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1. Introduction

Let F be a smooth norm of R
n. In this paper we investigate the validity of Hardy-

type inequalities
∫

Ω

F 2(∇u) dx � CF (Ω)
∫

Ω

u2

d2
F

dx ∀u ∈ H1
0 (Ω), (1.1)

where Ω is a domain of R
n and dF is the anisotropic distance to the boundary with

respect to the dual norm (see § 2 for the precise assumptions and definitions). We
aim to study the best possible constant for which (1.1) holds, in the sense that

CF (Ω) = inf
u∈H1

0 (Ω)

∫
Ω

F 2(∇u) dx∫
Ω

(u2/d2
F ) dx

.
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In the case of the Euclidean norm, that is, when F = E = | · |, inequality (1.1)
reduces to ∫

Ω

|∇u|2 dx � CE(Ω)
∫

Ω

u2

d2
E

dx ∀u ∈ H1
0 (Ω), (1.2)

where
dE(x) = inf

y∈∂Ω
|x − y|, x ∈ Ω,

is the usual distance function from the boundary of Ω, and CE is the best possible
constant.

Inequality (1.2) has been studied by many authors, from several points of view.
For example, it is known that for any bounded domain with Lipschitz boundary Ω
of R

n, 0 < CE(Ω) � 1
4 (see [10,13,26]). In particular, if Ω is a convex domain of R

n,
the optimal constant CE in (1.2) is independent of Ω and its value is CE = 1

4 , but
there are smooth bounded domains such that CE(Ω) < 1

4 (see [26,27]). Furthermore,
in [26] it was proved that CE is achieved if and only if it is strictly smaller than 1

4 .
Actually, the value of the best constant CE(Ω) is still 1

4 for a more general class
of domains. This has been shown, for example, in [6], under the assumption that
dE is superharmonic in Ω, in the sense that

∆dE � 0 in D′(Ω). (1.3)

As a matter of fact, when ∂Ω is sufficiently smooth, condition (1.3) is equivalent
to the requirement that ∂Ω is weakly mean convex, that is, its mean curvature is
non-negative at any point. This equivalence goes back to Gromov [22], and it has
been established independently in [21,25,28].

The fact that the constant CE(Ω) = 1
4 is not achieved has lead to an interest

in studying ‘improved’ versions of (1.2) by adding remainder terms that depend,
in general, on suitable norms of u. For instance, when Ω satisfies condition (1.3),
several improved versions of (1.2) can be found, for example, in [5, 6, 10, 19]. More
precisely, in [10] (for bounded convex domains) and [6] it was proved that

∫
Ω

|∇u|2 dx − 1
4

∫
Ω

u2

d2
E

dx � 1
4

∫
Ω

u2

d2
E

(
log

D0

dE

)−2

dx (1.4)

for a suitable D0 � e sup{dE(x, ∂Ω)} and u ∈ H1
0 (Ω).

As a matter of fact, for Ω a bounded and convex set, in [10] it was deduced from
(1.4) that

∫
Ω

|∇u|2 dx � 1
4

∫
Ω

u2

d2
E

dx +
1

4L2

∫
Ω

u2 dx ∀u ∈ H1
0 (Ω), (1.5)

where L is the diameter of Ω. Actually, in [24] the authors showed that the value
1/4L2 can be replaced by a constant that depends on the volume of Ω, namely
c(n)|Ω|−2/n; here c(n) is a suitable constant depending only on the dimension of
the space (see also [19]).

The aim of this paper is to study Hardy inequalities of type (1.1), and to show
improved versions in the anisotropic setting given by means of the norm F in the
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spirit of (1.4). For example, one of our main results states that for suitable domains
Ω of R

n, and for every function u ∈ H1
0 (Ω), it holds that

∫
Ω

F 2(∇u) dx − 1
4

∫
Ω

u2

d2
F

dx � 1
4

∫
Ω

u2

d2
F

(
log

D

dF

)−2

dx, (1.6)

where D = e sup{dF (x, ∂Ω), x ∈ Ω}.
The condition we will impose on Ω in order to have (1.6) will involve the sign

of an anisotropic Laplacian of dF (see §§ 2 and 3). We will also show that such a
condition is, in general, not equivalent to (1.3).

