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MODEL THEORETIC PROPERTIES OF METRIC VALUED FIELDS

ITAÏ BEN YAACOV

Abstract. We study model theoretic properties of valued fields (equipped with a real-valued
multiplicative valuation), viewed as metric structures in continuous first order logic.
For technical reasons we prefer to consider not the valued field (K, |·|) directly, but rather the associated

projective spaces KPn , as bounded metric structures.
We show that the class of (projective spaces over) metric valued fields is elementary, with theoryMVF ,

and that the projective spaces Pn and Pm are biinterpretable for every n, m ≥ 1. The theoryMVF admits
a model completion ACMVF , the theory of algebraically closed metric valued fields (with a nontrivial
valuation). This theory is strictly stable (even up to perturbation).
Similarly, we show that the theory of real closed metric valued fields,RCMVF , is the model companion

of the theory of formally real metric valued fields, and that it is dependent.

§1. The theory of metric valued fields. Let us recall some terminology from
Berkovich [11]. A semi-normed ring is a unital commutative ring R equipped with
a mapping |·| : R→ R≥0 such that

1. |1| = 1,
2. |xy| ≤ |x||y|,
3. |x + y| ≤ |x|+ |y|.

If |x| = 0 =⇒ x = 0 then |·| is a norm. A semi-norm ismultiplicative if |xy| = |x||y|.
A multiplicative norm is also called a valuation. Thus, a valued field is equipped
with a natural metric structure d (x, y) = |x − y|. In some contexts, a valuation is
allowed to take values in Γ∪{0} where (Γ, ·) is an arbitrary ordered Abelian group
and 0 < Γ, but this will not be the case in the present text. When we wish to make
this explicit we shall refer to our fields as metric valued fields.
IfK is a complete valued field then eitherK ∈ {R,C} and |·| is the usual absolute

value to some power (in which case |·| is Archimedean) or |x + y| ≤ |x| ∨ |y|
(|·| is non Archimedean, or ultrametric). From a model theoretic point of view,
Archimedean valued fields, being locally compact, resemble finite structures of
classical logic and are thus far less interesting than their ultrametric counterparts.
On the other hand, while everything we do here applies to arbitrary valued fields,
including Archimedean ones, restricting our attention to the ultrametric case does
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allow us many simplifications. Thus, with very little loss of generality, we shall only
consider ultrametric valued fields.

Convention 1.1. Throughout, unless explicitly statedotherwise, by a valued field
we mean a non Archimedean one.

The valuation is said to be trivial if |x| = 1 for every x �= 0. It is discrete if the
image of |·| onK× is discrete. Clearly every trivial valuation is discrete. On the other
hand, a nontrivial valuation on an algebraically (or separably) closed field cannot
be discrete.
A nontrivially valued field is unbounded as a metric space, and therefore does
not fit in the framework of standard bounded continuous logic. One device we use
quite often with Banach space structures (Banach spaces, Banach lattices, and so
on) is to restrict our attention to the structure formed by the closed unit ball. This
approach may seem natural for valued fields as well, since the unit ball is simply the
corresponding valuation ring. However, in the case of a nondiscrete valuation this
approach is not adequate, as shown by the following result.

Proposition 1.2. Let (K, |·|) be a field equipped with a nondiscrete valuation, and
let R = (R, 0, 1,−,+, ·, |·|) be its valuation ring. Then R cannot be saturated as
a metric structure (i.e., in the sense of continuous logic). In fact, it cannot even realise
every type over ∅.

Proof. Since R is not discrete we can find for each n an element an ∈ R such
that 1− 2−n < |an| < 1. Such an element is not invertible in R, and worse, for every
b ∈ R we have |anb| < |b| ≤ 1, whereby |anb − 1| = 1. In other words, each an
satisfies the assertion that infy |xy− 1| = 1. Thus in an ultrapower ofR there exists
a such that |a| = infy |ay−1| = 1. Since every element ofR of value 1 is invertible,
such an element cannot exist in R. 	
Therefore, if we are to hope for a reasonable model theoretic treatment of valued
fields, the entire field should be considered as an unbounded structure. Unbounded
metric structures are discussed in [4], where we also introduce an emboundment
process whereby unbounded structures can be turned into bounded ones through
the addition of a single point at infinity. In the case of a valued field, the result-
ing structure can be naturally identified (as a set of points) with the projective
line, which is a natural object in itself. For our purposes it will be more con-
venient to consider the projective line directly, rather than as the emboundment
of the field (and one can check that the two structures are interdefinable). As
in the general case of emboundment, even though the field language contains
function symbols, these do not pass on to the projective line. Indeed, the addi-
tion map

(
[x : 1], [y : 1]

) 
→ [x + y : 1] is ill-defined at
(
[1 : 0], [1 : 0]

)
,

and similarly
(
[x : 1], [y : 1]

) 
→ [xy : 1] is ill-defined at
(
[0 : 1], [1 : 0]

)
. We

shall therefore have to do, at least for the time being, with a purely relational
language (this will be remedied later on when we consider projective spaces of
higher dimension).
We recall that the projective n-space over a field K is the quotient
(Kn+1 � {0})/K×. The class of (a) = (ai) = (a0, . . . , an) is denoted a = [a] =
[ai ] = [a0 : . . . : an]. Dividing by a coordinate with maximal value we see that any
member of KPn can be written as [ai ] where

∨ |ai | = 1. From now on we shall
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assume that all the representatives are of this form, which determines them up to
a multiplicative factor from the group {x ∈ K : |x| = 1} = ker |·|.
Notation 1.3. Let X̄ = (X0, . . . , Xn−1) denote n formal unknowns. We let X̄ ∗

denote a copy of X̄ , and let Zh [X̄ ] ⊆ Z[X̄ , X̄ ∗] denote the ring of polynomials in
X̄ , X̄ ∗ which are homogeneous in each pair (Xi ,X ∗

i ) separately (which is stronger
than being homogeneous in all the variables simultaneously). For a polynomial
Q(X̄ , X̄ ∗) ∈ Zh[X̄ ] let Q̄(X̄ ) = Q(X̄ , 1̄) ∈ Z[X̄ ].
For P(X̄ ) ∈ Z[X̄ ] let degX̄ P = (degX0 P, . . . ,degXn−1 P) ∈ Nn and let

P∗(X̄ ∗) = (X̄ ∗)degX̄ P =
∏
(X ∗
i )
degXi P ∈ Z[X̄ ∗], Ph(X̄ , X̄ ∗) = P( X̄

X̄∗ )P
∗(X̄ ∗).

Then Ph ∈ Z[X̄ , X̄ ∗] is unique such that P = Ph and no X ∗
i can be factored out

of Ph . We call Ph the homogenisation of P and observe that P 
→ Ph is multiplica-
tive. Conversely, every Q ∈ Zh [X̄ ] can be written uniquely as Q̄h · (X̄ ∗)α(Q), where
α(Q̄) ∈ Nn is a multi-exponent.
We now have everything we need to define the language and theory of (projec-

tive lines of) metric valued fields in ordinary (i.e., bounded) continuous logic, as
presented in [9] or [10].

Definition 1.4. We define the languageLP1 to consist of a constant symbol∞
andonen-ary, [0, 1]-valued predicate symbol‖P(x̄)‖ for each n and eachpolynomial
P ∈ Z[X0, . . . , Xn−1]. (There is some abuse of notation here, since P does not
determine n but this will not cause any problems.)

