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This work numerically investigates the role of viscosity and resistivity in Rayleigh–Taylor
instabilities in magnetized high-energy-density (HED) plasmas for a high Atwood
number and high plasma beta regimes surveying across plasma beta and magnetic
Prandtl numbers. The numerical simulations are performed using the visco-resistive
magnetohydrodynamic equations. Results presented here show that the inclusion of
self-consistent viscosity and resistivity in the system drastically changes the growth of
the Rayleigh–Taylor instability (RTI) as well as modifies its internal structure at smaller
scales. It is seen here that the viscosity has a stabilizing effect on the RTI. Moreover,
the viscosity inhibits the development of small-scale structures and also modifies the
morphology of the tip of the RTI spikes. On the other hand, the resistivity reduces
the magnetic field stabilization, supporting the development of small-scale structures. The
morphology of the RTI spikes is seen to be unaffected by the presence of resistivity in the
system. An additional novelty of this work is in the disparate viscosity and resistivity
profiles that may exist in HED plasmas and their impact on RTI growth, morphology and
the resulting turbulence spectra. Furthermore, this work shows that the dynamics of the
magnetic field is independent of viscosity and likewise the resistivity does not affect the
dissipation of enstrophy and kinetic energy. In addition, power law scalings of enstrophy,
kinetic energy and magnetic field energy are provided in both the injection range and
inertial sub-range, which could be useful for understanding RTI induced turbulent mixing
in HED laboratory and astrophysical plasmas and could aid in the interpretation of
observations of RTI-induced turbulence spectra.
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1. Introduction

The Rayleigh–Taylor instability (RTI) (Rayleigh 1882; Taylor 1950; Chandrasekhar
1961), an important hydrodynamic instability, occurs at the unstable interface when a
high density fluid is supported by a lower density fluid under the influence of gravity,
or when the interface between two fluids with different densities is accelerated. This
instability is ubiquitous in nature and plays an important role in diverse areas of science
and technology, including inertial confinement fusion (ICF) (Tabak, Munro & Lindl 1990;
Betti et al. 1998; Remington, Drake & Ryutov 2006; Stone & Gardiner 2007; Srinivasan
& Tang 2012; Srinivasan, Dimonte & Tang 2012; Srinivasan & Tang 2014b,a; Srinivasan
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et al. 2017; Wang et al. 2017; Srinivasan et al. 2019; Zhou et al. 2019), astrophysics
(Gamezo et al. 2003; Kifonidis et al. 2003; Hwang et al. 2004; Hester 2008; Loll
et al. 2013), geophysics (Kaus & Becker 2007) and engineering processes (Lyubimova,
Vorobev & Prokopev 2019). For instance, the RTI is known to act as an inhibitor in
achieving an ignition grade hot spot in ICF targets (Srinivasan & Tang 2012; Srinivasan
et al. 2012, 2019; Srinivasan & Tang 2014b, a; Zhou 2017a, b). RTI occurs in ICF
targets during both the acceleration and deceleration phases of the implosion, leading
to undesirable mixing of hot and cold plasmas. The RTI is also observed in various
astrophysical phenomena such as supernova explosions and their remnants (Crab Nebula)
(Gamezo et al. 2003; Kifonidis et al. 2003; Hwang et al. 2004; Hester 2008; Loll et al.
2013). Therefore, a detailed understanding of such instabilities in high-energy-density
(HED) plasmas has implications for ignition-grade hot spots, understanding supernova
explosions and revealing mega-Gauss-scale magnetic field generation and its turbulence
in astrophysical settings. The RTI and their mitigation mechanism in HED plasmas
has been thoroughly studied by several authors experimentally as well as theoretically
and numerically (Atzeni & Meyer-ter Vehn 2004; Remington et al. 2006; Srinivasan &
Tang 2012; Srinivasan et al. 2012, 2019; Srinivasan & Tang 2014b, a; Sun, Gou &
Wang 2021; Silveira & Orlandi 2017). However, there exists a substantial disagreement
between computer simulation results and HED laboratory experiments and astrophysical
observations of the RTI (Kuranz et al. 2010; Modica, Plewa & Zhiglo 2013). Most of
the experiments and astrophysical observations have noted an unusual morphological
structure of RTI which is significantly different from the computer simulation results,
exhibiting strongly suppressed growth of small-scale structures and mass extensions of
RT spikes. This is due to the fact that many theoretical and numerical studies use the
conventional hydrodynamic and magnetohydrodynamic (MHD) depiction where either
the self-consistent effects of magnetic fields, viscosity and resistivity have been ignored
or they have been considered in isolation. First observations of magneto-RTI evolution
in the presence of magnetic and viscous effects have been made in recent experiments
(Adams, Moser & Hsu 2015). The impact of magnetic fields on RTI in the presence of
a self-consistent viscosity and resistivity for experimentally and observationally relevant
parameter regimes in HED plasmas remains an open area of research.

