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We examine nonlinear geostrophic adjustment in a rapidly rotating (small Rossby
number Ro) stably neutrally stratified (SNS) fluid consisting of a stratified upper
layer with N > f (N is the buoyancy frequency, f the Coriolis parameter) and
a homogeneous lower layer, the density and other fields being continuous at the
interface between the layers. The angular speed of rotation is non-parallel to gravity;
the traditional and hydrostatic approximations are not used. The wave spectrum in the
model consists of internal and gyroscopic waves. During the adjustment an arbitrary
long-wave perturbation is split in a unique way into slow quasi-geostrophic (QG) and
fast ageostrophic components with typical time scales (Ro f )−1 and f−1, respectively.
The QG flow is governed by two coupled nonlinear equations of conservation of QG
potential vorticity (PV) in the layers. The fast component is a sum of internal waves
and inertial oscillations (long gyroscopic waves) confined to the homogeneous layer
and modulated by an amplitude depending on coordinates and slow time. On times
t ∼ ( f Ro)−1 the slow component is not influenced by the fast one but the inertial
oscillations amplitude is coupled to the QG flow and obeys an equation practically
coinciding with that in the barotropic case (Reznik, J. Fluid Mech., vol. 743, 2014,
pp. 585–605). A non-stationary boundary layer with large vertical gradients of
horizontal velocity develops in the stratified layer near the interface to prevent
penetration of the inertial oscillations into the stratified fluid; an analogous weaker
boundary layer arises near the upper rigid lid. At large times the internal waves
gradually decay because of dispersion and the resulting motion consists of the slow
QG component and inertial oscillations confined to the barotropic lower layer.

Key words: rotating flows, stratified flows, waves in rotating fluids

1. Introduction
Reznik (2014) examined nonlinear geostrophic adjustment with gyroscopic waves

of a barotropic fluid rotating at a constant angular speed Ω non-parallel to gravity.
The rotation was assumed to be rapid (the Rossby number Ro=U/f L is small) and
the motion to be large scale (the horizontal scale L greatly exceeds the fluid layer
depth H); here U is the typical horizontal velocity and f = 2Ωsinϕ (see figure 1) is
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FIGURE 1. Schematic representation of rotating stably neutrally stratified fluid.

the Coriolis parameter. It was shown that an arbitrary perturbation is split in a unique
way into slow and fast components evolving with characteristic time scales (Ro f )−1

and f−1. Equations governing each of the components were derived and analysed. The
slow component does not depend on depth and is close to the geostrophic balance. On
times O(1/f Ro) the slow component is not influenced by the fast one and obeys the
two-dimensional fluid dynamics equation for a geostrophic streamfunction. The fast
component consists of long gyroscopic waves and is a packet of inertial oscillations
modulated by an amplitude depending on coordinates and slow time. The horizontal
component of twice the angular speed fs = 2Ωcosϕ was not assumed to be zero
and neither the traditional approximation (TA) nor the hydrostatic approximation were
used.

In this work we generalize these results to the case of a stratified fluid. In stratified
fluid under the TA ( fs = 0) sub-inertial gyroscopic waves coexist with super-inertial
internal waves only under the condition Nmin < f where Nmin is the minimal value
of the buoyancy frequency N (e.g. Kamenkovich 1977); in strongly stratified fluid,
i.e. for Nmin > f , only super-inertial internal waves are possible. Here we consider a
stably neutrally stratified (SNS) fluid which is the simplest model where gyroscopic
and internal waves coexist together. The fluid consists of stratified upper layer with
N > f and homogeneous lower layer, the density and other fields being continuous at
the interface between the layers. The configuration is of practical interest since recent
observations indicate that, at least in some parts of the world’s oceans, there exist
practically homogeneous or very weakly stratified (i.e. with N 6 f ) near-bottom layers
several hundred metres thick (e.g. van Haren & Millot 2005; Timmermans, Melling
& Rainville 2007).

Reznik (2013) examined the linear dynamics of SNS fluid with and without rotation.
A special feature of the system is the wave mode related to the homogeneous layer.
In non-rotating fluid this is the zero-frequency homogeneous layer vortex mode
related to conservation of three-dimensional vorticity in the homogeneous layer. In
the mode a steady three-dimensional velocity field is confined to the homogeneous
layer, and at the interface between the layers the vertical velocity is zero and the
horizontal velocity can be discontinuous. The discontinuity results in a non-stationary
boundary layer arising near the interface at large times that prevents penetration of a
stationary signal into the upper stratified layer. Besides this mode, the wave spectrum
also contains internal waves and the zero-frequency horizontal vortex mode with zero
vertical velocity.

In rotating SNS fluid the horizontal and homogeneous layer vortex modes turn into
the geostrophic mode and gyroscopic waves, respectively. The wave spectrum of the
system has been examined by taking into account the horizontal component of the
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Geostrophic adjustment with gyroscopic waves: stratified fluid 607

angular speed of the Earth’s rotation, i.e. without the traditional and hydrostatic
approximations. The spectrum combines sub-inertial gyroscopic waves in the
homogeneous fluid (e.g. LeBlond & Mysak 1978; Brekhovskikh & Goncharov 1994)
and internal and internal inertio-gravity waves in the stably stratified fluid (Badulin,
Vasilenko & Yaremchuk 1991; Kasahara 2003; Gerkema & Shrira 2005; Gerkema
et al. 2008).

The paper is organized as follows. In § 2 the governing equations of SNS fluid are
given. In § 3 a geostrophic mode in the system is examined and long internal and
gyroscopic waves are briefly discussed. Section 4 contains non-dimensional equations
and an asymptotic procedure for finding the solution. The lowest-order solution as a
sum of a quasi-geostrophic (QG) component, internal waves and modulated inertial
oscillations located in the lower layer is represented in § 5; special attention is paid
to analysis of non-stationary boundary layers arising near the interface and upper rigid
lid. In § 6 the first-order solution is analysed and slow evolution of the QG flow
and inertial oscillations is described. Section 7 contains a discussion and conclusions.
Some technical details of calculations are given in appendices A–G.

2. Governing equations

We consider a fluid layer of constant depth H, bounded by two rigid lids and
rotating as a whole at a constant angular speed Ω which, generally, is not parallel
to gravity (directed along the z-axis in figure 1). To provide in a simple way for the
coexistence of internal and gyroscopic waves (i.e. the condition Nmin < f ) we assume
that the fluid density ρ, being continuous, depends on the depth z in the upper layer
of depth h1 − η and is constant in the lower layer of depth h2 + η where h1 and
h2=H−h1 are constant mean depths of the layers and η=η(x, y, t) is the perturbation
of interface between the layers (see figure 1).

Correspondingly, the density ρ and pressure p in the layers are given by the
formulae:

ρ =
{
ρs(z)+ ρ ′, 0 > z >−h1 + η
ρ0 = const., −h1 + η> z >−H; (2.1a)

p =


g
∫ 0

z
ρsdz+ p′, 0 > z >−h1 + η

−gρ0(z+ h1)+ g
∫ 0

−h1

ρsdz+ p′, −h1 + η> z >−H,
(2.1b)

where ρs = ρs(z) is the upper layer density at the rest state, the equilibrium density
being continuous, i.e. ρs(−h1)= ρ0; ρ ′, p′ are the variations of density and pressure
from their hydrostatic profiles.

Motion of the fluid obeys the following equations:

ut + u · ∇u+ 2Ω × u+ ezgρ/ρ0 =−∇p′/ρ0, (2.2a)

ρt + u · ∇ρ − ρ0N2w/g= 0, ∇ · u= 0 (2.2b,c)

in the domain 0 > z >−h1 + η, and

ut + u · ∇u+ 2Ω × u=−∇p′/ρ0, ∇ · u= 0 (2.3a,b)
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608 G. M. Reznik

in the domain −h1 + η > z > −H. Here u = (u, v, w) is the velocity; u, v, w are
the velocity components along the x-, y-, z- axes, respectively; 2Ω = ey fs + ez f ; g
is the acceleration due to gravity; ex, ey, ez are the unit vectors along corresponding
axes; N2 =−g∂zρs/ρ0. The prime in density variations is omitted and (assuming the
variations to be small) the density is replaced by the constant value ρ0 where it is
not differentiated. At the rigid surface and bottom the velocity satisfies the no-flux
condition:

w|z=0,−H = 0. (2.4a)

Conditions at the interface z=−h1+η depend of the type of solution that is sought.
The solution is assumed to be continuous with all derivatives in the domains above
and below the interface, with a possible singularity at the interface itself. The simplest
model of this kind taking into account effects of density stratification is a two-layer
fluid with a constant upper layer density ρ1 < ρ0. However, the standard two-layer
model does not describe the important property that the gyroscopic waves can be
locked in weakly stratified domains and do not penetrate into strongly stratified ones
(Reznik 2013). That is why in our model the upper layer is stably stratified.

The type of singularity at the interface depends on initial conditions. If at the
initial moment the density and tangential velocity have a discontinuity and the normal
velocity is continuous at the interface then the interface is a tangential discontinuity.
Since the fluid is incompressible, the interface (see e.g. Kochin, Kibel & Rose 1964;
Sedov 1997) is a material surface at which the continuity of pressure should be
fulfilled. We, however, are interested in a more realistic regime when the density
and velocity fields are continuous at the interface at the initial moment and remain
continuous for all time. The continuity of fields prevents possible Kelvin–Helmholtz
instability and makes it possible to study the ‘buffer’ zone between the stably
stratified and homogeneous domains in which a non-stationary boundary layer can
arise (Reznik 2013).