Actually, we will also deal with the optimality of the involved constants. More-
over, we will show that (1.6) implies an improved version of (1.1) in terms of the
L2-norm of u in the spirit of (1.5). More precisely, we will show that if Ω is a convex
bounded open set, then

∫
Ω

F 2(∇u) dx − 1
4

∫
Ω

|u|2
d2

F

dx � C(n)|Ω|−2/n

∫
Ω

|u|2 dx.

Finally, the series expansion of the anisotropic Hardy inequality will be considered
(see theorem 4.5).

We emphasize that Hardy-type inequalities in anisotropic settings have been
studied, for example, in [9, 16, 30], where, instead of considering the weight d−2

F , a
function of the distance from the origin is considered (see, for example, [2, 6, 8, 11,
20,23,31] and references therein for the Euclidean case).

The structure of the paper is as follows. In § 2 we fix the necessary notation and
provide some preliminary results that will be needed later. Moreover, we discuss
in some detail the condition that we impose on Ω in order for (1.6) and (1.1) to
be true. In § 3 we study inequality (1.1) and give some applications. In § 4 the
improved versions of (1.1) are investigated, and, finally, § 5 is devoted to the study
of the optimality of the constants in (1.6).

2. Notation and preliminaries

Throughout the paper we will consider a convex even 1-homogeneous function

ξ ∈ R
n �→ F (ξ) ∈ [0, +∞[,

that is, a convex function such that

F (tξ) = |t|F (ξ), t ∈ R, ξ ∈ R
n, (2.1)

and such that
α1|ξ| � F (ξ), ξ ∈ R

n, (2.2)

for some constant 0 < α1. Under this hypothesis it is easy to see that there exists
an α2 � α1 such that

H(ξ) � α2|ξ|, ξ ∈ R
n.

Furthermore, we suppose that F 2 is strongly convex in the sense that F ∈ C2(Rn \
{0}) and

∇2
ξF

2 > 0 in R
n \ {0}.
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In this context, an important role is played by the polar function of F , namely,
the function F ◦ defined as

x ∈ R
n �→ F ◦(x) = sup

ξ �=0

ξ · x

F (ξ)
.

It is not difficult to verify that F ◦ is a convex, 1-homogeneous function that satisfies

1
α2

|ξ| � F ◦(ξ) � 1
α1

|ξ| ∀ξ ∈ R
n. (2.3)

Moreover, the hypotheses on F ensure that, for F ◦ ∈ C2(Rn\{0}) (see, for instance,
[29]),

F (x) = (F ◦)o(x) = sup
ξ �=0

ξ · x

F ◦(ξ)
.

The following well-known properties hold true:

Fξ(ξ) · ξ = F (ξ), ξ �= 0, (2.4)
Fξ(tξ) = sign t · Fξ(ξ), ξ �= 0, t �= 0, (2.5)

∇2
ξF (tξ) =

1
|t|∇

2
ξF (ξ) ξ �= 0, t �= 0, (2.6)

F (F o
ξ (ξ)) = 1 ∀ξ �= 0, (2.7)

F ◦(ξ)Fξ(F ◦
ξ (ξ)) = ξ ∀ξ �= 0. (2.8)

Analogous properties hold by interchanging the roles of F and F ◦.
The open set

W = {ξ ∈ R
n : F ◦(ξ) < 1}

is the so-called Wulff shape centred at the origin. More generally, we define

Wr(x0) = rW + x0 = {x ∈ R
2 : F ◦(x − x0) < r},

and Wr(0) = Wr.
We recall the definition and some properties of anisotropic curvature for a smooth

set. For further details we refer the reader to, for example, [1, 7].

Definition 2.1. Let A ⊂ R
n be an open set with smooth boundary. The anisotrop-

ic outer normal nA is defined as

nA(x) = ∇ξF (νA(x)), x ∈ ∂A,

where νA is the unit Euclidean outer normal to ∂A.

Remark 2.2. We stress that if A = Wr(x0), by the properties of F it follows that

nA(x) = ∇ξF (∇ξF
◦(x − x0)) =

1
r
(x − x0), x ∈ ∂A.

