at about Y = 1.1, i.e. much nearer the
transition point, towards the front of the MRZ. Again, this shock then very quickly
propagates through the remainder of the compressive region and then overtakes the
transition point.

The profiles shown in figure 3, with an unsteady compressive region that is sharply
demarcated from the quasi-steady expansive fast flame region by a discontinuity in
the pressure gradient and with the shock forming near the start of the reaction zone,
are not like any case for one-step kinetics studied by KSQH. They are perhaps most
reminiscent of the case a = 2 of KSQH, but in their case the transition from the
compressive to expansive region is smooth and highly curved at the peak pressure in
their pressure profiles and p, V and p, Y diagrams, representing a unsteady reactive
region.

Figure 4 shows the later time behaviour for k = 5, after the shock begins to
propagate ahead of the transition point. As for k = 100, once the shock is formed,
it and the fast flame behind it begin to accelerate and couple. During this stage the
part of the IZ behind the shock is slightly compressive as can be seen in the p, Y
diagrams. However, even though the shock is strengthening as it propagates into
the lower temperatures ahead of it, it does not do so quickly enough to prevent
the post-shock temperature from decreasing and before the shock and fast flame
fully couple, the IZ behind the shock becomes expansive, the shock and reaction
zone subsequently begin to rapidly decouple and the transition point falls further
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Figure 5. (a) Pressure profiles, (b) temperature profiles, (c) p, V diagrams and (d ) p, Y diagrams
for a = 0.5 and k = 0.25 at times 0.500, 0.980, 1.67, 3.39, 5.02, 6.59 and 8.14.

and further behind the shock. The p, V diagrams show that at this stage the flow
consists of a shock followed by an unsteady and expansive induction region, which
is in turn followed by the MRZ which is at almost constant pressure, and finally an
inert expansion back to the wall. The expansive nature of the IZ and the resulting
deceleration of the shock lead to a widening of the IZ behind the shock due to the
lower and lower temperatures in this region. The rapid decoupling between the shock
and main reaction zone can be clearly seen in the profiles of the temperature. Hence
for a = 0.5 and k = 5, a detonation wave fails to be ignited.

While the failure process seen in figure 4 is somewhat similar to that for a = 6 for
one-step chemistry in KSQH, the circumstances under which the failure occurs are
quite different. In the one-step case, failure only occurs for sufficiently high gradients,
and under these circumstances the events leading up to shock formation are highly
unsteady (KSQH), whereas in the current situation, there is a still a high degree
of quasi-steadiness in the fast-flame part of the MRZ (figure 3). More importantly,
unless the gradient is very high (in which case the shock and reaction zone never
begin to couple, see the case k = 0.25 below) for one-step kinetics, the detonation fails
after a secondary shock forms. The failure only occurs after this secondary shock has
overtaken the leading shock. In the current case for the two-step model, no secondary
shock forms and it is the coupling and subsequent decoupling of the leading shock
which leads to the failure.

Figure 5 shows the evolution when the MRZ time scale is now long compared to
that of the IZ (k = 0.25, aMRZ = 2.0). At early times the MRZ consists of an unsteady
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compressive region followed by a slightly expansive region which occurs at almost
constant pressure. In this case a shock forms while the fuel at x = 0 is far from
being completely burnt, and it forms at the head of the compressive region of the
MRZ, i.e. at the transition point. This rather weak shock subsequently propagates
ahead of the transition point into the induction zone and slowly strengthens. The p, V
diagrams reveal that at this stage the flow consists of the weak shock, an unsteady
compressive induction region behind the shock, followed by the MRZ which now
consists entirely of a quasi-steady fast flame (although the fuel at x = 0 is still not
completely burnt). However, the p, V diagrams also show that the fast flame is not
accelerating towards the shock (neither the slopes of the shock or the fast flame are
noticeably increasing) and hence in this case there is no further coupling between
the shock and MRZ. Indeed, although the shock strength increases it does not do so
sufficiently quickly as it propagates to prevent the post-shock temperature decreasing
due to the temperature gradient it is propagating through, as can be seen in the
temperature profiles. Not only is the post-shock temperature decreasing, the shock
is also propagating into decreasing values of ξ, and hence the induction time of
sequentially shocked particles increases rapidly. Thus the transition point continually
recedes from the shock, as is clearly revealed in the temperature profiles. This complete
lack of coupling of the shock and reaction zone is similar to that seen in the one-step
case when the gradient is very high. Indeed, the pressure and temperature profiles
bear some similarities to those for the case a = 8 in KSQH, although the reaction
zone is very much thinner in the one-step case (for the latest time shown in figure 5
for the two-step case the MRZ extends from the transition point nearly all the way
back to x = 0).