The density is conserved in the fluid elements so they cannot intersect the interface
which, therefore, is a material surface at which the conditions

(ρs + ρ)z=−h1+η = ρ0, w|z=−h1+η = ηt + uηx + vηy (2.4b,c)

should be fulfilled. The continuity of all fields means that in addition to (2.4b,c) the
horizontal velocity and pressure also are continuous at z=−h1 + η:

[u]z=−h1+η = 0, [v]z=−h1+η = 0, [p]z=−h1+η = 0; (2.4d–f )

here and below [a]z=z0 = a|z=z0+0 − a|z=z0−0. We note that the continuity of horizontal
velocity together with (2.4c) provide the continuity of the vertical velocity w. The
continuity of pressure (2.4f ) together with (2.1b) implies for the pressure deviation p′:

[p′]z=−h1+η = g
∫ −h1+η

−h1

(ρs − ρ0)dz. (2.4g)

Finally, the initial conditions can be written as:

(u, v, ρ)t=0 = (uI, vI, ρI)(x, y, z); wI =−
∫ z

−H
(∂xuI + ∂yvI)dz; (2.4h,k)

here and below the subscript ‘I’ denotes initial fields.
The problem (2.2), (2.3) and (2.4) seems to be overdetermined since three

conditions of continuity (2.4d–f ) are used instead of one condition of continuity
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of pressure as in the case of tangential discontinuity. It turns out, however, that the
conditions (2.4d–f ) are not independent as will be seen from the perturbation analysis
below: the continuity of pressure together with continuity of initial velocity fields
guarantees the continuity of the fields all the times.

We emphasize that the continuity of the fields does not imply continuity of
their derivatives. If the derivatives (of any order) are discontinuous at z = −h1 + η
then the interface is a so-called weak discontinuity. Details of the theory of weak
discontinuities can be found in Kochin et al. (1964). For example, if the buoyancy
frequency N(z) is not zero at z=−h1, i.e.

N(−h1) 6= 0, (2.5)

then the interface is a weak discontinuity, since the physical fields here are continuous
but their gradients are discontinuous. In some calculations below we will use the
simplest configuration with a weak discontinuity when the background upper layer
density profile ρs(z) linearly depends on z and N is a constant, i.e.

ρs =−ρ0

g
N2(z+ h1)+ ρ0. (2.6)

It follows from (2.4b), (2.6) that in this case

ρ|z=−h1+η =
ρ0

g
N2η; (2.7)

the formula relates density perturbation at the interface to perturbation of the interface.
Also using (2.4g) and (2.6) one can find a jump of pressure variation across the
interface z=−h1 + η:

[p′]z=−h1+η =−
ρ0

2
N2η2. (2.8)

3. Linear modes
In this section we consider linear modes in the system (2.2), (2.3). The wave

spectrum consists of gyroscopic, internal and internal inertio-gravity waves with
non-zero frequency and a zero-frequency geostrophic mode. The non-zero frequency
waves were examined in detail in Reznik (2013) and here only the case when
stratification is strong, f /N0 � 1 (N0 is the characteristic buoyancy frequency), and
the waves are long, L� H, is briefly discussed in § 3.1. Here and below L is the
horizontal scale of motion. The geostrophic mode is considered in § 3.2 without
restrictions on the stratification and scales.

3.1. Long gyroscopic and internal waves
The linearized version of (2.2), (2.3) can be reduced to two equations for the vertical
velocity w (e.g. Miropol’sky 2001):

(∂tt + f 2)w+zz +∇2
h w+tt + 2f fsw+yz + f 2

s w+yy +N2∇2
h w+ = 0, (3.1a)

(∂tt + f 2)w−zz +∇2
h w−tt + 2f fsw−yz + f 2

s w−yy = 0, (3.1b)

where ∇2
h = ∂xx + ∂yy. Boundary conditions for (3.1a) and (3.1b) follow from

(2.4a,c,d,e) and the continuity equations (2.2c), (2.3b):

w+|z=0 =w−|z=−H = 0, [w] = [wz] = 0. (3.2a,b)
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610 G. M. Reznik

Here and below the superscripts + and − denote quantities in the upper and lower
layers, respectively; [a] = a+|z=−h1 − a−|z=−h1 .

The wave solutions

w± =W±(z) exp[i(kx+ ly− σ t)] + c.c. (3.3)

to (3.1), (3.2) were examined in detail in Reznik (2013). Here we are interested in
the physically important scale range

H� L 6 LR, (3.4)

where LR = HN0/f is the Rossby scale. Neglecting small terms in (3.1) gives the
following approximate equations:

(∂tt + f 2)w+zz +N2∇2
h w+ = 0, (∂tt + f 2)w−zz = 0. (3.5a,b)

The wave spectrum of the system (3.5), (3.2) consists of super-inertial internal waves
(3.3) with σ > f and inertial oscillations with σ = f . Amplitudes W±(z) of the internal
wave obey the equations

W+zz + q2W+ = 0, W−zz = 0, q2 = κ2N2

σ 2 − f 2
, (3.6a–c)

where κ =√k2 + l2. In the case (2.6) of constant N the solution to (3.6a,b) satisfying
the boundary conditions (3.2) is readily found:

W+n =− sin qnz/sin qnh1, W−n = (z+H)/h2, n= 1, 2, . . . . (3.7)

Here qn = sn/h1 where sn is the nth root of the equation

s cot s=−h1/h2. (3.8)

The corresponding dispersion relation has the form:

σn = σ iw
n =

√
f 2 + κ2h2

1N2/s2
n. (3.9)

In accordance with (3.7) the vertical mode amplitude oscillates in the upper stratified
layer and depends linearly on depth in the lower one.

For the inertial oscillations with σ = f it follows from (3.5) that

w+ = 0, w− = As(x, y, z) sin f t+ Ac(x, y, z) cos f t; (3.10)

here the amplitudes As,c are arbitrary functions obeying the conditions:

As,c|z=−h1 = ∂zAs,c|z=−h1 = As,c|z=−H = 0. (3.11)

Thus the inertial oscillations here are confined to the homogeneous lower layer and
do not penetrate into the upper one.

The non-hydrostatic and ‘non-traditional’ terms neglected in (3.1) to derive (3.5)
are of no importance for the internal waves but they affect the inertial oscillations
(3.10) (see Reznik 2013 for more details). The terms transform the oscillations into
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sub-inertial long gyroscopic waves of ‘standard’ form (3.3) with the approximate
dispersion relation:

σn = σ gw
n = f − fsh2

2nπ
|l|, n= 1, 2, . . . , (3.12)

coinciding with the dispersion relation of sub-inertial long gyroscopic waves in
barotropic fluid of depth h2 (see Reznik 2014). In these waves the vertical mode
amplitudes Wn oscillate in the lower layer and decay exponentially in the upper one
with increasing distance from the interface. As follows from (3.9) and (3.12), in the
scale range (3.4) the internal waves are strongly dispersive, whereas the gyroscopic
ones are characterized by a weak dispersion.

It is seen from (3.9) and the above discussion that the gyroscopic (internal) waves
become close to the inertial oscillations if L�H(L� LR). In the case f /N0� 1 the
Rossby scale greatly exceeds the depth H, i.e. the gyroscopic waves make possible
the inertial oscillations with L 6 LR which are shorter than the ‘traditional’ inertial
oscillations related to the long internal modes from the scale range L � LR. One
can assume that this fact explains the large vertical velocities in inertial oscillations
observed in the nearly barotropic deep Western Mediterranean (van Haren & Millot
2005).

3.2. Geostrophic mode
Besides the wave modes (3.3) there exists a zero-frequency geostrophic mode
satisfying the linearized equations (2.2), (2.3) with the boundary conditions (2.4).
This mode is related to conservation laws of potential vorticity (PV) which are
conveniently derived using the new variables (cf. Reznik 2014):

x′ = x, y′ = y− αz, z′ = z. (3.13)

With these variables the linearized problem (2.2), (2.3) is written in the form:

u±t − fv± + fsw± =−p±x′ , v±t + fu± =−p±y′ , (3.14a,b)

w±t − fsu± + gρ±/ρ0 =−p±z′ + αp±y′ , ρ+t − (ρ0N2/g)w+ = 0, (3.14c,d)

u±x′ + v±y′ +w±z′ − αw±y′ = 0. (3.14e)

Here and below α = fs/f , ρ− = 0, p± = p′±/ρ0.
Elimination of the pressure p± from (3.14a,b) gives the vorticity equation:

(v±x′ − u±y′ )t − fw±z′ = 0. (3.15)

The stratified layer PV is obtained from (3.15) and (3.14d):

Π+ = v+x′ − u+y′ − ( fg/ρ0)(ρ
+/N2)z′ =Π+I (x′, y′, z′). (3.16)

To find an analogous invariant in the homogeneous layer we use the boundary
condition at the interface (2.4c). With the variables (3.13) the equation for the
interface becomes more complicated:

z′ =−h1 + η(x′, y′ + αz′, t). (3.17)
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612 G. M. Reznik

However, in the linear approximation (3.17) takes the form z′=−h1+η(x′, y′−αh1, t),
therefore the linearized condition (2.4c) can be written as

w|z′=−h1 = ηt. (3.18)

Integration of (3.15) over z′ from −H to −h1 taking into account (3.18) and (2.4a)
gives the PV in the homogeneous layer:

Π− = 1
h2

∫ −h1

−H
(v−x′ − u−y′ )dz′ − f

h2
η=Π−I (x′, y′). (3.19)

The values Π±I of the invariants are determined by the initial fields (2.4h) being equal
to the left-hand sides of (3.16), (3.19) at the initial moment.

The potential vorticity in the SNS fluid is a ‘hybrid’ of those in a stratified
fluid and in a barotropic fluid with a free surface. The upper layer PV (3.16) is a
sum of the vertical component of relative vorticity and the term −( fg/ρ0)(ρ

+/N2)z′

corresponding to the vortex-tube stretching between isopycnals (e.g. Pedlosky 1979).
In the homogeneous layer PV equation (3.19) the first term is the depth-averaged
relative vorticity and the term −fη/h2 is the vortex-tube stretching due to perturbations
of the interface.

