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We consider pressure-driven flow of an ion-carrying viscous Newtonian fluid through
a non-uniformly shaped channel coated with a charged deformable porous layer,
as a model for blood flow through microvessels that are lined with an endothelial
glycocalyx layer (EGL). The EGL is negatively charged and electrically interacts
with ions dissolved in the blood plasma. The focus here is on the interplay between
electrochemical effects, and the pressure-driven flow through the microvessel. To
analyse these effects we use triphasic mixture theory (TMT) which describes the
coupled dynamics of the fluid phase, the elastic EGL, ion transport within the
fluid and electric fields within the microvessel. The resulting equations are solved
numerically using a coupled boundary–finite element method (BEM-FEM) scheme.
However, in the physiological regime considered here, ion concentrations and electric
potentials vary rapidly over a thin transitional region (Debye layer) that straddles
the lumen–EGL interface, which is difficult to resolve numerically. Accordingly we
analyse this region asymptotically, to determine effective jump conditions across
the interface for BEM-FEM computations within the bulk EGL/lumen. Our results
demonstrate that ion–EGL electrical interactions can influence the near-wall flow,
causing it to become reversed. This alters the stresses exerted upon the vessel wall,
which has implications for the hypothesised role of the EGL as a transmitter of
mechanical signals from the blood flow to the endothelial vessel surface.

Key words: biological fluid dynamics, blood flow, low-Reynolds-number flows

1. Introduction
The blood vessels of the microcirculation have diameters ranging between 5 and

20 µm, with a basal membrane (and, for arterioles a layer of smooth muscle),
supporting endothelial cells (EC). These endothelial cells are coated with a layer of
macromolecules referred to as the endothelial glycocalyx layer (EGL). This layer has
an hydrated brush structure and is comprised of a large variety of membrane-bounded
molecules including proteins, glycolipids (GL), glycoproteins (GP) and proteoglycans
(PG) (Pries, Secomb & Gaehtgens 2000). It is believed that a principal function
of the EGL is as a mechanotransducer of mechanical stresses to the underlying
endothelial cells (Tarbell & Pahakis 2006). However, due to the small scale of the
EGL (about 1 µm) and its delicate nature, experimental investigation of the EGL
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in vivo is extremely challenging. Some sophisticated experimental techniques have
been developed to investigate flow properties near the vessel wall (Pries et al. 2000;
Weinbaum, Tarbell & Damiano 2007), however, mathematical and computational
modelling remain a powerful tool to elucidate the EGL’s role and function.

There have been numerous theoretical and computational studies of the EGL.
Some models have treated the EGL as rigid (Hariprasad & Secomb 2012), others as
deformable. In the latter case, biphasic mixture theory (BMT) has commonly been
used to describe the poro-elastohydrodynamics of the EGL (Damiano et al. 1996; Wei
et al. 2003; Damiano & Stace 2005; Sumets et al. 2015; Lee, Long & Clarke 2016).
In BMT, the EGL is modelled as an hydrated porous material that can be described
at the macroscopic level by two spatially coincidental phases: a linearly elastic solid
phase and a fluid phase. These earlier studies suggested the importance of the EGL in
protecting the endothelial surface from excessive fluid shear stresses, by transmitting
much of the applied mechanical load through the EGL’s solid matrix, rather than
through the fluid phase. The effect of redistribution of the EGL to cell–cell junctions
was also investigated by Lee et al. (2016), who found that it can have a noticeable
influence upon the magnitude of the transmitted mechanical stresses.

It is worth noting that in these studies the EGL was considered to be electrically
neutral, and any charged species within the fluid phase were ignored. However,
the PG are naturally charged macromolecules and lead to an EGL that is negatively
charged. Furthermore, blood plasma is a solution containing water as well as Na+ and
Cl− ions, which can electrically interact with the negatively charged EGL. Theoretical
estimates show that under normal conditions the fixed charge concentration of the
EGL is of the same order of magnitude as the physiological neutral salt concentration
in blood plasma (≈0.1 M) (Silberberg 1991). Hence, it is reasonable to expect that
electrochemical interactions between the EGL and blood plasma could be important.

There has been some previous work investigating the effects of a charged EGL,
with several different approaches adopted. Specifically, a charged surface model (Liu
& Yang 2009), a volume charge model (Stace & Damiano 2001; Damiano & Stace
2002) and a charged rod model (Buschmann & Grodzinsky 1995; Mokady, Mestel &
Winlove 1999). The charged surface model assumes that the EGL has zero thickness
and the vessel wall carries the charge distribution. This approach does not consider
the EGL structure and does not allow for consideration of EGL mechanics.

The charged rod model takes into account the particular spatially distributed
electrical properties of the layer. On the molecular level the PG can be considered
as a polyelectrolyte brush and the EGL is modelled as a doubly periodic array of
parallel rigid charged cylinders surrounded by a Newtonian ionic fluid. Electrostatic
forces arising in this model without background flow were investigated by Dean et al.
(2003). It was found that molecular-level changes in the charge distribution inside
polyelectrolyte brush layers can significantly change the magnitude and the shape of
the resulting electrostatic force profile. The electrical effects of the EGL on the flow,
streaming potential and electrophoretic mobility of red blood cells were considered
by Mokady et al. (1999) using the charged rod model. An important conclusion from
this study is that streaming currents in the lumen are determined by the structure and
behaviour of only the outermost portion of the glycocalyx. This model predicts that
close to the surface of an EC (at the base of the EGL), the ion concentrations will
be unaffected.

In a volume charge model (an averaged macro-level representation), the EGL is
assumed to have an homogeneous solid matrix with a volume charge distribution.
In this case triphasic mixture theory (TMT) can be used to mathematically describe
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the mechano-electrochemical EGL behaviour. It combines the physico-chemical
theory for ionic and polyionic (proteoglycan) mixture with biphasic mixture theory
for porous media. The result is an extended biphasic mixture theory formulation
consisting of a fully saturated solid skeleton carrying fixed negative charges and
an incompressible pore fluid containing mobile ions. Under TMT, fluid and solid
phases are described by the Brinkman and Navier equations, respectively, subject
to electric body forces. First principal derivations of such a multiphase model can
be obtained from a micromechanical description, and can be found in the existing
literature (e.g. Ehlers & Bluhm 2002; Kolev 2002; Holzapfel & Ogden 2006). TMT
has been used in a number of different applications, that include (but not limited
to) swelling of intervertebral disk (Ehlers, Karajan & Markert 2009), soil mechanics
(Ehlers & Blome 2003) and articular cartilage (Lai, Hou & Mow 1991). These have
also been a number of studies which have shown the predictions of TMT to be
in good agreement with experimental data, including the deformation response of
a hydrogel strip under an external electric field (Zhou et al. 2002), as well as the
swelling of synthetic (Oomens et al. 1995) and real (Frijns, Huyghe & Janssen 1997)
intervertebral tissue under mechanical loading and different salinity conditions.

In the context of EGL modelling, a pseudo-equilibrium approximation of the TMT
was used by Damiano & Stace (2002) to predict the recovery time of the glycocalyx
after the passing of a stiff leukocyte. It was shown that a fixed charge density would
result in a voltage differential between the undeformed glycocalyx and the capillary
lumen of 0.1 mV. Under compression of the EGL a repulsive electrostatic force
restores the EGL to its undeformed thickness. The analysis reveals that the magnitude
of the glycocalyx restoring force can be attenuated by increasing (or amplified by
decreasing) the concentration of mobile cations in the plasma. However, this study
did not analyse the influence of the flow through the vessel upon the dynamics,
which can introduce a streaming potential in the vessel. The streaming potential and
hydrodynamics of surfaces covered with charged layers were studied by Donath &
Voigt (1986) (in a non-EGL context) using the nonlinear Poisson–Boltzmann equation
for the electric potential, which assumes an electroneutral balance between the charged
EGL and the ions. Under this assumption, it was demonstrated that surfaces with
charged layers can have extraordinarily high surface conductivities when this layer
becomes thicker.

TMT has been successfully employed to describe the influence and behaviour of a
charged EGL in a limited number of situations, predominantly under the assumption of
electroneutrality. However, the electroneutrality condition, which predicts a Boltzmann
distribution for ion concentrations, is not necessarily valid in the presence of a
background pressure-driven flow that can transport the ions (as would be the case
in a microvessel). A study of the full problem incorporating the interplay between
charged ions, a deformable charged EGL and a background viscous flow has not been
yet undertaken. Therefore, in what follows we consider pressure-driven flow of an
ionised fluid through a charged and deformable EGL which coats the internal surface
of vessel with slowly changing geometry. This extends the earlier work of Damiano &
Stace (2002) where the background fluid flow is neglected and a pseudo-equilibrium
approximation along with an electroneutrality condition is invoked, and enables us to
investigate the combined effects of geometry and charge upon the hemodynamics.

In § 2 we introduce the modelling assumptions and governing equations, along with
the necessary boundary conditions. Scalings within the non-dimensionalised equations
suggest the presence of a thin transitional layer (Debye layer) for ion concentrations
and electrical potentials, which we treat asymptotically in § 3. This analysis provides
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Lumen

Vessel wall

Vessel wall

EGL

EGL

FIGURE 1. A sketch of two-dimensional wavy wall channel lined with a charged
poroelastic EGL. This is annotated with the definitions for the various surfaces and
volumes, e.g. S in

l and Ωl for luminal inlet and interior, respectively.

jump conditions for the dynamics in the bulk EGL/lumen, which we solve using a
hybrid boundary–finite element method scheme described § 4. This allows us to solve
the dynamics numerically within arbitrarily shaped geometries for physiologically
realistic parameter values. In § 5 we present predictions for the influence of charge
effects upon flow profiles and endothelial shear stresses, which are further discussed
in § 6.

2. Formulation
We treat the EGL as a charged poroelastic layer which allows us to account for the

fact that the proteoglycan chains have a net negative electrical charge. Blood plasma is
a solution of many different mobile charged ions, of which sodium (Na+) and chloride
(Cl−) are by far the most abundant, and hence the ones that we restrict attention to
here. These are transported by a pressure-driven flow through the microvessel, which
results in electrical fields being generated within the microvessel.

Figure 1 shows an annotated sketch of the vessel geometry and the electro-
poroelasticity that is modelled using triphasic mixture theory (TMT). We use
coordinates x1 and x2 to indicate streamwise and cross-stream positions, respectively.
Our findings focus on the shear stresses exerted on the vessel wall due to the solid
and fluid phases, and the implications for the mechanotransduction role of the EGL.
It is also of interest to compare the predictions made by TMT against those made
by BMT as a means of gauging the impact of charge effects upon microvessel
mechanics.