5.3. Case II: a = 0.1

We now consider the case of a shallower temperature gradient of a = 0.1. In this
case the transition point initially propagates away from x = 0 at speed 10 and the
spontaneous wave concept predicts that it becomes subsonic only when the transition
point has travelled a distance x = 18.7 (at τ = 6.9). Now a < 1/DCJ so that the high-k
analysis predicts that the whole of the MRZ will be a quasi-steady weak detonation
which will transition to a strong detonation as it slows below the CJ speed. The
analysis in § 4 predicts that a shock will first form at x = 12.8.

Figure 6 shows pressure and temperature profiles and p, V and p, Y diagrams
for rapid heat release rate (k = 100, aMRZ = 0.001). At very early times for this
case, the p, V diagram shows that the MRZ consists of a region of almost constant
density followed by a small expansion in which the pressure is almost constant, again
in agreement with the analysis in § 3. However, for this gradient the fuel at x = 0
becomes fully burnt long before a shock forms. Once this occurs, the MRZ begins
to propagate away from x = 0 and the p, Y diagrams show that the whole of the
MRZ then becomes compressive. This compressive MRZ appears as a straight line
in the p, V diagram and is followed by a completely unreactive expansion. Hence
now the whole of the MRZ consists of a quasi-steady weak detonation, as predicted
by the analysis of § 4. Note that the slope of the straight line in the p, V diagrams
decreases with time, so that the weak detonation decelerates as it propagates. The
p, Y diagrams show that later a small expansive region begins to appear once more
in a small region at the end of the MRZ (Y = 2), while the compressive region just
ahead of this expansion begins to steepen very quickly, resulting in the formation of a
shock, this time much nearer the end of the MRZ. The shock first forms at x = 12.6,
in excellent agreement with the high-k analysis prediction of 12.8. Subsequent to
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Figure 6. (a) Pressure profiles, (b) temperature profiles, (c) p, V diagrams and (d ) p, Y diagrams
for a = 0.1 and k = 100 at times 0.005, 0.182, 0.536, 1.05, 1.73, 2.34, 2.88 and 3.08 (p, Y diagrams
shown at additional times 2.76, 2.82, 2.93 and 2.98 to clarify shock formation).

shock formation, the MRZ consists of the remaining part of the quasi-steady weak
detonation followed by the shock, followed in turn by a reactive expansive region
which becomes a quasi-steady fast flame.

The above behaviour is very similar to that for a = 0.1 in the one-step case studied
by KSQH, including the strong forward moving rarefaction which can be seen to
form near x = 0 in the pressure and temperature profiles, described in KSQH.

The subsequent behaviour, once the shock overtakes the transition (ignition) point,
is then very similar to that described above for a = 0.5 and k = 100, with both the
shock and fast flame behind it accelerating until they become fully coupled and a
quasi-steady detonation with a widening induction is formed.

Figure 7 shows the evolution for a moderate heat release rate (k = 5, aMRZ = 0.02).
At early times the behaviour is qualitatively similar to the k = 100 case described
above. However, while the whole MRZ becomes compressive once the fuel at x = 0
becomes completely burnt as above, it does not lie along an entirely straight line
in the p, V diagrams and hence it is no longer completely quasi-steady. Again, the
region near the end of the MRZ eventually becomes expansive, but the compressive
region ahead steepens much less slowly than for k = 100. During this stage the
transition between the compressive and expansive parts of the MRZ is no longer
sharp, indeed the p, V diagrams become highly curved near the maximum pressure
point, representing a very unsteady transition zone. The front of the steepening part
of the compressive region of the MRZ eventually forms a shock, but now much
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Figure 7. (a) Pressure profiles, (b) temperature profiles, (c) p, V diagrams and (d ) p, Y diagrams
for a = 0.1 and k = 5.0 at times 0.025, 0.217, 0.938, 1.79, 2.59, 3.33, 3.98, 4.54 (p, Y diagrams shown
at additional times 3.60, 3.85 and 4.21 to clarify shock formation).

further from the end of the reaction zone, at about Y = 1.5. The MRZ subsequently
consists of part of a weak detonation, followed by the shock, followed in turn by a
highly unsteady transition region and finally a part of a quasi-steady fast flame. As
the shock begins to overtake the transition point, the unsteady region disappears and
the transition from shock to fast flame becomes sharp.