The third invariant is the surface density ρ+|z′=0; in view of (3.14d) and the no-flux
condition (2.4a) we have:

ρ+|z′=0 = ρ+I |z′=0. (3.20)

As in the barotropic case (Reznik 2014), the solution to the problem (3.14) is
represented as a sum of a geostrophic stationary part (ug, ρg, pg) with non-zero
invariants Π±, ρ+|z′=0 and an ageostrophic wave part (ua, ρa, pa) consisting of the
harmonic waves (3.3) with non-zero frequencies and the zero invariants. One can
readily show, using the bottom no-flux condition from (2.4a), that in the stationary
solution the vertical velocity is zero and the lower layer motion does not depend
on z′:

u±g =−(1/f )∂y′p±g , v±g = (1/f )∂x′p±g , w±g = 0, (3.21a–c)

ρ±g =−(ρ0/g)∂z′p±g , ∂z′p−g = 0. (3.21d,e)

The geostrophic pressure p±g is determined using (3.16), (3.19):

∇ ′2h p+g + f 2(∂z′p+g /N
2)z′ = fΠ+I (x

′, y′, z′), (3.22a)

∇ ′2h p−g − ( f 2/h2)ηg = fΠ−I (x
′, y′), (3.22b)

where ∇ ′2h = ∂x′x′ + ∂y′y′ . Boundary condition at the surface z′ = 0 follows from (3.20)
and (3.21d):

∂z′p+g |z′=0 =−(g/ρ0)ρ
+
I |z′=0. (3.23a)

The boundary condition for p+g at the interface is discussed in appendix A and can
be written in a form suitable both for continuous (N2(−h1) = 0) and discontinuous
(N2(−h1) 6= 0) buoyancy frequency profiles:

lim
z′→−h1

[(∂z′p+g /N
2)z′ − ∂z′p+g /(h2N2)] = 1

f
(Π+I −Π−I )z′=−h1 . (3.23b)
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Knowing p+g one can determine p−g by continuity of pressure, p−g = p+g |z=−h1 , and then
ηg from (3.22b).

It is seen from (3.21) that the motion in the geostrophic mode occurs in planes
parallel to the rigid boundaries, the motion in the homogeneous layer being columnar
with columns elongated parallel to the angular rotation speed Ω . In the upper stratified
layer the motion is more complicated; its structure is not columnar and depends on
the initial horizontal velocity and density.

Under the TA (when α=0) the geostrophic mode is described by (3.21), (3.22) with
x, y, z instead of x′, y′, z′. This means that the non-traditional terms are of importance
in QG dynamics if the dominating horizontal scale L of initial perturbation is smaller
than or of the order of the fluid depth:

L 6 H. (3.24)

For a long-wave perturbation with

L�H (3.25)

the contribution of the term αz in (3.13) is small, i.e. the non-traditional terms have
a weak effect on the long-wave geostrophic mode.

The ageostrophic wave component (ua, ρa, pa) obeys the same equations (3.14a–e)
but the invariants (3.16), (3.19) and the surface density ρa(x′, y′, 0) are zero, i.e.

Π+a = ∂x′v
+
a − ∂y′u+a − ( fg/ρ0)(ρ

+
a /N

2)z′ = 0, (3.26a)

Π−a =
1
h2

∫ −h1

−H
(∂x′v

−
a − ∂y′u−a )dz′ − f

h2
ηa = 0, (3.26b)

ρ+a |z′=0 = 0. (3.26c)

The wave component is a superposition of harmonic waves considered in Reznik
(2013). The waves are dispersive, therefore for localized initial conditions (when
uI, vI → 0 as r =√x2 + y2 →∞) the wave part decays with increasing time at a
fixed point in space and the full solution tends to the above stationary geostrophic
mode. Thus, in the barotropic layer any localized initial state tends with time to a
geostrophically balanced vortex state with axis parallel to Ω , exactly as in the purely
barotropic case (Reznik 2014).

Nonlinear adjustment at small Rossby number Ro=U/f L� 1 (U is the horizontal
velocity scale) results in a slow (as compared to the inertial time f−1) evolution of
the geostrophic component on the advective time Ta=O(1/Ro f ). The scenario of the
adjustment depends on the relationship between the typical flow velocity U and the
group velocity cg of the fast waves (see Reznik 2014 for more details). In the rest of
paper we examine the nonlinear evolution of large-scale perturbations with H�L6LR.
It was shown in § 3.1 that in this range the wave spectrum consists of internal waves
and the gyroscopic ones which are close to inertial oscillations. In view of (3.9)
and (3.12) the corresponding group velocities ciw

g and cgw
g of the internal and

gyroscopic waves are O( f LR) and O( f H), respectively. For L in the range (3.4)
and small Rossby number this means that the group velocity of internal waves
greatly exceeds both the flow velocity U and the group velocity of gyroscopic waves,
and the internal waves only weakly interact with the slow geostrophic component. At
the same time, the interaction between the gyroscopic waves and geostrophic flow
is much more effective, especially if cgw

g 6 U. In what follows we assume that the
group velocity cgw

g is of the order of the flow velocity U:

cgw
g =O( f H)∼U. (3.27)
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614 G. M. Reznik

4. Non-dimensional equations and asymptotic expansions
To write the system (2.2), (2.3), (2.4) in non-dimensional form we introduce the

time scale T = f−1, the vertical scale H, the horizontal scale L = LR, the scales of
horizontal and vertical velocities U and W = (H/L)U, respectively, and the scales of
pressure P= ρ0 f LU and density variations R= ρ0Ro(N2

0 H/g). The characteristic scale
Z of the interface perturbation is obtained from (2.4c): Z = RoH.

In vector form the non-dimensional equations are written as:

ût + Ro û · ∇̂û+ 2Ω̂ × û+ ezρ/δ =−∇̂p, (4.1a)
ρt + Ro û · ∇̂ρ −N2w= 0, ∇̂ · û= 0 (4.1b,c)

in the domain 0 > z >−h1 + Roη; and

ût + Ro û · ∇̂û+ 2Ω̂ × û=−∇̂p, ∇̂ · û= 0 (4.2a,b)

in the domain −h1 + Roη > z > −1. Here û = (u, v, δw), ∇̂ = (∂x, ∂y, ∂z/δ), 2Ω̂ =
eyα + ez, δ = H/L = f /N0; here and below the notation for non-dimensional h1, h2
and N remains unchanged. In the boundary and initial conditions (2.4), (2.7), (2.8)
written in non-dimensional form the depth H is replaced by 1 and the interface surface
becomes z=−h1 + Roη.

We are interested in the case when the motion is large scale and the rotation is
fast, i.e. both the aspect ratio δ and the Rossby number Ro are small parameters. The
condition (3.27) means that

δ = Ro. (4.3)

The solution is represented in the following asymptotic form (e.g. Reznik, Zeitlin &
Ben Jelloul 2001):

(u, v,w, p, ρ)= (u0, v0,w0, p0, ρ0)(x, y, z, t, T1, . . .)+ δ(u1, v1,w1, p1, ρ1)+ · · · (4.4)

where Tn= δnt, n= 1, 2, . . ., are the slow times. Substitution of (4.4) into (4.1), (4.2)
gives at the lowest order:

∂tu±0 − v±0 =−∂xp±0 , ∂tv
±
0 + u±0 =−∂yp±0 , ρ±0 =−∂zp±0 , (4.5a–c)

∂tρ
±
0 −N2

±w±0 = 0, ∂xu±0 + ∂yv
±
0 + ∂zw±0 = 0; (4.5d,e)

w+0 |z=0 =w−0 |z=−1 = 0, (4.6a)

lim
z→−h1

ρ+0 /N
2 = η0, w±0 |z=−h1 = ∂tη0, [u0, v0, p0] = 0, (4.6b–d)

(u±0 , v
±
0 , ρ

±
0 )t=0 = (u±I , v±I , ρ±I )(x, y, z). (4.6e)

We note that the boundary condition (4.6b) is suitable both for the discontinuous
profile N(z) when N(−h1) 6= 0 and the continuous one with N(−h1) = 0, and is
consistent with (4.5d) and the boundary condition (4.6c).

At the first order we have:

∂tu±1 − v±1 =−∂T1u
±
0 −M±u −αw±0 − ∂xp±1 , ∂tv

±
1 +u±1 =−∂T1v

±
0 −M±v − ∂yp±1 , (4.7a,b)

− αu±0 + ρ±1 =−∂zp±1 , ∂tρ
±
1 −N2

±w±1 =−∂T1ρ
±
0 −M±ρ , (4.7c,d)

∂xu±1 + ∂yv
±
1 + ∂zw±1 = 0. (4.7e)

In (4.5)–(4.7) ρ−0 = ρ−1 =N− = 0, N+ =N(z).
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The first-order boundary and initial conditions are:

w+1 |z=0 =w−1 |z=−1 = 0; (4.8a)

and at z=−h1:

ρ+1 =N2η1 − η0∂zρ
+
0 +NNzη

2
0, [p1] =−N2η2

0/2, (4.8b,c)

w±1 = η1t − η0∂zw±0 + ∂T1η0 + u±0 ∂xη0 + v±0 ∂yη0, (4.8d)
[u1] =−[∂zu0]η0, [v1] =−[∂zv0]η0, (4.8e,f )

(u±1 , v
±
1 , ρ

±
1 )t=0 = 0. (4.8g)

Here [a] = a+|z=−h1 − a−|z=−h1 , N is the non-dimensional buoyancy frequency and

M±u = u±0 ∂xu±0 + v±0 ∂yu±0 +w±0 ∂zu±0 , (4.9a)

M±v = u±0 ∂xv
±
0 + v±0 ∂yv

±
0 +w±0 ∂zv

±
0 , (4.9b)

M+ρ = u+0 ∂xρ
+
0 + v+0 ∂yρ

+
0 +w+0 ∂zρ

+
0 , M−ρ = 0. (4.9c,d)

5. The lowest-order solution
In this section the lowest-order problem (4.5) and (4.6) is examined. First we

construct a solution of the initial problem not taking into account the dependence
on slow times (the so-called standard solution). The standard solution is uniquely
determined by the initial conditions (4.6e) and depends linearly on the initial fields
uI, vI, ρI . To take into account the dependence on slow time, the initial fields in the
standard solution are replaced by functions depending on the slow time; initial values
of the functions are equal to uI, vI, ρI .