The primary purpose of this paper is, therefore, to understand the role of the viscous
and resistive effects on RTI in magnetized HED plasmas applicable to astrophysical
plasmas as well as ICF-based laboratory experiments. Specifically, this work aims to
understand how RTI dynamics is impacted by varying plasma beta (ratio of thermal
energy to magnetic energy) and magnetic Prandtl number (ratio of magnetic Reynolds
number to Reynolds number). This study focuses on a high Atwood number and high-β
regime, where the energy density in the magnetic field is small compared with the thermal
energy in the fluid. The Atwood number (At) is a dimensionless number defined as,
At = (ρH − ρL)/(ρH + ρL); where ρH and ρL represent the mass density of the heavy and
light fluid, respectively. This distinguishes the current work from previous works that have
examined the role of viscosity and resistivity in isolation for ICF applications (Srinivasan
& Tang 2014a; Song & Srinivasan 2020). In addition, this work also presents the evolution
of RTI considering fully varying self-consistent viscosity and resistivity profiles. To study
the RTI dynamics in HED plasmas, the MHD equations with the inclusion of viscosity
and resistivity are solved in this work. These visco-resistive MHD equations are solved in
conservation form in two dimensions using the fluid modelling tool PHORCE (Package
of High ORder simulations of Convection diffusion Equations) based on the unstructured
discontinuous Galerkin finite element method (Hesthaven & Warburton 2007; Song 2020;
Song & Srinivasan 2021). Under this configuration, simulations have been performed over

https://doi.org/10.1017/S0022377821001343 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821001343


RTI in HEDP for high Atwood number regime 3

a wide range of magnetic Prandtl numbers with the presence of a longitudinal external
magnetic field to reveal the effect of viscosity and resistivity on the evolution of RTI
and magneto-RTI in HED plasmas. It is observed that the inclusion of viscosity and
resistivity dramatically changes the growth as well as the structures/morphology of the
instability on different length scales. It is seen here that the presence of viscosity stabilizes
the growth of the RTI and modifies the morphology of the tip of RTI fingers, inhibiting
the traditional mushroom cap structures. On the other hand, the morphology of the RTI
spikes is found to be independent of resistivity. The presence of resistivity assists in
the development of small-scale structures by reducing the magnetic field stabilization.
When considering spatially varying viscosity and resistivity with highly disparate profiles,
there is a significant impact on the RTI evolution in the high Atwood number regime
studied in this work. In this paper, the numerical growth rates of RTI obtained from the
simulations are compared with their corresponding analytical values obtained from linear
theory. Furthermore, it is also seen here that the dynamics of magnetic field is independent
of viscosity and likewise the resistivity does not affect the dynamics of enstrophy and
kinetic energy. In addition, this work presents the power law scaling of enstrophy, kinetic
energy and magnetic field energy in both the injection range and the inertial sub-range
of power spectra for different viscosity and resistivity cases, which could be useful for
understanding the RTI induced turbulent mixing in HED plasmas.

The manuscript has been organized as follows. In § 2, a brief description of the
governing equations is presented to study the RTI process in magnetized HED plasmas.
Section 3 discusses the simulation techniques and problem set-up for the study. Section 4
presents the simulation results, comparison with theory and discussion. Section 5 presents
the summary and conclusion.