For this temperature gradient, the detonation does not fail for k = 5. Once the shock
propagates ahead of the transition point, a quasi-steady detonation is eventually
formed, again in a manner very similar to that described above for a = 0.5 and
k = 100, except it takes a much longer time for the shock and fast flame to accelerate
and finally completely couple (the shock and MRZ only begin to lie along a common
straight line in the (p, V )-plane at about τ = 10 in the current case).

The above evolution for k = 5, a = 0.1 for the two-step case bears some resem-
blances to that of a = 1 for one-step kinetics in KSQH, including the curved nature
of the p, V diagrams before shock formation. The p, Y diagrams differ due to the fact
that the MRZ never becomes entirely compressive in the latter case. The shock forms
further from the end of the reaction zone for the two-step case than for a = 1 in the
one-step case. Finally, the strong rarefaction that again forms near x = 0 for k = 5,
which can be seen in the pressure and temperature profiles, is not present in the case
a = 1 in KSQH.

Figure 8 shows the evolution when the heat release of the MRZ is slow (k = 0.25,
aMRZ = 0.4). It can be seen that even for the shallower gradient of a = 0.1, the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

02
00

29
63

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112002002963


Detonation ignition 287

(a)

0 20
x

p

(b)

1.6

1.4

1.0

0.8

0.6
0 20 40

x

T

(c)

0.6 0.8 1.0
V

p

(d )

0.5 1.0
Y

p

2.0

60

1.0

2.5

3.0

3.5

40

3.5

3.0

2.0

1.5

3.0

2.5

2.0

1.5

2.5

1.0

1.8

2.0

1.5

0 1.50.4

3.5

60 80 80

1.2

1.20.2
1.0

Figure 8. (a) Pressure profiles, (b) temperature profiles, (c) p, V diagrams and (d ) p, Y diagrams
for a = 0.1 and k = 0.25 at times 2.31, 6.22, 12.9, 17.2, 26.8, 34.5 and 42.8 (p, Y diagrams shown
at additional times 7.99 and 15.2 to clarify shock formation and pV diagrams only shown at times
2.31, 6.22, 12.9, 26.8 and 42.8 for clarity).

detonation still fails for k = 0.25. Before shock formation, the p, V diagrams can be
seen to be very, highly curved and hence the early evolution is very unsteady. At this
stage the leading part of the MRZ consists of a compressive region in which pressure
and density increase. However the density reaches a maximum (V a minimum) while
the pressure continues to increase through the wave. Hence the compressive region is
followed by a region where density decreases but pressure increases. In this region the
density is everywhere almost equal to its initial value, so particles here are undergoing
a constant-volume explosion at the local initial density (cf. § 3). Note that the slopes of
the p, V diagrams are positive in this second region, and hence this cannot represent
any quasi-steady wave (the slope of such waves plotted in the (p, V )-plane is equal to
minus the square of the mass flux through the wave and hence must be negative). This
locally constant-volume explosion region is hence entirely unsteady and not wave-like,
and it can be seen from the early time p, Y diagrams that the largest part of the
MRZ consists of it. When they occur, such unsteady increasing pressure/decreasing
density regions occupy only a small part of the reaction zone and the p, V diagrams
in the one-step case (e.g. see the case for a = 4 in KSQH), while in the current case
this region is very pronounced. Finally, there is an expansive part of the MRZ near
x = 0 which occurs at almost constant pressure.