5.1. Geostrophic component
The system (4.5), up to constant coefficients, is a simplification of system (3.14) at
fs = α = 0 and the analysis in § 3.2 is directly applied to (4.5). The invariants (3.16),
(3.19) and (3.20) are now non-dimensional and take the form:

Π+ = ∂xv
+
0 − ∂yu+0 − (ρ+0 /N2)z =Π+I (x, y, z), (5.1a)

Π− = 1
h2

∫ −h1

−1
(∂xv

−
0 − ∂yu−0 )dz− η0

h2
=Π−I (x, y), (5.1b)

ρ+0 |z=0 = ρ+I (x, y, 0). (5.1c)

Exactly as in § 3.2 the lowest-order solution is represented as the sum of a geostrophic
part (coinciding with (3.21) mutatis mutandis) and an ageostrophic component with
the zero invariants (5.1). For simplicity of notation the geostrophic and ageostrophic
components will be denoted here by the subscripts ‘g’ and ‘a’ (without the subscript
‘0’). The QG potential vorticity in the layers (3.22) takes the form:

Π+ = ∇2
h p+g + (∂zp+g /N

2)z =Π+I (x, y, z), (5.2a)

Π− = ∇2
h p−g − ηg/h2 =Π−I (x, y). (5.2b)

Equations (5.2) should be solved with the non-dimensional boundary conditions

∂zp+g |z=0 = −ρ+g |z=0 =−ρ+I (x, y, 0), (5.3a)

lim
z→−h1
[(∂zp+g /N

2)z − ∂zp+g /(h2N2)] = Π+|z=−h1 −Π−, (5.3b)

which follow from (3.23).
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616 G. M. Reznik

5.2. Ageostrophic component
The ageostrophic components in the layers obey (4.5), i.e.

∂tu±a − v±a =−∂xp±a , ∂tv
±
a + u±a =−∂yp±a , ρ±a =−∂zp±a , (5.4a–c)

∂tρ
±
a −N2

±w±a = 0, ∂xu±a + ∂yv
±
a + ∂zw±a = 0, ρ−a = 0. (5.4d–f )

Boundary conditions for the ageostrophic quantities are the same as (4.6a–d) and the
initial state is determined after calculating the geostrophic fields (see the previous
subsection):

(ua, va, ρa)t=0 = (uaI, vaI, ρaI)= (uI − ug, vI − vg, ρI − ρg). (5.5)

In addition, the ageostrophic fields are imposed by the restrictions that the PV in the
layers is zero:

∂xv
+
a − ∂yu+a − (ρ+a /N2)z = 0,

1
h2

∫ −h1

−1
(∂xv

−
a − ∂yu−a )dz− ηa

h2
= 0, (5.6a,b)

and the ageostrophic density at z= 0 is zero in view of (5.3a):

ρ+a |z=0 = 0. (5.7)

5.2.1. Some properties of the ageostrophic solution
We now discuss some general properties of the ageostrophic component. One can

show (see appendix B) that the vertically integrated ageostrophic horizontal velocities
and pressure are zero: ∫ 0

−1
(ua, va, pa)dz= 0. (5.8)

The lower layer pressure p−a does not depend on z therefore:

p−a =−
1
h2

∫ 0

−h1

p+a dz. (5.9)

Continuity of the pressure at the interface z=−h1 gives the relation:

p+a |z=−h1 +
1
h2

∫ 0

−h1

p+a dz= 0. (5.10)

It readily follows from (5.4a,b) and (5.10) that

∂tû+a − v̂+a = 0, ∂tv̂
+
a + û+a = 0, (5.11)

where

(û+a , v̂
+
a )= (u+a , v+a )|z=−h1 +

1
h2

∫ 0

−h1

(u+a , v
+
a )dz. (5.12)

The solution to (5.11) is readily written:

û+a + iv̂+a = (û+aI + iv̂+aI)e
−it; (5.13)

û+aI, v̂
+
aI are the initial values of û+a , v̂

+
a .
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Geostrophic adjustment with gyroscopic waves: stratified fluid 617

An important point is that the upper stratified layer does not contain the inertial
oscillations ∼sin t, cos t, i.e.

u+as = v+as = u+ac = v+ac = 0; (5.14)

and similarly for other fields (see appendix C). Here

gs,c = lim
T→∞

2
T

∫ T

0
(sin t, cos t)g(t)dt. (5.15)

In view of (5.14) the integral in (5.12) also does not contain the inertial oscillations,
therefore, as readily follows from (5.12), (5.13), the horizontal velocities at the
interface (u+a , v

+
a )|z=−h1 contain the inertial oscillations (5.13), i.e. (5.14) is valid

for z > −h1 and is not valid at z = −h1. Such a solution structure is typical for
a boundary layer (see also Reznik 2013) when at large times the velocity u+a (for
example) is represented in the form

u+a =Cs[x, y, (z+ h1)t] sin t+Cc[x, y, (z+ h1)t] cos t (5.16)

in a close vicinity of the interface z=−h1. If the functions Cs,c tend to zero as t→∞
at any fixed z>−h1, but, for example, Cs(x, y, 0) 6= 0 then u+as = 0 for z>−h1 and
u+as = Cs(x, y, 0) 6= 0 at z = −h1. We note that in the particular case of zero initial
conditions for û+a , v̂

+
a when

û+aI = v̂+aI = 0, (5.17)

the relations (5.14) are valid everywhere in the upper layer z>−h1 and the boundary
layer in the vicinity of interface does not arise. We emphasize that details of the
buoyancy frequency profile N(z) are unimportant in the above consideration, therefore
one can expect the boundary layer to exist for any upper layer stratification, i.e. for
both smooth and discontinuous profiles of N(z).

5.2.2. Motion in the stratified upper layer
In the upper layer equations (5.4a–e) can be reduced to one equation for the

vertical velocity (e.g. Miropol’sky 2001):

(∂tt + 1)∂zzw+a +N2∇2
h w+a = 0, (5.18)

which should be solved under the initial conditions:

(w+a , ∂tw+a )t=0 = (w+I , ẇ+I )(x, y, z), (5.19a)

the no-flux boundary condition:

w+a |z=0 = 0, (5.19b)

and the boundary condition at z=−h1 which simply follows from (5.12), (5.4e):(
∂zw+a −

1
h2

w+a

)
z=−h1

=−(∂xû+a + ∂yv̂
+
a ). (5.19c)

In (5.19a) the function w+I is equal to

w+I =
∫ 0

z
D+I dz, (5.20a)
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618 G. M. Reznik

and the function ẇ+I is expressed in terms of the initial fields u+aI, v
+
aI, ρ

+
aI (Reznik

2013):

ẇ+I =
∫ 0

z
ζ+aI dz+

∫ 0

z
dz′
∫ z′

−h1

∇2
hρ
+
aIdz′′ + z

∫ 0

−h1

dz
∫ z

−h1

∇2
hρ
+
aIdz′. (5.20b)

In (5.20) and below the operators of two-dimensional divergence D = ux + vy and
vertical vorticity ζ = vx − uy are used; superscripts and subscripts on D, ζ denote the
corresponding velocity fields.

Using (5.13), (5.11) one can represent (see appendix D for details) the boundary
condition (5.19c) in the form:(

∂zw+a −
1
h2

w+a

)
z=−h1

=
[(
∂zw+I −

1
h2

w+I

)
cos t+

(
∂zẇ+I −

1
h2

ẇ+I

)
sin t

]
z=−h1

.

(5.21)
The solution to (5.18), (5.19a,b), (5.21) is written as the sum

w+a =wu +wI cos t+ ẇI sin t, (5.22)

where the auxiliary function wu is a solution of the following forced problem with
zero initial and boundary conditions:

(∂tt + 1)∂zzwu +N2∇2
h wu =−N2∇2

h [w+I cos t+ ẇ+I sin t], (5.23a)

wu|z=0 = 0,
(
∂zwu − 1

h2
wu

)
z=−h1

= 0, (5.23b)

wu|t=0 = ∂twu|t=0 = 0. (5.23c)

Now we represent all variables in (5.22), (5.23) in the form of Fourier integrals, for
example

w+a =
1

2π

∫
w̃+(k, l, z, t)ei(kx+ly)dkdl; (5.24)

and similarly for other values. Here and below the tilde denotes the Fourier amplitude
of the corresponding variable. The amplitude w̃u = w̃u(k, l, z, t) is sought as an
expansion in the vertical modes which here are eigenfunctions of the problem:

Wzz + q2N2W = 0, W|z=0 = 0,
(

Wz − 1
h2

W
)

z=−h1

= 0. (5.25)

The eigenfunctions Wn, eigenvalues qn, and the corresponding wave frequencies σn are
readily found in the case N = const. (cf. (3.7)–(3.9)):

Wn = sin qnz, qn = sn/h1, σn =
√

1+ κ2/q2
n, n= 1, 2, . . . ; (5.26)

here sn is the nth root of (3.8).
The amplitude w̃u can be written as

w̃u =
∞∑

n=1

[
w̃+In cos σnt+ ( ˜̇w+In/σn) sin σnt

]
Wn − w̃+I cos t− ˜̇w+I sin t. (5.27)
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In view of (5.22), (5.27) the Fourier amplitude w̃+a takes the form:

w̃+a =
∞∑

n=1

[
w̃+In cos σnt+ ( ˜̇w+In/σn) sin σnt

]
Wn(z). (5.28)

We see that the upper layer ageostrophic component is the superposition of the long
super-inertial internal waves ∼ exp[i(kx+ ly−σnt)] considered in § 3. The function w+a
does not contain the inertial oscillations (see also § 5.2.1 above) and at the interface
any finite partial sum of the series (5.28) satisfies the second boundary conditions
(5.23b) instead of (5.21). This means that in the very close vicinity of the interface
z = −h1 the wave modes with very large values of n play an important role. Since
qn→∞, σn→1 for n→∞, vertical scales and frequencies of these modes are close to
zero and to the inertial frequency, respectively. The joint effect of these modes forms
the near-interface boundary layer considered below in § 5.2.4.