2. Governing equations

In this section, the basic governing equations are presented for the study of RTI in
magnetized HED plasmas in the presence of an applied horizontal magnetic field, viscosity
and resistivity. Thermal conduction is neglected in this study to focus on the impact
of viscosity, resistivity and magnetic fields. The generalized Lagrange multiplier-MHD
(GLM-MHD) equations (Munz, Omnes & Schneider 2001; Dedner et al. 2002) with the
inclusion of viscosity and resistivity are solved. The compressible MHD equations are
given by

∂ρ

∂t
+ ∇ · (ρu) = 0 (2.1)

∂ρu
∂t

+ ∇ ·
(
ρuu + pI−BB

μ0
+ B2

2μ0
I
)

= −ρg + ∇ · π (2.2)

∂ε

∂t
+ ∇ ·

[(
ε + p+ B2

2μ0

)
u−(B · u)

μ0
B

]
= −ρg · u + ∇ · (uπ)− 1

μ0
∇

·
(
η

μ0
∇ × B

)
(2.3)

∂B
∂t

+ ∇ · (uB − Bu)+ ∇ψ = − 1
μ0

∇ × (η∇ × B) (2.4)

∂ψ

∂t
+ C2

h∇ · B = −C2
h

C2
p

ψ (2.5)
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where ρ, u, p, g and B represent the mass density, fluid velocity, pressure, gravitational
field and magnitude of the magnetic field, respectively. Here, ε = p/(γ − 1)+ ρu2/2 +
B2/2μ0 defines the total energy; where γ is the ratio of specific heats, and is normally
taken as 5/3 for monatomic gases assuming an ideal gas law. Also, p is the pressure.
For the equation of state, an ideal gas law p = (Zi + 1)ρkBTi/mi is assumed; where Zi,
mi, kb and Ti represent the charge state of ion, mass of the ion, Boltzmann constant
and temperature of the ion, respectively. Here, ψ , Ch and Cp represent the divergence
cleaning potential, hyperbolic cleaning speed and parabolic cleaning speed, respectively. A
user-specified parameter Cr = C2

p/C
2
h is defined to determine the ratio between hyperbolic

and parabolic divergence cleaning. If Cr is very large, the divergence error will only
be transported through the hyperbolic term; Ch is calculated based on the grid sizes
and Courant–Friedrichs–Lewy (CFL) number (Dedner et al. 2002). In the simulations
presented here, Cr = 99 999 is set to be very large so that only hyperbolic cleaning
dominates. In the above equations π and η represent the viscous stress tensor and electrical
resistivity coefficient, respectively. In this study, the Braginskii formulation (Braginskii
1965) for calculating the viscosity and resistivity coefficients is used,μ = 0.96nikBTiτi and
η = me/1.96neq2

eτe, where τe and τi are the collision times for electrons and ions, and ni
and me are the ion number density and electron mass, respectively. Note that the viscosity
and resistivity can also be presented in terms of the Reynolds (Re) and magnetic Reynolds
number (Rem) defined as, Re = ρVL/μ and Rem = μ0VL/η; where V and L represent some
reference velocity and length, respectively.

3. Numerical simulation and problem set-up

This section presents the simulation techniques and problem set-up used for studying
the role of viscosity and resistivity in RTI in magnetized HED plasmas. The simulations
presented here are in planar geometry and in two dimensions. A significant amount of
insight can be gained from two-dimensional (2-D) studies, particularly where observations
may be dominated by the 2-D evolution of perturbation growth. In other words, this is
true when the wavelength of the perturbation for RTI growth in the considered directions
is much smaller than the wavelength of the perturbation in the third direction. This
approximation would be particularly well suited for cases where magnetic fields influence
RTI growth, leading to regimes where the perturbation growth are more ‘two-dimensional
like’. Most of the past literature on 2-D MHD turbulence, not specific to RTI, has focused
on incompressible MHD models (Orszag & Tang 1979; Biskamp & Schwarz 2001)
whereas this work uses a compressible MHD model with a focus on the evolution of
the RTI. However, a fully 3-D RTI turbulence study would be important to understand
the RTI induced turbulence accounting for 3-D perturbations and this would constitute
future studies. In this paper, the code PHORCE (Song 2020; Song & Srinivasan 2021)
developed at Virginia Tech is used for the 2-D RTI study. PHORCE is based on the
nodal unstructured discontinuous Galerkin method (Hesthaven & Warburton 2007) and
solves fluid equations (2.1)–(2.5) in conservation form. To advance the simulation in time,
an explicit fourth-order five-stage strong stability-preserving Runge–Kutta (Song 2020)
scheme has been implemented. Several limiters and filters are applied in PHORCE to
preserve the positivity of density and pressure and to diffuse the numerical oscillations
that typically occur due to strong discontinuities. The code uses an affine reconstructed
discontinuous Galerkin scheme (Song 2020; Song & Srinivasan 2021) to solve the
diffusion terms and to self-consistently capture the effect of spatially varying Reynolds
numbers (viscous effects) and magnetic Reynolds numbers (resistive effects).