Finally, let us recall the definition of the Finsler Laplacian of a function u:

∆F u = div(F (∇u)Fξ(∇u)). (2.9)

Several properties of ∆F are listed in [18].
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2.1. Anisotropic distance function

Due to the nature of the problem, it seems natural to consider a suitable notion
of distance to the boundary.

Let us consider a domain Ω, that is, a connected open set of R
n, with non-empty

boundary.
The anisotropic distance of x ∈ Ω to the boundary ∂Ω is the function

dF (x) = inf
y∈∂Ω

F ◦(x − y), x ∈ Ω. (2.10)

We stress that when F = | · |, we have dF = dE , the Euclidean distance function
from the boundary.

It is not difficult to prove that dF is a uniform Lipschitz function in Ω̄ and, using
the property (2.7),

F (∇dF (x)) = 1 almost everywhere in Ω. (2.11)

Obviously, assuming that supΩ dF < +∞, dF ∈ W 1,∞
0 (Ω) and the quantity

rF = sup{dF (x), x ∈ Ω} (2.12)

is called the anisotropic inradius of Ω.
For further properties of the anisotropic distance function we refer the reader

to [12].
The main assumption in this paper will be that dF is ∆F -superharmonic, that

is,
−∆F dF � 0 in D′, (CH)

which means that∫
Ω

F (∇u)Fξ(∇u) · ∇ϕ dx � 0 ∀ϕ ∈ C∞
0 (Ω), ϕ � 0.

Similarly, in the case of the Euclidean norm we will write that dE is ∆-superhar-
monic if dE is superharmonic in the usual sense, that is, −∆dE � 0 in D′.

Remark 2.3. We emphasize that if Ω is a convex set, the functions dE and dF

are respectively ∆- and ∆F -superharmonic. This can be easily proved by using the
concavity of dE and dF in Ω (see, for instance, [17], and [15] for the anisotropic
case).

Actually, in the Euclidean case there exist non-convex sets for which dE is still
∆-superharmonic. An example can be obtained, for instance, in dimension n = 3,
taking the standard torus (see [4]). Similarly, in the following example we show
that there exists a non-convex set such that the anisotropic distance function dF is
∆F -superharmonic.

Example 2.4. Let us consider the following Finsler norm in R
3,

F (x1, x2, x3) = (x2
1 + x2

2 + a2x2
3)

1/2,

with a > 0; then

F ◦(x1, x2, x3) =
(

x2
1 + x2

2 +
x2

3

a2

)1/2

.
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We consider the set Ω ⊂ R
3 obtained by rotating the ellipse

γ =
{

(0, x2, x3) : (x2 − R)2 +
x2

3

a2 < r2
}

with R > r > 0

about the x3-axis. Obviously, Ω is not convex. In order to show that dF verifies
(CH), we first observe that if we fix a generic point x ∈ γ, then, given that F
is isotropic with respect to the first two components, the anisotropic distance is
achieved at a point x̄ of the boundary of γ. Moreover, it is not difficult to show
that the vector x̄ − x has the same direction of the anisotropic normal nΩ (see
definition 2.1, and also [14]). Hence, by remark 2.2,

dF (x) = r − F ◦(x − x0),

where x0 = (0, R, 0) is the centre of the ellipse.
Now let us introduce plane polar coordinates (ρ, ϑ) such that with a generic

point Q = (x1, x2, x3) ∈ R
3 is associated the point Q′ = (ρ cos ϑ, ρ sin ϑ, x3), where

ρ =
√

x2
1 + x2

2 and ϑ ∈ [0, 2π]. Then, by construction,

Ω = {Q′ ∈ R
3 : F ◦(Q′ − C) < r},

where C = (R cos ϑ, R sin ϑ, 0) and F ◦(Q′ − C)2 = (R − ρ)2 + x2
3/a2.

Then as observed before, for fixed Q′ ∈ Ω,

dF (Q′) = r − F ◦(Q′ − C) = r −
√

(R − ρ)2 +
x2

3

a2 = r −
√

(R −
√

x2
1 + x2

2)2 +
x2

3

a2 .