Definition 1.5. For a valued field (K, |·|), we view KP1 as an
LP1 -prestructure by:

∞ := [1 : 0], ‖P(ā)‖ := |Ph(ā, ā∗)|, d (a, b) := ‖a− b‖ = |ab∗ − a∗b|.
This is independent of the choice of representatives, keeping mind that we only
consider representatives for [a : a∗] ∈ KP1 such that |a| ∨ |a∗| = 1.
We observe that |a∗| = ‖a−∞‖ = d (a,∞), and we shall use ‖x∗‖ as an abbrevi-

ation for the formula d (x,∞). For P(X̄ ) ∈ Z[X̄ ] we have |P∗(ā∗)| =∏ |a∗i |degXi P ,
and we shall similarly use ‖P∗(x̄)‖ as an abbreviation for∏ ‖x∗i ‖degXi P . We notice
that ‖P(ā)‖ = |P(ā)|‖P∗(ā)‖ (if ai ∈ K ⊆ KP1 whenever degXi P > 0 then this
makes sense, and otherwise ‖P∗(ā)‖ = 0, and the identity still makes sense).
Definition 1.6. WedefineMVF , the theory of projective lines overmetric valued

fields, to consist of the following axioms. In axiom (Perm), � ∈ Sn is a permutation
and (X0, . . . , Xn−1)� = (X�0, . . . , X�(n−1)).

‖x‖ ∨ ‖x∗‖ = 1 (Norm)

‖P(x̄)‖ = ‖Q(x̄� , ȳ)‖ (
P(X̄ ) = Q(X̄ �, Ȳ )

)
(Perm)

‖x̄∗‖α‖P(x̄)‖ ≤ ‖x̄∗‖�‖Q(x̄)‖ ∨ ‖x̄∗‖�‖R(x̄)‖ (Ult)(
(X̄ ∗)αPh = (X̄ ∗)�Qh − (X̄ ∗)�Rh

)
‖(PQ)(x̄)‖ = ‖P(x̄)‖‖Q(x̄)‖ (Prod)

d (x, y) = ‖x − y‖ (Dist)

∃y ‖P(x̄, y)‖ = 0 (
degY P(X̄ , Y ) = 1

)
(Lin)
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Axioms are universally quantified, so axiom (Norm), for example, should be
understood as the sentence supx

∣∣1 − ‖x‖ ∨ ‖x∗‖∣∣ (where we recall the convention
of continuous logic, that zero is “True”), and similarly for the other axioms which
appear quantifier-free. In the last axiom, the existential quantifier should be under-
stood in the approximate sense: there exists y such that ‖P(x̄, y)‖ is as close as
desired to zero, or formally, supx̄ infy ‖P(x̄, y)‖. In continuous logic one simply
cannot express directly the existence of some y such that something holds precisely
(e.g., such that ‖P(x̄, y)‖ is precisely zero), although in concrete situations one
can prove that approximate existence implies precise existence, as is the case with
Lemma 1.7 below.
It follows immediately from the axioms that ‖P‖ = ‖−P‖ and ‖∞‖ = 1.
Lemma 1.7. Assume that M � MVF . Then for every P,Q ∈ Z[X̄ ] and every
ā ∈ Mn , if ‖P(ā)‖‖Q∗(ā)‖ �= 0 then there exists a unique b ∈ M such that
‖P(ā)b − Q(ā)‖ = 0, i.e., ‖R(ā, b)‖ = 0 where R = PY − Q. Moreover, this
b is distinct from∞.
Proof. Let α = degX̄ Q−. degX̄ P, � = degX̄ P−. degX̄ Q, soRh = (X̄ ∗)αPhY −
(X̄ ∗)�Y ∗Qh . Then

(X̄ ∗)α
[
(Y − Z)P]h = Z∗R(X̄ , Y )h − Y ∗R(X̄ , Z)h .

By the ultrametric axiom (Ult):

d (y, z) ≤ ‖R(ā, y)‖‖z∗‖ ∨ ‖R(ā, z)‖‖y∗‖
‖P(ā)‖‖ā∗‖α ≤ ‖R(ā, y)‖ ∨ ‖R(ā, z)‖

‖P(ā)‖‖Q∗(ā)‖ .

Uniqueness follows. By the linear solution axiom (Lin) there exists a sequence
(bn) such that ‖P(ā)bn − Q(ā)‖ → 0. It follows from our argument above that
this is a Cauchy sequence, and its limit b is a solution. Finally, ‖R(ā,∞)‖ =
‖P(ā)‖‖ā∗‖α �= 0, so b �=∞. 	
When b is as in the lemma we write b = Q(ā)

P(ā) , and if P = 1 we write b = Q(ā).

Theorem 1.8. AnLP1-structure is a model ofMVF if and only if it is isomorphic
to KP1 for some complete valued field K .
Proof. Only one direction requires a proof. Assume therefore thatM � MVF .
Let K =M � {∞}. For a, b ∈ K , and with the notation above, a + b = a+b

1 is the
unique solution for ‖Y − a − b‖ = 0. We may similarly define ab, −a, as well as
the constants 0 and 1, and since ‖a∗‖ �= 0 we may also define |a| = ‖a‖

‖a∗‖ .
Let us check that (K, 0, 1,−,+, ·, |·|) is a valued field. For this purpose, we shall
use brackets to enclose expressions involving the field operations of K , whereas
expressions outside brackets correspond to polynomials over Z. Axiom (Perm)
ensures that we need not worry about the order of variables in a polynomial nor
about dummy variables, and will be used implicitly throughout.
In order to see that addition is associative, for example, observe that

X ∗(W − Y − Z − T )h = Y ∗Z∗(W − X − T )h +W ∗T ∗(X − Y − Z)h .
Then by (Ult) and the fact that ‖P‖ = ‖ − P‖, that for all a, b, c ∈ K ,∥∥[a + b]∗∥∥∥∥[(a + b) + c]− a − b − c∥∥ = 0

=⇒ ∥∥[(a + b) + c]− a − b − c∥∥ = 0.
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A similar argument yields
∥∥[a + (b + c)] − a − b − c∥∥ = 0. It follows from the

uniqueness clause of Lemma 1.7 that [(a + b) + c] = [a + (b + c)]. Similarly,

X ∗(W − YZT )h = Y ∗Z∗(W − XT )h +W ∗(XT − YZT )h .
Using also axiom (Prod) we obtain

∥∥[(ab)c] − abc∥∥=0, and similarly ∥∥[a(bc)] −
abc

∥∥=0, concluding that [(ab)c] = [a(bc)].
Proceeding in this manner, we show that

∥∥[P(ā)] − P(ā)∥∥ = 0 for every ā ∈ K ,
polynomial P(X̄ ) ∈ Z[X̄ ] and ring language term [P] which evaluates to P in rings.
In particular [P(ā)] only depends on P and not on the choice of [P], whence it
follows that K is a ring. If a ∈ K � {0} then ‖a‖ = ‖a − 0‖ > 0, so b = 1

a exists.
Thus

∥∥[ab]− 1∥∥= 0 = ∥∥[1]− 1∥∥, whereby ∥∥[ab]− [1]∥∥= 0 and [ab] = [1], so K is
a field.
The identity

∥∥[P(ā)]− P(ā)∥∥ = 0 also implies that
∥∥P∗(ā)

∥∥∥∥[P(ā)]∥∥ = ∥∥[P(ā)]∗∥∥∥∥P(ā)∥∥,or ∣∣[P(ā)]∣∣ = ‖P(ā)‖
‖P∗(ā)‖ .

By axiom (Prod) it follows that

|[ab]| = ‖a‖‖b‖
‖a∗‖‖b∗‖ = |a||b|.

Similarly, with axiom (Ult) we have

|[a + b]| = ‖a + b‖
‖a∗|‖b∗‖ ≤ ‖b∗‖‖a‖+ ‖a∗‖‖b‖

‖a∗|‖b∗‖ = |a|+ |b|.