5.2.3. Motion in the homogeneous lower layer
It readily follows from (5.4a,b,c,f ) that in the lower layer:

∂z(∂tu−a − v−a )= 0, ∂z(∂tv
−
a + u−a )= 0, (5.29a,b)

whence
U−a =U−aI(x, y, z)e−it + Ū(x, y, t). (5.30)

Here Ū = ū+ iv̄ is still unknown depth-independent complex velocity and

U−a = u−a + iv−a , U−aI = u−aI + iv−aI. (5.31a,b)

Integrating (5.30) over z from −1 to −h1 and using (5.8), (5.14) one finds:

Ū =−e−it

h2

∫ −h1

−1
U−aIdz+ ¯̄U(x, y, t), (5.32)

¯̄U(x, y, t)=− 1
h2

∫ 0

−h1

U+a dz, ¯̄Us,c = 0. (5.33a,b)

The ‘non-inertial’ depth-independent velocity ¯̄U(x, y, t) is induced by the upper layer
internal waves and can be calculated from the known vertical velocity w+a which is
given by (5.24), (5.28).

In view of (5.30), (5.32) the horizontal velocity U−a can be written as:

U−a = A(x, y, z)e−it + ¯̄U(x, y, t), (5.34)

A= AI =U−aI −
1
h2

∫ −h1

−1
U−aIdz. (5.35)

The velocity components are given by the formulae:

(u−a , v
−
a ) =

(
1
2
,
−i
2

)
A(x, y, z)e−it + c.c.+ ( ¯̄u, ¯̄v)(x, y, t), (5.36a)

w−a = −
1
2

e−it
∫ z

−1
s(A)dz+ c.c.− (z+ 1)( ¯̄ux + ¯̄vy), s= ∂x − i∂y. (5.36b)
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It follows from (5.35) that ∫ −h1

−1
Adz= 0. (5.37)

Thus in the homogeneous layer the ageostrophic motion is the sum of inertial
oscillations and a field induced by super-inertial internal waves. The condition (5.37)
provides non-penetration of the inertial signal into the stratified layer in the vertical
velocity field. If the amplitude of inertial oscillations AI in (5.35) is zero at the
interface z=−h1:

AI(x, y,−h1)= 0, (5.38)

then the non-penetration is provided for the horizontal velocity, too. One can readily
show that (5.38) is equivalent to the condition (5.17) of absence of the boundary layer.
Obviously, equation (5.38) and, therefore, (5.17) are fulfilled only for particular initial
velocity fields; if this is not the case a non-stationary boundary layer develops near
the interface.

5.2.4. Boundary layer
We now consider the case of general initial conditions when (5.38) is not valid

and the inertial signal in the horizontal velocity is non-zero at the interface z=−h1.
As discussed above, in this case the solution in the domain z >−h1 has a boundary
layer structure in the vicinity of the interface at large times, and is described by
formulae like (5.16). The representation (5.28), (5.24) of the solution as series in
the eigenfunctions Wn(z) is poorly suited to describing such regimes since any finite
partial sum of the series (5.28) obeys the zero boundary conditions (5.23b) and,
therefore, an infinite number of vertical modes with numbers n→∞ should be taken
into account in the boundary layer domain.

To describe the boundary layer dynamics we introduce two new variables:

w̄s = 1
t

∫ t

0
w+a sin tdt, w̄c = 1

t

∫ t

0
w+a cos tdt. (5.39)

The meaning of the variables is that the impact of not near-inertial harmonics on
w̄s,c becomes negligible at large times t� 1 as seen from (5.28). We note that in a
similar boundary layer problem for non-rotating SNS fluid (Reznik 2013) the different
variable

w̄= 1
t

∫ t

0
wdt (5.40)

was used (see also Il’in 1970, 1972 and Kamenkovich & Kamenkovich 1993).
From (5.18), (5.19b), and (5.21) we find:

(tw̄)zztt + 2i(tw̄)zzt + t∇2
h w̄= R= ∂zz(−w+I + iẇ+I ), w̄= w̄s + iw̄c; (5.41a,b)

w̄|z=0 = 0, (5.42a)(
w̄z − 1

h2
w̄
)

z=−h1

= 1
2

[
∂zẇ+I −

1
h2

ẇ+I + i
(
∂zw+I −

1
h2

w+I

)]
z=−h1

. (5.42b)

The boundary condition (5.42b) is written up to small terms of the order of 1/t. When
writing (5.41a) we assume for simplicity N to be constant, i.e. N = 1.
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Geostrophic adjustment with gyroscopic waves: stratified fluid 621

Outside the boundary layers w̄z∼ 1, therefore an approximate solution w̄0 satisfying
(5.41a) in this domain at large t is determined by the equation

t∇2
h w̄0 = R, (5.43a)

i.e.
w̄0 = S(x, y, z)/t, ∇2

h S= R. (5.43b,c)

One can readily check that the terms with derivatives with respect to z on the left-hand
side of (5.41a), (tw̄0)zztt and 2i(tw̄0)zzt, are much smaller than the term t∇2

h w̄0 and,
therefore, are neglected when deriving (5.43).

Obviously, w̄0 satisfies neither (5.42a) (since, generally, R|z=0 6= 0) nor (5.42b),
therefore in the vicinities of the boundaries z= 0,−h1 narrow boundary layers arise in
which ∂z� 1. In the boundary layer near interface the leading-order solution is sought
in the form w̄= w̄b= tαŵb(x, y, ξ) where ξ = (z+ h1)tβ is the boundary layer stretched
coordinate. The parameters α and β are determined from two conditions. First, as
follows from the boundary condition (5.42b), ∂zw̄b = tα+β∂ξ ŵb ∼ 1, and, second, the
maxima of the terms with derivatives with respect to z that were neglected outside
the boundary layer, and the third term on the left-hand side of (5.41a) should be
of the same order, i.e. t2β−1 ∼ 1. As a result we have β = −α = 1/2, i.e. in the
boundary layer

w̄= w̄b = 1√
t
ŵb(x, y, ξ), ξ = (z+ h1)

√
t (5.44)

(cf. Kamenkovich & Kamenkovich 1993; Reznik 2013). As seen from (5.44), for large
t and ξ = (z+ h1)

√
t∼ 1 the boundary layer vertical velocity w̄ tends to zero but the

derivative w̄z is of the order of unity.
Substituting (5.44) into (5.41a) and neglecting small terms we have:

ξ∂ξξξ ŵb + 3∂ξξ ŵb − i∇2
h ŵb = 0. (5.45)

Writing ŵ in the form of the Fourier integral (5.24) one finds for the Fourier amplitude
˜̂wb:

ξ∂ξξξ ˜̂wb + 3∂ξξ ˜̂wb + iκ2 ˜̂wb = 0. (5.46)

For the boundary layer to exist the solution ˜̂w0 to (5.46) satisfying the conditions

˜̂w0→ 0 as ξ→∞; ∂ξ ˜̂w0|ξ=0 = 1, (5.47a,b)

must exist. Analysis in appendix E confirms the possibility of such a solution. The
corresponding Fourier amplitude ˜̄w is given by:

˜̄wb = 1√
t
C(k, l) ˜̂w0(k, l, ξ), C= 1

2

[
∂z ˜̇w+I −

1
h2

˜̇w+I + i
(
∂zw̃+I −

1
h2

w̃+I

)]
z=−h1

.

(5.48a,b)

The boundary layer near the surface z= 0 is similar to that near the interface. From
(5.18) and (5.19b) one obtains that

∂zzw+a |z=0 = ∂zzẇ+aI|z=0 sin t+ ∂zzw+aI|z=0 cos t, (5.49)
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622 G. M. Reznik

i.e. at the surface the inertial signal arises in the vertical gradient of horizontal velocity
(Maxim Kalashnik drew my attention to this fact). The near-surface boundary layer
provides a ‘buffer’ zone between the surface and the internal domain where the inertial
signal is prohibited. The leading-order boundary layer solution has the form:

w̄= w̄s = 1
t

ŵs(x, y, η), η= z
√

t. (5.50)

Comparison of (5.44) and (5.50) shows that the near-surface boundary layer is weaker
than the near-interface one. This is related to the fact that the interface inertial signal
is stronger than the surface one: at the interface it emerges in the horizontal velocity
itself and at the surface it is in the vertical gradient of the velocity. The equation for
ŵs is somewhat different from (5.45):

η∂ηηηŵs + 2∂ηηŵs − i∇2
h ŵs =−iR|z=0. (5.51)

The solution ŵs has the form (see (5.43)):

ŵs = S(x, y, 0)+ ŵs0, (5.52)

where ŵs0 obeys the homogeneous version of (5.51) and decays as η→∞. Analysis
of the corresponding equation is very similar to that of (5.45) and demonstrates the
existence of the required solution.

5.2.5. Dependence on slow time
The standard solution constructed above is the sum of a time-independent

geostrophic component, lower layer inertial oscillations and dispersive internal waves;
the non-stationary boundary layers are the result of joint impact of the internal waves
with very short vertical lengths.