Now we are in position to prove that dF verifies (CH). We note that, for all
Q′ �= C,

∆F dF (Q′) = div(F (∇dF )Fξ(∇dF ))

=
∂2dF

∂x2
1

+
∂2dF

∂x2
2

+ a2 ∂2dF

∂x2
3

=
1
ρ

∂dF

∂ρ
+

∂2dF

∂ρ2 + a2 ∂2dF

∂x2
3

=
R − 2ρ

ρF ◦(Q′ − C)
. (2.13)

Given that � > R − r, we get that dF is ∆F -superharmonic in Ω if R > 2r for all
a > 0.

Remark 2.5. In general, if Ω is not convex, requiring that dF is ∆F -superharmon-
ic does not ensure that dE is ∆-superharmonic. Indeed, let Ω be as in example 2.4;
if we take R � 2r, then, as shown before, −∆F dF � 0. On the other hand, it
is possible to choose a > 0 such that dE is not ∆-superharmonic. To do that, it
is enough to prove that the mean curvature of Ω is negative at some points of
the boundary for a suitable choice of a. Indeed, in [25] it was proved that dE is
∆-superharmonic on Ω if and only if the mean curvature HΩ(y) � 0 for all y ∈ ∂Ω.
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We denote the parametric equations of ∂Ω by ϕ(t, ϑ):

x1 = (R + r cos ϑ) cos t = φ(ϑ) cos t,

x2 = (R + r cos ϑ) sin t = φ(ϑ) sin t,

x3 = ar sin ϑ = ψ(ϑ),

where t, ϑ ∈ [0, 2π].
Then for y = ϕ(t, ϑ) ∈ ∂Ω we have

HΩ(y) = −φ(φ′′ψ′ − φ′ψ′′) − ψ′((φ′)2 + (ψ′)2)
2|φ|((φ′)2 + (ψ′)2)3/2

=
ar2(R + 2r cos ϑ + r cos3 ϑ(a2 − 1))

2|R + r cos ϑ|(r2 sin2 ϑ + a2r2 cos2 ϑ)3/2
. (2.14)

Finally, we observe that if ϑ = π, then HΩ(y) < 0 if a > 1.

3. Anisotropic Hardy inequality

Theorem 3.1. Let Ω ⊂ R
n be a domain and suppose that dF satisfies condition

(CH). Then for every function u ∈ H1
0 (Ω) the following anisotropic Hardy inequal-

ity holds: ∫
Ω

F 2(∇u) dx � 1
4

∫
Ω

u2

d2
F

dx, (3.1)

where dF is the anisotropic distance function from the boundary of Ω defined
in (2.10).

Proof. We prove inequality (3.1) for u ∈ C∞
0 (Ω). Given that F 2 is convex, we have

that
F 2(ξ1) � F 2(ξ2) + 2F (ξ2)Fξ(ξ2) · (ξ1 − ξ2).

Hence, putting ξ1 = ∇u, ξ2 = Au(∇dF /dF ), with A a positive constant, and
recalling that F (∇dF ) = 1, by the homogeneity of F we get

∫
Ω

F 2(∇u) dx � −A2
∫

Ω

u2

d2
F

dx + A

∫
Ω

2u

dF
Fξ(∇dF ) · ∇u dx.

By the divergence theorem (in a general setting; see, for example, [3]) we have
∫

Ω

F 2(∇u) dx � −A2
∫

Ω

u2

d2
F

dx + A

∫
Ω

Fξ(∇dF )
dF

· ∇(u2) dx

� −A2
∫

Ω

u2

d2
F

dx − A

∫
Ω

u2 ∆F dF

dF
dx + A

∫
Ω

u2

d2
F

dx.

Given that −∆F dF � 0, we get
∫

Ω

F 2(∇u) dx � (A − A2)
∫

Ω

u2

d2
F

dx.

