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Abstract

We determine the Conley–Zehnder indices of all periodic orbits of the rotating Kepler
problem for energies below the critical Jacobi energy. Consequently, we show the univer-
sal cover of the bounded component of the regularized energy hypersurface is dynamically
convex. Moreover, in the universal cover there is always precisely one periodic orbit with
Conley–Zehnder index 3, namely the lift of the doubly covered retrograde circular orbit.

1. Introduction

The Kepler problem in rotating coordinates arises as the limit of the planar circular restric-
ted 3-body problem when the mass of one of the primaries goes to zero, and hence serves as
an approximation of the restricted planar 3-body problem for a small mass parameter. The
ultimate goal is to study the dynamics of the 3-body problem using finite energy foliations.
One essential ingredient is the so-called Conley–Zehnder index of a periodic orbit. These
indices play a central role in the theory of finite energy foliations, symplectic field theory,
Fukaya A∞-categories, and various Floer theories.
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244 PETER ALBERS AND OTHERS

In this article we completely determine the Conley–Zehnder indices of all periodic or-
bits for all energies below the (unique) critical value of the Jacobi energy in the regular-
ized system. The upshot is that on every energy hypersurface there exists precisely one
periodic orbit of Conley–Zehnder index 1, namely the simply-covered retrograde circular
orbit. This orbit is non-contractible. Moreover, there exists a unique contractible periodic
orbit of Conley–Zehnder index 3, namely the doubly-covered retrograde circular orbit. In
particular, for energies below the critical value of the Jacobi energy, the universal cover of
an energy hypersurface in the rotating Kepler problem is dynamically convex, i.e. contract-
ible periodic Reeb orbits have Conley–Zehnder index at least 3.

We point out that due to the S1 action on the rotating Kepler problem most periodic orbits
are in fact degenerate. The Conley–Zehnder index we consider in this article is the one from
[HWZ98] which is lower semi-continuous and, in the non-degenerate situation, equals the
transversal Conley–Zehnder index.

THEOREM 1·1. For energies below the critical value of the Jacobi energy, the bounded
component of an energy hypersurface of the rotating Kepler system is dynamically convex.
Moreover, there is precisely one periodic orbit with Conley–Zehnder index 3, namely the
doubly covered retrograde circular orbit.

Earlier joint work with G. Paternain, [AFvKP12], shows in particular that the rotating
Kepler problem is of contact type, and hence we can directly apply the methods of Hofer–
Wysocki–Zehnder to find a global disk-like surface of section. However, this was already
known by other, more explicit means, see McGehee’s thesis, [McG69].

Note that the standard way to construct the universal cover of an energy hypersurface in
the regularized rotating Kepler problem (and in fact the regularized restricted planar three
body problem) as S3 ⊂ C

2 is via the Levi–Civita embedding, see [LC20]. In [HWZ98,
theorem 3·4] Hofer–Wysocki–Zehnder prove that a strictly convex S3 ⊂ C

2 is automatically
dynamically convex, which in turn guarantees that the Conley–Zehnder index of each orbit
is at least three. However, this result does not directly apply to the Levi–Civita embedding:

THEOREM 1·2. The image of the Levi–Civita embedding of the regularized rotating
Kepler problem is not convex for energies close to the critical value of the Jacobi energy.

Question. Is the universal cover of the bounded component of the regularized restricted
planar three body problem for energies below the first critical value dynamically convex?

Remark 1. Above the first critical value the regularized restricted planar three body prob-
lem is not dynamically convex due to the existence of the Lyapunov orbits which have
Conley-Zehnder index 2.

In [AFF+11] we proved that for large mass ratios and for sufficiently negative energy
levels the answer to the above question is “yes.” Moreover we proved that for these mass
ratios and energy levels the Levi–Civita embedding is actually convex. Theorem 1·1 asserts
that for mass ratio 0 the answer is “yes” again. Furthermore we checked numerically whether
the Levi–Civita embedding is convex by discretizing the energy hypersurface and testing the
tangential Hessian for negative eigenvalues. These numerical results suggest that the Levi–
Civita embedding is convex for most mass ratios. Furthermore, in case convexity fails, the
measure of the set of non-convex sample points is very small. Thus, we tend to believe
that the answer to the above question concerning dynamical convexity is “yes” for all mass
ratios.
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2. Kepler laws

The Kepler problem is given by the Hamiltonian E(q, p) : T ∗(R2 \ {0}) �
(
R

2 \ {0}) ×
R

2 → R

E(q, p) := 1

2
|p|2 − 1

|q| . (2·1)

Since E is invariant under rotations in R
2 around 0 the angular momentum

L := q1 p2 − q2 p1 (2·2)

is a first integral of the motion. For negative energies E < 0 the solutions of the Hamiltonian
equations are either ellipses or collision orbits. The eccentricity ε of an ellipse is given by

ε2 = 2E L2 + 1. (2·3)

For ε = 0 the ellipse is a circle and for ε → 1 the ellipse degenerates into a collision orbit.
According to Kepler’s 3rd law we have the equality

T 2 = − π2

2E3
(2·4)

where T denotes the period of the ellipse.