2.1. Model assumptions
Using TMT, the EGL region is modelled as a multicomponent material consisting of
water, the electrostatically charged elastic solid matrix and mobile ions (Na+ and Cl−).
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Water and ions combined together form a fluid phase (blood plasma). As a result,
there are four volume fractions associated with each phase, namely, the solid fraction
φs, water fraction φw as well as cation and anion fractions (φ+ and φ−, respectively).
The fluid phase is therefore comprised of three constituents φf = φw+ φ++ φ−. Mass
conservation dictates that φs + φf = 1.

The model is based on the following assumptions.

(i) We assume that φw≈φf . This assumption is valid for dilute solutions (Damiano
& Stace 2002; Masliyah & Bhattacharjee 2006). Indeed, the physiological value
of salt concentration in blood plasma under normal conditions is 0.15 mol l−1.
In this case φ±� φw and the ions in solution can be treated as point charges.
This dilute assumption has been shown to be valid provided that the ion
concentrations do not approach the ion packing fraction, i.e. c∗ ∼ 1/a∗3, where
a∗ =O(10−10 m) is the ionic radius (Kilic & Bazant 2007).

(ii) The flow is pressure driven and there are no externally applied electric fields
or ion concentration gradients. Due to the small scale nature of the flow in
microvessels, we make the usual assumptions that the flow is steady state and
gravitational and inertia forces are negligible (Wei et al. 2003; Sumets et al.
2015; Lee et al. 2016). For example, in our particular case, the characteristic
velocity V∗ is of order 10−3 m s−1, microvessel radius is H∗= 5× 10−6 m and
fluid density ρ∗ and viscosity µ∗f take values similar to that of water, which
gives a Reynolds number of Re=O(10−3).

(iii) The electric field arising from the presence of charged components relates to the
bulk mixture which is the volume average over the fluid, solid and ion phases
(Damiano & Stace 2002). Strictly speaking, each charged constituent (ions and
solid matrix) of the EGL generates its own electric field contributing to the total
electrostatic effect. We consider the total electric field. This means that the term
electroneutrality denotes zero net charge in the bulk mixture (fluid and solid
phases together).

(iv) The electrostatic effect of the solid matrix arising from the presence of charged
PG chains in the EGL is characterised by the concentration of charged
molecules c∗s fixed in the solid phase. Following Damiano & Stace (2002),
we employ a volume charge model and assume that the solid phase is charged
volumetrically with c∗s constant. This assumption implies that there is no surface
charge concentration on the interface between the lumen and EGL.

(v) Deformations of the EGL are induced by the background flow and electrostatic
fields. Small strain theory is used for the elastic deformation and we do not
consider any large strain deformations of the EGL which might be caused by,
for example, crushing of the layer by large white blood cells. Therefore, any
changes in the electric field resulting from changes in the solid volume fraction
are neglected. The EGL is attached to an immovable rigid wall and, therefore,
the velocity of the solid phase is equal to zero, v∗s = 0.

(vi) We assume that the vessel walls are impermeable, so that there is no transmural
flux of plasma or ions capable of generating a net current in the vessel.

(vii) We consider vessels which are comparable in diameter to transiting cells. In
this case, if included, cells must be modelled explicitly, rather than via a non-
Newtonian flow or two-layer viscosity model (Sharan & Popel 2001; Lee et al.
2016) (although we do not do so here). The remaining plasma is over 92 %
water, which we consequently model as a Newtonian fluid.

(viii) Dielectric permittivity is the same everywhere as that of the bulk solution and
is independent of the electric field (Damiano & Stace 2002).
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2.2. Dynamics in the lumen (triphasic)
Following the theory of mixtures (Ehlers & Bluhm 2002) we model the blood plasma
in the lumen as an isotropic fluid of three components – water (w), anions (−) and
cations (+), with volume fractions φα, α = {w, −, +}, so that φw + φ+ + φ− = 1.
Densities ρ∗w = φwρ

∗T
w, ρ∗

±
= φ±ρ

∗T
±
=M∗

±
c∗l± where ρ∗T

α is the true (intrinsic) density,
M∗
±

is a molecular weight and c∗l±= c∗l±(x) is an ionic concentration in the lumen. The
velocity of the mixture in lumen v∗l can be written in terms of the velocities of the
components as

v∗l = φwv∗lw + φ+v
∗

l+ + φ−v
∗

l−. (2.1)

For dilute systems φ±� 1, consequently v∗l ≈ v∗lw and φw ≈ 1, so the fluid velocity is
approximately equal to the velocity of the water component.

The charge density in the lumen q∗l is defined as

q∗l = e∗z+c∗l+ + e∗z−c∗l−, (2.2)

where z± =±1 are ion valences and e∗ is the elementary charge.

Mass conservation
Conservation of mass (assuming no chemical reactions) for each component requires

∇
∗
· v∗l = 0, ∇∗ · (c∗l±v

∗

l±)= 0. (2.3a,b)

From (2.3) we immediately obtain conservation of charge. Indeed, the individual fluxes
of both ionic species result in a net current, i∗l

i∗l = e∗c∗l+v
∗

l+ − e∗c∗l−v
∗

l−. (2.4)

Expressions (2.3) and (2.4) yield ∇∗ · i∗l = 0.

Momentum conservation
Considering the fluid as a dielectric containing mobile ions, the flow momentum

equation for Newtonian fluid without inertia is given by

∇
∗
· σ ∗l +F∗l = 0, (2.5)

where σ ∗l = −p∗l I + µ∗f (∇
∗v∗l + (∇∗v∗l )

T) is a Newtonian stress tensor, p∗l is the
hydrodynamic pressure in the lumen, and F∗l is a body force. This force includes an
electric force Q∗l due to the electric field E∗l and an osmotic pressure due to free
ions P∗l , so that F∗l = ∇

∗P∗l + Q∗l . We assume that the ions behave like an ideal
gas (Damiano & Stace 2002) and the osmotic pressure is analogous to the ideal gas
law P∗l =−(c∗l+ + c∗l−)k

∗T∗, where k∗ is Boltzmann’s constant and T∗ is the absolute
temperature. The electric body force per unit volume in the dielectric medium is
given by (Landau & Lifshitz 1960)

Q∗l =−e∗(c∗l+ − c∗l−)∇
∗ϕ∗l , (2.6)

where ϕ∗l is the electric potential. As a result, (2.5) takes the form

µ∗f∇
∗2

v∗l =∇
∗p∗l +∇

∗(c∗l+ + c∗l−)k
∗T∗ + e∗(c∗l+ − c∗l−)∇

∗ϕ∗l . (2.7)

Combining the osmotic pressure term (c∗l++ c∗l−)k
∗T∗ with the hydrodynamic pressure

p∗l yields the total pressure, but we consider them separately to highlight the difference
in the nature of these pressures.
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Gauss’s law
Under the constant permittivity assumption, the electric field can be related to the

total volume space charge density using Gauss’s law (Landau & Lifshitz 1960)

−ε∗∇∗
2
ϕ∗l = e∗(c∗l+ − c∗l−), (2.8)

with ε∗ being a dielectric permittivity.

Ion transport
Ion transport is described by the Nernst–Planck equation for dilute ionic solutions

(Masliyah & Bhattacharjee 2006)

c∗l±v
∗

l± = v∗l c∗l± −D∗
±
∇
∗c∗l± ∓

e∗∇∗ϕ∗l
k∗T∗

D∗
±

c∗l±, (2.9)

where D∗
±

are the diffusivities of the positive and negative ions (cations and anions),
respectively. Expression (2.9) shows that the mass flux of a solute species is a
combination of the flux due to a background flow, the flux due to the concentration
gradient (i.e. diffusional process), and the flux due to bulk convection. The
Nernst–Planck equation can lead to predictions of local concentrations that are
sufficiently high so as to invalidate the neglect of steric interactions in the model
(Kilic & Bazant 2007). In such situations a modified Nernst–Planck model can be
adopted, however, we shall see in § 5 that we do not approach that regime at any
point.

Overall, we obtain seven equations (2.3), (2.7), (2.8), (2.9) for the seven unknowns
v∗l , p∗l , ϕ∗l , c∗l+, c∗l−, v∗l+, v∗l−. Substitution of (2.9) into (2.3) enables us to eliminate
v∗l+ and v∗l− from the system. We arrive at the equations

µ∗f∇
∗2

v∗l =∇
∗p∗l +∇

∗(c∗l+ + c∗l−)k
∗T∗ + e∗(c∗l+ − c∗l−)∇

∗ϕ∗l , (2.10)
∇
∗
· v∗l = 0, (2.11)

v∗l · ∇
∗c∗l± −D∗

±
∇
∗2c∗l± ∓

e∗D∗
±

k∗T∗
∇
∗
· (c∗l±∇

∗ϕ∗l )= 0, (2.12)

−ε∗∇∗
2
ϕ∗l = e∗(c∗l+ − c∗l−), (2.13)

which model the dynamics in the lumen.

2.3. Dynamics in the EGL (triphasic)
In the EGL itself there is an additional solid phase with volume fraction φs so that
φf + φs = 1, and φf ≈ φw is the fluid fraction. We consider small strains, which
means that while the solid matrix can deform, there are no appreciable volumetric
changes. Since mixture theory assumes an homogeneous, isotropic material structure,
this implies that φs can be assumed to be constant (both in time, and spatially).

Assuming steady flow and zero solid phase velocity we have mass conservation for
the mixture

∇
∗
· v∗f = 0, ∇∗ · (c∗f±v

∗

f±)= 0, (2.14a,b)

where v∗f± are the velocities of ions in the fluid phase of the EGL, c∗f± are the ion
concentrations in the EGL. As in the lumen, the latter implies conservation of current
in the EGL

i∗f = e∗c∗f+v
∗

f+ − e∗c∗f−v
∗

f−, (2.15)

i.e. ∇∗ · i∗f = 0.
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Modelling the poroelastohydrodynamics using biphasic mixture theory, the
momentum equations for the fluid and solid components containing body forces
are given by

φf∇
∗
· σ ∗f + φf∇

∗P∗ + φf Q∗f = π∗, (2.16)

φs∇
∗
· σ ∗s + φs∇

∗P∗ + φsQ∗s =−π∗, (2.17)

where σ ∗f = −p∗f I + µ∗f (∇
∗v∗f + (∇

∗v∗f )
T) and σ ∗s = −p∗f I + µ∗s (∇

∗u∗ + (∇∗u∗)T) +
λ∗s (∇

∗
· u∗)I are the stress tensors for the fluid and solid phases respectively where

u∗ is the elastic displacement, Q∗f = e∗(c∗f+ − c∗f−)∇
∗ϕ∗f and Q∗s = e∗zsc∗s∇

∗ϕ∗f are the
electric body forces, π∗=K∗v∗f is the momentum transfer with K∗ being the hydraulic
resistivity, ϕ∗f is the electric potential in the EGL and zs is the valence of the PG
molecules. Following Damiano & Stace (2002) we associate the body force due to
an electric field acting on the fluid fraction with mobile ion charges and the force
acting on the solid phase with fixed charge concentration. The osmotic pressure P∗=
−(c∗f+ + c∗f−)k

∗T∗ is split proportionally between phases, in a similar manner as for
the hydrodynamic pressure p∗.