It follows thatK is a valued field, and that the interpretation of the symbols ‖P‖ is
as intended, completing the proof. 	
The problem with extending multiplication to the projective line arises with

expressions close to 0 · ∞, i.e., when trying to multiply points which are close
to 0 with points which are close to ∞. This situation cannot happen when taking
powers, and indeed,
Lemma 1.9. For n ∈ Z, the operation x 
→ xn is uniformly definable in models

of MVF . This is under the convention that 00 = ∞0 = 1,∞n = ∞ for n > 0, and
∞n = 0, 0n =∞ for n < 0.
Proof. Indeed, an = [an : (a∗)n] and |an|∨|(a∗)n| = 1. It follows thatd (y, xn) =

‖xn − y‖, and similarly d (y, x0) = ‖y∗‖, d (y, x−n) = ‖1− xny‖. 	
It is natural to ask whether other projective spaces KPn, for n > 1, have more

(or less) structure than the projective line. In order to give a precise meaning to
this question, we should first define the projective spaces as metric structures. It
will be most convenient to define the entire family (KPn)n as a single multi-sorted
structure KP.

Definition 1.10. The signatureLP consists of ℵ0 many sorts {Pn}n∈N . They are
equipped with the following symbols:

• For each n,m a function symbol ⊗ : Pn × Pm → Pn+m+nm .
• For each A ∈ SLn+1(Z) (or in some generating subset), a function symbol
A : Pn → Pn.

• For each n a predicate symbol ‖·‖ on Pn.
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Definition 1.11. Let (K, |·|) be any valued field. We define an LP-prestructure
KP as follows:
• The sort Pn consists of the projective space KPn, namely the quotient of
Kn+1 � {0} by K×. The equivalence class of (a0, . . . , an) will be denoted
a = [a] = [ai ]i = [a0, . . . , an]. We may, and shall, assume that each
representative satisfies

∨ |ai | = 1.
• For n,m ∈ N , we fix some natural isomorphism Kn+1 ⊗Km+1 ∼= K (n+1)(m+1),
say the one given by (a ⊗ b)i+(n+1)j = aibj . We then interpret ⊗ as the Segre
embedding [a]⊗ [b] = [a ⊗ b] = [aibj ]i≤n,j≤m.

• For A ∈ SLn+1(Z), the corresponding function symbol acts onKPn naturally
via its action on Kn+1 � {0}.

• We interpret: ∥∥a∥∥ = |a0|.
• The distance on KPn is interpreted as:

d (a, b) =
∨
i<j<n

|aibj − ajbi |.

Notice that on KP1, the interpretation of ‖x‖ and d (x, y) is consistent with that
given in Definition 1.5.

We need check that the distance defined above is indeed an ultrametric distance
function. Clearly it only depends on the equivalence classes a and b. One checks
easily that d (a, b) = 0 if and only if a = b. Symmetry is immediate. We are left with
checking the ultrametric triangle inequality. Let a, b, c ∈ KPn , and fix j0 such that
|bj0 | = 1. For all i and k we then have:

|aick − akci | = |aibj0ck − aj0bick + aj0bick − aj0bkci + aj0bkci − akbj0ci |
≤ |ck||aibj0 − aj0bi | ∨ |aj0 ||bick − bkci | ∨ |ci ||aj0bk − akbj0 |
≤ d (a, b) ∨ d (b, c).

In order to show that Pn is interpretable in P1 we shall attempt to repeat the
standard trick of covering Pn with n+1 affine charts. The problem is thatAn is not
definable, or even type-definable, in P, so we shall have to make do with n+1 copies
of (P1)n instead. As above, a point a ∈ P1 is viewed as [a : a∗] where |a| ∨ |a∗| = 1.
It is either equal to∞ = [1 : 0] or else can be identified with aa∗ ∈ K . Agreeing that
|∞| = ∞ we have |a| ≤ 1 if and only if |a∗| = 1. As in Lemma 1.9 we also have
a−1 = [a∗ : a].
LetM = n(n+1)

2 . Given a tuple ā = (aij)i<j≤n ∈ (P1)M let aii = 1 = [1 : 1] and
aji = a−1ij , and consider the matrix

(
aij

)
i,j≤n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 a0,1 · · · a0,n
a−10,1 1 · · · a1,n

1
...
... 1

...
1

a−10,na
−1
1,n · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (1)
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Intuitively, we wish to consider such matrices whose rows represent identical points
in the standard affine charts for Pn, i.e., such that

[1 : a0,1 : . . . : a0,n] = [a1,0 : 1 : a1,2 : . . . : a1,n] = . . . = [an,0 : . . . : an,n−1 : 1].

These precise identities are meaningless, since some of the aij may be ∞, but we
may nonetheless express them formally by the system of equations

XijXjk = Xik (i < j < k ≤ n),
which are homogenised into

XijXjkX
∗
ik = XikX

∗
ijX

∗
jk (i < j < k ≤ n).

The following asserts that the solutions to these equations form a well-behaved
(definable) set, and that this set covers Pn. We recall from [9] or [7, Fact 1.7] that
in continuous logic, a subset X ⊆Mn is called a definable set if it is closed and the
distance predicate d (X, x̄) is definable. This has several equivalent characterisations,
among which the existence of a definable predicate ϕ(x̄) such that d (X, x̄) ≤ ϕ(x̄)
and such that the zero set of ϕ is exactly X . That the latter property implies the
former uses quantification, and when dealing with quantifier-free definability the
two properties need no longer be equivalent. The latter one is more robust, and in
particular can be shown to still hold if we replaced the ambient distance with an
equivalent definable one, so it is it we shall use.

Definition 1.12. We shall say that a set X is quantifier-free definable if there
exists a quantifier-free definable predicate (i.e., a uniform limit of quantifier-free
formulae) ϕ(x̄) such that, first, X is the zero set of ϕ, and second, d (X, x̄) ≤ ϕ(x̄).
Lemma 1.13. Let E ⊆ (P1)M consist of all tuples satisfying the homogeneous

equations above.

1. The set E is quantifier-free definable.
2. For every tuple ā ∈ E there exists � ≤ n such that in the �th row of the matrix
(1) all entries are finite of value ≤ 1.

3. Let � be as in the previous item, and let b ∈ Pn be the class of the �th row, i.e.,
b = [a�,0 : . . . : a�,�−1 : 1 : a�,�+1 : . . . : a�,n]. Then b is the unique solution for
the following system of homogeneous equations

aijYi = a∗ijYj (i < j).

Conversely, every b ∈ Pn arises in this manner ( for some ā ∈ E).
Proof. We define

ϕ(x̄) =
∨
i<j<k

‖xijxjk − xik‖.

Then E is the zero set of ϕ, and we claim that d (x̄, E) ≤ ϕ(x̄), which is enough for
the first item. Indeed, assume that ā /∈ E, so ϕ(ā) = r > 0, and we wish to show
that d (ā, E) ≤ r. If r = 1 then there is nothing to show. We may therefore assume
that r < 1. It will be convenient to work with the entire matrix (1) rather than with
its upper triangle. Observe that passing to the whole matrix does not change our
basic hypothesis, i.e.,

∨
i<j<k≤n ‖aijajk−aik‖ =

∨
i,j,k≤n ‖aijajk−aik‖. If we apply a
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permutation of n+1both to the rows and columns of thematrix, the resultingmatrix
will still have the same properties (namely aij = a−1ji and

∨
i,j,k≤n ‖aijajk−aik‖ ≤ r).