3. Moser regularization of the (inertial) Kepler problem

The flow of the Kepler problem is periodic outside the set of collision orbits. However, it is
well known that double collisions can be regularized. A nice description of the regularization
is given by Moser in [Mos70], which embeds the Kepler flow for negative energies into the
geodesic flow on the 2-sphere.

Let us illustrate this with the following example. Consider the energy level E = −1/2
and set

K (q, p) := |q|
(

E(q, p) + 1

2

)
+ 1 = 1

2
(|p|2 + 1)|q| . (3·1)

Since |q| � 0 the flows associated with E and K coincide up to reparametrization of the
time variable. We point out that under stereo-graphic projection the norm on T ∗S2 induced
by the round metric becomes K (q, p) but with the following identification: p corresponds
to the S2 coordinate and q to the fiber coordinate. We note that the roles of q and p are
exchanged: on T ∗S2 the p variable is the position variable and q is the momentum (fiber)
variable. Indeed, the points in the fiber over the point at infinity correspond precisely to
collisions since there the (physical) momentum variables explode.

More generally for energies E = −k < 0 we set

Kk(q, p) := |q|(E(q, p) + k) + 1 = 1

2
(|p|2 + 2k)|q|. (3·2)

This gives again rise to the geodesic flow of the round metric (up to multiplication by a con-
stant) but in disguise. Indeed, if we make the following symplectic change of coordinates:
(q, p) �→ (q/

√
2k,

√
2k p) we obtain

Kk

(
1√
2k

q,
√

2k p

)
= √

2k K 1
2
(q, p). (3·3)

In particular, the regularized energy hypersurfaces coincide with the unit cotangent bundle
of S2 which is diffeomorphic to RP

3.
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4. The rotating Kepler problem

The rotating Kepler problem is the Kepler problem in a rotating coordinate system. More
precisely, we regard the rotating Kepler problem as the limit of the planar circular restricted
three body problem in which a lighter primary orbits a heavier primary in a circular clock-
wise direction of constant unit angular speed, and the mass of the smaller primary tends to
zero; we then apply a time dependent change of coordinates which results in the heavier
primary being fixed at 0 ∈ C and the lighter (in fact massless) primary being fixed at 1 ∈ C.

Note that the angular momentum L(q, p) = q1 p2 − q2 p1 generates counter-clockwise
rotation around the origin with constant unit angular speed, and this rotation commutes with
the Kepler flow; consequently it can be shown that the Hamiltonian of the rotating Kepler
problem is given by

H = E + L . (4·1)

We fix some conventions. The symplectic form is given by ω = ∑
dpi ∧ dqi and the

Hamiltonian vector field of L is given by ω(X L , ·) = −d L .
We write

H(q, p) = 1

2
|p1 − q2|2 + 1

2
|p2 + q1|2 + U (q) (4·2)

where

U (q) = − 1

|q| − 1

2
|q|2 (4·3)

denotes the effective potential. The Hamiltonian H is not of mechanical form, that is, kinetic
energy plus potential. Instead H belongs to the class of magnetic Hamiltonians and the
Lorentz force corresponds to the Coriolis force induced by the rotating coordinate system.
The second term in the effective potential is responsible for the centrifugal force.

We denote by π : T ∗(R2 \ {0}) → R
2 \ {0} the projection to the position space. Then for

each c ∈ R, the associated Hill’s region Hc ⊂ R
2 \ {0} is defined to be

Hc := π(H−1(−c)). (4·4)

We note that

Hc = {q | U (q) � −c}. (4·5)

The value c is minus the Jacobi energy. We use this notation in order to keep in line with
tradition: the original definition of the Jacobi integral differs from our choice of Hamiltonian
H by a minus sign and a factor 2.

Consider the effective potential r �→ −1/r − r 2/2; see Figure 1 for its graph. Since this
function attains its unique maximum value of −3/2 at r = 1, it follows that for all c > 3/2
Hill’s region Hc is comprised of two connected components: one is bounded and the other
is unbounded. If c � 3/2 then Hill’s region coincides with R

2 \ {0}. For c > 3/2 we let

Hb
c (4·6)

denote the bounded component of Hill’s region Hc. Moreover, we define

�c := π−1
(
Hb

c

) ⊂ H−1(−c). (4·7)

As in the inertial Kepler problem one can apply Moser regularization, see for instance
[AFvKP12]. We denote the regularized energy hypersurface by �c. It is again diffeomorphic
to RP

3. From now on we only consider the regularized system.
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Fig. 1. Plot of the effective potential −1/r − r2/2.

Note that in general, periodic orbits of the inertial Kepler problem will not give rise to
periodic orbits of the rotating Kepler problem. More precisely, if γ : R → R

4 solves
the inertial Kepler problem, and �t : R

4 → R
4 denotes the time-dependent change of

coordinates from the inertial problem to the rotating problem, then α(t) := �tγ (t) will
solve the rotating Kepler problem; however if γ is periodic, then in general α will not be
periodic. Indeed, this is precisely due to the fact that �t is time-dependent. Moreover, con-
trary to the inertial Kepler problem, the flow of the rotating Kepler problem is no longer
periodic.

Despite all this, there are two cases in which periodic orbits of the inertial problem yield
periodic orbits for the rotating problem. We now specify these cases.