The total charge in the EGL region is q∗f = φf e∗(c∗f+ − c∗f−)+ φszse∗c∗s and Gauss’s
law takes the form

−ε∗∇∗
2
ϕ∗f = e∗(φf (c∗f+ − c∗f−)+ φszsc∗s ). (2.18)

As in the lumen, the Nernst–Planck equation is used to describe ion transport in
the fluid phase of the EGL

c∗f±v
∗

f± = v∗f c∗f± −D∗
±
∇
∗c∗f± ∓

e∗∇∗ϕ∗f
k∗T∗

z±D∗
±

c∗f±. (2.19)

Velocities v∗f± can be eliminated from the system by substituting (2.19) into the
continuity equation (2.14). Using (2.19) we also can write the current density i∗f
(2.15) in terms of the ion concentrations for the binary electrolyte solution

i∗f = e∗v∗f (c
∗

f+ − c∗f−)− e∗(D∗
+
∇c∗f+ −D∗

−
∇
∗c∗f−)−

e∗2
∇
∗ϕ∗f

k∗T∗
(D∗
+

c∗f+ +D∗
−

c∗f−). (2.20)

And so in the EGL we have (2.14), (2.16), (2.17), (2.18), (2.20) which govern v∗f ,
p∗f , ϕ∗f , c∗f+, c∗f−, v∗f+, v∗f−, u∗. Substitution of (2.19) into (2.14) enables us to eliminate
v∗f+ and v∗f− from the system. We arrive at the equations

φfµ
∗

f∇
∗2

v∗f = φf∇
∗p∗f + φf∇

∗(c∗f+ + c∗f−)k
∗T∗ + φf e∗(c∗f+ − c∗f−)∇

∗ϕ∗f +K∗v∗f , (2.21)

φs(µ
∗

s + λ
∗

s )∇
∗(∇∗ · u∗)+ φsµ

∗

s∇
∗2u∗

= φs∇
∗p∗f + φs∇

∗(c∗f+ + c∗f−)k
∗T∗ + φse∗zsc∗s∇

∗ϕ∗f −K∗v∗f , (2.22)

∇
∗
· v∗f = 0, (2.23)

v∗f · ∇
∗c∗f± −D∗

±
∇
∗2c∗f± ∓

e∗D∗
±

k∗T∗
∇
∗
· (c∗f±∇

∗ϕ∗f )= 0, (2.24)

−ε∗∇∗
2
ϕ∗f = e∗(φf (c∗f+ − c∗f−)+ φszsc∗s ). (2.25)

which model the dynamics in the EGL.
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2.4. Boundary conditions
To close the model we specify boundary conditions on the interface, vessel walls and
inlet and outlet surfaces.

Lumen–EGL interface
Conditions on the interface include specifications for the electric potential, ion

concentrations, flow velocity and traction. Firstly, we consider conditions for the
electric field. In general, conditions on the interface between two dielectric media
having the same dielectric permittivity ε∗ are well known and have the form (Landau
& Lifshitz 1960)

∂ϕ∗l

∂τ
=
∂ϕ∗f

∂τ
, (2.26)

ε∗
∂ϕ∗l

∂n
− ε∗

∂ϕ∗f

∂n
= q∗sf , (2.27)

where q∗sf is a surface charge density, n is the normal to the interface and τ is the
direction of the local tangent vector. Condition (2.26) is equivalent to the continuity
of electric potential, while condition (2.27) defines a jump in the normal component
of the electric field. Since we assume that there is only a volume charge distribution
without any surface charge concentration (q∗sf = 0), we obtain the following boundary
conditions on the interface between the lumen and EGL for the electric potential,

ϕ∗l = ϕ
∗

f , (2.28)

∂ϕ∗l

∂n
=
∂ϕ∗f

∂n
(2.29)

(which together imply continuity of Maxwell stresses across the interface). For the ion
concentrations we impose continuity of concentrations

c∗l± = φf c∗f± (2.30)

(which implicitly gives an interface condition for continuity of osmotic pressure) and
continuity of normal ionic fluxes across the interface(

−∇
∗c∗l± ∓

e∗

k∗T∗
c∗l±∇

∗ϕ∗l

)
· n= φf

(
−∇

∗c∗f± ∓
e∗

k∗T∗
c∗f±∇

∗ϕ∗f

)
· n. (2.31)

However, taking into account boundary condition (2.29) we see that continuity of
normal fluxes (2.31) amounts to

∂c∗l±
∂n
= φf

∂c∗f±
∂n

. (2.32)

Continuity of flow velocity is also required (Sumets et al. 2015; Lee et al. 2016)
(under the assumption that there are no elastic velocities)

v∗l = φf v
∗

f . (2.33)

Finally, we assume that fluid and solid shear stresses on the interface are distributed
according to volume fraction (Hou et al. 1989)

σ ∗l · n= σ ∗f · n, σ ∗l · n= σ ∗s · n. (2.34a,b)
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Vessel walls
On the solid wall (i.e. vessel surface) we specify

v∗f = u∗ = 0, (2.35)
∂ϕ∗f

∂n
= 0, (2.36)

∂c∗f±
∂n
= 0. (2.37)

Condition (2.36) follows from (2.27) and reflects the fact that there is no surface
charge concentration on the solid wall, while (2.37) along with the no slip condition
(2.35) means an absence of ion flux across the walls.

Inlet/outlet
We prescribe flow velocities, EGL displacements, ion concentrations and electrical

potential at the inlet and outlet surfaces that are informed by the physiological
literature, i.e.

v∗l =V∗l , c∗l± = C∗l±, ϕ∗l =Φ
∗

l on S in
l , Sout

l , (2.38a−c)

v∗f =V∗f , c∗f± = C∗f±, ϕ∗f =Φ
∗

f , u∗ =U ∗ on S in
m , Sout

m (2.39a−d)

(see table 1 and appendix A for more details).
Some features inherent in pressure-driven electroviscous flow are worth noting.

When a charged liquid is forced through a vessel under an applied pressure gradient
in the absence of an externally applied electric field or concentration gradient, it
induces the streaming electric field E∗str (Masliyah & Bhattacharjee 2006). The value
of E∗str is not an independent variable but related to the pressure gradient. To determine
this relationship between the imposed pressure gradient and the established streaming
potential we need extra information. As we do not consider any ion exchange
between the lumen/EGL and the vessel wall, we assume that the electric current can
vary across the vessel, but its integrated value (across any vessel cross-section) is
zero (Liu & Yang 2009) ∫

S in
l

i∗l · n dS+
∫
S in

m

i∗f · n dS= 0, (2.40)

is used to find the value of E∗str.

2.5. Non-dimensionalisation
Let V∗ be the characteristic velocity for blood flow in the microvessel (which can
be measured physiologically). We scale x∗ by the vessel radius H∗, all velocities
by V∗ and pressure by (µ∗f V∗)/H∗. Ion concentration is scaled by a characteristic
physiological value, c∗0, and electric potential is scaled by thermal voltage:

x∗ =H∗x, v∗l = V∗vl, v∗f = V∗vf , p∗l =
µ∗f V∗

H∗
pl, p∗f =

µ∗f V∗

H∗
pf ,

c∗l± = c∗0cl±, φf c∗f± = c∗0cf±, φs|zs|c∗s = c∗0cs, ϕ∗l =
k∗T∗

e∗
ϕl, ϕ∗f =

k∗T∗

e∗
ϕf ,

σl =
σ ∗l H∗

µ∗f V∗
, σf =

σ ∗f H∗

µ∗f V∗
, σs =

σ ∗s φH∗

µ∗f V∗
, u=

u∗φµs

V∗µ∗f
, φ =

φs

φf
.


(2.41)
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Parameter Symbol Value

Boltzmann constant k∗ 1.38× 10−23 J K−1

Elementary charge e∗ 1.6× 10−19 C
Temperature T∗ 303.15 K
Dielectric permittivity of blood plasma ε∗ 6.78× 10−10 C (V m)−1

Salt concentration in blood plasma c∗0 0.154 mol l−1
= 9.27× 1025 m−3

Na ion diffusivity (c0 = 0.1 and T = 303.15 K) D∗
+

1.62× 10−9 m2 s−1

Cl ion diffusivity (c0 = 0.1 and T = 303.15 K) D∗
−

2.45× 10−9 m2 s−1

Plasma dynamic viscosity µ∗f 10−3 Pa s
EGL shear modulus µ∗s 10 Pa
Vessel radius H∗ 5× 10−6 m
Flow velocity V∗ 10−3 m s−1

Fluid fraction φf 0.99
Poisson ratio ν 0.3
(Non-dimensional) EGL permeability χ 250
Hartmann number (lumen) χ̂l 2× 106

Hartmann number (EGL) χ̂f (2/φf )× 106

Ion-drag coefficient (lumen) αl 0.1
Ion-drag coefficient (EGL) αf 0.1/φf

(Non-dimensional) Debye layer thickness δ2
≡ λ−1 0.5× 10−7

Péclet number (Na) γ+ 3
Péclet number (Cl) γ− 2

TABLE 1. Characteristic values for parameters pertaining to blood flow through a
microvessel.

This results in the governing equations in the lumen (2.10)–(2.13) and in the EGL
(2.21)–(2.25) being recast into the following non-dimensional form

∇
2vβ =∇pβ + χ̂β∇(cβ+ + cβ−)+ χ̂β(cβ+ − cβ−)∇ϕβ + χhβvβ, (2.42)

1
1− 2ν

∇(∇ · u)+∇2u= φ∇pf + χ̂fφ∇(cf+ + cf−)− χ̂f cs∇ϕf − χvf , (2.43)

∇ · vβ = 0, (2.44)
∇ ·
[
γ±cβ±vβ −∇cβ± ∓ cβ±∇ϕβ

]
= 0, (2.45)

−∇
2ϕβ = λ(cβ+ − cβ− − hβcs), (2.46)

where

β =

{
l, in lumen,
f , in EGL,

hβ =

{
0, β = l,
1, β = f .