The shock forms at about the time the fuel at x = 0 becomes fully burnt; again
it forms at the transition point Y = 1. Subsequently a compressive part of the IZ

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

02
00

29
63

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112002002963


288 G. J. Sharpe and M. Short

(a)

0 200
x

p

(b)

1.6

1.4

1.0

0.8
0 200 400

x

T

(c)

0.6 0.8 1.0
V

p

(d )

1.2 1.4
Y

p

2.0

600

1.0

2.5

3.0

3.5

400

3.5

3.0

2.0

1.5

3.0

2.5

2.0

1.5

2.5

1.0

1.8

2.0

1.5

1.0 1.60.4

3.5

600

1.2

1.0

4.0

4.0

1.8

4.0

Figure 9. (a) Pressure profiles, (b) temperature profiles, (c) p, V diagrams and (d ) p, Y diagrams
for a = 0.005 and k = 0.25 at times 1.89, 5.96, 11.5, 20.6, 40.8, 80.0 and 87.6 (p, Y diagrams shown
at additional times 81.1 and 83.8 to clarify shock formation).

forms behind the shock, and the MRZ becomes a quasi-steady fast flame. The shock
and fast flame accelerate but there is no further significant coupling and the shock
strength increases too slowly to prevent the shock temperature decreasing. Hence
once again the transition point subsequently recedes from the shock, the IZ behind
the shock becomes expansive and the shock and MRZ decouple.

5.4. Case III: a = 0.005

We now consider an extremely shallow gradient when k is also small. Figure 9
shows the evolution when k = 0.25 and a = 0.005 (aMRZ = 0.02). The transition
point now initially propagates extremely rapidly, at speed 200� γ−1/2. The p, V and
p, Y diagrams show that initially the whole of the MRZ (apart from a very small
expansive region near x = 0) consists of an increasing pressure, decreasing density
region. During this stage the density remains essentially at its original value (cf. § 3),
so that each particle is undergoing a constant-volume explosion at its initial density.
Eventually a compressive (increasing pressure and density) region appears just behind
the transition point, and hence the slope of the p, V diagrams becomes negative and
the evolution begins to become wave-like here. Note however that the extremely rapid
transition point has propagated a very long distance before this occurs (x ≈ 500),
into significantly lower temperatures (T ≈ 0.87). Subsequently, the rest of the MRZ
rapidly becomes compressive, but remains highly unsteady, and then an increasing
expansive region of the MRZ forms at its rear. However, now the p, V diagram shows
that in this case the expansive part of the MRZ does not lie along an entirely straight
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Figure 10. (a) Pressure profiles, (b) temperature profiles, (c) p, V diagrams and (d ) p, Y diagrams
for a = 2 and k = 100.0 at times 0.003, 0.021, 0.038, 0.054, 0.068, 0.081, 0.093 and 0.104 (p, V
diagrams only shown at times 0.003, 0.021, 0.054, 0.081 and 0.104 for clarity).

line, so is no longer quasi-steady. The shock forms inside the MRZ at about Y = 1.4,
which subsequently strengthens as it propagates through the remainer of the MRZ,
until it overtakes the transition point, but the fast flame behind the shock remains
unsteady in this case. Even for this extremely shallow gradient the detonation still
eventually fails when k = 0.25.

5.5. Case IV: a = 2

Finally, we consider a case where the transition point propagates subsonically from the
outset when the heat release is rapid. Figure 10 shows the early time evolution when
a = 2 with k = 100 (aMRZ = 0.02). In this case the ignition point initially propagates at
speed 0.5 < γ−1/2 so that the disturbance from the MRZ will immediately propagate
ahead of the ignition point into the MRZ, and alter the ignition path from that
predicted by the spontaneous wave concept given by (2.18). Figure 10 shows that in
this case even at very early times the MRZ consists entirely of a quasi-steady fast
flame (initially at almost constant pressure throughout), while there is an unsteady
and compressive disturbed part of the IZ ahead of the ignition point. This disturbed
part of the IZ begins to steepen at its front and eventually a shock forms there.
Hence at this stage the flow consists of a shock followed by the compressive part of
the IZ, followed in turn by the quasi-steady fast flame MRZ. The shock subsequently
strengthens rapidly and both shock and fast flame accelerate, while the IZ behind the
shock becomes less and less compressive. The evolution in this case does not bear
much similarity to any case studied in KSQH for one-step kinetics.
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Figure 11. (a) Pressure profiles, (b) temperature profiles, (c) p, V diagrams and (d ) p, Y diagrams
for a = 2 and k = 100.0 at times 0.285, 0.382, 0.480, 0.580 and 0.688 (p, V diagrams only shown at
times 0.382, 0.580 and 0.688 for clarity).