The first is the case of circular orbits. Recall that an orbit of the rotating Kepler problem
is circular if and only if it traces out a circular path in the inertial frame; however, since
the coordinate change �t is a time-dependent rotation in both the q and p-plane, we see
that �t takes circular trajectories to circular trajectories, and hence such orbits also trace out
circular paths in the rotating frame. In fact, every circular periodic orbit of the rotating Kepler
problem can be constructed from a circular periodic orbit of the inertial Kepler problem,
although with different period.

The second case consists of those trajectories which trace out elliptical paths of positive
eccentricity in the inertial frame; in this case a T -periodic orbit of the inertial problem yields
a periodic orbit of the rotating problem if and only if T is a rational multiple of 2π .1 Note
that this scenario also covers the case that the elliptic orbit in the inertial frame is degenerate2,
or equivalently has eccentricity 1.

Observe that the above discussion can be turned around to provide a useful characteriza-
tion of all periodic orbits of the rotating problem. More specifically, a T -periodic solution of
the rotating Kepler problem either traces out a circle in the inertial frame, or else it multiply
covers a (possibly degenerate) ellipse of positive eccentricity in the inertial frame. In the lat-
ter case it can be shown that T is then an integer multiple of 2π . In fact, this characterization
motivates the following definition.

1 The period in the inertial coordinate system is called sidereal period.
2 These are precisely the so-called collision orbits.
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Definition 1. We say a T -periodic orbit α : R/T Z → R
4 of the rotating Kepler problem

is a k-fold covered ellipse3 in an l-fold covered coordinate system provided the following
hold:

(i) there exists positive l ∈ N such that T = 2πl; and
(ii) the corresponding trajectory in the inertial coordinate system given by γ (t) :=

�−1
t α(t) is a k-fold covered ellipse of the standard Kepler problem.

It is worth mentioning that in the rotating Kepler system, periodic orbits can no longer be
interpreted as geodesics of a Riemannian metric on S2 but instead as geodesics of a Finsler
metric; further details can be found in [CFvK11].

Since the image of each circular periodic orbit is fixed under the S1-action which ro-
tates the coordinate system, it follows that each circular orbit gives rise to an S1-family of
periodic orbits; geometrically this S1-family forms a single circle. By contrast, ellipses of
positive eccentricity in an inertial system can form T 2 families of periodic orbits. Introduce
the following notation if this happens; let Tk,l denote the torus comprised of k-fold covered
ellipses in an l-fold covered rotating coordinate system. Using Delaunay coordinates, one
can see that these tori are of Morse-Bott type; see [Bar65] for further details.

These tori play a prominent role in the theory of Kirkwood gaps in the asteroid belt of the
Sun-Jupiter system. The first few carry names4 as follows.

T2,1 T3,2 T4,3 T3,1 T7,4

Hekuba Hilda Thule Hestia Cybele

5. Circular orbits in the rotating Kepler problem

Recall that our goal is to compute the Conley-Zehnder indices of all periodic orbits of the
rotating Kepler problem for all Jacobi energies beneath the first critical value. In the previous
section, we classified all such periodic orbits either as a circular orbit in an S1 family or as an
“elliptic” orbit in a Tk,l-torus family. The purpose of this section is describe how the families
of circular orbits change as we vary the Jacobi energy. In particular, we show that each such
circular orbit has E-energy which varies smoothly with c.

The circular orbits are, by definition, characterized by the vanishing of their eccentricity.
We fix an energy hypersurface {H = −c} and consider circular orbits. Combining equations
(2·3) and (4·1) we obtain the cubic equation

0 = 2E(−c − E)2 + 1. (5·1)

The solution set is the union of the two graphs in Figure 2.
The part of the graph with values E > −1/2 lies in the unbounded component. In partic-

ular, for c > 3/2 there are two simply covered circular orbits which lie above the bounded
component of Hill’s region, Hb

c ; the one that rotates in the same direction as the coordinate
system is rotating is called direct, and the one that rotates in the opposite direction is called
retrograde. In our setup this means that orbits with positive angular momentum L are retro-
grade and orbits with negative angular momentum are direct. The third circular orbit lies in
the unbounded component of Hill’s region.

3 Here the ellipse is allowed to have all possible eccentricities, including 1 (the degenerate collision
orbits) and 0 (the circular orbits).

4 Hilda is the name of the eldest daughter of the astronomer Theodor von Oppolzer.
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Fig. 2. The energy-Jacobi diagram.

6. The life of tori

In this section we study the behavior of the Tk,l-torus families of “elliptic” orbits as one
varies the Jacobi energy. In particular, we find that unlike the circular orbits, the E-energy
of the Tk,l family does not change as one varies the Jacobi energy −c, and furthermore these
Tk,l families only exist for a finite range of values of c. Additionally we shall see that if Tk,l

is a family of orbits with extremal Jacobi energy then these orbits are in fact circular. In this
way, we shall envision circular orbits as “giving birth” to the Tk,l families of orbits precisely
when the periods of the circular orbits cross multiples of 2π .