(2.47a,b)

Boundary conditions on the wall (2.35)–(2.37) take the form

vf = 0, u= 0,
∂ϕf

∂n
= 0,

∂cf±

∂n
= 0, (2.48a−d)

and on the interface (2.30)–(2.34)

vl = φf vf , σl = σf , φσl = σs, ϕl = ϕf , (2.49a−d)
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∂ϕl

∂n
=
∂ϕf

∂n
, cl± = cf±,

∂cl±

∂n
=
∂cf±

∂n
. (2.50a−c)

Finally, the zero net current condition (2.40) becomes∫
S

iβ · n dS= 0, (2.51)

and

iβ = vβ(cβ+ − c
β−
)−∇

(
cβ+
γ+
−

cβ−
γ−

)
−

(
cβ+
γ+
+

cβ−
γ−

)
∇ϕβ . (2.52)

Here the dimensionless parameters are

χ =
K∗H∗2

φfµ
∗

f
, χ̂l =

c∗0k∗T∗H∗

µ∗f V∗
, χ̂f =

χ̂l

φf
, λ=

c∗0e∗2H∗2

ε∗k∗T∗
, γ± =

V∗H∗

D∗
±

, (2.53a−e)

where physically δ≡ λ−1/2 is the Debye layer thickness as compared to vessel radius
H∗, γ± are the Péclet numbers for ionic transport, χ is the Darcy permeability and χ̂f
(χ̂l) is the Hartmann number representing the magnitude of the Coulomb body force
in the EGL (lumen). It is shown by Yariv, Schnitzer & Frankel (2011) how these
parameters are related to each other, i.e. χ̂l = αlλ where αl = ε

∗k∗2T∗2/(µ∗f V∗H∗e∗2)

is the dimensionless ion-drag coefficient (accordingly, χ̂f = αfλ with αf = αl/φf ).
Parameters λ and χ̂β depend on the ion concentrations and, therefore, reflect the
influence of charge. Using parameter values characteristic to a microvessel (see
table 1) we obtain for the physiologically appropriate parameter values λ = 2 × 107,
αl = 0.1, χ̂l = 2× 106, χ = 250, γ+ = 3, γ− = 2.

Note that when the vessel is a straight-walled channel, we are able to find an
analytical solution (see appendix A). However, when the vessel has an irregular
shape (i.e. is wavy walled) a numerical approach is required (see § 4). The small
value of λ−1 signifies the presence of a thin transitional region across the lumen/EGL
interface, which is difficult to resolve numerically. For this reason we undertake an
asymptotic analysis of this region.

3. Thin Debye layer analysis (δ� 1)
Let us rewrite the governing equations (2.42)–(2.46) in the following form

δ2
∇

2vβ = δ
2
∇pβ + αβ∇(cβ+ + cβ−)+ αβ(cβ+ − cβ−)∇ϕβ + δ2χhβvβ, (3.1)

δ2

1− 2ν
∇(∇ · u)+ δ2

∇
2u= φδ2

∇pf + φαf∇(cf+ + cf−)− αf cs∇ϕf − δ
2χvf , (3.2)

∇ · vβ = 0, (3.3)
∇ ·
[
γ±cβ±vβ −∇cβ± ∓ cβ±∇ϕβ

]
= 0, (3.4)

−δ2
∇

2ϕβ = cβ+ − cβ− − hβcs. (3.5)

Our goal is to analyse the problem in the limit δ � 1 (the physiological regime,
see table 1). Since this limit is singular with the small parameter multiplying the
highest-order derivative, we employ from the outset matched asymptotic expansions.
The asymptotic structure of the dynamics consists of an inner Debye layer region
adjacent to the interface which is connected to outer bulk lumen/EGL regions (see
figure 2). The outer bulk/lumen regions will still require a numerical treatment,
although will be more computationally tractable than in the full problem.

In regions III and IV we perform a small parameter expansion of the form f =
f (0) + δ2f (1) + · · · for each of the variables (u, vβ, cβ±, ϕβ).
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Interface

Vessel wall

Debye layer

Lumen

EGL

I

II

III

IV

FIGURE 2. Schematic representation of the near-wall region. Regions I and II correspond
to the inner Debye layers in the lumen and the EGL respectively where the electric
potential and ion concentrations change significantly. The characteristic thickness of each
layer is of order δ. Regions III and IV are the outer regions where electroneutrality holds.

3.1. Electrodynamics
Keeping the zero-order terms we obtain the following system

∇(c(0)β+ + c(0)β−)+ hβcs∇ϕ
(0)
β = 0, (3.6)

φ∇(c(0)f+ + c(0)f−)− cs∇ϕ
(0)
f = 0, (3.7)

∇ ·

[
γ±c(0)β±v

(0)
−∇c(0)β± ∓ c(0)β±∇ϕ

(0)
β

]
= 0, (3.8)

c(0)β+ − c(0)β− − hβcs = 0, (3.9)

together with flow incompressibility ∇ · u(0)β = 0. These zeroth-order outer equations
are satisfied by constant ion concentrations and electric potential, i.e.

c(0)f± =C(0)
f±, c(0)l± = 1, ϕ

(0)
l = 0, ϕ

(0)
f =Ψ

(0)
f , i(0)β = hβcsv

(0)
β , (3.10a−e)

where C(0)
f+ − C(0)

f− = cs (since we have non-dimensionalised ion concentrations on
their luminal values, and can set the reference potential to be zero without loss of
generality). Here C(0)

f± and Ψ
(0)

f are currently unknown constants. Analysis of the
Debye layer (see appendix B) shows us that

ϕ
(0)
f = arcsinh

(
−

cs

2

)
, C(0)

f± = exp
(
∓ arcsinh

(
−

cs

2

))
. (3.11a,b)

The zero net current condition takes the form∫
S in

m

v
(0)
f · n dS= 0. (3.12)

It can be seen from (3.12) that the net fluid flux through the EGL is zero.
Consequently, for a given applied pressure, the induced streaming potential leads
to a reduced volumetric flow rate through the vessel.
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3.2. Electro-poroelastohydrodynamics
Determining the behaviour of the flow in the bulk lumen/EGL and of the solid phase
in the EGL requires us to examine (3.1)–(3.5) at O(δ):

∇
2v
(0)
β =∇p(0)β + 2αβ∇c(1)β + αβhβcs∇ϕ

(1)
β + χhβv

(0)
β , (3.13)

1
1− 2ν

∇ · (∇u(0))+∇2u(0) = φ∇p(0)f + 2φαf∇c(1)f − αf cs∇ϕ
(1)
f − χv

(0)
f , (3.14)

γ+∇c(1)β · v
(0)
β −∇

2c(1)β − c(0)β+∇
2ϕ

(1)
β = 0, (3.15)

γ−∇c(1)β · v
(0)
β −∇

2c(1)β + c(0)β−∇
2ϕ

(1)
β = 0, (3.16)

c(1)β+ = c(1)β− = c(1)β . (3.17)

After adding and subtracting (3.15) with (3.16) and using (3.17) we come to the
following reduced form

∇
2v
(0)
β =∇p(0)β + 2αβ∇c(1) + αβhβcs∇ϕ

(1)
β + χhβv

(0)
β , (3.18)

1
1− 2ν

∇ · (∇u(0))+∇2u(0) = φ∇p(0)f + 2φα∇c(1)f − αcs∇ϕ
(1)
f − χv

(0)
f , (3.19)

(γ+ + γ−)∇c(1)β · v
(0)
β − 2∇2c(1)β − hβcs∇

2ϕ
(1)
β = 0, (3.20)

(γ+ − γ−)∇c(1)β · v
(0)
β − c(0)β ∇

2ϕ
(1)
β = 0, (3.21)

where c(0)l = (c
(0)
l+ + c(0)l− )= 2 and c(0)f = (c

(0)
f+ + c(0)f−)= 2 cosh(arcsinh(−cs/2)).

It proves convenient to express the potentials and ion concentrations as the sum of
two components: homogeneous solutions ϕ(1)βh , c(1)βh that satisfy inlet/outlet conditions
but which is continuous across the EGL–lumen interface, and non-homogeneous
solutions ϕ

(1)
βp , c(1)βp that satisfy the jump conditions across the Debye layer (as

determined by the analysis in appendix B), e.g.

c(1)β = c(1)βh + c(1)βp , ϕ
(1)
β = ϕ

(1)
βh + ϕ

(1)
βp . (3.22a,b)

The first-order corrections (3.18)–(3.21) are subject to the following boundary
conditions on the solid walls

∂c(1)βh

∂n
=
∂c(1)βp

∂n
= 0,

∂ϕ
(1)
βh

∂n
=
∂ϕ

(1)
βp

∂n
= 0, (3.23a,b)

and at the inlet/outlet

v
(0)
β =V (0)

β , u(0)=U (0)
, c(1)βh = C(1)β , c(1)βp = 0, ϕ

(1)
βh =Φ

(1)
β , ϕ

(1)
βp = 0, (3.24a−f )

where the constants V (0)
β , U (0), C(1)β (= 0) and Φ(1)

β (= Bx1) are given in appendix A.
To close the model we need to specify boundary conditions at the lumen–EGL

interface. These are determined by the Debye layer (inner solution) that straddles the
lumen–EGL interface, and across which we expect potential and ion concentrations to
vary rapidly. This analysis, details of which can be found in appendix B, tell us that
at the interface

c(1)lh = c(1)fh , ϕ
(1)
lh = ϕ

(1)
fh , (3.25a,b)
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and

c(1)βp =−Aβc
∂(v

(0)
β · τ )

∂τ
, (3.26)

ϕ
(1)
βp =−Aβϕ

∂(v
(0)
β · τ )

∂τ
, (3.27)

where τ is a local tangent vector and the coefficients Aβc and Aβϕ are found
numerically (see (B 45)). Flow boundary conditions on the interface are

v
(0)
l = φf v

(0)
f , σ

(0)
l · n= σ

(0)
f · n− Ap

∂(v
(0)
f · τ )

∂τ
n. (3.28a,b)

For the solid phase the relationship between tractions on the interface is given by

φσ
(0)
l · n = σ (0)

s · n− φAp
∂(v

(0)
f · τ )

∂τ
n. (3.29)

The coefficient Ap is also found numerically (see (B 47)). With the boundary and
interface conditions now specified, the reduced model (3.18)–(3.21) for the bulk
domain can be solved.

Let us consider first the homogeneous solutions for ion concentrations and potential.
The zero inlet values of ion concentration (3.24) and zero flux conditions across the
vessel walls (3.24) both suggest homogeneous solutions that satisfy

c(1)lh = c(1)fh = 0, (3.30)

∇
2ϕ

(1)
βh = 0, (3.31)

where ∂ϕ(1)βh /∂n= 0 on the solid vessel walls, and ϕ(1)βh is continuous at the lumen/EGL
interface. The inlet and outlet conditions (3.24) give ∂ϕ

(1)
βh /∂n = B (where B is a

constant determined by the zero net current conditions (3.12)). By numerically solving
(3.31) subject to these boundary conditions (see § 4 below) we obtain the streaming
potential distribution.