We first claim that if ϕ(ā) = r < 1 then the matrix possesses a row, say the �th,
such that |a�j | ≤ 1 for all j ≤ n. In order to prove the claim it will be enough to
show that if the ith row does not have this property, say because |aij | > 1, then in
the jth row there are strictly more entries than in the ith with value ≤ 1. Indeed,
assume that |aik | ≤ 1 and let us show that |ajk | ≤ 1 as well. By assumption we have

|aijajka∗ik − aika∗ija∗jk | = ‖aijajk − aik‖ ≤ r < 1.
We also assume that |a∗ik | = 1 and |a∗ij | < 1 = |aij |, whereby |aijajka∗ik | = |ajk | and
|aika∗ija∗jk| ≤ |a∗ij | < 1. Since the difference has value < 1 we must have |ajk | < 1 as
well, so |a∗jk | = 1 and |ajk | = |ajk| < 1. In addition we have |ajj | = 1 < |aij |, which
is one more, so our claim is proved.
We next claim that applying a permutation of rows and columns as described
earlier, the entire upper triangle can be assumed to consist of elements of value
≤ 1. Indeed, by the previous claim we may assume that |a0i | ≤ 1 for all i and then
proceed by induction on n to treat the matrix (aij)1≤i,j≤n.
We are now at a situation where |aij | ≤ 1 if i < j (and |aij | ≥ 1 if i > j).
We observe that if a, b, c ∈ P1 all have values ≤ 1 then the product ab = [ab :
a∗b∗] is well defined and moreover |ab| ≤ 1 = |a∗b∗|, i.e., the |ab| ∨ |a∗b∗| = 1.
It follows that

d (ab, ac) = |aba∗c∗ − a∗b∗ac| ≤ |bc∗ − b∗c| = d (b, c).
Similar observations hold if all values are ≥ 1. We may therefore define

cij =
∏
i≤k<j

ak,k+1, cji = c−1ij =
∏
i≤k<j

ak+1,k , (i ≤ j).

It is not difficult to check that c̄ ∈ E, and in order to prove the first item all that is
left to check is that d (c̄, ā) ≤ r. Keeping in mind that d (c, a) = d (c−1, a−1), it will
be enough to check that d (aij , cij) ≤ r for all i < j. We do this by induction on
j − i . In the base case j − i = 1 we have aij = cij . Assume now that d (aij , cij) ≤ r.
Then

d (ci,j+1, ai,j+1) ≤ d (ci,j+1, aijaj,j+1) ∨ d (aijaj,j+1, ai,j+1)
= d (cijaj,j+1, aijaj,j+1) ∨ ‖aijaj,j+1 − ai,j+1‖
≤ d (cij , aij) ∨ r = r.

This concludes the proof of the first item, and we have also proved the second item
as a special case of our first claim.
For the third item, the fact that [a�,0 : . . . : a�,�−1 : 1 : a�,�+1 : . . . : a�,n] ∈ Pn is a
solution is an immediate consequence of the hypothesis that ā ∈ E. Conversely, let
b ∈ Pn be any solution. Then bi = a�i b� for all i , and since

∨ |bi | = 1 we must have
|b� | = 1. We may therefore assume that b� = 1 and we obtain bi = a�i as desired.
Finally, let b ∈ Pn, and define aij = [bj : bi ] when at least one of bi , bj is nonzero
and [1 : 1] otherwise. Then ā ∈ E and b is the associated solution. 	
We recall from [7, Section 1.2] that a map f : X → Y between type-definable
subsets of a structure is called definable if its graph is type-definable, or equivalently,
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if composing any definable predicate with f yields a definable predicate (a type-
definable set is one which is the intersection of a family of zero sets of formulae,
or of definable predicates; as in classical logic, a type-definable set corresponds to
a closed set of types, see [7, Section 1.1]). The former characterisation implies that
if f is bijective then its inverse is definable as well. In the latter characterisation, it
suffices to verify for the distance predicate alone.

Theorem 1.14. The projective lineKP1 is uniformly quantifier-free biinterpretable
with KP, and in fact KP1 is uniformly definable (rather than merely interpretable) in
each of the sorts KPn of KP for n ≥ 1. More precisely:
1. The LP1-structure KP

1 and the sort P1 of theLP-structure KP are quantifier-
free definable in one another, meaning that a predicate ϕ : (KP1)m → [0, 1]
is quantifier-free definable in KP1 if and only if it is quantifier-free definable
in KP.

2. For every n ≥ 1 there exist a quantifier-free definable subset Dn ⊆ Pn and
a definable bijection �n : Dn → P1 such that for every quantifier-free definable
predicateϕ : (P1)m → [0, 1], the predicateϕ◦(�n) : (Dn)m → [0, 1] is quantifier-
free definable as well.

3. For every n there exist a quantifier-free definable subset En ⊆ (P1)M (n) and
a definable surjection 	n : En → Pn such that for every quantifier-free definable
predicate ϕ : Pn0 × · · · × Pnm−1 → [0, 1], the predicate ϕ ◦ (	n0 , . . . , 	nm−1 ) :
En0 × · · · × Enm−1 → [0, 1] is quantifier-free definable as well.

4. The predicates defining Dn and En, as well as the translation schemes from
quantifier-free predicates in one sort or structure to another are uniform, i.e., do
not depend on K .

Proof. The first item is easy, keeping in mind that it is enough to show that every
atomic formula in one structure is quantifier-free definable in the other.
For the second item, we let Dn = {[a0 : a1 : 0 : . . . : 0] : [a0 : a1] ∈ P1}. It is not

difficult to check that d (b, Dn) =
∨
2≤i≤n |bi | which is definable by a quantifier-free

formula. The map �n : [a0 : a1 : 0 : . . . : 0] 
→ [a0 : a1] is definable since its graph is
given by

�n(x) = y ⇐⇒ ‖x0y1 − x1y0‖ = 0.
We leave it to the reader to check that the pull-back of every atomic formula in
P1 is quantifier-free definable in Pn.
For the third item most of the work has already been done in Lemma 1.13.

We takeM (n) = n(n+1)
2 and define En as in the Lemma. Then we have already seen

that En is quantifier-free definable and constructed the surjection 	n : En → Pn.
Again we leave it to the reader to check that the pull-back of an atomic formula
from

∏
Pni to

∏
Eni is quantifier-free definable.

Everything we did (or left to the reader) is independent of the field K , whence
follows the uniformity. 	
It follows that the class of structures KP is elementary as well. Moreover, if

we prove that some theory extending MVF eliminates quantifiers (as we shall, in
Theorem 2.4 below) it will follow that the corresponding LP-theory eliminates
quantifiers as well.
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§2. The theory of algebraically closed metric valued fields.

Definition 2.1. We define ACMVF , the theory of algebraically closed metric
valued fields, to consist ofMVF along with the following additional axioms

∃y ‖y‖ = 1
2

∃y ‖P(x̄, y)‖ = 0 (degY (P) ≥ 1)
As usual, the existential quantifier should be understood in the approximate sense.
In the case of the first axiom, it may indeed happen that in a model of ACMVF
the value 12 never occurs. For the second axiom, the approximate witnesses must
accumulate near at least one of finitely many roots, so a root must exist in the
(complete) model.

Lemma 2.2. Themodels ofACMVF are precisely the projective lines over complete,
algebraically closed, nontrivially valued fields.

Proof. One direction is clear. For the other, given an algebraically closed field
equipped with a nontrivial valuation, the set of values must be dense in R and in
particular contain 12 in its closure. 	
Fact 2.3. LetK ⊆ L be an extension of valued fields, whereK is complete, and let
a ∈ L be algebraic overK of degree n and with irreducible polynomialP(X ) ∈ K [X ].
Then |a|n = |P(0)|.
Theorem 2.4. The theoryACMVF eliminates quantifiers. It is therefore themodel
completion ofMVF .