To derive the solution of the lowest-order system (4.5) and (4.6) depending on slow
times one should ‘allow’ parameters related to the initial fields to depend on the slow
times. The geostrophic part of the solution is determined by the PV Π± in the layers
(see (5.2a) and (5.2b)) directly related to the initial fields uI, vI, ρI (see (5.1a) and
(5.1b)). In what follows we assume that:

Π± =Π±(x, y, z, T1, T2, . . .), Π±(x, y, z, 0, 0, . . .)=Π±I . (5.53a,b)

Similarly, for the internal waves the initial fields (w+I , ẇ+I )(x, y, z) are replaced by the
functions (w+s , ẇ+s )(x, y, z, T1, T2, . . .) with

(w+s , ẇ+s )(x, y, z, 0, 0, . . .)= (w+I , ẇ+I )(x, y, z). (5.54)

Finally, in the formulae (5.36), (5.37) describing the lower layer inertial oscillations
we put:

A= A(x, y, z, T1, T2, . . .), A(x, y, z, 0, 0, . . .)= AI(x, y, z). (5.55a,b)

The slow evolution of the fields (5.53)–(5.55) is determined from condition of
boundedness of higher approximations. In the next section we analyse the first
approximation to specify the dependence of the PV Π± and the amplitude A on the
slow time T1.
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6. Slow evolution of the QG component and inertial oscillations
6.1. Slow evolution of the QG component

The slow evolution of the lowest-order QG component is determined from the first-
order PV equations. Exclusion of the pressure from (4.7a,b) gives:

∂tζ
±
1 +D±1 =−∂T1ζ

±
0 + ∂yM±u − ∂xM±v + α∂yw±0 . (6.1)

In the upper layer the first-order PV equation is obtained using (6.1), (4.7d,e), and
(5.1a):

∂t[ζ+1 − ∂z(ρ
+
1 /N

2)] =−Π+T1
+ ∂yM+u − ∂xM+v + ∂z(M+ρ /N

2)+ α∂yw+0 . (6.2)

To derive an analogous equation in the lower layer we integrate (6.1) over z from −1
to −h1 and use (4.7e), (4.8d):(∫ −h1

−1
ζ−1 dz− η1

)
t

= −h2Π
−
T1
+ (u−0 ∂xη0 + v−0 ∂yη0 − η0∂zw−0 )z=−h1

+
∫ −h1

−1
(∂yM−u − ∂xM−v + α∂yw−0 )dz. (6.3)

Now we average (6.2), (6.3) over the fast time t, i.e. apply the operation

〈a〉 = lim
Ta→∞

1
Ta

∫ Ta

0
adt; (6.4)

as a result we have:

Π+T1
= 〈∂yM+u − ∂xM+v + (M+ρ /N2)z〉 + α〈w+0 〉y, (6.5)

Π−T1
= 1

h2
〈u−0 ∂xη0 + v−0 ∂yη0 − η0∂zw−0 〉z=−h1

+ 1
h2

∫ −h1

−1
〈∂yM−u − ∂xM−v + α∂yw−0 〉dz. (6.6)

When calculating the right-hand sides of (6.5), (6.6) we assume all fields to decay at
infinity as r =√x2 + y2→∞. The calculations are very similar to those in Reznik
et al. (2001), Zeitlin, Reznik & Ben Jelloul (2003) and Reznik (2014) and are given
in appendix F; here we present only the general ideas and results.

The zero-order solution in the upper layer is the sum of a slow QG flow and
ageostrophic fast internal waves, therefore the nonlinear terms on the right-hand side
of (6.5) contain slow–slow, slow–fast and fast–fast interactions. When averaging over
the fast time (6.4) the contribution from slow–fast interaction vanishes since the
time-averaged ageostrophic fields are zero. We assume the initial fields to be smooth;
in this case the main part of the energy of the internal waves is accounted for
by several first vertical modes; the energy of the boundary layer is negligible.
Furthermore, all fields are horizontally localized and the energetically significant
modes decay proportionally to 1/t at a fixed point x, y, z because of the horizontal
dispersion (see (5.26) and Zeitlin et al. 2003). The boundary layer solutions also tend
to zero at t→∞ and z fixed. Therefore, the contribution from self-interaction of the
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624 G. M. Reznik

ageostrophic fields vanishes and (6.5) can be rewritten in the form of conservation of
the upper layer quasi-geostrophic PV (see appendix F for details):

Π+T1
+ J(p+g , Π

+)= 0, (6.7a)

Π+ =Π+(x, y, z, T1, . . .)=∇2
h p+g + (∂zp+g /N

2)z. (6.7b)

In (6.6) the contribution from the induced internal waves also vanishes but that from
the inertial oscillations can be non-zero since the lowest-order inertial oscillations in
(5.34) are non-propagating on times t� 1/δ and their self-interaction, in principle, can
give rise to terms which do not depend on the fast time t. However, detail calculations
(see appendix F) show that similarly to the barotropic case (Reznik 2014) these terms
cancel each other and the resulting PV-equation in the lower layer can be written as

Π−T1
+ J(p−g , Π

−)= 0, Π− =Π−(x, y, T1, . . .)=∇2
h p−g − ηg/h2. (6.8a,b)

The QG lower layer pressure p−g is related to p+g by the continuity at the interface:

p−g = p+g |z=−h1 . (6.9)

The boundary condition (5.3a) for p+g at z = 0 can be used only to calculate the
initial geostrophic pressure; on times t ∼ 1/δ one should take into account the slow
evolution of density which is unknown in advance. To derive the boundary condition
we consider (4.7d) at z= 0:

∂tρ
+
1 =−∂T1ρ

+
0 − u+0 ∂xρ

+
0 − v+0 ∂yρ

+
0 . (6.10)

Applying the time averaging (6.4)–(6.10) and expressing the density ρ+g in terms of
the pressure p+g one obtains the boundary condition for p+g :

∂zT1p
+
g + J(p+g , ∂zp+g )= 0 at z= 0. (6.11)

6.2. Slow evolution of the inertial oscillations
In this subsection all quantities are related to the lower layer; the superscript ‘−’
is omitted for brevity. To derive equations for the first-order inertial oscillations we
average (4.7a,b) over the lower layer depth and subtract the resulting equations from
(4.7a,b); as a result we have:

∂tũ1 − ṽ1 = −∂T1 ũa − M̃u − αw̃0 − ∂xp̃1, (6.12a)

∂tṽ1 + ũ1 = −∂T1 ṽa − M̃v − ∂yp̃1. (6.12b)

Here

(ũ1, ṽ1, . . .)= (u1 − 〈u1〉z, v1 − 〈v1〉z, . . .), 〈a〉z = 1
h2

∫ −h1

−1
adz, (6.13)

and (see (5.34), (5.37)):

Ũa = ũa + iṽa = A(x, y, z, T1, . . .)e−it. (6.14)
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Rewriting (6.12) in the complex form

∂tŨ1 + Ũ1 =−∂T1Ũa − (∂xp̃1 + i∂yp̃1)− (M̃u + iM̃v)− αw̃0, (6.15)

where Ũ1 = ũ1 + iṽ1, one concludes that the bounded solution Ũ1 exists if the right-
hand side of (6.15) does not contain resonance terms ∼ e−it. Analysis of the terms in
(6.15) is very similar to the corresponding analysis in the barotropic case in Reznik
(2014) and gives that the right-hand side of (6.15) is non-resonant under the condition
(see appendix G for details):

AT1 + J(p−g , A)+ i
2
∇2

h p−g A+ iα
(∫ z

−1
Adz+ 1

h2

∫ −h1

−1
zAdz

)
y

= 0. (6.16)

In addition to (6.16) the amplitude A should satisfy the condition (5.37) which
prevents the inertial signal in the vertical velocity from penetrating into the stratified
upper layer.

6.3. Discussion of the slow evolution
The complete set of equations describing the slow evolution of the QG component on
times t ∼ 1/δ includes two PV-equations (6.7), (6.8), the boundary conditions (6.11),
(5.3b) and the initial conditions (5.53b). The algorithm for calculation of the QG
component is as follows. Knowing p+g (T1) one determines from (6.7b), (6.8b) the PVs
Π+(T1), Π

−(T1), then from (6.7a), (6.8a), (6.11) the fields Π+(T1 +1T), Π−(T1 +
1T), ∂zp+g (T1 +1T)|z=0, respectively. Knowing the PVs Π+, Π− at the step T1+1T
one can calculate the right-hand side in the boundary condition (5.3b), and determine
the field p+g (T1 +1T) from (6.7b) and the ‘new’ boundary conditions for p+g at z=
0,−h1.

The QG component conserves its energy; it can be derived from (6.7), (6.8), (A 3),
(A 6) and (6.11) that:

E= E+ + E− = const., (6.17a)

E+ = 1
2

∫
dxdy

∫ 0

−h1

dz

[
(∇hp+g )

2 + (∂zp+g )
2

N2

]
, E− = h2

2

∫
dxdy(∇hp−g )

2. (6.17b,c)

Here E is the full QG energy, E+ and E− are the energies of the upper and lower
layers, respectively.

Let the QG motion in the lower layer be absent at some time T1 = TI , i.e.

p−g = p+g |z=−h1 = 0. (6.18)

Generally, for times T1 > TI the QG pressure p−g becomes non-zero, i.e. the QG
energy transfers into the lower layer. To show this we assume that (6.18) is fulfilled
at all times. In this case the quantities Π+|z=−h1,Π

− do not depend on time by virtue
of (6.7a), (6.8a), and we have from (5.2a) an additional boundary condition for p+g at
z=−h1:

lim
z→−h1

(∂zp+g /N
2)z =Π+I |z=−h1 . (6.19)

Obviously, the problem (6.7), (6.18), (6.19), (5.3b) and (6.11) is overdetermined and
hence (6.18) cannot be valid for all times.
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Equation (6.16) for the amplitude of inertial oscillations almost exactly coincides
with the corresponding equation for the barotropic case (equation (6.17) in Reznik
2014). The last term in (6.16) arises due to the non-zero horizontal component of the
Earth’s rotation. Under the TA α = 0 and the inertial oscillations are trapped by the
QG component. The ‘non-traditional’ term results in a meridional dispersion of the
inertial oscillations and in doing so it provides an effective energy radiation from the
initial perturbation domain (see Reznik 2014 for more details).

Similarly to the barotropic case the slow QG component does not depend on the
fast ageostrophic waves on times ∼1/δ, whereas evolution of the inertial oscillations
depends on the geostrophic streamfunction p−g . At the same time, it follows from
(6.16) and (5.37) that

∂

∂T1

∫
dxdy

∫ −h1

−1
dz|A|2 = 0, (6.20)

i.e. the total energy of inertial oscillations is conserved along with that of the QG
component. We note, however, that the conservation takes place on times ∼ 1/δ; on
longer times the ‘non-traditional’ terms in the equations of motion can, in principle,
give rise to energy exchange between the components as takes place for the barotropic
fluid (Reznik 2014). If this is the case, the energy of QG motion in the lower layer
can be transferred to the inertial oscillations. Of course, the mechanism of dissipation
of QG energy in a homogeneous layer is highly speculative and it would be useful
to verify it numerically using a non-hydrostatic model without the TA.