Next we consider flow and non-homogeneous components of ion concentration and
potential, driven by the Debye layer. These remain governed by (3.18)–(3.21), and the
boundary conditions on the interface take the form given in (3.26)–(3.29). On the solid
vessel walls we have

∂c(1)fp

∂n
= 0,

∂ϕ
(1)
fp

∂n
= 0, v

(0)
f = u(0) = 0, (3.32a−c)

and at the inlet/outlet

∂ϕ
(1)
lp

∂n
=
∂ϕ

(1)
fp

∂n
= 0, c(1)lp = c(1)fp = 0, v

(0)
β =V (0)

β , u(0) =U (0)
. (3.33a−d)

Solving this system also requires a numerical approach, which we describe in the next
section.

4. Numerical methods
A coupled boundary–finite element method scheme (BEM-FEM) is used to solve

numerically the first-order problem in the bulk EGL/lumen (3.31)–(3.33). This, in turn,
allows us to determine the fluid and solid stresses exerted by the EGL upon the vessel
wall. We note that the fluid phase (3.18) decouples from the solid phase (3.19), which
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FIGURE 3. (Colour online) An example of the triangular mesh used in the boundary–finite
element method numerical scheme to solve the dynamics in the bulk EGL/lumen.

allows us to solve the flow equations independently of the solid phase (but not of
the ion concentrations, which provide a fluid forcing). The linearity of the governing
equations for the fluid and solid phases, as well as for the homogeneous potential
(3.31), allows us to take advantage of boundary integral representations, which means
that we need only compute unknown fluid and elastic tractions, velocities, elastic
displacements and electric potentials on the vessel boundaries (see Sumets et al.
2015 for more details). This is done through implementation of a boundary element
method (BEM) numerical scheme which solves for these unknowns on discrete linear
elements that approximate the contours of the vessel boundaries and interfaces.

The ion transport equations (3.20), (3.21), on the other hand, are nonlinear, and are
solved throughout the vessel volume using a finite element method approach. This is
achieved by discretising the vessel domain into a triangular mesh. Mesh refinement is
applied near the interface region and within the EGL, where we might expect steep
concentration gradients (see figure 3 for an example mesh). Linear interpolants for
ion concentrations and potentials are used within these elements, and triangle edges
on vessel boundaries are shared by both the BEM and FEM schemes. This triangular
volume discretisation then allows us to convert a weak formulation of ion transport
equations into a nonlinear algebraic system in the usual manner for a finite element
method approach. (Note that the required values of electric potential at points within
the bulk lumen and EGL can be computed a posteriori given their boundary values,
again using a boundary integral representation of Laplace’s equation (3.31).)

Since the governing equations for flows, ion concentrations and potential are
coupled, the FEM and BEM schemes must be solved at the same time. The resulting
system of nonlinear algebraic equations is solved using MATLAB’s fsolve iterative
routine. To improve numerical efficiency, the Jacobian is calculated analytically and
provided to the solver. Each simulation requires approximately 180 Gb of memory
and 2304 CPU hours. The calculation of the matrix coefficients was parallelised
across 12 CPU cores using MATLAB’s Parallel Toolbox. As a result, each simulation
takes approximately 192 hours to complete.
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Λe a χ φs ν γ+ γ− αl

8 0.02 250 0.01 0.3 3 2 0.1

TABLE 2. Non-dimensional parameter values for a capillary lined with a charged EGL.

Convergence of the calculations was verified by a mesh refinement study, by
decreasing triangle edge lengths, d. Simulations using triangles within the EGL
with a maximum edge length d = 0.04, 0.03, 0.02 and 0.015 demonstrated good
convergence by d= 0.02. The accuracy of the scheme was also verified by simulating
results for a straight-walled channel for which an analytical solution is known (see
appendix A).

5. Results
We present results for numerical simulations of the electro-poroelastohydrodynamics

of a microvessel coated with charged EGL. Following the earlier work that has
considered a non-charged EGL (Wei et al. 2003; Sumets et al. 2015; Lee et al.
2016), the vessel is modelled as a two-dimensional wavy-walled channel with top
and bottom walls prescribed by

S =



±1, −1− 1
4Λe 6 x1 <−

1
4Λe,

η±(x1), −
1
4Λe 6 x1 <−

1
8Λe,

±1∓ a cos(2πx1/Λe), −
1
8Λe 6 x1 <

1
8Λe,

ζ±(x1),
1
8Λe 6 x1 <

1
4Λe,

±1, 1
4Λe 6 x1 6 1+ 1

4Λe,

(5.1)

where the upper and lower signs correspond to upper and lower vessel walls,
respectively. The functions η±(x1), ζ±(x1) are spline interpolations that guarantee
a smooth transition from straight inlet/outlets (where the analytical solution in known,
see appendix A), to the non-uniform wavy topology. In non-dimensional form, the
geometry of the vessel is characterised by the mean width of 2, wall undulations of
amplitude a and wavelength Λe. The EGL follows the topology of the vessel walls
and has a thickness denoted by ε.

In what follows we examine the impact of the EGL thickness upon the fluid and
solid shear stresses exerted on the vessel wall, and compare results (obtained using
triphasic mixture theory) with solutions obtained for comparable uncharged EGLs
(obtained using biphasic mixture theory), to gauge the influence of the EGL’s charge
upon effects such as mechanotransduction. Table 2 summarises the values for the
non-dimensional parameters used across the simulations based upon the physiological
values of the dimensional parameters given in table 1. These include endothelial wall
wavelength Λe and amplitude a, EGL permeability χ , EGL fixed charge cs, solid
volume fraction φs, Poisson ratio ν, Péclet number for the cations (anions) c+ (c−),
ion-drag coefficient αl. The magnitudes of wall amplitude and wavelength are chosen
to reflect the restrictions on curvature discussed in appendix B.

We consider four cases corresponding to different combinations of the EGL
thickness and presence of charge effects (see table 3 for a summary showing fixed
charge concentration cs which determines whether the charge effect is considered,
and EGL thickness, ε). Accordingly, Cases A and B correspond to the charged EGL
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0.8

 0.9

1.0

10 2 3–1–2–3

FIGURE 4. Flow field in the region of the EGL for Case A, showing reversed flow near
to the vessel wall.

Case A B C D

ε 0.2 0.1 0.2 0.1
cs 1 1 0 0

TABLE 3. Parameters for the various cases considered.

with thicknesses ε= 0.2 (Case A) and ε= 0.1 (Case B). Cases C and D consider the
EGL without charge and with thicknesses ε= 0.2 (Case C) and ε= 0.1 (Case D). In
what follows we present flow fields and associated shear stresses, Γf and Γs on the
vessel walls and elastic displacements in the EGL corresponding to these geometries.

The near-wall flow field for the vessel when the EGL thickness is ε= 0.2 (Case A)
is examined in figure 4. These have been found by solving the governing equations in
the bulk EGL/lumen (3.18)–(3.21) using the BEM-FEM numerical scheme described
in § 4. One significant observation is that the flow is reversed near the vessel wall,
which does not occur in the absence of charge effects (Sumets et al. 2015; Lee et al.
2016). As expected, this leads to a reversal of the fluid shear stresses exerted upon
the vessel wall, as shown in figure 5. We also see that the presence of charge effects
(under otherwise identical conditions) is associated with a higher magnitude fluid
shear stresses and elastic stresses. We also note that the magnitude of the solid shear
stress is approximately ten times greater than the magnitude of the shear stress due
to the fluid phase. This is an effect that has been previously noted in the absence
of EGL charge (Sumets et al. 2015; Lee et al. 2016) and suggests that much of the
applied mechanical load is carried through the solid rather than fluid phase of the
EGL. We also note the effect of wall topology on the stress profiles. We see that the
2 % variation in wall location leads to an associated 5–6 % variation in solid stresses
irrespective of whether or not charge effects are present (figure 5b). We see a similar
sensitivity to topology in the fluid stresses in the absence of charge effects, although
this sensitivity of fluid stress to wall shape appears to be dampened when charge
effects are present (figure 5a).

We also investigate the influence of EGL thickness on the stresses exerted on the
solid wall. Figures 6 and 7 compare the elastic and fluid stress distributions in Cases
A–D when ε = 0.1 and ε = 0.2. In figure 6(b) it is seen that a reduction in EGL
thickness leads to a non-proportional reduction in the elastic stresses exerted upon the
wall. Fluid shear stresses are negative and increase in magnitude by approximately
30 % with reduced layer thickness. Hence, we observe increased magnitude Γf and
decreased magnitude Γs when the EGL thickness is reduced twofold. We also again
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FIGURE 5. Comparison of the fluid Γf (a) and elastic Γs (b) shear stresses on a vessel
wall with EGL thickness ε= 0.2. The solid lines (——) are the predictions made in the
presence of charge effects (TMT solutions, Case A) and the dashed lines (- - - -) are those
made in the absence of charge effects (BMT solutions, Case C).

observe that solid stresses appear to be more sensitive to wall topology than fluid
stresses, when charge effects are present, and that this sensitivity does not appear
to change greatly when the thickness of the EGL is doubled. Another observation
following from figure 7 is that for thin EGL the magnitudes of fluid shear stresses
are largely the same regardless of charge effects (although there is still a sign change)
while the shear stress due to the solid phase with the presence of charge takes higher
value relative to charge-free case. We again see for this thinner EGL how the presence
of charge tends to reduce the sensitivity of the fluid stress to wall shape.

If we examine the ion concentration gradients throughout the vessel, as shown
in figure 8, we see that the spatial variations at the wall persist largely unaltered
throughout the thickness of EGL, before undergoing a jump at the EGL/lumen
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FIGURE 6. Comparison of the fluid Γf (a) and elastic Γs (b) shear stresses on the vessel
wall. Here the solid lines correspond to Case A (typical EGL thickness ε= 0.2) and the
dashed lines to Case B (thin EGL thickness ε= 0.1).

interface as mediated by the (here, asymptotically thin) Debye layer. It is also evident
that the variations in ion concentrations in the lumen are very small compared with
the variations seen within the EGL (since at leading order the ion concentrations
in both lumen and EGL are spatially constant; recall that these ion concentration
predictions were made under the assumption that steric interactions are negligible.
This will generally cease to be the case when c∗max ∼ 1/a∗3 where a∗ ≈ 2× 10−10 m
is the ionic radius (Kilic & Bazant 2007). This corresponds to non-dimensional ion
concentrations c∼ 104, which is well above those seen here.)