Recall that the tori Tk,l are obtained from a k-fold covered ellipse in a l times rotating
coordinate system. We first compute the energy of the ellipse underlying Tk,l using Kepler’s
laws. From the definition of Tk,l we obtain the relation

kT = 2πl . (6·1)

Using T 2 = −π2/2E3 we see

4π2l2

k2
= − π2

2E3
(6·2)

and thus

Ek,l = −1

2

(
k

l

) 2
3

. (6·3)

Since we are only interested in energies E below Ek,l < −1/2, we shall restrict ourselves
from now on to

l = 1, 2, . . . and k > l. (6·4)

We recall equation (5·1) for circular orbits

0 = 2E(c + E)2 + 1. (6·5)

Thus, the possible values of c (minus Jacobi energy) of circular orbits with energy Ek,l are

c+
k,l = −Ek,l −

√
1

−2Ek,l
(6·6)
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for the retrograde orbit, and

c−
k,l = −Ek,l +

√
1

−2Ek,l
(6·7)

for the direct orbit. Indeed, as −c = H = E +L , we see that the retrograde orbit has positive
angular moment

√
1/ − 2Ek,l , whereas the corresponding direct orbit has negative angular

momentum −√
1/ − 2Ek,l .

The synodical periods, i.e. the periods in the rotating coordinate system, of the circular
orbits are

T ±
r = 2π

(−2E)
3
2 ± 1

(6·8)

where T +
r corresponds to retrograde circular orbits, and T −

r corresponds to direct circular
orbits. Note that retrograde orbits have smaller period than the direct orbits.

We parametrize the lifetime of the the tori Tk,l by decreasing values of c (that is, by
increasing the values of the Jacobi energy H = −c), see Figure 3. In this way a Tk,l-torus
family of periodic orbits is born out of a multiple cover of a direct circular orbit with Jacobi
energy −c = −c−

k,l . At this energy, the ellipses in the torus are direct; that is, they have
negative angular momentum. This means that the direct orbit is (k − l)-fold covered, and
this can be seen as follows. Suppose at Jacobi energy −c = −c−

k,l a torus is born out of a
N−-fold cover of a direct circular orbit. In particular, the period of the N−-fold cover needs
to match those of the torus orbits that are born,

N−T −
r = 2πl . (6·9)

We know that the torus Tk,l has energy Ek,l = −(1/2) (k/ l)
2
3 . Furthermore T −

r = 2π/

((−2E)3/2 − 1), so we find

N− = l
(k

l
− 1

)
= k − l.

As c decreases, the ellipse becomes more and more eccentric until the eccentricity
equals 1, whence the orbit is a collision orbit. If c is decreased further the eccentricity starts
to decrease and the ellipse now is retrograde, i.e. rotates in the opposite direction. Finally,
when c = c+

k,l the eccentricity becomes 0, and the orbits dies in the arms of the (k + l)-fold
covered retrograde circular orbit.

The lives of Hekuba, Hilda, Thule, Hestia, Cybele and T7,2 are shown in Figure 3.

7. Main argument

In this section we provide the proof of Theorem 1·1. However before doing so we first
present certain key concepts and then provide a relevant example which illustrates the main
proof technique.

The first important idea for the proof is that we shall not consider periodic orbits for a
fixed value of Jacobi energy, but rather we consider families of orbits that arise from varying
c as well. In this way, any two non-degenerate orbits (of possibly different Jacobi energies)
which are connected via a path of non-degenerate orbits must have the same Conley-Zehnder
index. As it turns out, (see Proposition B1 below) the only orbits which fail to be Morse–
Bott non-degenerate are those at bifurcation points; that is, only at those orbits which are
both circular and are in a Tk,l-torus family.
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Fig. 3. The life of tori.

The second key point is that the energy surfaces considered here give rise to Finsler met-
rics on S2, and that periodic orbits of the rotating Kepler problem are in fact critical points
of the energy functional associated to this Finsler metric. In other words, periodic orbits can
be regarded as Finsler-geodesics. Consequently we can assign a Morse index to each peri-
odic orbit, and more importantly, the Conley–Zehnder index considered here and this Morse
index agree; see for instance [Dui76, Web02, Abb03].

To see the third key point, we first recall that the Morse index of a degenerate orbit of
Morse–Bott type is defined as the number of negative eigenvalues of the energy functional
at that orbit. A consequence of this definition is that the Morse index cannot decrease after
a small perturbation; this is the third key point, and it is a fact which we will exploit in our
proof.

7·1. The births of Hekuba, Hilda and subsequent siblings

With the key ingredients established, we now move on to our example. We begin by
considering the direct circular orbits which wind around the origin (in the rotating coordin-
ate system) precisely once. As mentioned at the beginning of this section, these orbits are
Morse-Bott non-degenerate whenever they are not also a Tk,l-type orbit. Observe that in our
example the winding condition guarantees that the circular orbits we are considering cannot
be be of Tk,l-type unless k = l +1. We conclude that these circular orbits are only degenerate
when their Kepler energy is precisely

Ek,k−1 = −1

2

(
k

k − 1

) 2
3

. (7·1)

Observe that these Kepler energies accumulate at −1/2, and are minimal at E2,1. Con-
sequently, the circular orbits we are considering are non-degenerate whenever their Kepler
energy is less than E2,1 = −(2)

2
3 /2, or equivalently whenever c > c−

2,1 ≈ 1.59. Furthermore,
a direct computation (specifically Proposition B1 below) shows that for very large values of
c (i.e. very negative Kepler energy) such orbits have Conley–Zehnder index equal to 3.
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We now consider what happens when one follows these circular orbits from very large
values of c to smaller values of c (or equivalently from very negative Kepler energies to
less negative Kepler energies). Indeed, in this case the Conley–Zehnder index remains 3
until c = c−

2,1 (or equivalently at E = E2,1) at which point two things happen. First, at this
energy level these simple direct circular orbits give birth to the Hekuba (i.e. T2,1) orbits, and
second, as c decreases to just below c−

2,1 the Morse index (and hence the Conley-Zehnder
index) increases from 3 to 5. This latter point is proved in Proposition B1.