The RTI simulations have been performed in a rectangular domain with x ∈
[−Lx/2,Lx/2], y ∈ [−Ly/2,Ly/2]; where Lx and Ly represent the width and height of
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the simulation domain, respectively. The simulations are performed with 2000 × 1000
cells. The gravitational field g = −gŷ. The simulations are performed using ‘conducting
wall’ boundary conditions along the y-direction and ‘periodic’ boundary condition along
the x-direction. In equilibrium, the simulation is initialized using the standard hyperbolic
tangent density profile given by

ρ = (ρH − ρL)

2
[tanh (αy/Ly)+ 1] + ρL. (3.1)

In the above equation, α defines the width of the hyperbolic tangent function. In the
simulations presented here α is taken to be 0.01 in order to provide a sharp gradient at
the interface. The pressure profile is initialized as

p = p0 − (ρH + ρL)

2
gy − g

(ρH − ρL)

2
Ly

α
ln cosh (αy/Ly), (3.2)

where p0 represents the background pressure of the system. To excite the multimode RTI
in the simulation, the y-component of velocity at the interface (y = 0 plane) is perturbed
as v = Σ40

m=10.01R(m) cos(2π(mx/Lx + R(m))) exp(−ξy2) at t = 0; where R(m) and ξ
represent the random number generator function of m random numbers and the spatial
width along the y direction over which the perturbation falls at the interface, with
ξ = 1000.

In this work, all the simulation results are presented in normalized units. The
following normalization factors have been used: x → x/Lx, y → y/Lx, t → tγRT, ρ →
ρ/ρL, g → g/γ 2

RTLx and kx → kxLx. Here, γRT = √
Atgk, represents the growth rate of

the RTI associated with the wavenumber k = 2π/λ; where λ is the wavelength of the
mode (Chandrasekhar 1961). The simulations have been conducted with multimode
perturbations having mode number m = 1–40, note that the value of γRT would be
different for different modes (or wavelengths). The growth rate becomes maximum for the
smallest-wavelength modes and minimum for the longest-wavelength modes. To calculate
the value of γRT for the normalization of time, the smallest mode of perturbation (m = 40)
having wavelength λ = Lx/40 has been selected.

In some flows in HED plasmas, such as in ICF and supernova explosions (Dimonte et al.
2005; Cabot & Cook 2006; Burton 2011; Srinivasan et al. 2012; Srinivasan & Tang 2014a;
Sauppe et al. 2019), the Atwood number can reach a very high value (At � 0.85) and
the temperature can have a large variation in the domain. As a result, a large variation
in Reynolds and magnetic Reynolds numbers may exist in the domain. In this work,
the plasma parameters are selected to access highly varying density and temperature
regimes in laboratory and astrophysical plasmas where the viscosity and resistivity may be
important. The parameters are summarized in table 1 in normalized form. The simulations
use an initial plasma beta β ini = 2μ0p0/Bext

x
2 = 5000 whenever an external horizontal

magnetic field (Bext
x ) exists in the system.