6. Discussion
In this study we have investigated the influence of the endothelial glycocalyx layer’s

(EGL) negative charge upon microvessel hemodynamics. We have used a triphasic
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FIGURE 7. Comparison of the fluid Γf (a) and elastic Γs (b) shear stresses on the vessel
wall for thin EGL (thickness ε = 0.1). Here the solid lines correspond to Case B (with
charge) and the dashed lines to Case D (charge free).
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FIGURE 8. (Colour online) Ion concentration c(1) for Case A.
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mixture theory (TMT) model, which couples together governing equations for the
fluid flow, elastic deformations of the EGL, transport of dissolved ions and any
electric fields that are established as a result. We found that the combined presence
of a negatively charged EGL and a pressure-driven flow through the microvessel can
create gradients in the concentrations of charged ions in the blood plasma (such as
sodium and chloride), as well as associated electric fields. Although these gradients
are small in this microvessel (scaling like the Debye layer thickness) we have shown
that they still couple strongly into the governing flow and elasticity equations, and
hence can have a significant influence upon the flow and elastic deformations of
the EGL. This extends previous theoretical studies of the EGL which have either
neglected charge effects altogether (Damiano et al. 1996; Wei et al. 2003; Sumets
et al. 2015; Lee et al. 2016), or considered only drainage flows generated by the
motion of the EGL’s solid matrix under crushing and subsequent elastic relaxation (e.g.
no pressure-driven flow through the microvessel). The latter leads to electroneutrality,
and ion concentrations that assume a classical Boltzmann spatial distribution (Damiano
& Stace 2002).

By contrast, we have found here that in the thin Debye layer which straddles the
EGL/lumen interface electroneutrality is locally broken, and that across the layer
there is a rapid variation in the values of ion concentrations and electric potential.
This layer is difficult to resolve numerically, but does lend itself to an asymptotic
treatment. The resulting analysis provided us with effective jump conditions across the
EGL/lumen, which we can then use to perform full boundary–finite element method
computations in the bulk EGL/lumen. Using this computational scheme we have been
able to explore the effect of the EGL thickness upon the poroelastic dynamics of the
EGL, and compare these results with those obtained in the absence of any charge
effects (obtained using biphasic mixture theory, which neglects the ionic phase and
electric potential).

Some of the main results found in the absence of charge effects persist, for example,
the dominance of solid stress over fluid stress (Secomb, Hsu & Pries 2001), as well
as the increase (decrease) in solid (fluid) stress as the EGL becomes thicker. However,
quantitative comparison shows that the proportion of the solid shear stress in the total
stress in the presence of charge effects is 90 % which is slightly higher than that when
charge effects are absent (85 %). With a layer of double the thickness, the solid stress
increases by 45 % in the absence of charge effects, whereas the solid stress increases
by only 20 % with charge effects present. This suggests that the presence of charge
might render mechanotransduction through the EGL less sensitive to reduction in its
thickness, which could be clinically important in the context of the EGL remaining
effective under degradation through injury or disease.

The most striking difference that occurs when charge effects are included is the
appearance of reversed flow in the EGL, which leads to negative fluid shear stress
along the length of the vessel wall. This happens because a streaming potential
is created in the EGL which exerts an opposing body force on the fluid. In the
absence of charge effects, negative fluid shear only seems to appear in the presence
of a localised viscous eddy (Wei et al. 2003; Sumets et al. 2015). This could be
important because fluid shear stress affects the endothelial cells in different ways from
the stresses carried through the EGL’s solid matrix (Weinbaum et al. 2007), and could
therefore have significant implications for phenomena such as mechanotransduction
in the microvasculature. For example, these findings suggest that changes in ion
concentrations in the plasma, or compromised EGL charge (resulting from a disease
state, damage, or altered blood chemistry) could influence transmission of mechanical

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

89
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.896


306 P. P. Sumets, J. E. Cater, D. S. Long and R. J. Clarke

information to the underlying endothelial cells, and hence potentially endothelial
remodelling under fluid shear. We have also observed that the presence of charge
effects seem to reduce the sensitivity of the fluid shear stresses to the variations in
wall geometry. By contrast, the solid stresses appear to have a spatial profile which
mirror the variations in wall geometry irrespective of whether or not charge effects
are included.

We note that there are a number of effects that have not been included in this study.
We have considered only small elastic deformations of the EGL, which precludes
crushing of the layer by passing white blood cells. Such a situation would be
of interest in the context of the body’s immune response, where leukocytes must
penetrate sufficiently deep into the EGL to bind to sites of damage or inflammation.
Large scale deformations can be associated with changes in the EGL’s solid volume
fraction, and lead to more acute variations in ion concentration gradients and electric
potential (Damiano & Stace 2002). There is an interesting debate around whether
osmotic pressures set up by these gradients, or the intrinsic elasticity of the EGL,
plays the greater role in restoring the EGL to its undeformed state (Secomb, Hsu &
Pries 1998). We are not in a position to inform that debate here, however, our study
suggests that the coupling of the background flow with the electrochemistry could be
an important factor to consider when attempting to address this question.

We have also assumed that the EGL behaves like an homogeneous, isotropic porous
material. Its actual physical structure is far more complex, and the subject of ongoing
experimental research (Squire et al. 2001; Arkill et al. 2012). Some relatively recent
evidence suggests that the EGL’s microstructure consists of a periodic array of core
proteins of length 150–400 nm, spaced at 20 nm (Squire et al. 2001). It seems
reasonable that such an organisational structure at the microscopic level could lead to
anisotropy in the bulk behaviour at the macroscopic level. Porous models where the
bulk permeability has been obtained through homogenisation might be one way to
incorporate such details. We should also note that we have modelled the mechanics
within the Debye layer using continuum equations, in spite of its very small physical
thickness. This might be an assumption that deserves further scrutiny in the future. We
have also considered a regime where the curvature is small compared to the Debye
layer thickness. While this is sufficient to highlight the importance of electroviscous
effects, the analysis could be extended to consider arbitrary curvatures by following
the approach of Cox (1997) and Yariv et al. (2011) (although this does increase the
complexity of the analysis considerably). In case of slowly varying vessel geometries,
it is perhaps also worth mentioning that a long-wavelength asymptotic approach (cf.
Wei et al. 2003) might also be a convenient alternative to full numerical computation.

Furthermore, the vessel wall has been treated as an impermeable barrier. In fact,
transmural flows can be important, for example, in the formation of lipid-rich plaques
on microvessel walls as a precursor to conditions like atherosclerosis (Vincent,
Sherwin & Weinberg 2010). Such transmural flows can also lead to transport of ions
across between the endothelium and the vessel lumen/EGL (Sawyer & Stanczewski
1976), which could potentially lead to small electrical currents being generated
along the vessel. This, in turn, could affect the generated streaming potential and
consequently the magnitude of the reversed flow effects reported in this study, and
so could warrant future inclusion in the analysis. There has also been some recent
theoretical work which models the EGL as an array of charged cylinders and suggests
that the transmural transport of charged solutes might be significantly affected by the
EGL’s charge. Therefore, it could prove valuable to include transmural flow through
the clefts between endothelial cells into this charged EGL model.
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Appendix A. Zero-order flow for the straight-walled vessel
We seek a solution for the fully developed straight-walled problem in the form

v
(0)
l = (V

(0)
l (x2), 0), v

(0)
f = (V

(0)
f (x2), 0), u(0)0 = (U (0)(x2), 0), (A 1a−c)

p(0) = Ax1, ϕ
(1)
l = ϕ

(1)
f = Bx1, c(1)l = c(1)f = 0. (A 2a−c)

The governing equations are given by

V ′′(0)l = A, V ′′(0)f = A+ αBcs + χV (0)
f , U ′′(0) = φA− αBcs − χV (0)

f , (A 3a−c)

where dashes denote derivatives with respect to x2, together with boundary conditions
of the form

V (0)
f (±1)= U (0)(±1)= 0, (A 4)

V (0)
f (±h)= V (0)

l (±h), V ′(0)l (±h)= V ′(0)f (±h), U ′(0)(±h)= φV ′(0)l (±h), (A 5a−c)

and the zero net current condition∫
−h

−1
V (0)

f dx2 +

∫ 1

h
V (0)

f dx2 = 0, (A 6)

where h= 1− ε and ε is the EGL thickness. The solution is given by

C(1)l = C(1)f = 0, (A 7)

Φ
(1)
l =Φ

(1)
f = Bx1, (A 8)

V (0)
l =

(
Ax2

2

2
+ 1, 0

)
, (A 9)

V (0)
f =

(
D1e−

√
χx2 +D2e

√
χx2 −

A+ αBcs

χ
, 0
)
, (A 10)

U (0)
=

(
−D1e−

√
χx2 −D2e

√
χx2 +

A(φ + 1)x2
2

2
+ Ex2 +M, 0

)
, (A 11)

where

D1 = RD2 + αBcsQ, D2 =
αBcsT − 1

S
, Q=

h
hχe−

√
χ +
√
χe−

√
χh , (A 12a−c)
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FIGURE 9. Velocity profile in a straight-walled vessel (A 9)–(A 10). The EGL has
thickness ε = 0.2 and hence the velocity is given by V (0)

l for −0.8 < x2 < 0.8 and V (0)
f

elsewhere.

T =Qe−
√
χh

(
h
√
χ

2
+

φf

h
√
χ

)
−
φf

χ
+ φf Qe−

√
χh, (A 13)

R=
e
√
χh
−
√
χhe

√
χ

e−
√
χh +
√
χhe−

√
χ
, (A 14)

S=
(

h
√
χ

2
+

φf

h
√
χ

) (
e
√
χh
− Re−

√
χh
)
− φf

(
e
√
χh
+ Re−

√
χh
)
, (A 15)

A=
√
χ

h

[
αBcs

(
Te
√
χh

S
− e−

√
χh

(
RT
S
+Q

))
+

Re−
√
χh
− e
√
χh

S

]
, (A 16)

αBcs =

[
1

S
√
χ

(
R
(
e−
√
χ
− e−

√
χh
)
− e
√
χ
+ e
√
χh
)
−

1− h
S
√
χh

(
Re−

√
χh
− e
√
χh
)]

×

[
1− h
χ
−

1
√
χ

(
T
S

(
e
√
χ
− e
√
χh
)
−

(
RT
S
+Q

) (
e−
√
χ
− e−

√
χh
))

+
1− h
√
χh

(
T
S

e
√
χh
−

(
RT
S
+Q

)
e−
√
χh

)]−1

, (A 17)

E=
√
χ(φ + 1)(D2e

√
χh
−D1e−

√
χh)− Ah(φ + 1), (A 18)

M =D1e−
√
χ
+D2e

√
χ
−

A(φ + 1)
2

− 1. (A 19)

The velocity and displacement profiles in a straight-walled vessel are given by
(A 9)–(A 11) and shown in figures 9, 10. In the EGL we observe negative velocity
values near to the vessel wall. This reverse flow is due to the presence of the
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FIGURE 10. Profile of elastic displacement U(0) across the EGL in a straight-walled
vessel (A 11). The EGL has thickness ε= 0.2.
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FIGURE 11. Electric current profile across the straight-walled vessel. The EGL has
thickness ε = 0.2 and hence the electric current is given by i(0)l for −0.8< x2 < 0.8 and
i(0)f elsewhere.

streaming potential. To better understand the nature of the reverse flow let us analyse
the profile for the electric current, i(0)β (see figure 11). It can be seen that there is a
region with a negative value of current (near the wall), where the current direction
is opposite to the flow direction in the core lumen. This results in an additional
hydrodynamic resistivity (electroviscous effect). In the EGL the flow is retarded by
the porous media resistance as well as by the reverse current, which at some point
results in the appearance of the reverse flow.
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Lumen

EGL

Interface

FIGURE 12. Schematic definition of a local Cartesian system (X1, X2) at the interface
boundary and the rescaled coordinate system (ξ, η) describing the Debye layer.