Proof. Let bothKP1, FP1 � ACMVF be somewhat saturated, and let � : A→B
be a valuation-preserving isomorphism of relatively small subfields A ⊆ K and
B ⊆ F . First of all we may assume that A and B are complete. Second, any
extension of the isomorphism to an algebraic isomorphism of their algebraic closure
will preserve the valuation, so wemay further assume thatA andB are algebraically
closed (of course, the algebraic closure need not be complete, so we would have to
pass to the completion again).
Let now c ∈ K be transcendental over A. The quantifier-free type of c over A is
determined by the mapping assigning to each P(X ) ∈ A[X ] the value |P(c)|. Since
A is algebraically closed, it suffices to know this for linear polynomials, i.e., to know
|c − a| for all a ∈ A.
For our purposes it will be enough to show that for every finite tuple
a0, . . . , an−1 ∈ An and every ε > 0 there exists d ∈ F such that ∣∣|c−ai |−|d−�ai |

∣∣ <
ε for i < n. Let r = mini<n |c−ai |. Possibly decreasing ε and re-arranging the tuple
ā, we may assume that there is k such that |c−ai | = r if i < k and |c−ai | > r+ε if
k ≤ i < n. It will therefore be enough to find d ∈ F such that ∣∣r−|d −�ai |

∣∣ < ε for
i < k (since then |d −�ai | = |a0−ai | = |c−ai | follows for k ≤ i < n). We consider
two cases:
Case I: If |c| > r, we choose d0 ∈ F such that r < |d0| < min(r + ε, |c|)
(such d0 exists since the set of values is dense in R), and let d = d0 + �a0. Then
|d − �ai | = |d0| for all i < k.
Case II: If |c| ≤ r, then |ai | ≤ r for all i < k. Since B is algebraically closed,
so is its residue field. In particular, the residue field is infinite, so we may choose
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b≤k ∈ B such that |bi | = 1 for all i ≤ k and |bi − bj | = 1 for all i < j ≤ k.
We may also choose e ∈ F such that r − ε < |e| < r. We claim that there is
j ≤ k such that for all i < k: |bje−�ai | ≥ |e|. Indeed, otherwise, by the pigeonhole
principle we can find i < j ≤ k such that |bie − bje| < |e|, whereby |bi − bj | < 1,
contrary to our assumption. Let d be this bje. Since |ai | ≤ r and |d | < r, we must
have |e| ≤ |d − �ai | ≤ r for all i < k.
This concludes the proof thatK and F correspond by an infinite back and forth.

It follows that ACMVF eliminates quantifiers. It is also clearly a companion of
MVF and therefore it is its model completion. 	
Remark 2.5. LetMVFZ denote the theoryMVF along with axioms saying that

the set of nonzero values is contained in some fixed infinite discrete group, say eZ .
This can be expressed by the axiom ‖x∗‖ ∈ e−N ∪ {0}. In models of this theory
both the valuation ring and its complement are type-definable, so they are in fact
definable. The maximal ideal is definable as well, so we may refer to the residue field
directly as an imaginary sort. Similarly, for every n, the set of field elements of value
e−n is definable.
LetACMVFZ consist in addition of axioms saying that the value e−1 is attained,

that every element of value ekn has an nth root and that every irreducible monic
polynomial over the valuation ring with free term 1 has a root. Then ACMVFZ
eliminates quantifiers, and it is the model completion of MVFZ . The argument is
similar to that given for Theorem 2.4.

Corollary 2.6. The following is an exhaustive list of the completions of
ACMVF :

1. Characteristic (0, 0): |p| = 1 for all prime p.
2. Characteristic (0, p): |p| = α for some prime p and 0 < α < 1.
3. Characteristic (p, p): p = 0 for some prime p.

Proof. It is known (e.g., from [2]) that every model of ACMVF falls into one
of these categories and that none of them is empty. Since each of the listed theories
determines |n| for each n ∈ Z, by quantifier elimination they are complete. 	
The space of completions consists therefore of a family of segments [0, 1], one for

each prime p, with all the 1 points identified (the (0, 0) case). This is essentially the
zero dimensional Berkovich space over Z, just without the segment corresponding
to Archimedean valuations, which we chose to exclude. Similarly,

Corollary 2.7. Let K be a model of model of ACMVF , let A ⊆ K , and
let K0 be the complete sub-field generated by A. Then the space of 1-types over
A in the sort Pn is precisely the n-dimensional projective analytic Berkovich space
over K0.

Let us give a slightly different characterisation of types (or more precisely, of
1-types) which will be useful for counting them.

Definition 2.8. Let K be a valued field and let C and C ′ be two chains of
closed balls inKP1. Say that C and C ′ aremutually cofinal if each ball in one chain
contains some ball belonging to the other. This is an equivalence relation, and by a
sphere overKP1 we mean an equivalence class of such a chain. The set of all spheres
will be denoted Sph(KP1).
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Let S, S′ ∈ Sph(KP1) be spheres, say represented by C and C ′. We define the
radius of S as rad(S) = infB∈C rad(B). We define the Hausdorff distance between
S and S′ as the limit of Hausdorff distances between balls in C and C ′:

dH (S, S′) = lim
B∈C ,rad(B)→rad(S)
B′∈C ′,rad(B′)→rad(S′)

dH (B,B ′).

It is not difficult to see that for closed balls B and B ′,

• dH (B,B ′) = 0 if and only if B = B ′,
• if B � B ′ then dH (B,B ′) = rad(B), and
• if B ∩ B ′ = ∅ then dH (B,B ′) = d (B,B ′).

Notice that every sphere admits a countable representative.ThefieldK is complete
if and only if every sphere of radius zero contains a point. If every sphere contains
a point then K is called spherically complete.

Theorem 2.9. Let KP � ACMVF . Then:
1. Let S ∈ Sph(KP1) be a sphere, say the class of C = {B(an, rn)}n∈N, and let
r = inf rn denote its radius. Then the set of conditions

{‖x − an‖ ≤ rn}n∈N ∪ {‖x − a‖ ≥ r}a∈KP1 (2)

axiomatises a complete type pS(x) ∈ S1(K) which depends only on S.
2. The mapping S 
→ pS is an isometric bijection

(
Sph(KP1), dH

) ∼= (
S1(K), d

)
,

where the distance between two types is the minimal distance between
realisations.

Proof. Let us first show that (2) is consistent for every S. Possibly passing to
a subsequence, and possibly applying the isometry a 
→ a−1 to P1, we may assume
that |an| ≤ 1 for all n. Let L = K(α) where α is transcendental over K . Then we
may extend the valuation to L so that for every polynomial P(X ) =

∑
k≤m bkX

k ∈
K [X ] we have |P(α)| = ∨

k rad(S)
k |bk|. In particular, |α| = rad(S) ≤ 1. Further

extending to amodel ofACMVF wemay assume thatLP1 � KP1. Let cn = an+α.
For a ∈ KP1 we have ‖cn − a‖ = 1 ≥ rad(S) if |a| > 1 and ‖cn − a‖ = |cn − a| =
|an−a|∨rad(S) otherwise.Form < nwealso have ‖cn−am‖ = |α+(an−am)‖ ≤ rm.
Thus (2) is finitely consistent and therefore consistent.
By quantifier elimination and the fact that K is algebraically closed, the type of
an element α overKP1 is determined by |α− a| as a varies overK , or equivalently,
by ‖α − a‖ as a varies over KP1. Let S be the sphere consisting of all balls
B
(
a, d (a, α)

)
, a ∈ KP1. Then S only depends on tp(α/K), and conversely,

pS = tp(α/K). This yields the bijection Sph(KP1)→ S1(K).
It is left to show that this bijection is isometric. So let S and S′ be two
distinct spheres and let α and � realise pS and pS′ , respectively. Assume first that
B ∩ B ′ �= ∅ for all B ∈ S and B ′ ∈ S′. Then rad(S) �= rad(S′) (since else the
spheres coincide), say rad(S) > rad(S). Then dH (S, S′) = rad(S) = d (α, �).
On the other hand, if there are B ∈ S and B ′ ∈ S′ which are disjoint then
dH (S, S′) = d (B,B ′) = d (α, �) again. 	
Corollary 2.10. The theory ACMVF is strictly stable (i.e., stable
non-super-stable).
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Proof. Let K be a model. Since every sphere has a countable representative,
a quick calculation yields that there are at most |K |ℵ0 spheres, and therefore types,
over K . Thus the theory is stable.
On the other hand, for every 0 < r < r′ < 1, every ball of radius r′ contains

|K |manydistinct balls of radius r. Thus a refinement of our earlier calculation yields
that there exist precisely |K |ℵ0 distinct spheres of radius r. The distance between
any two such spheres is at least r, so the theory is not super-stable. 	
Remark 2.11. Here we assume the reader has some familiarity with the notion of

perturbations ofmetric structures and its uses, as introduced in [5], or, in a somewhat
simpler fashion, in [3]. Extensions of perturbations to types over parameters, and
�-stability up to perturbation, are also discussed in [3]. For example, it is shown in
[8] that the theory of atomless probability algebras with a generic automorphism,
even though it is strictly stable, is ℵ0-stable up to arbitrarily small perturbations of
the automorphism.
Omitting many details, let us consider a theory T and a set of parameters