It was shown in § 5 that the condition (5.37) prevents the inertial signal in the
vertical velocity field from penetrating into the stratified layer. Equation (6.16)
‘supports’ the limitation (5.37): it is readily to show by integrating (6.16) over z from
−1 to −h1 that if (5.37) is fulfilled at some moment T0 then it is valid for all times
T > T0. If the initial conditions do not satisfy (5.17) and, therefore, equation (5.38),
then the analogous screening in horizontal velocity is provided by a non-stationary
boundary layer developing in the upper layer near the interface. Generally, the
condition (5.38) is not supported by (6.16) because of the ‘non-traditional’ term in
(6.16), i.e. the quantity A|z=−h1 ceases to be zero even if (5.38) is fulfilled at some
moment. This means that without the TA the near-interface boundary layer develops
for any initial conditions.

7. Summary and conclusions
We have examined nonlinear geostrophic adjustment in SNS fluid consisting of a

stratified upper layer with N � f and a homogeneous lower layer, the density and
other fields being continuous at the interface between the layers. The traditional and
hydrostatic approximations are not used. The wave spectrum in the model consists of
internal and gyroscopic waves. The theory is developed for perturbations with typical
horizontal scale L of the order of the Rossby scale LR; in this case the internal waves
are strongly dispersive and penetrate into the homogeneous lower layer down to the
bottom. On the other hand, the gyroscopic waves are close to weakly dispersive
inertial oscillations confined to the lower layer.

The general scenario of the geostrophic adjustment is a standard one (cf. Reznik
et al. 2001; Zeitlin et al. 2003; Reznik 2014): an arbitrary perturbation is split
in a unique way into slow and fast components evolving with characteristic time
scales (Ro f )−1 and f−1, respectively. The slow component is close to the geostrophic
balance and, in the case considered, is governed by two coupled nonlinear equations
of conservation of QG potential vorticity in the upper and lower layers. The upper

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

16
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.166


Geostrophic adjustment with gyroscopic waves: stratified fluid 627

layer PV is the same as that in continuously stratified fluid; in the lower layer the QG
motion does not depend on depth and the PV here is a sum of QG relative vorticity
and the vortex-tube stretching due to variations in the interface height. The upper
and lower layer QG flows are not independent: if at some moment the QG motion in
the lower layer vanishes then at subsequent times the QG energy is transferred from
the upper layer to the lower one. On times t ∼ ( f Ro)−1 the slow component is not
influenced by the fast one.

The fast component is a sum of the internal waves and the inertial oscillations
confined to the lower layer and modulated by an amplitude depending on coordinates
and the slow time. The inertial oscillations are long gyroscopic waves; depth-integrated
horizontal flow induced by the oscillations is zero. On times t∼ ( f Ro)−1 the energy
of inertial oscillations is conserved but they are coupled to the slow component: their
amplitude obeys an equation that practically coincides with that in the barotropic
case (Reznik 2014). Under the TA the inertial oscillations are trapped by the QG
component; dispersion of the inertial oscillations packet occurs on times t∼ ( f Ro2)−1.
Without the TA the ‘non-traditional’ terms in the amplitude equation result in a
meridional dispersion of the inertial oscillations on much shorter times t ∼ ( f Ro)−1

and in doing so the terms provide an effective energy radiation from the initial
perturbation domain.

Another feasible effect of the ‘non-traditional’ terms is an energy exchange between
the slow QG component and inertial oscillations in the homogeneous layer on
times O( f−1Ro−2). The possibility of such an exchange in the barotropic case was
demonstrated by Reznik (2014). In the case of SNS fluid one can speculate that
the QG energy is transferred from the stratified layer to the homogeneous one and
then to the fast inertial oscillations. It would be useful to elucidate the existence and
efficiency of this mechanism using a non-hydrostatic numerical model without the
TA.

Inertial oscillations with horizontal scale L 6 LR cannot exist in the stratified upper
layer. To prevent their penetration from the lower layer to the upper one, a non-
stationary boundary layer develops in the upper layer near the interface at large times.
The boundary layer is a result of joint impact of internal modes with large vertical
wavenumbers whose frequencies are close to the inertial frequency f . Thus the near-
interface domain is characterized by large vertical gradients of the horizontal velocities
that can result in strong mixing and instability there. A similar boundary layer with
weaker vertical gradients forms near the upper boundary at which the inertial signal
emerges in the vertical gradients of horizontal velocities. Another mechanism of deep
ocean mixing related to the horizontal component of the Earth’s rotation and the beta-
effect was suggested by Shrira & Townsend (2010, 2013).

The boundary layers in this and other works (Il’in 1970, 1972; Kamenkovich
& Kamenkovich 1993; Reznik 2013) arise due to the existence of a limit point
in the frequency spectrum when the wave frequency tends to a finite limit as the
wavenumber tends to infinity. In the cited works the limit frequency is zero and the
wavenumber in the case of Rossby waves is the horizontal wavenumber, while in the
case of non-rotating SNS fluid it is the vertical one. In our case the limit frequency
is the inertial frequency and the wavenumber is vertical (the horizontal wavenumber
is fixed). The key point is that the phase and group speeds of waves with large
wavenumbers have opposite signs (probably, this is a typical situation when the limit
point exists). Therefore, one can say that the boundary oscillating with the limit
frequency acts as a source of very short waves with phase speeds directed out of the
boundary and group speeds directed towards the boundary. Such wavepackets cannot
move far from the boundary and form the boundary layer with increasing time.
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If initial fields decay at infinity in the horizontal plane then the energy-containing
part of the internal waves decays at a fixed point with increasing time because of
dispersion. The residual motion consists of the slow QG component and the inertial
oscillations confined to the lower layer. We recall that in geostrophic adjustment with
gravity waves (surface or internal) the inertial oscillations arise only if the dominating
scale L of the initial perturbation exceeds the corresponding Rossby scale LR, i.e.
L � LR (cf. Reznik et al. 2001; Zeitlin et al. 2003). The slow QG component in
this case obeys the so-called frontal dynamics equation. In the presence of gyroscopic
waves the ‘shorter’ inertial oscillations with scales H � L 6 LR are possible. The
significant vertical velocities of the near-inertial oscillations observed by van Haren
& Millot (2005) in the practically barotropic deep Western Mediterranean Sea can be
related to this property of gyroscopic waves.

A natural extension of the model considered is a fluid with a weakly stratified
lower layer with non-zero buoyancy frequency N− smaller than or of the order of
f . This problem is more complicated because it lacks a simple solution in the lower
layer. However, analysis shows that the wave solutions (3.3) for the vertical velocity
are qualitatively similar to those in the SNS fluid. The modes with moderate vertical
wavenumbers n � N+/f oscillate ‘smoothly’ in the upper strongly stratified layer
and are approximately linear in z in the lower one. For L ∼ LR these waves are
strongly dispersive. At the same time, the modes with large wavenumbers n∼ N+/f
are confined mainly to the lower layer: they oscillate ‘smoothly’ in the lower layer
and ‘rapidly’ in the upper one, the amplitude of the oscillations in the upper layer
being much less than in the lower one. For L∼ LR these modes are close to weakly
dispersive (in the horizontal plane) inertial oscillations as in the SNS fluid. Thus
one can assume that the long-term evolution of the vertical velocity is qualitatively
similar to that in the SNS fluid: with time the modes with moderate numbers n decay
because of dispersion and the vertical velocity becomes confined mainly to the lower
layer. The behaviour of the horizontal velocity and boundary layer near the interface
is more complicated and needs a special examination which will be done elsewhere.
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Appendix A. Linearized boundary conditions at z′ =−h1

It follows from (2.4b) that for small deviations η:

ρ|z=−h1+η =−∂zρs(−h1)η− 1
2∂zzρs(−h1)η

2 +O(η3); (A 1)

therefore the boundary condition at the interface z′ = −h1 depends on the profile of
the buoyancy frequency N2 =−g∂zρs/ρ0. If N(z) is discontinuous, i.e. ∂zρs(−h1) 6= 0,
then linearization of (A 1) gives

ρ/N2|z=−h1 = ρ0η/g. (A 2)

Using (3.21d) and (A 2), one can express the geostrophic deviation of the interface ηg
in terms of the pressure p+g :

ηg =−(∂z′p+g /N
2)|z′=−h1 . (A 3)
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From (A 3), (3.22) and the geostrophic pressure continuity [pg] = 0 one obtains the
following boundary condition for (3.22a):[

(∂z′p+g /N
2)z′ − ∂z′p+g /(h2N2)

]
z′=−h1

= 1
f
(Π+I −Π−I )z′=−h1 . (A 4)

If, however, N(z) is smooth, i.e. ∂zρs(−h1)= 0, then the linearized condition (A 1)
is written as

ρ|z=−h1 = 0. (A 5)

The behaviour of the density ρ near z = −h1 should be consistent with (A 5), the
linearized density equation (2.2b) ρt − ρ0N2w/g = 0, the kinematic condition (2.4c)
w|z=−h1 = ηt, and with the condition (A 2) valid for any non-zero N(−h1). One can
readily see that the condition

lim
z→−h1

ρ/N2 = ρ0η/g (A 6)

complies with the requirements. The condition (A 4) is rewritten in this case as

lim
z′→−h1

[
(∂z′p+g /N

2)z′ − ∂z′p+g /(h2N2)
]= 1

f
(Π+I −Π−I )z′=−h1 . (A 7)

Obviously, the condition (A 7) is suitable both for the discontinuous and continuous
N(z) profiles.