Appendix B. Debye layer analysis
First, let us consider the fluid phase in regions I and II. Describing the interface

location by the smooth function x2 = f (x1), we can approximate its shape local to a
point on the interface (a, b) by the curve,

X2 = X1f ′(a)+ f ′′(a)(X2
1/2)+ · · · , (B 1)

where X2 = x2 − b and X1 = x1 − a. We consider the case where f ′� 1, f ′′� 1 etc.’,
which means that we can approximate the interface as lying at X2=0, and define X2>
0 as in the lumen, and X2< 0 as in the EGL (see figure 12). It is worth noting that if
we were to consider surfaces with finite curvature, we would need X1� δ1/2, i.e. an
asymptotically small inner region, which would need to asymptotically match to inner
regions local to adjacent points on the interface. Under these circumstances, the type
of finite-curvature analysis given by Yariv et al. (2011) and Cox (1997) is necessary.
Under our small-curvature approximation, the higher-order terms in (B 1) can lead to
additional curvature terms in the governing equations, however, for sufficiently small
curvatures these can be made subdominant to the retained terms (which are in terms
of Debye layer thickness). Hence we describe the Debye layer in this regime using
the scaled variables

X1 = ξ, X2 = δη, vβ1 = ṽβ1, vβ2 = δṽβ2, c̃β± = cβ±(ξ , η), ϕ̃β = ϕβ(ξ , η).

(B 2a−f )

(It can also be shown that there is no consistent solution with an O(1) vertical flow
through the layer; see appendix C.)

Under the Debye layer rescalings (B 2), (3.1)–(3.5) (excluding (3.2)) take the form:

δ2 ∂
2(ṽβ)1

∂ξ 2
+
∂2(ṽβ)1

∂η2
= δ2 ∂ p̃β

∂ξ
+ αβ

∂

∂ξ
(c̃β+ + c̃β−)+ αβ(c̃β+ − c̃β−)

∂ϕ̃β

∂ξ
+ δ2χhβ(ṽβ)1,

(B 3)

δ4 ∂
2(ṽβ)2

∂ξ 2
+ δ2 ∂

2(ṽβ)2

∂η2
= δ2 ∂ p̃β

∂η
+ αβ

∂

∂η
(c̃β++ c̃β−)+ αβ(c̃β+− c̃β−)

∂ϕ̃β

∂η
+ δ4χhβ(ṽβ)2,

(B 4)
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∂(ṽβ)1

∂ξ
+
∂(ṽβ)2

∂η
= 0, (B 5)

γ±δ
2

(
(ṽβ)1

∂ c̃β±
∂ξ
+ (ṽβ)2

∂ c̃β±
∂η

)
− δ2 ∂

2c̃β±
∂ξ 2
−
∂2c̃β±
∂η2

∓

(
δ2 ∂ c̃β±
∂ξ

∂ϕ̃β

∂ξ
+
∂ c̃β±
∂η

∂ϕ̃β

∂η
+ δ2c̃β±

∂2ϕ̃β

∂ξ 2
+ c̃β±

∂2ϕ̃β

∂η2

)
= 0, (B 6)

− δ2 ∂
2ϕ̃β

∂ξ 2
−
∂2ϕ̃β

∂η2
= c̃β+ − c̃β− − hβcs. (B 7)

The following continuity boundary conditions need to be met on the interface, η= 0

ṽl = φf ṽf , ϕ̃l = ϕ̃f ,
∂ϕ̃l

∂n
=
∂ϕ̃f

∂n
, c̃l± = c̃f±,

∂ c̃l±

∂n
=
∂ c̃f±

∂n
. (B 8a−e)

Now we introduce an inner expansion f̃ = f̃ (0)+ δ2 f̃ (1)+· · · . Quantities in the Debye
layer must also match to their counterparts in the bulk lumen/EGL, i.e.

lim
η→∞

(f̃ (0)(ξ , η)+ δ2 f̃ (1)(ξ , η)+ · · ·)= lim
X2→0

( f (0)(X1, X2)+ δ
2f (1)(X1, X2)+ · · ·), (B 9)

where X2 = 0 is the vertical position of the interface in the outer problem.

Leading-order solution
The governing equations at O(1) are the following

∂2(ṽ
(0)
β )1

∂η2
= αβ

∂

∂ξ
(c̃(0)β+ + c̃(0)β−)+ αβ(c̃

(0)
β+ − c̃(0)β−)

∂ϕ̃
(0)
β

∂ξ
, (B 10)

0=
∂

∂η
(c̃(0)β+ + c̃(0)β−)+ (c̃

(0)
β+ − c̃(0)β−)

∂ϕ̃
(0)
β

∂η
, (B 11)

∂(ṽ
(0)
β )1

∂ξ
+
∂(ṽ

(0)
β )2

∂η
= 0, (B 12)

−
∂2c̃(0)β±
∂η2
∓
∂

∂η

(
c̃(0)β±

∂ϕ̃
(0)
β

∂η

)
= 0, (B 13)

−
∂2ϕ̃

(0)
β

∂η2
= c̃(0)β+ − c̃(0)β− − hβcs. (B 14)

Solutions to equations (B 13)–(B 14) are sought in the form: c̃(0)β± = c̃(0)β±(η), ϕ̃
(0)
β =

ϕ̃
(0)
β (η) (since in the outer region ϕ(0)β and c(0)β± are constants (3.10)). In addition, c̃(0)β±

and ϕ̃(0)β are bounded in the far field (c̃(0)
′

β± = 0 and ϕ̃(0)
′

β = 0 as η→∞). We obtain

−c̃′′(0)β± ∓ (c̃
(0)
β±ϕ̃

′(0)
β )′ = 0, (B 15)

−ϕ̃
′′(0)
β = c̃(0)β+ − c̃(0)β− − hβcs, (B 16)

where prime denotes derivatives with respect to η. For the ion distributions we obtain

−c̃′(0)β± ∓ c̃(0)β±ϕ̃
′(0)
= A±. (B 17)
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As c̃′(0)β± (η→∞) = 0, ϕ̃′(0)β (η→∞) = 0 and c̃(0)β±(η→∞) is bounded (as they must
match to constant ion concentrations and potentials in the bulk lumen/EGL), then
A±= 0. Therefore, −c̃′(0)β± ∓ c̃(0)β±ϕ̃

′(0)
β = 0 and c̃(0)β±=Bβ±e∓ϕ̃

(0)
β . Since from (3.10) c̃(0)l+ (η→

+∞) = c̃(0)l− (η → +∞) = 1 and ϕ̃
(0)
l → 0 then Bl+ = Bl− = 1. From the continuity

boundary conditions at the interface (B 8) we can also deduce that Bf±=Bl±= 1. We
therefore arrive at the equations for the electric potential in the EGL

ϕ̃
′′(0)
β = 2 sinh ϕ̃(0)β + hβcs. (B 18)

Equation (B 18) allows us to find a potential jump value across the Debye layer
without the need to find the actual solution. Since ϕ̃(0)f → K (constant) as η→−∞
through matching to the bulk lumen/EGL, we conclude that ϕ̃′′(0)f → 0. From (B 18)
we obtain the limiting form

0= 2 sinh ϕ̃(0)β (−∞)+ hβcs. (B 19)

As a result we have

ϕ̃
(0)
l (+∞)= 0, ϕ̃

(0)
f (−∞)= arcsinh

(
−

cs

2

)
, (B 20a,b)

and, hence, the jump [ϕ(0)β ] = arcsinh(−cs/2). Accordingly,

c̃(0)l+ (+∞)= c̃(0)l− (+∞)= 1, (B 21)

c̃(0)f+(−∞)= exp
(
−arcsinh

(
−

cs

2

))
, c̃(0)f−(−∞)= exp

(
arcsinh

(
−

cs

2

))
. (B 22a,b)

Numerical solutions to (B 18) are shown in figure 13 and show that the predicted
value of the jumps are correct. Ion concentration distributions can be seen on figure 14.
Numerical solutions were obtained using the bvp4c MATLAB routine which solves
boundary value problems for ordinary differential equations. The infinitely long
integration interval (−∞,+∞) is replaced by the finite length [−a,a] where the value
of a is increased until convergence is reached (which occurs here at approximately
a= 10).

We now consider the leading-order velocities. Since ϕ̃(0)β and c̃(0)β± depend only on η,
then (B 10)–(B 12) reduce to

∂2(ṽ
(0)
β )1

∂η2
= 0, (B 23)

∂(ṽ
(0)
β )1

∂ξ
=−

∂(ṽ
(0)
β )2

∂η
, (B 24)

where (v(0)β )i denotes the ith component of v
(0)
β . From (B 23) we obtain

(ṽ
(0)
β )1 = Vβ(ξ)η+ Vβ(ξ). (B 25)

From the matching condition (B 9) we see

lim
η→∞

(Vβ(ξ)η+ Vβ(ξ)+ · · · )= lim
X2→0

(
(v
(0)
β )1(X1, X2)+ · · ·

)
, (B 26)
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FIGURE 13. Distribution of the electric potential ϕ̃(0)β (——) across the Debye layer,
showing a jump in value of [ϕ(0)β ] = arcsinh(−cs/2) (- - - -) with cs = 1.
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FIGURE 14. Distribution of the positive c̃(0)β+ (- - - -) and negative c̃(0)β− (——) ions
concentrations across the Debye layer alongside the limited values predicted by
(B 22a,b) ((— · —) and (· · · · · ·)) when cs = 1.

and so Vβ = 0 (to avoid unbounded growth), Vβ(X1)= (v
(0)
β )1(X1, 0), i.e. the bulk flow

slip velocity at the interface.
The vertical component of the velocity found from (B 24) has the form (ṽ

(0)
β )2 =

−V ′β(ξ)η+Wβ(ξ). The matching condition demands that

lim
η→∞

(δ(ṽ
(0)
β )2(ξ , η)+ · · ·)= lim

X2→0
((v

(0)
β )2(X1, X2)+ · · ·). (B 27)
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Taking a power series expansion of (v(0)β )2(X1,X2) about X2=0, and using continuity
in the outer flow we can rewrite (B 27) as

−ηδV ′β(ξ)+ δWβ(ξ)+ · · · = (v
(0)
β )2(ξ , 0)− ηδ

∂(v
(0)
β )1(ξ , 0)
∂ξ

. . . . (B 28)

We conclude that Wβ = 0 and (v(0)β )2(ξ , 0)= 0. Hence, in summary, we have

(ṽ
(0)
β )1 = Vβ(ξ), (ṽ

(0)
β )2 =−V ′β(ξ)η. (B 29a,b)

In summary, the leading-order Debye layer analysis tells us the constant values for
the potential and ion concentrations at leading order in the bulk lumen and EGL, as
well as how the leading-order flow transits the Debye layer. In order to determine
boundary conditions for the next-order corrections which drive the leading-order flow
in the bulk lumen/EGL, it is necessary to go to next order in the Debye layer.