To compute the Conley–Zehnder index of the Hekuba orbits, we first make use of the fact
that all non-circular orbits of the rotating Kepler problem are Morse–Bott non-degenerate5

so it is sufficient to determine the Conley–Zehnder index of just one Hekuba orbit. To that
end, we make use of the fact that our periodic orbits are critical points of the energy func-
tional associated to a Finsler metric, and that the Conley–Zehnder index will agree with
the associated Morse index. It then follows by local invariance of Morse homology that the
Morse index (and hence the Conley–Zehnder index) of every Hekuba orbit is 3.

If we continue to follow the branch of circular orbits (more specifically, the direct circular
orbits which wind around the origin precisely once) through decreasing values of c, then we
find that the Conley–Zehnder index remains 5 until we reach the energy level c = c−

3,2, at
which point we have another bifurcation. At the energy level c−

3,2, the direct circular orbits
give birth to the Hilda orbits (i.e. the T3,2 orbits), and for slightly smaller values of c the
Conley–Zehnder index jumps from 5 to 7; again by local invariance of Morse–homology
and Morse–Bott non-degeneracy of the non-circular orbits we find that the Conley–Zehnder
index of every Hilda orbit is 5.

One can now continue this process, namely decreasing the value of c as close as we like to
3/2, and each time the value of c crosses one of the values {c−

k,k−1}k>1 the Conley–Zehnder
index increases by 2 and an additional family of Tk,k−1-siblings is born. The Morse-Bott
non-degeneracy of non-circular orbits and invariance of local Morse-homology determines
the Conley–Zehnder index of all such Tk,k−1-type orbits.

The above argument essentially computes the Conley–Zehnder indices for all Tk,k−1-type
orbits. Since Proposition B1 below computes the Conley–Zehnder indices for all circular
orbits, it will be useful to compute the indices for the more general Tk,l-type orbits. To that
end, we first observe that each Tk,l-type orbit is born out of a circular direct orbit which
winds around the origin precisely (k − l) times, or equivalently a (k − l)-covered circular
orbit of the rotating Kepler problem. Again making use of Proposition B1, it follows that for
very large c the (k − l)-fold covered direct circular orbit has Morse index 2(k − l) + 1. At
each birth the index increases by 2. In particular, before giving birth to Tk,l the (k − l)-fold
covered direct circular orbit has Morse index

2(k − l) + 1 + 2(l − 1) = 2k − 1. (7·2)

After the birth of Tk,l the torus Tk,l acquires this Conley–Zehnder index by invariance of
local Morse homology. This proves the following claim.

LEMMA 7·1. Assume k, l ∈ N with k > l � 1. Then the Conley-Zehnder index of each
Tk,l -type orbit is equal to 2k − 1.

5 Recall the Delaunay coordinates and [Bar65].
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7·2. Proof of Theorem 1·1
We need to show that the Conley-Zehnder indices of contractible periodic orbits are

greater or equal to 3.
Claim. The circular orbits are contractible if and only if they are evenly-covered. Indeed,

since every even cover of a loop in RP3 lifts to a loop S3, we see that all evenly-covered
orbits are contractible. To see that odd covers of simple circular orbits are not contractible,
observe that it suffices to show that a simply covered circular is not contractible. This is the
case because one can construct a homotopy of circular orbits by varying the energy level c.
For c → ∞ a circular orbit in the rotating Kepler problem becomes close to a simple orbit
of the geodesic flow on S2: such orbits are not contractible.

Because these circular orbits are evenly covered, it follows from Proposition B1 that their
Conley-Zehnder indices are at least 3. Furthermore it follows from Lemma 7·1 that the
Conley-Zehnder indices of each Tk,l-type orbit (contractible or not) is at least 3. This com-
pletes the proof of Theorem 1·1. We finish this section with an informative corollary.

COROLLARY 7·2. For each c > 3/2 the doubly covered retrograde orbit is the unique
contractible periodic orbit of Conley–Zehnder index 3.

Proof. As mentioned previously, the only contractible orbits are those which are evenly
covered. Observe that Proposition B1 guarantees that the doubly covered circular retrograde
orbits are the unique contractible circular orbits with Conley-Zehnder index 3. Recall that
the covering number of Tk,l-type orbit is given by (k − l), and the condition that k > l � 1
with k, l ∈ N guarantees that if (k − l) is even, then k � 3. It then follows from Lemma 7·1
that the Conley-Zehnder index of any contractible Tk,l-type orbit is at least 5.