A ⊆ M � T . We defineL (A) to consist of the base languageL together with, for
each a ∈ A, a unary predicate Pa(x) for the distance d (a, x). Thus “a model of T
containing A” is essentially the same as a model of T (A) = ThL (A)(M ), and types
overA are just types ofT (A) over∅. Roughly speaking, a perturbationof amodel of
T (A) consists of modifying the interpretation of the symbols of L (usually with
some small uniform bound on the extent of the modification, prescribed by a per-
turbation system), in such a manner that the end result is again a model of T (A),
and that the predicates Pa , representing the parameters, remain unchanged.
In ACVMF , when A = K is a model, a 1-type tp(b/K) is entirely determined by

the map a 
→ Pa(b), so a perturbation cannot change 1-types over K at all (even if
it does change, to some small extent, the distance and/or algebraic structure of an
extension of K containing the realisation).
It follows that even up to perturbation, in the sense of the articles cited above,

ACMVF is strictly stable, i.e., �-stable up to perturbation only when � = �ℵ0 .
The same argument does not work for ACMVFZ , since there a strictly decreas-

ing sequence of radii must necessarily go to zero, and it follows that the theory
is ℵ0-stable. This is hardly surprising, since equal characteristic models ofACMVFZ
are just something of the formK = k((X )). They are therefore interpretable in the
valuation ring k[[X ]] which is in turn interpretable (as a metric structure) in k,
a plain strongly minimal algebraically closed field.
It is an easy fact that if the union of two disjoint type-definable sets is definable

then each of the two sets is definable as well. The following is a useful extension of
this fact.

Lemma 2.12. Let X and Y be two type-definable sets such that both X ∪ Y and
X ∩ Y are definable. Then X and Y are definable as well.
Proof. It will be enough to show that X is definable, and for this, it will be

enough to show that for every ε > 0, the ε-neighbourhood B(X, ε) contains a
logical neighbourhood of X .
Since Y is type-definable and X ∩ Y definable, the properties d (x,Y ) ≤ � and

d (x,X ∩ Y ) ≥ ε are type-definable. By compactness there exists � > 0 such that(
x ∈ X and d (x,X ∩ Y ) ≥ ε and d (x,Y ) ≤ �) is contradictory. We may further
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assume that � ≤ ε. We claim that the desired neighbourhood of X is the given
by the property(

d (x,Y ) > � and d (x,X ∪ Y ) < �
)
or d (x,X ∩ Y ) < ε.

Indeed, this is an open property, and it holds for every x ∈ X by choice of �. Assume
this property holds for x. If d (x,X ∩ Y ) < ε then d (x,X ) < ε as well. Otherwise,
d (x,X ∪ Y ) < � and d (x,Y ) > � imply that d (x,X ) < � ≤ ε, and the proof is
complete. 	
The following generalises the fact that a definable image of a definable set is
definable.

Lemma 2.13. Let X be a definable set, Y and Z ⊆ X type-definable sets, and let
f : X � Z → Y be a bijection. Assume furthermore that f is definable, in the sense
that there exists a type-definable set R ⊆ X ×Y such thatR ∩ (

(X �Z)×Y ) is the
graph of f. Then Y is definable as well.

Proof. Since Y is type-definable, the property d (y,Y ) ≤ r is type definable.
It will therefore be enough to show that d (y,Y ) ≥ r is a type-definable property for
all r. Let 
(x) be the partial type defining Z, and let ϕ ∈ 
. For each x ∈ X , either
f(x) is well defined or ϕ(x) = 0, so either way d (y,f(x)) ∧ ϕ(x) is well defined,
and we claim that it is a definable predicate. Indeed, d (y,f(x)) ∧ ϕ(x) ≥ s if and
only if there exists w such that R(x,w) and d (y,w) ∧ ϕ(x) ≥ s , and similarly for
≤ s . Since X is definable, we obtain a definable predicate

�ϕ(y) = inf
x∈X

[
r −. d (y,f(x))] ∧ ϕ(x).

We conclude by observing that d (y,Y ) ≥ r is defined by the partial type
{�ϕ}ϕ∈
. 	
Recall:

Fact 2.14 (Noether’s Normalisation Lemma). Let A be an integral domain,
finitely generated over a field k. Then there exist algebraically independent elements
x0, . . . , xd−1 ∈ A such that A is integral over k[x0, . . . , xd−1].
Moreover, if k is infinite and A = k[y0, . . . , yn−1] then each xi can be taken to be
a k-linear combination of the yj .

Let V be a projective variety of dimension d defined over an infinite field k.
Lety = [y0 : . . . : yn] be a generic point ofV . Letx0, . . . , xd be a transcendence basis
for k[ȳ] consisting of k-linear combinations of ȳ, as per Noether’s Normalisation
Lemma. Then [x0 : . . . : xd : y0 : . . . : yn] is the generic point of a projective variety
isomorphic to V .

Proposition 2.15. LetKP1 � ACMVF . Then every Zariski closed set V ⊆ KPn
is definable.

Proof. Since a finite union of definable sets is definable, we may assume that
V is a variety, say of dimension d . Clearly every algebraic morphism is definable,
and recall that the image of a definable set by a definable mapping is definable
as well. It follows that we may replace V with any isomorphic projective var-
iety. Therefore, using Noether’s Normalisation Lemma we may assume that the
homogeneous prime ideal defining V is I (V ) ⊆ K [X0, . . . , Xd , Y0, . . . , Yn−1],
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where K [X̄ ] ∩ I (V ) = 0 and for each j < n there exists a homogeneous poly-
nomial fj ∈ I (V ) ∩ K [X̄ , Yj ] which is monic in Yj . Possibly replacing V with
an isomorphic variety we may further assume that all the coefficients in each fj
have value≤ 1. Thus we may express |fj(x0, . . . , xd , xd+j+1)| as an atomic formula
‖fj(x)‖ in the free variable x = [x0 : . . . : xn] ∈ Pn and with parameters in K . We
may further assume that all the fj have common degree m.
As a first approximation, let J = 〈fj〉j<n ⊆ I (V ) be the generated homoge-

neous ideal, and let us show that V (J ) is definable. Clearly V (J ) is the zero set
of the formula

∨
j<n ‖fj(x)‖, and it will be enough to show that d (x,V (J )) ≤∨

j<n ‖fj(x)‖
1
m . So let us fix x ∈ Pn. For j < n, let
gj(Yj) = fj(x0, . . . , xd , Yj) =

∏
k<m

(Yj − �kj ) ∈ K [Yj ].

We may assume that for each j < n, the root �0j = �j is closest to xd+j+1 among all
the roots of gj . Let

y = [x0 : . . . : xd : �0 : . . . : �n−1] =
[
x0
s : . . . :

xd
s :

�0
s : . . . :

�n−1
s

] ∈ V (J ),
where s is chosen of maximal value among x0, . . . , xd , �0, . . . , �n−1. A quick
calculation yields, for i ≤ d and j < n,

|xiyd+j+1 − xd+j+1yi | = |xis ||�j − xd+j+1| ≤ |gj(xd+j+1)| 1m = ‖fj(x)‖ 1m ,
and for i, j < n,

|xd+i+1yd+j+1 − xd+j+1yd+i+1| = | 1s ||�jxd+i+1 − �ixd+j+1|
≤ | �js ||xd+i+1 − �i | ∨ | �is ||�j − xd+i+1|
≤ (‖fi(x)‖ ∨ ‖fj(x)‖) 1m .