Using the parameters given in table 1 and using the expressions for the isotropic
viscosity (μ) and resistivity (η) mentioned in § 2, the Reynolds number Re = ρVRTLy/μ
and magnetic Reynolds number Rem = μ0VRTLy/η, are plotted as a function of vertical
height (y/Lx) in figure 1(a). Here, VRT = LyγRT defines the terminal velocity of the RTI.
Note that Re and Rem are in the ranges of 485–7.3 × 107 and 20–1105, respectively. The
profile of resistivity (and corresponding magnetic Reynolds number) has been modified
to ensure the resistive time step is larger than the hyperbolic time step since an explicit
time-stepping scheme is used in this work. The following form of modified resistivity
(ηmod) has been used, ηmod = η/a + b; where a = 18.5 and b = 7.3 × 10−9 are constants.
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Parameter Values

Atwood number (At) 0.95866
Light fluid density (ρL) 1
Heavy fluid density (ρH) 47
Gravitational acceleration (g) 4.2 × 10−3

Initial plasma beta (β ini) ≈5000

TABLE 1. Summary of plasma parameters in normalized form.

(a) (b)

FIGURE 1. Panel (a) shows the profile of Reynolds number (Re) and magnetic Reynolds number
(Rem) as functions of vertical height (y/Lx) in the domain. Panel (b) shows the profile of magnetic
Reynolds number (Rem) along with the modified magnetic Reynolds number (Remod

m ) profile as
functions of vertical height (y/Lx).

Using the modified expression of resistivity ηmod, the modified profile of magnetic
Reynolds number (Remod

m ) is plotted in figure 1(b). Note that the resistivity profile is
modified in the heavy fluid to increase the minimum value of the magnetic Reynolds
number from 20 to 285. For the simulations presented here, the modified resistivity
profile has been used to capture the essential physics of RTI in the presence of resistivity.
The magnetic Prandtl number, Prm = Rem/Re = ν/η (where ν = μ/ρ is the kinematic
viscosity), is a dimensionless quantity that estimates the ratio of momentum and magnetic
diffusivity. In figure 1(b), Prm varies from 2 for y/Lx < 0 to 4 × 10−6 for y/Lx > 0
producing a significant variation across the domain.

4. Simulation results and discussion

The simulations have been performed for different values of magnetic Prandtl number
to elucidate the role of viscosity and resistivity in the RTI and magneto-RTI. Table 2
summarizes all simulation cases performed here for different values of plasma beta
(external magnetic field) and magnetic Prandtl numbers (Reynolds numbers and magnetic
Reynolds numbers). This section discusses the results and findings of each case that is
presented.
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Runs β ini Re Rem Prm

run-1 ∞ ∞ 0
run-2 5000 ∞ ∞
run-3 ∞ 2 × 103 ∞ ∞
run-4 ∞ 2 × 106 ∞ ∞
run-5 5000 2 × 103 ∞ ∞
run-6 5000 2 × 106 ∞ ∞
run-7 5000 ∞ 285 0
run-8 5000 ∞ 1105 0
run-9 5000 2 × 103 285 0.1
run-10 5000 2 × 103 1105 0.5
run-11 5000 2 × 106 285 1 × 10−4

run-12 5000 2 × 106 1105 5 × 10−4

run-13 ∞ fully varying ∞ ∞
run-14 5000 fully varying ∞ ∞
run-15 5000 fully varying 285 0.5–4 × 10−6

run-16 5000 fully varying 1105 2–1.5 × 10−5

run-17 5000 fully varying fully varying 2–4 × 10−6

TABLE 2. Summary of numerical simulations performed here.

4.1. Simulation results for inviscid, irresistive cases: run-1 and run-2
Simulations for inviscid (μ = 0) and irresistive (η = 0) cases are performed (see run-1
and run-2 in table 2). Figure 2 presents plots of mass density (ρ/ρL) at different times
for β ini → ∞ (no initial external horizontal magnetic field) and for β ini = 5000 (in the
presence of an initial external horizontal magnetic field). As expected, the height of
the RTI mixing region or the height of the RTI fingers reduces in the presence of an
applied horizontal magnetic field. Note this suppression of small-scale structures due to
the presence of the magnetic field. To calculate the growth rate, the peak bubble-to-spike
distance (h/Lx) over the normalized times (tγRT) for both β ini → ∞ and β ini = 5000 is
presented in figure 3. In the simulations, the height has been measured by tracking the
difference between the upper and lower boundaries of the RTI mixing region. As shown
in the inset of figure 3, the numerical growth rates are calculated from the slope of the
plot log(h/Lx) vs tγRT. The numerical growth rates obtained from the simulations for
both β ini → ∞ and β ini = 5000 are 0.75γRT and 0.5γRT, respectively. The growth of RTI
significantly decreases in the presence of an applied horizontal magnetic field, as expected.
The analytical expression of the growth rate (γRT) of RTI for purely hydrodynamic flows
(no viscosity, no resistivity and no magnetic field) is given by Chandrasekhar (1961) as