Then, maximizing with respect to A we obtain that A = 1
2 , and (3.1) follows.
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Remark 3.2. We observe that if Ω is a convex domain in R
n, an inequality of type

(3.1) can be immediately obtained by using the following classical Hardy inequality
involving the Euclidean distance function dE :

∫
Ω

|∇u|2 dx � 1
4

∫
Ω

u2

d2
E

dx. (3.2)

By (2.2) and (2.3) we easily get
∫

Ω

F 2(∇u) dx � α2
1

∫
Ω

|∇u|2 dx � α2
1

4

∫
Ω

u2

d2
E

dx � 1
4

α2
1

α2
2

∫
Ω

u2

d2
F

dx, (3.3)

where the constant on the right-hand side is smaller than 1
4 since α1 < α2. We

emphasize that if Ω is not convex, inequality (3.3) holds under the assumption that
dE is E-superharmonic, since (3.2) is in force. On the other hand, the assumption on
dE is not related to the hypothesis required about dF in theorem 3.1, as observed
in remark 2.5.

Using theorem 3.1, it is not difficult to obtain a lower bound for the first eigen-
value of ∆F defined in (2.9).

Corollary 3.3. Let Ω be a bounded domain of R
n and suppose that dF satisfies

condition (CH). Let λ1(Ω) be the first Dirichlet eigenvalue of the Finsler Laplacian,
that is,

λ1(Ω) = min
u∈H1

0 (Ω)
u �=0

∫
Ω

F 2(∇u) dx∫
Ω

u2 dx
. (3.4)

Then
λ1(Ω) � 1

4r2
F

,

where rF is the anisotropic inradius of Ω defined in (2.12).

Proof. Let v be the first eigenfunction related to λ1(Ω) such that ‖v‖L2 = 1. Then
(3.4) and inequality (3.1) imply that

λ1(Ω) =
∫

Ω

F 2(∇v) dx � 1
4

∫
Ω

v2

d2
F

dx � 1
4r2

F

,

which is the claim.

4. Hardy inequality with remainder terms

Theorem 4.1. Let Ω ⊂ R
n be a domain. Let us suppose also that dF satisfies

condition (CH), and rF < +∞, where rF is the anisotropic inradius of Ω defined
in (2.12). Then for every function u ∈ H1

0 (Ω) the following inequality holds:
∫

Ω

F 2(∇u) dx − 1
4

∫
Ω

u2

d2
F

dx � 1
4

∫
Ω

u2

d2
F

(
log

D

dF

)−2

dx, (4.1)

where D = e rF .
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Proof. We will use the following notation:

X(t) = − 1
log t

, t ∈
]
0,

1
e

[
.

Let us explicitly observe that X(t) ∈ ]0, 1[.
Given that F 2 is convex, we have that

F 2(ξ1) � F 2(ξ2) + 2F (ξ2)Fξ(ξ2) · (ξ1 − ξ2).

Let us consider

ξ1 = ∇u, ξ2 =
u

2
∇dF

dF

[
1 − X

(
dF

D

)]
.

Given that dF (x) � D/e, by the 1-homogeneity of F we get

F 2(∇u)

� 1
4

u2

d2
F

F 2(∇dF )
[
1 − X

(
dF

D

)]2

+
u

dF

[
1 − X

(
dF

D

)]
F (∇dF )Fξ(∇dF ) ·

(
∇u − 1

2u
∇dF

dF

[
1 − X

(
dF

D

)])

= −1
4

u2

d2
F

[
1 − X

(
dF

D

)]2

+
u

dF

[
1 − X

(
dF

D

)]
Fξ(∇dF ) · ∇u, (4.2)

where last equality follows from F (∇dF ) = 1, the 1-homogeneity of F and property
(2.4). Let us observe that, using the divergence theorem (in a general setting; see,
for example, [3]), we have
∫

Ω

u

dF

[
1 − X

(
dF

D

)]
Fξ(∇dF ) · ∇u dx

= −
∫

Ω

u2

2
div

([
1 − X

(
dF

D

)]
Fξ(∇dF )

dF

)
dx

=
∫

Ω

u2

2

{[
1 − X

(
dF

D

)
+ X2

(
dF

D

)]
Fξ(∇dF ) · ∇dF

d2
F

−
[
1 − X

(
dF

D

)]
∆F dF

dF

}
dx

�
∫

Ω

1
2

u2

d2
F

[
1 − X

(
dF

D

)
+ X2

(
dF

D

)]
dx, (4.3)

where the last inequality follows by using the condition −∆F dF � 0.
Integrating (4.2) and using (4.3), we easily get