Thus d (x,V (J )) ≤ d (x, y) ≤ ∨
j<n ‖fj(x)‖

1
m , as desired.

By construction, V (J ) is of dimension ≤ d , and can be decomposed as
V (J ) = V ∪W whereW ⊆ Pn is a Zariski closed as well and dim(V ∩W ) < d .
By induction on the dimension we may assume already known that V ∩ W is
definable. We may now apply Lemma 2.12 and conclude that V is definable. 	
Corollary 2.16. Every complete variety is interpretable in ACMVF .
Proof. By Chow’s Lemma, if W is a complete variety then it is the image of

a projective variety V by a morphism. In other words, it is a definable quotient of
a definable set, and therefore interpretable. 	
In particular, this means that a complete varietyW is endowed with the quotient

structure it inherits from the definable set V . This does not depend on the choice
of V .

Question 2.17. Characterise all definable sets over K . Notice that since every
compact set is definable, there are definable sets which are not projective varieties,
e.g., any set of the form {an}n ∪{0} where |an| → 0. More generally, every metrisable
totally disconnected compact space can be embedded in KP1, and a characterisation
of definable sets will have to allow for them.
Let {Vα}α∈A be a family of projective varieties, and assume that for every ε > 0

there is a finite A0 ⊆ A such that
⋃
α∈A Vα is contained in the ε-neighbourhood of
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α∈A0 Vα . Then X =

⋃
α∈A Vα is a definable set. Every Zariski closed set and every

compact set are of this form. Are there any other definable sets?
Question 2.18. Let A be any semi-normed ring. Let LP(A) consist of a con-
stant symbol in the sort P1 for each member of A, and let ACMVF (A) be the
LP(A)-theory consisting of ACMVF along with axioms saying that 1 = 1A,
a + b = (a +A b), a · b = (a ·A b) and |a| ≤ |a|A (i.e., ‖a‖ ≤ |a|A if |a|A < 1
and ‖a∗‖ ≥ |a|−1A otherwise).
Assuming that I ⊆ A[X0, . . . , Xn] is a homogeneous ideal, is V (I ) uniformly
definable in ACMVF (A)?

§3. Real closed and ordered metric valued fields. We shall now seek to understand
the metric valued analogue of the theory of real closed fields. First of all, we observe
that the class of metric valued fields which are, as pure fields, formally real, is not
elementary. Indeed, such fields can be constructed with 1 + a2 of arbitrarily small
(nonzero) valuation, and in an ultraproduct we would obtain 1 + a2 = 0. Thus
|1 + x2| must be bounded away from zero, which, in a real closed field (and more
generally, in a field where a sum of squares is a square), implies |1 + x2| ≥ 1.
Definition 3.1. We say that a valued field (K, |·|) is a formally real valued field,
or that |·| is a formally real valuation on K , if its residue field is formally real. If in
addition K is real closed (as a pure field) then we say that it is a real closed valued
field.
We recall that a field ordering (possibly partial) is one in which sums and products
of positive elements, as well as all squares, are positive. A valued field ordering is one
in which, in addition, the valuation ring is convex.

Lemma 3.2. Let (K, |·|) be a valued field. Then the following are equivalent.
1. The valued field (K, |·|) is formally real (as a valued field ).
2. For all x0, . . . , xn−1 ∈ K : ∣∣∣∑x2i

∣∣∣ =∨
|xi |2.

3. For all x0, . . . , xn−1 ∈ K : ∣∣∣1 +∑
x2i

∣∣∣ ≥ 1.
Similarly, a fieldK equipped with a valuation |·| and an ordering≤ is an ordered valued
field if and only if for every x, y ≥ 0: |x + y| = |x| ∨ |y|.
Proof. Easy. 	
A formally real valued field is formally real as a plain field, and conversely, a field
K is formally real if and only if the trivial valuation on K is formally real.
Lemma 3.3. Let (K, |·|) be a complete valued field. Then the following are
equivalent.
1. The valued field (K, |·|) is real closed (as a valued field ).
2. The valued field (K, |·|) is formally real (as a valued field ) and maximal as such
among its algebraic valued field extensions.

Proof. One direction is immediate. For the other, we already know that
(K, |·|) is a formally real valued field, and it is left to show that it is real closed
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as a pure field. Indeed, let K1/K be any proper algebraic field extension, which we
may assume to be finite. We may then equip K1 with an extension of the valuation
(which is moreover unique sinceK is complete). Let k1/k denote the corresponding
residue field extension. Then (K1, |·|) is not formally real, whereby k1 is not for-
mally real. On the other hand, k1/k is an algebraic extension, so k1 is algebraically
closed. Since (K1, |·|) is complete, as a finite extension of a complete valued field,
by Hensel’s Lemma we have i ∈ K1, and in particular K1 is not formally real. This
completes the proof. 	
Lemma 3.4.

1. A real closed valued field admits a unique ordering (as a valued field ), namely
its unique ordering as a pure real closed field : x ≥ 0 if and only if x is a square.

2. Every formally real valued field embeds in a real closed valued field.
3. A valued field (K, |·|) is formally real if and only if it admits an ordering
(as a valued field ).

Proof. For the first item, all we need to check is that valuation ring is convex
in the unique field ordering, which is more or less immediate from the definition.
The second item follows from Lemma 3.3. For the third and last item, one direction
follows from the previous item, the other directly from the definitions. 	
In order to express in LP1 that the valuation is formally real one needs to take

into account the homogenisation, yielding∥∥∥∑x2i

∥∥∥ =∨
‖xi‖2

∏
j 
=i

‖x∗j ‖2. (FR)

Working in the projective space Pn one can express this slightly more elegantly as∥∥∥∑x2i

∥∥∥ = 1, (FR’)

where the sum is now over the homogeneous coordinates of a single point x.

Definition 3.5. We define FRMVF , the theory of formally real metric valued
fields, to consist of MVF along with the axiom (FR). We define RCMVF , the
theory of real closed metric valued fields, to consist, in addition, of the axioms

∃y ‖y‖ = 1
2 ,

∃y ‖x2 − y4‖,

∃y
∥∥∥∥∥∥y2n+1 +

∑
i≤2n
xiy

i

∥∥∥∥∥∥ .
As in the discussion following the definition of ACMVF , the existential quan-

tifiers are approximate, but in the case of the second and third axiom they imply
exact existence.

Proposition 3.6. Models of FRMVF (RCMVF ) are the projective lines over
complete formally real (real closed and nontrivial ) valued fields.
Ordered metric valued fields will be considered in an expanded language

LoP1 ⊇ LP1 which we now define. First, we wish to introduce a predicate 〈〈x〉〉,
equal to zero if and only if x is positive or zero. Since∞ is neither strictly positive
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not strictly negative, and may be arbitrarily close both to positive and to negative
field elements, we require 〈〈∞〉〉 = 0. One natural definition (which later turns out to
be correct) is 〈〈x〉〉 = ‖x‖ ∧ ‖x∗‖ for negative x, so in particular we have a natural
identity 〈〈x〉〉 = 〈〈x−1〉〉. Since our language contains no function symbols, it will be
convenient to go further and add, for each polynomial P ∈ Z[X̄ ], a predicate

〈〈P(x̄)〉〉 =
{
0 P(x̄) ≥ 0,
‖P(x̄)‖ ∧ ‖P∗(x̄)‖ otherwise.

In particular, if any xi is equal to ∞ and degXi P > 0 then 〈〈P(x̄)〉〉 = 0 by the
“otherwise” clause. Using the assumption thatK is an ordered valued field one ver-
ifies that all the new predicates are 1-Lipschitz. In what follows, it will be convenient
to keep in mind that ‖P‖ ∧ ‖P∗‖ = (|P| ∧ 1)‖P∗‖.