8. Proof of Theorem 1·2
We recall that the Levi–Civita coordinates are given by q = 2v2 and p = u/v̄ in [LC20].

These coordinates define a 2:1-map, which is symplectic up to a factor 4. Indeed, R(dq ∧
d p̄) = 4R(dv∧dū). Transforming and regularizing the Hamiltonian function H(q, p) from
equation (4·1) at energy −c leads to

Kc(u, v) := |v|2(H(u, v) + c) = 1

2
|u|2 + c|v|2 + 2|v|2〈u, iv〉 − 1

2
. (8·1)

A component of the energy hypersurface H−1(c) lifts to a compact component �c of the
energy hypersurface K −1

c (0) which is diffeomorphic to S3 ⊂ C
2.

Using complex notation the gradient and Hessian of Kc are given by the following:

Kc(u, v)(û, v̂) = 〈u, û〉 + 2c〈v, v̂〉 + 4〈v, v̂〉〈u, iv〉
+ 2|v|2〈û, iv〉 + 2|v|2〈u, i v̂〉 (8·2)

D2 Kc(u, v)((û, v̂), (û, v̂)) = |û|2 + 2c|v̂|2 + 4〈u, iv〉|v̂|2
+ 8〈v, v̂〉〈u, i v̂〉 + 8〈v, v̂〉〈û, iv〉
+ 4|v|2〈û, i v̂〉. (8·3)

We fix throughout the remaining part the value of c such that it corresponds to the critical
value of the Jacobi energy: c = 3/2 and set K := K3/2. For the point (u, v) = (−ia, 1/2)
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to lie on the energy hypersurface

{
K (u, v) = 1

2
|u|2 + 3

2 |v|2 + 2|v|2〈u, iv〉 − 1

2
= 0

}
(8·4)

we derive for a ∈ R>0

0 = K

(
−ia,

1

2

)
= 1

2
a2 + 3

2

1

4
− 2

1

4
a

1

2
− 1

2

= 1

2
a2 − 1

4
a − 1

8

= 1

2

(
a2 − 1

2
a − 1

4

)
. (8·5)

We choose the zero given by

a = 1

4
+

√
1

16
+ 1

4
= 1 + √

5

4
≈ 0.80902 (8·6)

and note that

4a − 1 = √
5 . (8·7)

Next we fix a vector (û, v̂) ∈ C
2 with v̂ = 1 and û ∈ iR such that

0 = DK

(
−ia,

1

2

)
(û, v̂) = 〈u, û〉 + 3〈v, v̂〉 + 4〈v, v̂〉〈u, iv〉 + 2|v|2〈û, iv〉 + 2|v|2〈u, i v̂〉

= −aû2 + 3

2
+ 4

1

2

(
−1

2
a

)
+ 2

1

4

1

2
û2 + 2

1

4
(−a)

=
(

1

4
− a

)
û2 + 3

2
(1 − a)

(8·8)
and conclude

û2 =
3
2 (1 − a)

a − 1
4

= 6(1 − a)

4a − 1
= 9

√
5

10
− 3

2
≈ 0.51246 . (8·9)

We observe

û2
2 + 3û2 =

(
9
√

5

10
− 3

2

)(
9
√

5

10
− 3

2
+ 3

)
=

(
9
√

5

10
− 3

2

)(
9
√

5

10
+ 3

2

)

= 81 ∗ 5

100
− 9

4
= 405

100
− 225

100
= 180

100

= 9

5
. (8·10)

https://doi.org/10.1017/S0305004112000515 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004112000515


The Conley–Zehnder indices of the rotating Kepler problem 255

Now we compute

D2 K (u, v)((û, v̂), (û, v̂)) = |û|2 + 3|v̂|2 + 4〈u, iv〉|v̂|2
+ 8〈v, v̂〉〈u, i v̂〉 + 8〈v, v̂〉〈û, iv〉
+ 4|v|2〈û, i v̂〉

= û2
2 + 3 − 4

1

2
a

+ 8
1

2
(−a) + 8

1

2

(
û2

1

2

)

+ 4
1

4
û2

= û2
2 + 3û2 + 3 − 6a

= 9

5
+ 3 − 6

1 + √
5

4

= 3

2

(
11

5
− √

5

)
. (8·11)

Since (
11

5
− √

5

)(
11

5
+ √

5

)
= 121

25
− 125

25
< 0 (8·12)

we conclude that for

(u, v) =
(

1 + √
5

4i
,

1

2

)
and (û, v̂) =

(
i

(
9
√

5

10
− 3

2

)
, 1

)
(8·13)

we have

D2 K (u, v)((û, v̂), (û, v̂)) < 0. (8·14)

In particular, since the Hessian on a tangential direction of {K = 0} is negative the energy
hypersurface {K = 0} is not convex. By continuity the same remains true for values of c
slightly less that 3/2. This proves Theorem 1·2.

Appendix A. The Maslov and Conley–Zehnder index

A·1. Definition of a Maslov index using a crossing form

Here we shall work with the Robbin–Salamon definition of the Maslov index, see [RS93].
Let ω0 denote the standard symplectic form on R

2n given by

ω0 = dx ∧ dy.

Definition 2. Let ψ : [0, T ] → Sp(2n) be a path of symplectic matrices. We call a point
t ∈ [0, T ] a crossing if det(ψ(t) − 1l) = 0. For a crossing t we define the crossing form as
the following quadratic form. Let Vt = ker(ψ(t) − 1l) and define for v ∈ Vt

Q(v, v) := ω0(v, ψ̇(t)v).