∫
Ω

F 2(∇u) dx �
∫

Ω

1
4

u2

d2
F

{
−

[
1 − X

(
dF

D

)]2

+ 2 − 2X

(
dF

D

)
+ 2X2

(
dF

D

)}
dx

= 1
4

∫
Ω

u2

d2
F

dx + 1
4

∫
Ω

u2

d2
F

X2
(

dF

D

)
dx,

and the proof is complete.
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Remark 4.2. We observe that if Ω is a convex domain in R
n, arguing as in

remark 3.2, an inequality of type (4.1) can be immediately obtained by using the
following improved Hardy inequality involving dE , contained in [6]:

∫
Ω

|∇u|2 dx − 1
4

∫
Ω

|u|2
d2

E
dx � 1

4

∫
Ω

|u|2
d2

E

(
log

D0

dE

)−2

dx, (4.4)

where D0 � e sup dE(x, ∂Ω) and u ∈ H1
0 (Ω). Obviously, also in this case it is not

possible to obtain the optimal constants.

Corollary 4.3. Under the same assumptions as theorem 4.1, the following aniso-
tropic improved Hardy inequality holds:

∫
Ω

F 2(∇u) dx − 1
4

∫
Ω

u2

d2
F

dx � 1
4r2

F

∫
Ω

u2 dx, (4.5)

where rF is the anisotropic inradius defined in (2.12).

Proof. By theorem 4.1, to prove (4.5) it is sufficient to show that

∫
Ω

u2

d2
F

(
log

D

dF

)−2

dx � 1
r2
F

∫
Ω

u2 dx.

This is a consequence of the monotonicity of the following function

f(t) = −t log
(

t

erF

)
, 0 < t � rF .

Indeed, f is strictly increasing and its maximum is rF . This concludes the proof.

An immediate consequence of the previous result is contained in the following
remark.

Remark 4.4. Let Ω ⊂ R
n be a bounded convex domain. Then there exists a

positive constant C(n) > 0 such that for any u ∈ H1
0 (Ω) we have

∫
Ω

F 2(∇u) dx − 1
4

∫
Ω

u2

d2
F

dx � C(n)|Ω|−2/n

∫
Ω

u2 dx.

The final theorem concerns the series expansion of the anisotropic Hardy inequal-
ity, which generalizes the one in the Euclidean case contained in [5].

To this end, we introduce the function

X1(t) =
1

1 − log t
, t ∈ ]0, 1[,

and recursively (observe that X1(t) ∈ ]0, 1[)

Xk+1(t) = Xk(X1(t)), k ∈ N.
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Theorem 4.5. Let Ω ⊂ R
n be a domain. Let us suppose also that dF verifies

condition (CH), and the anisotropic inradius rF is finite. Then for every function
u ∈ H1

0 (Ω) the following inequality holds:
∫

Ω

F 2(∇u) dx − 1
4

∫
Ω

u2

d2
F

dx � 1
4

∞∑
k=1

∫
Ω

u2

d2
F

X2
1

(
dF

rF

)
X2

2

(
dF

rF

)
· · ·X2

k

(
dF

rF

)
dx.

(4.6)

Proof. The proof runs similarly to the one contained in [5] in the Euclidean case.
For any m ∈ N, define

η(t) =
m∑

k=1

X1(t) · · ·Xk(t), t ∈ ]0, 1[.

Let us observe that

η′(t) =
1
t
[X2

1 + (X2
1X2 + X2

1X2
2 ) + · · · + (X2

1X2 · · ·Xm + · · · + X2
1X2

2 · · ·X2
m)]

=
1
2

η2(t)
t

+
1
2t

m∑
k=1

X2
1 (t) · · ·X2

k(t).

Choosing

ξ1 = ∇u, ξ2 =
u

2
∇dF

dF

[
1 − η

(
dF

rF

)]

and proceeding as in theorems 3.1 and 4.1, we obtain the result.