Appendix B. Some properties of the ageostrophic solution
The continuity of w0 at z = −h1 requires that in view of the continuity equations

(5.4e) ∫ 0

−h1

D+a dz+
∫ −h1

−1
D−a dz= 0; D±a = ∂xu±a + ∂yv

±
a . (B 1a,b)

Using (5.6a,b), (5.7), and (4.6b) written for the ageostrophic values one obtains:∫ 0

−h1

ζ+a dz+
∫ −h1

−1
ζ−a dz= 0; ζ±a = ∂xv

±
a − ∂yu±a . (B 2a,b)

In view of (5.4a,b) we have

∂tD±a − ζ±a =−∇2
h p±a , (B 3)

whence taking into account (B 1), (B 2) one obtains

∇2
h

(∫ 0

−h1

p+a dz+
∫ −h1

−1
p−a dz

)
= 0. (B 4)

We assume all the fields to decay at infinity; in this case it follows from (B 1), (B 2),
and (B 4) that the vertically integrated ageostrophic horizontal velocities and pressure
are zero, i.e. ∫ 0

−h1

(u+a , v
+
a , p+a )dz+

∫ −h1

−1
(u−a , v

−
a , p−a )dz= 0. (B 5)
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Appendix C. Absence of inertial signal in the upper layer fields

We apply the operation (5.15) to (5.4) with superscript ‘+’; as a result we have
(subscript ‘a’ is omitted for brevity):

u+c + v+s = ∂xp+s , v+c − u+s = ∂yp+s , ρ+s =−∂zp+s , (C 1a–c)

ρ+c +N2w+s = 0, u+sx + v+sy +w+sz = 0; (C 1d,e)

u+s − v+c =−∂xp+c , v+s + u+c =−∂yp+c , ρ+c =−∂zp+c , (C 2a–c)

ρ+s −N2w+c = 0, u+cx + v+cy +w+cz = 0. (C 2d,e)

Also one obtains from (5.6a):

∂xv
+
s − ∂yu+s − (ρ+s /N2)z = 0, ∂xv

+
c − ∂yu+c − (ρ+c /N2)z = 0. (C 3a,b)

Using (C 1a,b,d,e), (C 2a,b,d,e), (C 3) and decay at infinity one finds:

∇2
h p+s,c = 0⇒ p+s,c = 0⇒ ρ+s,c =w+s,c = 0. (C 4a–c)

Finally, from (C 1e), (C 2e), (C 3), and (C 4c) we have:

∇2
h u+s,c =∇2

hv
+
s,c = 0, (C 5)

whence (5.14) follows.

Appendix D. Derivation of the boundary condition (5.21)

Taking (5.13) into account the right-hand side of (5.19c) can be written as:

∂xû+a + ∂yv̂
+
a = D̂+aI cos t+ ζ̂+aI sin t, (D 1)

where D̂+aI = ∂xû+aI + ∂yv̂
+
aI , ζ̂

+
aI = ∂xv̂

+
aI − ∂yû+aI . Using (5.12), (5.4e) one finds that

D̂+a = ∂xû+a + ∂yv̂
+
a =−

(
∂zw+a −

1
h2

w+a

)
z=−h1

, (D 2)

ζ̂+a = ∂xv̂
+
a − ∂yû+a = ∂tD̂+a =−

(
∂zẇ+a −

1
h2

ẇ+a

)
z=−h1

, (D 3)

therefore the condition (5.19c) is represented in the form (5.21):(
∂zw+a −

1
h2

w+a

)
z=−h1

=
(
∂zw+I −

1
h2

w+I

)
z=−h1

cos t+
(
∂zẇ+I −

1
h2

ẇ+I

)
z=−h1

sin t.

(D 4)

Appendix E. Boundary layer equation

Equation (5.46) has a weak singular point ξ = 0 and a strong singular point ξ =∞
(Kamke 1976). In the vicinity of ξ = 0 two of three linearly independent solutions
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of (5.46) are regular, i.e. for example

˜̂w1 =
∞∑

n=0

a(1)n ξ
n, ˜̂w2 =

∞∑
n=0

a(2)n ξ
n, (E 1a,b)

and the third one is singular:

˜̂w3 = ln ξ
∞∑

n=0

a(3)2n ξ
2n+1 + ξ−1

∞∑
n=0

b(3)2n ξ
2n. (E 1c)

Here a(1,2)n , a(3)2n , b(3)2n are constant coefficients; 2a(3)0 + iκ2b(3)0 = 0.
To find asymptotics at infinity a new variable g is introduced:

˜̂w= ξ−1/3g(ξ 2/3). (E 2)

The corresponding equation for g has the form:

gµµµ + 3
2µ
−1gµµ − 2µ−2gµ +

(
27
8 iκ2 +µ−3

)
g= 0, µ= ξ 2/3. (E 3)

Of the three linearly independent solutions to (E 3), for large µ the first one
exponentially grows, the second one is a harmonic function, and the third one
exponentially decays:

g1 = eγµ(cos βµ− i sin βµ+O(1/µ)), (E 4a)
g2 = cos 2βµ+ i sin 2βµ+O(1/µ), (E 4b)
g3 = e−γµ(cos βµ− i sin βµ+O(1/µ)); (E 4c)

here γ = 3
√

3κ2/3/4, β = 3κ2/3/4. Obviously the solutions ˜̂w corresponding to g2, g3
decay at ξ→∞.

Solutions ˜̂w1, ˜̂w2 that are linearly independent and regular at ξ = 0 have linearly
independent asymptotics as ξ→∞:

˜̂wi = a(i)1 ξ
−1/3g1 + a(i)2 ξ

−1/3g2 + a(i)3 ξ
−1/3g3, i= 1, 2, (E 5)

whence it follows that the function

˜̂w0 = a(2)1
˜̂w1 − a(1)1

˜̂w2 (E 6)

is the non-trivial solution to (5.46) regular at ξ = 0 and decaying as ξ→∞.

Appendix F. Some details of derivation of PV equations
In view of (4.9) the first term on the right-hand side of (6.5) can be rewritten as:

〈∂yM+u − ∂xM+v + (M+ρ /N2)z〉 = −〈u+0 Π+x + v+0 Π+y 〉 + 〈∂zu+0 ∂xρ
+
0 + ∂zv

+
0 ∂yρ

+
0 〉/N2

+〈∂zw+0 ζ
+
0 −w+0 ∂zζ

+
0 + ∂yw+0 ∂zu+0

− ∂xw+0 ∂zv
+
0 + [(w+0 ∂zρ

+
0 )/N

2]z〉. (F 1)

Taking into account the geostrophic relations (3.21a–d) and the fact that the fast–slow
and fast–fast interactions vanish under the averaging (6.4) one arrives at (6.7a).
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One finds that in (6.6):

M−u = u−g ∂xu−0 + v−g ∂yu−0 +M(a)
u , M−v = u−g ∂xv

−
0 + v−g ∂yv

−
0 +M(a)

v ; (F 2a,b)

M(a)
u = u−a ∂xu−0 + v−a ∂yu−0 +w−0 ∂zu−0 , (F 3a)

M(a)
v = u−a ∂xv

−
0 + v−a ∂yv

−
0 +w−0 ∂zv

−
0 , (F 3b)

whence it follows that

〈∂yM−u − ∂xM−v 〉z = −u−g 〈ζ−0 〉zx − v−g 〈ζ−0 〉zy + ∂yu−g 〈u−a 〉zx + ∂yv
−
g 〈u−a 〉zy − ∂xu−g 〈v−a 〉zx

− ∂xv
−
g 〈v−a 〉zy + 〈∂yM(a)

u − ∂xM(a)
v 〉z. (F 4)

Here the notation

〈a〉z = 1
h2

∫ −h1

−1
adz (F 5)

is used. Using (F 4) we rewrite (6.6) in the form:

Π−T1
+ u−g Π

−
x + v−g Π−y = 〈〈∂yM(a)

u − ∂xM(a)
v 〉z〉 + 〈NR〉, (F 6)

where

NR = − 1
h2
η0∂zw−0 |z=−h1 +

1
h2
(u−a ∂xη0 + v−a ∂yη0)z=−h1 + ∂yu−g 〈u−a 〉zx

+ ∂yv
−
g 〈u−a 〉zy − ∂xu−g 〈v−a 〉zx − ∂xv

−
g 〈v−a 〉zy + α〈w−0 〉zy. (F 7)

By virtue of (4.6c) and (5.36b), (5.37), (5.32), (5.33) we have:

η0s = η0c = 0, (F 8)

therefore
〈NR〉 = 0. (F 9)

Using (5.4e) one readily shows that

〈M(a)
u 〉 = 〈(u−

2

a )x + (u−a v−a )y + (u−a w−a )z〉, (F 10a)

〈M(a)
v 〉 = 〈(u−a v−a )x + (v−

2

a )y + (v−a w−a )z〉. (F 10b)

Averaging (F 10) over the lower layer depth and using (5.37) one obtains:

〈〈M(a)
u 〉z〉 = 〈〈(u−

2

a )x + (u−a v−a )y〉z〉, (F 11a)

〈〈M(a)
v 〉z〉 = 〈〈(u−a v−a )x + (v−

2

a )y〉z〉. (F 11b)

By virtue of (5.36a)

〈u−2

a 〉 = 〈v−
2

a 〉 = 1
2 |A|2, 〈u−a v−a 〉 = 0, (F 12)

therefore
〈〈M(a)

u 〉z〉 = 1
2 〈|A|2〉zx, 〈〈M(a)

v 〉z〉 = 1
2 〈|A|2〉zy. (F 13)

Thus
〈〈∂yM(a)

u − ∂xM(a)
v 〉z〉 = 0 (F 14)

and we arrive at (6.8a).
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Appendix G. Some details of derivation of the amplitude equation
The only unknown function on the right-hand sides of (6.12) is the pressure p̃1

which is found from (4.7c). Representing this equation in the form:

p1z = α(〈u0〉z + ũa), 〈u0〉z = ug + 〈ua〉z, (G 1a,b)

one readily shows that:
p1 = 〈p1〉z + p̃1, (G 2)

where

p̃1 = α
[
〈u0〉z(z+ 1− h2/2)+

∫ z

−1
ũadz+ 〈zũa〉z

]
, (G 3)

and the averaged 〈p1〉z is a depth-independent function. Furthermore, it follows from
(5.36b), (5.37) that:

w̃0=wa− 〈wa〉z=−1
2

[
e−it

(∫ z

−1
s(A)dz+ 〈zs(A)〉z

)
+ c.c.

]
− ( ¯̄ux + ¯̄vy)

(
z+ 1− h2

2

)
.

(G 4)
Finally, up to non-resonance terms we have:

M̃u = ug∂xũa + vg∂yũa + ũa∂xug + ṽa∂yug, (G 5a)

M̃v = ug∂xṽa + vg∂yṽa + ũa∂xvg + ṽa∂yvg, (G 5b)

i.e. (see (6.14) and (3.21a,b))

M̃u + iM̃v = J(pg, Ũa)+ i
2
∇2

h pgŨa. (G 6)
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