The quadratic form Q is called the crossing form.
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Let us now define the Maslov index for symplectic paths in the following steps. Take a
path of symplectic matrices ψ : [0, T ] → Sp(2n) and suppose that all crossings are isol-
ated. Suppose furthermore that all crossings are non-degenerate, i.e. the crossing form Qt at
the crossing t is non-degenerate as a quadratic form. Then we define the Maslov index of
ψ as

μ(ψ) = 1

2
sgn Q0 +

∑
t∈(0,T ) crossing

sgn Qt + 1

2
sgn QT

Here sgn denotes the signature of a quadratic form. For ∗ = 0 or T put sgn Q∗ = 0 if ∗ is
not a crossing.

According to Robbin and Salamon, μ(ψ) is invariant under homotopies of the path ψ

with fixed endpoints. For a general path of symplectic matrices ψ : [0, T ] → Sp(2n), we
choose a perturbation ψ̃ of ψ while fixing the endpoints, and we define

μ(ψ) := μ(ψ̃).

This is well defined according to Robbin and Salamon, [RS93].
To define the Conley–Zehnder index of a Reeb orbit γ , we choose a spanning disk Dγ for

γ and trivialize the contact structure ξ over Dγ . The linearized flow along γ with respect to
that trivialization then gives rise to a path of symplectic matrices, ψ(t) := T Fl R

t (x)|ξ . Then
Conley–Zehnder index of γ is given by

μC Z (γ ) := μ(ψ).

Remark 2. Note that this index differs from the Conley–Zehnder index defined in
[HWZ98]. For non-degenerate orbits they coincide, though. More precisely, in the defin-
ition of Robbin-Salamon the Conley–Zehnder index is shifted by adding half of the nullity
of the periodic orbit. The latter is by definition the dimension of the kernel of the Hessian
minus 1. Subtracting 1 removes the always present degeneracy due to the autonomous char-
acter of the Hamiltonian system.

Appendix B. Trivialization of star-shaped contact forms on T ∗S2

Consider T ∗S2 ⊂ R
3 × R

3 with coordinates (ξ, η). Use ξ to denote the base point in S2,
and let η denote the fiber coordinate. Hence

ξ 2 = 1, ξ · η = 0.

In these coordinates, the canonical 1-form is given by λ = ηdξ . Let K : T ∗S2 → R

be a fiberwise star-shaped Hamiltonian, i.e. η∂η K > 0. We claim the contact structure
associated with the kernel of λ on a regular level set of K admits a global trivialization.
Indeed,

X1 = (ξ × η − (ξ × η) · ∂η K

η · ∂η K
η) · ∂η, X2 = − (ξ × η) · ∂ξ K

η · ∂η K
η · ∂η + (ξ × η) · ∂ξ .

lie in the kernel of λ and d K , and since

dλ(X1, X2) = |ξ × η|2 � 0,

we see that these vectors are linearly independent, so they form a symplectic basis after
normalization. We can define a complex structure J by

J X1 = X2.
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B·1. Trivialization after stereo-graphic projection

We denote the stereo-graphic projection by �, and its the tangent map by T �. Together
with the inverse �−1, we find

T �η∂η = q∂q, T �(ξ × η)∂η = J0q · ∂q,

T �(ξ × η)∂ξ = 1

4
(p2 + 1)2(J0q)∂p + 1

2
(p2 + 1)|q|(J0 p)∂q .

Here q = (q1, q2), J0q = (q2, −q1). From this it follows that T �X1 is a vector that has only
components in the ∂q direction. We shall use this observation later to compare trivializations
of the contact structure on hypersurfaces in R

4 with the global trivialization X1, X2 of the
contact structure on level sets in T ∗S2.

B·2. Kepler Hamiltonian in polar coordinates and linearized flow

The Hamiltonian for the rotating Kepler problem with angular momentum a is given by

Ha(q, p) = 1

2
|p|2 + a(q1 p2 − q2 p1) − 1

|q| = E + aL .

We use polar coordinates q1 = x cos y, and q2 = x sin y, which induces a coordinate change
on the cotangent bundle. The latter can be computed using the corresponding canonical 1-
forms p1dq1 + p2dq2 = rdx + tdy. We find p1 = r cos y − (t/x) sin y and p2 = r sin y +
(t/x) cos y.

The angular momentum L is now given by L = t and the transformed Hamiltonian is

Ha(x, y, r, t) = 1

2

(
r 2 + t2

x2

)
− 1

x
+ at.

The associated Hamilton vector field has the form

X Ha = t2 − x

x3
∂r + r∂x +

(
t

x2
+ a

)
∂y .

B·2·1. Circular orbits

We shall now look for circular orbits. Circular orbits have constant x , hence we need to
impose r = 0. In particular, r is constant, so it follows that t2 = x . Hence we find the
solutions ⎛

⎜⎜⎝
r
t
x
y

⎞
⎟⎟⎠ (s) =

⎛
⎜⎜⎜⎝

0
±√

x0

x0(
±1
x3/2

0

+ a
)

s

⎞
⎟⎟⎟⎠ .