γRT =
√

Atgk. (4.1)

Using the parameters given in table 1 and k = 80π/Lx (for λ = Lx/40), the analytical
value of the growth rate γRT can be estimated as 2.69 × 109 s−1 for a single mode that is
estimated to be the fastest growing at early times. The numerical growth rate is 0.75γRT =
2 × 109 s−1 but this is for a multimode growth rate, which explains the difference between
the analytical and numerical values. As time evolves, the nonlinear interactions between
modes significantly change the dominant wavenumber. When an applied magnetic field
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(b)(a)

FIGURE 2. Plot of mass density (ρ/ρL) profiles at different times for β ini → ∞ (a) and β ini =
5000 (b); where μ = 0 and η = 0. Note the stabilizing effect of an applied horizontal magnetic
field on overall RTI and the damping of short-wavelength modes.

Bext exists, the RTI growth rate becomes (Chandrasekhar 1961; Jun & Norman 1996)

γ B
RT =

√
Atgk − (B · k)2

2πμ0(ρH + ρL)
. (4.2)

Note that the RTI is affected by the horizontal magnetic field (B ‖ k) and is not directly
impacted by magnetic fields that are normal to the interface when using a MHD model.
In figure 2 for β ini = 5000, the height of the mixing region is decreased along with
suppression of the small structures. In this case, one can approximately calculate the
wavelength of RTI fingers by calculating the number of RTI fingers in the domain. This
technique suggests approximately 30 RTI spikes growing at this time. Therefore, the
effective smallest wavelength is approximately ≈Lx/30. When an appropriately aligned
magnetic field is initialized, the value of the peak magnetic field in the system increases
with time as RTI grows. For example, the plasma β becomes 226 from an initial value of
5000 at time tγRT = 13.5. Using the parameters given in table 1, β = 226 and kxLx =
60π, the analytical values of the growth rate γ B

RT can be estimated as γ B
RT = 0.63γRT.

The numerical growth rate obtained from the simulation shows good agreement with
the analytical value for β ini = 5000 considering that these are estimates for multimode
simulations.

The enstrophy (Z), kinetic energy (E) and magnetic field energy (B2) averaged over the
vertical direction (y) of the system are defined as

Z = 〈ω2〉 =
∫ Ly/2

−Ly/2
ω2 dy; E = 1

2 〈u2〉; B2 = 〈B2〉, (4.3a–c)

where ω = ∇ × u represents the fluid vorticity. In 2-D mixing and turbulence, the
enstrophy (Z), kinetic energy (E) and magnetic field energy (B2) are important quantities
as they appear to be the only quadratic constants of motion. In figure 4, the evolution of
the enstrophy (Z) and kinetic energy (E) spectra ispresented as a function of normalized
wavenumber kxLx at different times for β ini → ∞. Note that there will be no magnetic field
for β ini → ∞.

The spectra can be separated into three regions based on the range of kxLx. The first
region with kxLx � 80π is known as the injection range where all the external perturbation
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FIGURE 3. Plot of peak bubble-to-spike distance (h/Lx) over time (tγRT) for β ini → ∞ and
β ini = 5000; where μ = 0 and η = 0 to estimate a numerical growth rate. Note the growth rate
is reduced with an applied horizontal magnetic field, as expected.