5. Optimality of the constants

Here we prove the optimality of the constants and of the exponent that appear in
the Hardy inequality (4.1). More precisely, we prove the following result.

Theorem 5.1. Let Ω be a piecewise C2 domain of R
n. Suppose that rF < +∞,

and that the following Hardy inequality holds:
∫

Ω

F 2(∇u) dx − A

∫
Ω

u2

d2
F

dx � B

∫
Ω

u2

d2
F

(
log

D

dF

)−γ

dx ∀u ∈ H1
0 (Ω), (5.1)

for some constants A > 0, B � 0, γ > 0, where D = e rF . Then

(T1) A � 1
4 ;

(T2) if A = 1
4 and B > 0, then γ � 2;

(T3) if A = 1
4 and γ = 2, then B � 1

4 .

Proof. The proof is similar to the one obtained in the Euclidean case in [6]. For the
sake of completeness, we describe it in detail. As before, let us define

X(t) = − 1
log t

, t ∈
]
0,

1
e

[
.
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In order to prove the results we will provide a local analysis. Hence, we fix a Wulff
shape Wδ of radius δ centred at a point x0 ∈ ∂Ω. Given that ∂Ω is piecewise
smooth, we may suppose that, for a sufficiently small δ, ∂Ω ∩ Wδ is C2. Now let ϕ
be a non-negative cut-off function in C∞

0 (Wδ ∩Ω) such that ϕ(x) = 1 for x ∈ Wδ/2.
First of all, we prove some technical estimates that will be useful in the following.
For ε > 0 and β ∈ R let us consider

Jβ(ε) =
∫

Ω

ϕ2d−1+2ε
F X−β

(
dF

D

)
dx. (5.2)

We split the proof into several claims.

Claim 5.2. The following estimates hold:

(i) c1ε
−1−β � Jβ(ε) � c2ε

−1−β for β > −1, where c1, c2 are positive constants
independent of ε;

(ii) Jβ(ε) =
2ε

β + 1
Jβ+1(ε) + Oε(1) for β > −1;

(iii) Jβ(ε) = Oε(1) for β < −1.

Proof of claim 5.2. By the coarea formula,

Jβ(ε) =
∫ δ

0
r−1+2εX−β(r/D)

( ∫
dF =r

ϕ2

|∇dF | dHn−1
)

dr.

Given that F (∇dF ) = 1, by (2.2), 0 < α1 � |∇dF |−1 � α2 and

0 < C1 �
∫

dF =r

ϕ2

|∇dF | dHn−1 � C2.

Then if β < −1, (iii) easily follows. Moreover, if β > −1, performing the change of
variables r = Ds1/ε, (i) holds.

As regards (ii), let us observe that

d
dr

Xβ = β
Xβ+1

r
.

Recalling that 1 = F (∇dF )Fξ(∇dF ) · ∇dF , we have

(β + 1)Jβ(ε) = −
∫

Ω

ϕ2d2ε
F F (∇dF )Fξ(∇dF ) · ∇

[
X−β−1

(
dF

D

)]
dx

=
∫

Ω

div(ϕ2d2εF (∇dF )Fξ(∇dF ))X−β−1
(

dF

D

)
dx

= 2
∫

Ω

ϕd2ε
F X−β−1

(
dF

D

)
F (∇dF )Fξ(∇dF ) · ∇ϕ dx

+ 2ε

∫
Ω

ϕ2d2ε−1
F X−β−1

(
dF

D

)
dx

+
∫

Ω

ϕ2d2ε
F X−β−1

(
dF

D

)
∆F dF dx

= Oε(1) + 2εJβ+1(ε).
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We explicitly observe that
∫

Ω

ϕ2d2ε
F X−β−1

(
dF

D

)
∆F dF dx = Oε(1)

since dF is a C2 function in a neighbourhood of the boundary (see [12]). Then (ii)
holds.

In the next claim we estimate the left-hand side of (5.1) when u = Uε, with

Uε(x) = ϕ(x)wε(x), wε(x) = d
1/2+ε
F X−θ(dF (x)/D), 1

2 < θ < 1.