Remark 3. For a = 1 we see that the period of a circular orbit is either

± 2π
±1
x3/2

0

+ 1
,

which can also be expressed in terms of the energy, see Equation (6·8). The retrograde
orbit has positive angular momentum t = √

x0, and the direct orbit has angular momentum
t = −√

x0. Note that the latter interpretation depends on the sign of a, which we have taken
to be positive.
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B·3. Linearized equations

Let us now linearize the equations near a circular orbit. We shall do this by expanding
(r + �r, t + �t, x + �x, y + �y) near (0, t0 = ±√

x0, x0, y). This leads to the linearized
equations (keep in mind that y-term in the total flow has a 0th order contribution)⎛

⎜⎜⎝
�̇r
�̇t
�̇x
�̇y

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0 2t0
x3

0
− 1

x3
0

0

0 0 0 0
1 0 0 0
0 1

x2
0

− 2t0
x3

0
0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

�r
�t
�x
�y

⎞
⎟⎟⎠ . (B 1)

Note that these linearized equations are autonomous.

B·4. Trivialization of the contact structure in the unregularized problem

In order to compute the Maslov index we choose a convenient trivialization of the contact
structure. The canonical 1-form in the unregularized problem is given by λ = −qdp. In
terms of polar coordinates for q, this becomes

λ = −xdr + tdy.

The Hamiltonian for the rotating Kepler problem is given by

H = 1

2

(
r 2 + t2

x2

)
+ at − 1

x
.

We find a trivialization of ker λ|H−1(−c) by looking at the ker λ � ker d H . We shall choose

X̃1 = t

x
∂r − r x

tx + 1
∂t + r x3

t x + 1
∂x + ∂y, X̃2 = − (x − t2)

x(t x + 1)
∂t + (x2 + t)

t x + 1
∂x .

In Cartesian coordinates the vector X̃1 has no components in the ∂p direction, so it is a
multiple of T �X1, see the observation in Section B·1. Since dλ(X̃1, X̃2) � 0 for |q| � 0,
we see that the pair (X̃1, X̃2) trivializes the contact structure of the rotating Kepler problem.
Furthermore, away from |q| = 0, this trivialization has the same homotopy class as the
global trivialization (X1, X2), so we can compute everything in terms of (X̃1, X̃2).

B·5. Computation of the Maslov index

PROPOSITION B1. Let γ+ be the simple retrograde circular orbit of the rotating Kepler
problem. Then the (unregularized) period of γ+ is equal to

S+ = 2π

(−2E)3/2 + 1
.

Suppose that N S+ � Z
2π

(−2E)3/2 . Then Nth iterate of γ+ is non-degenerate and its Conley-
Zehnder index is equal to

μ(γ+,N ) = 1 + 2max
{

k ∈ Z | k
2π

(−2E)3/2
< N S+

}
.

Similarly, let γ− be the simple direct circular orbit of the rotating Kepler problem. Let S−
denote the period of γ−,

S− = 2π

(−2E)3/2 − 1
.
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Suppose that N S− � Z 2π/(−2E)3/2. Then the N-th iterate of γ− is non-degenerate and
its Conley-Zehnder index is equal to

μ(γ−,N ) = 1 + 2max
{

k ∈ Z | k
2π

(−2E)3/2
< N S−

}
.

Proof. The periods of the retrograde and direct orbit have already been computed in sec-
tion 3. Throughout the proof, we shall use that t2

0 = x0 and r0 = 0 at circular orbits. Hence
we see that, at the circular orbit, the tangent space to a level set of Ha is trivialized by

X̃1 = t0

x0
∂r + ∂y = 1

t0
∂r + ∂y, X̃2 = x2

0 + t0

x0t0 + 1
∂x = t0∂x ,

X H =
(

t0

x2
0

+ 1

)
∂y =

(
1

t3
0

+ 1

)
∂y .

We compute the linearized flow from Equation (B1) with respect to this trivialization. We
obtain

˙̃
ψ = L̃ψ̃,

where

L̃ =

⎛
⎜⎜⎝

0 − 1
t4
0

0
1
t2
0

0 0

0 − t4
0

1
t30

+1
0

⎞
⎟⎟⎠ .

Since we have linearized the Hamiltonian rather than the Reeb vector field, we need to
project to the contact structure spanned by X̃1, X̃2. For this just take the top-left 2 × 2-block
of L̃ . This yields the map

ψ̃ |ξ (s) =
(

cos( s
t3
0
) − 1

t0
sin( s

t3
0
)

t0 sin( s
t3
0
) cos( s

t3
0
)

)
.

This path of symplectic matrices has crossings at s ∈ t3
0 2πZ. Note that E = −1/2x0 =

−1/2t2
0 . Since the crossing form has signature 2, we obtain the claim. �

For a geometric interpretation of the above computation we include the following remark.

Remark 4. On the round 2-sphere an N -fold cover of a primitive closed geodesic has
Morse index 2N −1. Moreover, they form critical manifolds, the unit tangent bundle, which
are diffeomorphic to RP

3. After switching on the rotation a the RP
3 breaks up into two

circles, corresponding to the direct and retrograde circular orbit. Hence, for very large c the
N -fold cover of the retrograde circular orbit has Morse index 2N − 1 and the N -fold cover
of the direct circular orbit has Morse index 2N + 1.
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