(a) (b)

FIGURE 4. Evolution of enstrophy (Z) and kinetic energy (E) spectra as a function of
wavenumber (kxLx) for β ini → ∞; where μ = 0 and η = 0.

modes exist. All the energy has been injected into the system within these wavelengths.
The second region 80π � kxLx � 600π, or the middle range, is the inertial sub-range. This
is the regime which basically connects the injection range to the dissipation range. The
third region where kxLx � 600π is the dissipation range, which accounts for grid scales
as Lx = 2000�x; where �x is the grid size along the x-direction. As physical dissipation
(viscosity and resistivity) is absent in the system for the simulations in this section, the only
dissipation mechanism is, therefore, governed by the numerical dissipation. All the energy
for modes smaller than or equal to the grid size is dissipated by numerical dissipation.
For β ini → ∞ (see figure 4), note that the enstrophy (Z) and kinetic energy (E) increase
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equally in all the available modes in the system with time as long as tγRT � 13.5. At tγRT =
17.5, the transfer of kinetic energy as well as enstrophy is seen from short-wavelength
modes to long-wavelength modes. This happens due to the nonlinear interactions of the
modes leading to the formation of longer-wavelength modes with time. As a result, the
small-scale structures get modified, changing the growth rate in the nonlinear regime for
β ini → ∞. The numerically obtained power law scalings for the enstrophy, kinetic energy
and magnetic field energy spectra in both the injection range and inertial sub-range are
included in figure 4. In this case, the spectra of kinetic energy and enstrophy obey the
following power scaling laws in the injection range (kxLx � 80π),

E(k) ∼ k−1/2
x (4.4)

Z(k) ∼ k−1/2
x . (4.5)

In the inertial sub-range (80π � kxLx � 600π), the spectra are found to obey different
power laws,

E(k) ∼ k−3
x (4.6)

Z(k) ∼ k−2
x . (4.7)

For β ini = 5000, the evolution of enstrophy (Z), kinetic energy (E) and magnetic field
energy (B2) spectra as a function of wavenumber kxLx at different times is shown in
figure 5. The enstrophy (Z), kinetic energy (E) and magnetic field energy (B2) increase
equally in all modes in the system until tγRT = 17.5 for β ini = 5000. There is no transfer
of kinetic energy, enstrophy and magnetic field energy over the modes. This is because the
spectrum still lies in the linear regime due to the presence of a horizontal magnetic field.
The magnetic field opposes the growth of the RTI and decreases the vertical velocity of
the fluid. In this case, the spectra of kinetic energy, enstrophy and magnetic field energy,
obtained from the numerical simulations, obey the following power laws in the injection
range (kxLx � 80π):

E(k) ∼ k−1/3
x (4.8)

Z(k) ∼ k−1/4
x (4.9)

B2(k) ∼ k−1/2
x . (4.10)

Similarly, the power law in the inertial sub-range (80π � kxLx � 600π) for β ini = 5000 is
found to be

E(k) ∼ k−2
x (4.11)

Z(k) ∼ k−5/4
x (4.12)

B2(k) ∼ k−2
x . (4.13)

The slope of the spectra in the inertial sub-range decreases with the presence of a
horizontal magnetic field. The slope of the inertial sub-range measures the rate at which
the energy is transferred from large scale to small scales or vice versa. In other words, it
defines the rate at which the larger scales get fragmented into smaller scales and vice versa
due to mixing. Therefore, this shows that the rate of small-scale formation due to RTI
mixing decreases with the application of a horizontal magnetic field. The scaling of these
power laws in both the injection range and inertial sub-range for these cases (run-1–2) is
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(a) (b) (c)

FIGURE 5. Evolution of enstrophy (Z), kinetic energy (E) magnetic field energy (B2) spectra
as a function of wavenumber (kxLx) for β ini = 5000; where μ = 0 and η = 0.