Definition 3.7. We define OMVF , the theory of ordered metric valued fields,
to consist ofMVF along with

〈〈P〉〉 ∧ 〈〈−P〉〉 = 0 (Tot)

〈〈P〉〉 ∨ 〈〈−P〉〉 = ‖P‖ ∧ ‖P∗‖ (AS)

〈〈P +Q〉〉‖P∗Q∗‖ ≤ 〈〈Q〉〉‖P∗(P +Q)∗‖ ∨ 〈〈P〉〉‖Q∗(P +Q)∗‖ (CA)

〈〈−PQ〉〉 ≥ 〈〈P〉〉〈〈Q〉〉 (CM)

We leave it to the reader to check that if K is an ordered valued field then the
associated LoP1 -structure is a model of OMVF , and conversely, that every model
of OMVF arises uniquely in this fashion.
For any field K , let SqK = {x2}x∈KP1 ⊆ KP1 (where ∞2 = ∞). For P(X̄ ) ∈
Z[X̄ ] we consider the following definable predicate

〈〈P(x̄)〉〉Sq = inf
y

‖P(x̄)− y2‖.

Lemma 3.8. For every model KP1 �MVF we have

〈〈P(x̄)〉〉Sq =
{
0 P(x̄) ∈ Sq,
‖P(x̄)‖ ∧ ‖P∗(x̄)‖ otherwise.

In particular, if xi =∞ and degXi P > 0 then 〈〈P(x̄)〉〉Sq = 0.
Proof. Clearly, if x̄ ∈ K and P(x̄) ∈ Sq then 〈〈P(x̄)〉〉Sq = 0. Also, we observe
that ‖P(x̄) − 02‖ = ‖P(x̄)‖ and ‖P(x̄) − ∞2‖ = ‖P∗(x̄)‖. Thus 〈〈P(x̄)〉〉Sq ≤
‖P(x̄)‖ ∧ ‖P∗(x̄)‖, and in particular 〈〈P(x̄)〉〉Sq = 0 if xi = ∞ and degXi P > 0.
It is left to consider the case where x̄ ∈ K and P(x̄) /∈ Sq. Indeed, assume that
〈〈P(x̄)〉〉Sq < ‖P(x̄)‖ ∧ ‖P∗(x̄)‖. Then there is z ∈ K∗ such that ‖P(x̄) − z2‖ <
‖P(x̄)‖ ∧ ‖P∗(x̄)‖, or equivalently |P(x̄) − z2|‖z∗‖2 < |P(x̄)| ∧ 1. If |z| ≤ 1 then
|P(x̄) − z2| < |P(x̄)|, whereby |P(x̄)| = |z2|; and if |z| > 1 then |P(x̄) − z2| <
‖z∗‖−2 = |z2|, and again |P(x̄)| = |z2|. Either way we get |P(x̄)

z2
− 12| < 1 = |P(x̄)

z2
|,

and by Hensel’s Lemma, P(x̄) ∈ Sq, contrary to our assumption. 	
Lemma 3.9. In any metric valued field the set Sq is closed and d (x,Sq) = 〈〈x〉〉Sq.
In particular, Sq is uniformly definable across all complete valued fields.
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Proof. It is easy to see that ‖x − z2‖ = d (x, z2) (compare with Lemma 1.9),
whereby d (x,Sq) = 〈〈x〉〉Sq. By Lemma 3.8, if x /∈ Sq then d (x,Sq) = ‖x‖∧‖x∗‖ >
0, so Sq is closed. 	
Proposition 3.10. Let K � RCMVF . Then K admits a unique expansion to a

model of OMVF , given by 〈〈P〉〉 = 〈〈P〉〉Sq.
Theorem 3.11. The LoP1-theory ORCMVF = RCMVF ∪ OMVF is complete

and admits quantifier elimination. The theory RCMVF is model complete.

Proof. Completeness andmodel completeness follow quite easily fromquantifier
elimination, so we only prove the latter. For this, we shall prove that sufficiently
saturated models admit an infinite back-and-forth. Using the uniqueness of the
real closure of an ordered field, and proceeding as in the proof of Theorem 2.4, we
reduce to the case whereKP1 and FP1 are two sufficiently saturatedmodels,A ⊆ K
and B ⊆ F are relatively algebraically closed complete subfields, and � : A → B is
an isomorphism. In particular, A and B are real closed valued fields.
Now let c ∈ K � A. Its quantifier-free type is determined by the value and

sign of P(c) as P(X ) varies over A[X ]. Since A is real closed, every polynomial
decomposes as a product of linear factors X − a and irreducible quadratic factors
(X − a)2 + b, b > 0 (and a, b ∈ A). In the second case we have (c − a)2 + b > 0
and |(c − a)2 + b| = |c − a|2 ∨ b. Thus, the quantifier-free type of c is determined
by the value and sign of c − a as a varies over A. In order to find d ∈ F with the
corresponding quantifier-free type over B, it is enough to show that for every ε > 0
and every finite family a0, . . . , an−1 ∈ A there isd ∈ F such that d ≤ �ai ⇐⇒ c ≤ ai
and

∣∣|d − �ai | − |c − ai |
∣∣ < ε. We may assume that ai < ai+1 for i < n − 1.

If c > A then the valuation on A is necessary trivial. In this case we may take
d ∈ F to be any positive element with the same value as c (or at least close
enough). The case c < A is treated similarly. Otherwise, there is i for which
ai < ci < ai+1. Translating by ai and dividing by ai+1 we may assume that
ai = 0 and an+1 = 1. It will then be enough to find 0 < d < 1 such that∣∣|d | − |c|∣∣, ∣∣|1 − d | − |1 − c|∣∣ < ε, and the rest will follow. Possibly replacing
c with 1 − c, we may further assume that |c| ≤ |1− c| = 1. If |c| < 1, just take for
d any positive element whose value is close enough to |c|, and if |c| = 1 choose d so
that |d | is close enough to 1− ε/2. This completes the proof. 	
Theorem 3.12. The theory RCMVF is dependent.

Proof. It is enough to show that every formula ϕ(x, ȳ), where x is a single
variable, is dependent (this is shown in [6] along the lines of the proof for classical
logic in [12]; a simplified argument appears in Adler [1], and it translates quite
effortlessly to continuous logic). It is therefore enough to show that if (b̄n)n is
an indiscernible sequence then

(
ϕ(a, b̄n)

)
n
converges for every a. By quantifier

elimination, we may assume that ϕ is an atomicLoP1 -formula, namely of the form
‖P(x, ȳ)‖ or 〈〈P(x, ȳ)〉〉. Since the type p = tp(b̄n) is constant, and since every
field element which is algebraic over b̄n is definable over b̄n (because of the linear
ordering), we may express ‖P(x, b̄n)‖ and 〈〈P(x, b̄n)〉〉 as continuous combinations
of things of the form |x − f(b̄n)| and 〈〈x − f(b̄n)〉〉, where f stands for a partial
∅-definable function whose domain contains p (as in the proof of the previous
theorem). For each such function, the sequence

(
f(b̄n)

)
n
is indiscernible as well,

https://doi.org/10.1017/jsl.2014.16 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.16
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so in particular monotone, and it follows that |a−f(b̄n)| and 〈〈a−f(b̄n)〉〉 converge.
This completes the proof. 	
Alternatively, we may defineLoP to consist ofLP augmented with one predicate
symbol 〈〈·〉〉 for each sort Pn, n ≥ 1, interpreted in an ordered valued field by

〈〈[a0 : . . . : an]〉〉 =
{
0 a0a1 ≥ 0,
|a0| ∧ |a1| otherwise.

We observe that this does not depend on the choice of representatives (as long as∨ |ai | = 1, as usual) and this is compatible with the interpretation of 〈〈x〉〉 on P1 we
introduced earlier.One can extendTheorem1.14, showing that for anordered valued
fieldK , theLoP1 -prestructureKP

1 and theLoP-prestructureKP are quantifier-free
biinterpretable, and this uniformly in K .
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