First-order corrections
Since the leading-order flows in the bulk EGL (lumen) are driven by c(1)β and φ(1)β ,

it is necessary to determine the quantities at next order in the Debye layer. At O(δ)
in this inner region, the equations take the form:

∂2(ṽ
(0)
β )1

∂ξ 2
+
∂2(ṽ

(1)
β )1

∂η2
=
∂ p̃(0)β
∂ξ
+ αβ

∂

∂ξ
(c̃(1)β+ + c̃(1)β−)+ αβ(c̃

(0)
β+ − c̃(0)β−)

∂ϕ̃
(1)
β

∂ξ

+αβ(c̃
(1)
β+ − c̃(1)β−)

∂ϕ̃
(0)
β

∂ξ
+ χhβ ṽ

(0)
β1 , (B 30)

0 =
∂ p̃(0)β
∂η
+ αβ

∂

∂η
(c̃(1)β+ + c̃(1)β−)+ αβ(c̃

(0)
β+ − c̃(0)β−)

∂ϕ̃
(1)
β

∂η
+ αβ(c̃

(1)
β+ − c̃(1)β−)

∂ϕ̃
(0)
β

∂η
, (B 31)

∂(ṽ
(1)
β )1

∂ξ
+
∂(ṽ

(1)
β )2

∂η
= 0, (B 32)

− γ±V ′β(ξ)η
∂ c̃(0)β±
∂η
−
∂2c̃(1)β±
∂η2
∓
∂

∂η

(
c̃(0)β±

∂ϕ̃
(1)
β

∂η
+ c̃(1)β±

∂ϕ̃
(0)
β

∂η

)
= 0, (B 33)

−
∂2ϕ̃

(1)
β

∂η2
= c̃(1)β+ − c̃(1)β−. (B 34)

So for ion transport we obtain a linear equation (B 33) subject to the forcing terms
Fβ =−γ±V ′β(ξ)η∂ c̃(0)β±/∂η.

Mirroring the solution decomposition in the bulk EGL and lumen, we seek a
solution as a sum of homogeneous and non-homogeneous parts,

c̃(1)β± = c̃(1)βh± + c̃(1)βp±, ϕ̃
(1)
β = ϕ̃

(1)
βh + ϕ̃

(1)
βp , (B 35a,b)

The homogeneous solution corresponds to the case where Fβ = 0, and respects the
inner boundary conditions (B 8) as well as matches to c(1)± = 0 in the bulk lumen/EGL.
From these we deduce that c̃(1)lh± = c̃(1)fh± = 0 and ϕ̃(1)lh = ϕ̃

(1)
h = θ̃ϕ(ξ).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

89
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.896


Electro-poroelastohydrodynamics of the endothelial glycocalyx layer 315

We seek separable non-homogeneous solutions in the form where the ξ dependence
matches that in the forcing term, ϕ̃(1)βp = −V ′β(ξ)ψ̃β(η), c̃(1)βp± = −V ′β(ξ)s̃β±(η) with
functions ψ̃β(η) and s̃β±(η) that are to be defined.

The total solution for the lumen is then given by

ϕ̃
(1)
β = θ̃ϕ(ξ)− V ′β(ξ)ψ̃β(η), (B 36)

c̃(1)β± = −V ′β(ξ)s̃β±(η), (B 37)

where

s̃β+ = c̃(0)β+(f̃β+ − ψ̃β), (B 38)

s̃β− = c̃(0)β−(f̃β− + ψ̃β), (B 39)

and fβ±(η) are the complementary functions. Substitution of (B 38), (B 39) into (B 33),
(B 34) and using solution (B 17) gives the equations for fβ± and ψ̃β

f̃ ′′β+ − f̃ ′β+ϕ̃
′(0)
β + γ+ηϕ̃

′(0)
β = 0, (B 40)

f̃ ′′β− + f̃ ′β−ϕ̃
′(0)
β − γ−ηϕ̃

′(0)
β = 0, (B 41)

ψ̃ ′′β = 2ψ̃β cosh ϕ(0)β − f̃β+c̃(0)β+ + f̃β−c̃(0)β−. (B 42)

Equations (B 40)–(B 42) are subject to the conditions that functions f̃β± and ψ̃β are
bounded at infinity and continuous at the interface η = 0 (since ϕ̃

(1)
β and c̃(1)β± are

bounded and continuous). In other words

f̃ ′β±(±∞)= ψ̃
′

β(±∞)= 0, (B 43)

f̃l±(0)= f̃f±(0), f̃ ′l±(0)= f̃ ′f±(0), ψ̃l(0)= ψ̃f (0), ψ̃ ′l (0)= ψ̃
′

f (0). (B 44a−d)

Equations (B 40)–(B 42) with the boundary conditions (B 43) and (B 44) are solved
numerically (see figure 15). Note that both the anion and cation concentrations tend
to the same value at infinity which agrees with the need for electroneutrality in the
outer solution. As a result we obtain the limiting values

Alc = s̃l+(+∞), Afc = s̃f+(−∞), Alϕ = ψ̃l(+∞), Afϕ = ψ̃f (−∞) (B 45a−d)

necessary to formulate boundary conditions on the interface for the outer problem.
With c̃(1)β± and ϕ̃(1)β evaluated we are able to solve (B 31) to determine pressures p̃(0)β .

Pressure is also decomposed into homogeneous p̃(0)βh = P̃β(ξ) and non-homogeneous
p̃(0)βp =−V ′β(ξ)P̃β(η) components, so that p̃(0)β = P̃β(ξ)−V ′β(ξ)P̃β(η). The homogeneous
part is continuous across the Debye layer and it follows from the matching condition
(B 9) that P̃β(ξ) = pβ(ξ , 0) where pβ(X1, X2) is an outer pressure that is driven by
gradients at the inlet/outlet. From (B 31) we obtain the following equations for P̃β(η)

P̃ ′β = −αβ(s̃β+ + s̃β−)′ − αβ(c̃
(0)
β+ − c̃(0)β−)ψ̃

′

β − αβ(s̃β+ − s̃β−)ϕ̃
′(0)
β , (B 46)

which are of the first order and subject to a Dirichlet-type boundary condition that
needs to be specified when either η→+∞ or η→−∞. As we are only concerned
with pressure jumps over the Debye layer, without loss of any generality we can set
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FIGURE 15. Solutions ψ̃ (——), s̃+ (- - - -) and s̃− (— · —) across the Debye layer
when cs = 1.
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FIGURE 16. Solutions P̃β across the Debye layer when cs = 1.

P̃β(η→+∞)= 0. A numerical solution to (B 46) is shown in figure 16. This gives
the value of pressure jump across the Debye layer [p(0)β ] = Vβ(ξ)′Ap where

Ap = P̃β(−∞). (B 47)

Let us explore a traction vector exerted on the interface. A stress tensor within the
Debye layer has the form σ̃

(0)
β11=−p̃(0)β + 2V ′β(ξ), σ̃

(0)
β12= σ̃

(0)
β21= 0, σ̃ (0)β22=−p̃(0)β − 2V ′β(ξ),

so the traction vector has components t̃(0)β1 = σ̃
(0)
β11n1+ σ̃

(0)
β12n2, t̃(0)β2 = σ̃

(0)
β12n1+ σ̃

(0)
β22n2 where

n= (n1,n2) is a normal at the interface. We conclude that the traction vector undergoes
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a jump due to a jump in pressure, so [t(0)β ] =−[p
(0)
β n].

c(1)lh = c(1)fh , ϕ
(1)
lh = ϕ

(1)
fh , (B 48a,b)

and non-homogeneous components

c(1)βp =−Aβc
∂(v

(0)
β · τ )

∂τ
, (B 49)

ϕ
(1)
βp =−Aβϕ

∂(v
(0)
β · τ )

∂τ
, (B 50)

v
(0)
l = φf v

(0)
f , σ

(0)
l · n= σ

(0)
f · n− Ap

∂(v
(0)
f · τ )

∂τ
n, (B 51a,b)

where τ is a local tangent vector.

Appendix C. Flow scalings in the Debye layer
Let us suppose the scalings given by (B 2), with the exception that we will suppose

that there is an O(1) vertical flow v2 = v̄
(0)
2 + · · · . Continuity at O(1/δ) tells us that

v̄
(0)
2 must therefore be constant through the layer, i.e. v̄(0)2 (ξ , η) = v̄

(0)
2 (ξ). The inner

ionic vertical fluxes at O(1) would also be given by

J̄(0)
±
= γ±c̄(0)

±
v̄
(0)
2 −

dc̄(1)±
dη
∓ c̄(0)
±

dϕ̄(1)

dη
∓ c̄(1)
±

dϕ̄(0)

dη
= A±, (C 1)

where A± is a constant since the Nernst–Planck transport equation at O(1/δ) tells us
that ∂ηJ̄

(0)
± = 0 (the argument here remains the same whether the variables above are

those in the lumen, or the EGL). These inner fluxes must match to the vertical O(1)
fluxes in the bulk lumen/EGL which, by virtue of the fact that the zeroth-order ion
concentrations and potential are constant, are given by

J(0)
±
= γ±c(0)

±
v
(0)
2 . (C 2)

Since c̄(0)± and ϕ̄(0) must match to their counterparts in the bulk lumen/EGL in their
own right

−
dc̄(1)±
dη
∓ c̄(0)
±

dϕ̄(1)

dη
∓ c̄(1)
±

dϕ̄(0)

dη
→ 0, (C 3)

and

c̄(0)
±
→ A±/(γ±v̄

(0)
2 ) (C 4)

as η→±∞. However, v̄(0)2 is constant through the Debye layer, with the result that
both c̄(0) and c̄(0)+ would not jump across the Debye layer. This would imply the same
constant ion concentrations in both the bulk lumen/EGL, which is not compatible with
the bulk electroneutrality conditions at zeroth order (3.9). Hence we deduce that there
can be no O(1) vertical flow through the Debye layer.
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