Let us define

Q[Uε] :=
∫

Ω

(
F 2(∇Uε) − 1

4
U2

ε

d2
F

)
dx.

Claim 5.3. The following estimates hold:

Q[Uε] � 1
2θJ2θ−2(ε) + Oε(1) as ε → 0, (5.3)∫

Wδ∩Ω

F 2(∇Uε) dx � 1
4J2θ(ε) + Oε(ε1−2θ) as ε → 0. (5.4)

Proof of claim 5.3. The convexity of F implies that

F 2(ξ + η) � F 2(ξ) + 2F (ξ)F (η) + F 2(η) ∀ξ, η ∈ R
n.

Hence, by the homogeneity of F ,∫
Ω

F 2(∇Uε) dx �
∫

Wδ∩Ω

ϕ2F 2(∇wε) dx +
∫

Wδ∩Ω

w2
εF 2(∇ϕ) dx

+
∫

Wδ∩Ω

2ϕwεF (∇ϕ)F (∇wε) dx

=
∫

Wδ∩Ω

ϕ2d2ε−1
F X−2θ

(
dF

D

)(
ε +

1
2

− θX

(
dF

D

))2

dx + I1 + I2.

As a matter of fact,

I2 � C

∫
Wδ∩Ω

d2ε
F X−2θ

(
dF

D

)
dx = Oε(1);

similarly, I1 = Oε(1). Then

Q[Uε] �
∫

Wδ∩Ω

ϕ2d2ε−1
F X−2θ

(
dF

D

)[(
ε +

1
2

− θX

(
dF

D

))2

− 1
4

]
dx + Oε(1)

�
∫

Wδ∩Ω

ϕ2d2ε−1
F X−2θ

(
dF

D

)(
ε − θX

(
dF

D

))2

dx

+
∫

Wδ∩Ω

ϕ2d2ε−1
F X−2θ

(
dF

D

)(
ε − θX

(
dF

D

))
+ Oε(1)

= a1 + a2 + Oε(1). (5.5)
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Using claim 5.2(ii) with β = 2θ − 1, we get

a2 = Oε(1), ε → 0. (5.6)

Similarly, as regards a1, applying claim 5.2(ii) first with β = 2θ−1 and second with
β = 2θ − 2 we obtain

a1 =
θ

2

∫
Wδ

ϕ2d2ε−1
F X2−2θ

(
dF

D

)
dx + Oε(1). (5.7)

Then (5.3) follows by (5.5)–(5.7) and (5.2). Finally, observing that
∫

Wδ∩Ω

F 2(∇Uε) dx = Q[Uε] + 1
4J2θ(ε), (5.8)

inequality (5.4) follows from (5.3) and claim 5.2(i).

Now we are in a position to conclude the proof of the theorem.
Since inequality (5.1) holds for any u ∈ H1

0 (Ω), we take as a test function Uε.
Then, by (5.4) and claim 5.2(i), we have

A � 1
J2θ(ε)

∫
Wδ∩Ω

F 2(∇Uε) dx � 1
4 + Oε(ε).

Letting ε → 0, we obtain (T1).
In order to prove (T2) we put A = 1

4 , and reasoning by contradiction we assume
that γ < 2. As before, by (5.3) and claim 5.2(i) we have

0 < B � Q[Uε]
J2θ−γ(ε)

� C
ε1−2θ

εγ−1−2θ
= Cε2−γ → 0 as ε → 0,

which is a contradiction, and then γ � 2.
To conclude the proof of the theorem we just have to prove (T3).
If A = 1

4 and γ = 2, then by (5.3) we have

B � Q[Uε]
J2θ−2(ε)

�
1
2θJ2θ−2(ε) + Oε(1)

J2θ−2(ε)
.

Then, by assumption on θ and claim 5.2(i), letting ε → 0 we get

B � θ

2
.

Hence (T3) follows by letting θ → 1
2 .

Remark 5.4. We stress that theorem 5.1 ensures that the involved constants in
(4.1), and also in the anisotropic Hardy inequality (3.1), are optimal. Actually, the
presence of the remainder term in (4.1) guarantees that the constant 1

4 in (3.1) is
not achieved.
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