Figure 11 shows the later time evolution. Initially the shock and fast flame continue
to accelerate but before they couple completely the post-shock temperature begins to
decrease and once again the detonation fails, with the IZ becoming expansive and the
ignition point rapidly receding from the shock. Note that again no secondary shock is
formed before the failure, even when the rate of heat release is quite rapid (k = 100).

6. Conclusions
The purpose of this paper has been to investigate the ignition of a detonation from

a linear temperature gradient for a two-step kinetics model which mimics the main
features of chain-branching chemistry, and to compare and contrast the results with
those of previous work which employed simple one-step chemistry.

In our model the induction zone (IZ) stage is assumed to be thermally neutral
since most chain-initiation steps are only very slightly endothermic. This has a
profound effect on the validity of Zeldovich’s spontaneous wave concept, which
ignores gasdynamics. For a single exothermic reaction, the heat release in the induction
stage switches on gasdynamics and produces a balance between linearized acoustics
and the temperature-sensitive heat release rate (KSQH). The result is that even
when the thermal runaway point propagates supersonically, it does so through an
evolving induction region and hence the spontaneous wave concept becomes invalid:
the thermal runaway path may be quite different to the spontaneous wave path.
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In the two-step model however, if the temperature gradient is sufficiently shallow
(a < γ−1/2) so that the transition point marking the end of the IZ initially propagates
supersonically, then there is no gasdynamic evolution in the IZ and hence the
transition point follows the spontaneous wave path, which can be determined using
only the initial conditions.

This result in fact makes analysis of the two-step model much easier than for
one-step kinetics when a < γ−1/2 and the transition point propagates supersonically.
The initial stages of the evolution of the main reaction zone (MRZ) located behind
the transition point is then amenable to a high-activation-temperature asymptotic
analysis which has a simple solution. The analysis is valid for τ = O(1) when the
MRZ time scale is long compared to that of the IZ (k � 1) or for very early time
(τ� 1) when the MRZ time is comparable with or shorter than the IZ scale. This
analysis reveals that initially there is a balance between linearized acoustics and heat
release in the MRZ. It also shows that the MRZ is separated at a discontinuity in the
gradients of the gasdynamical variable into two distinct regions by the sound wave
which leaves x = 0 at τ = 0 (where heat release first begins). The region between the
transition point and the sound wave is compressive, whereas the region between x = 0
and the sound wave is expansive. For sufficiently shallow gradients (a� 1) the density
is almost constant at any point within the ‘compressive’ region, so that each particle
undergoes a constant-volume explosion at the local value of the density. Secondly,
for large k (rapid heat release) a very simple quasi-steady analysis is possible. For
a < 1/DCJ this analysis predicts the location of shock formation.

Numerical simulations were then used in order to investigate the evolution. For
shallow gradients such that the transition point propagates supersonically, the path
and speed of the transition point are determined only by the temperature gradient
as measured in the IZ length scale, a, independent of the ratio of IZ to MRZ
scales, k. However, for fixed a the evolution of the MRZ and whether or not a
detonation is successfully ignited depends critically on k. If k � 1 (short MRZ) then
successful ignition is guaranteed if a < 1/DCJ . On the other hand if the MRZ length
is comparable with or longer than that of the IZ, the evolution may be quite different
and the outcome less certain, for example involving highly unsteady processes. For
a detonation to be ignited, the numerics show that the temperature gradient must
be sufficiently shallow on the MRZ length scale, aMRZ = a/k, which requires a� 1.
Indeed, for a detonation wave to be ignited for a given temperature gradient, a,
the heat release rate must be sufficiently high that the shock strength is increased
rapidly enough to prevent the shock temperature decreasing. As a consequence, for
a detonation to form when k is moderate or small, the transition point must initially
propagate supersonically and continue to do so for a time comparable to 1/k. Another
result is that successful ignition in these cases does not involve the formation of a
secondary shock, unlike some cases for the one-step kinetics (KSQH).

The conclusion is that the evolution to detonation from temperature non-
uniformities may be qualitatively different for one-step kinetics models than for chain-
branching kinetic models and that the evolution may be very different in different
fuels governed by chain-branching chemistry, such as hydrogen–oxygen, hydrocarbon–
oxygen as well as condensed-phase explosives, for the same initial disturbance.
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