Runs Injection range power law

run-1 Z(k) ∼ k−1/2
x , E(k) ∼ k−1/2

x

run-2 Z(k) ∼ k−1/4
x , E(k) ∼ k−1/3

x , B2(k) ∼ k−1/2
x

run-3 Z(k) ∼ k−1/4
x , E(k) ∼ k−1/4

x

run-4 Z(k) ∼ k−1/5
x , E(k) ∼ k−1/2

x , B2(k) ∼ k−1
x

run-5 Z(k) ∼ k−1/2
x , E(k) ∼ k−1/2

x

run-6 Z(k) ∼ k−1/2
x , E(k) ∼ k−1/2

x , B2(k) ∼ k−1/2
x

run-7 Z(k) ∼ k−1/2
x , E(k) ∼ k−1/2

x , B2(k) ∼ k−1
x

run-8 Z(k) ∼ k−0.3
x , E(k) ∼ k−1/2

x , B2(k) ∼ k−1
x

run-9 Z(k) ∼ k−1/2
x , E(k) ∼ k−1/2

x , B2(k) ∼ k−1/2
x

run-10 Z(k) ∼ k−1/4
x , E(k) ∼ k−0.4

x , B2(k) ∼ k−1/2
x

run-11 Z(k) ∼ k−1/2
x , E(k) ∼ k−1/2

x , B2(k) ∼ k−1
x

run-12 Z(k) ∼ k−1/2
x , E(k) ∼ k−1/2

x , B2(k) ∼ k−1
x

run-13 Z(k) ∼ k−0.3
x , E(k) ∼ k−1/2

x

run-14 Z(k) ∼ k−0.3
x , E(k) ∼ k−0.3

x , B2(k) ∼ k−1/2
x

run-15 Z(k) ∼ k−0.3
x , E(k) ∼ k−1/2

x , B2(k) ∼ k−1/2
x

run-16 Z(k) ∼ k−1/2
x , E(k) ∼ k−1/2

x , B2(k) ∼ k−1/2
x

run-17 Z(k) ∼ k−1/2
x , E(k) ∼ k−1/2

x , B2(k) ∼ k−0.3
x

TABLE 3. Summary of power laws for the numerical simulations in the injection range.

summarized in tables 3 and 4. Note that the numerical dissipation is active in the range of
kxLx > 600π. As a result, all the energy is also seen to grow proportionally with time in
this regime.

4.2. Simulation results for constant viscosity, irresistive cases (Prm = ∞): run-3–6
Constant viscosity is introduced throughout the domain in the simulation. The simulations
are performed for two different values of constant Reynolds numbers, Re = 2 × 103 and
Re = 2 × 106, but with no resistivity (Rem = ∞). As η = 0 for these simulations, this
study corresponds to the cases of very large magnetic Prandtl number (Prm → ∞). In this
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Runs Inertial sub-range power law

run-1 Z(k) ∼ k−2
x , E(k) ∼ k−3

x
run-2 Z(k) ∼ k−5/4

x , E(k) ∼ k−2
x , B2(k) ∼ k−2

x
run-3 Z(k) ∼ k−5/2

x , E(k) ∼ k−4
x

run-4 Z(k) ∼ k−3
x , E(k) ∼ k−4

x , B2(k) ∼ k−3
x

run-5 Z(k) ∼ k−5/2
x , E(k) ∼ k−3

x
run-6 Z(k) ∼ k−5/2

x , E(k) ∼ k−5/2
x , B2(k) ∼ k−3

x
run-7 Z(k) ∼ k−2

x , E(k) ∼ k−3
x , B2(k) ∼ k−4

x
run-8 Z(k) ∼ k−5/2

x , E(k) ∼ k−4
x , B2(k) ∼ k−4

x
run-9 Z(k) ∼ k−5/2

x , E(k) ∼ k−7/2
x , B2(k) ∼ k−5

x
run-10 Z(k) ∼ k−2

x , E(k) ∼ k−4
x , B2(k) ∼ k−4

x
run-11 Z(k) ∼ k−2

x , E(k) ∼ k−3
x , B2(k) ∼ k−9/2

x

run-12 Z(k) ∼ k−2
x , E(k) ∼ k−3

x , B2(k) ∼ k−9/2
x

run-13 Z(k) ∼ k−2
x , E(k) ∼ k−3

x
run-14 Z(k) ∼ k−2

x , E(k) ∼ k−7/2
x , B2(k) ∼ k−3

x
run-15 Z(k) ∼ k−2

x , E(k) ∼ k−3
x , B2(k) ∼ k−5

x
run-16 Z(k) ∼ k−5/2

x , E(k) ∼ k−4
x , B2(k) ∼ k−3

x
run-17 Z(k) ∼ k−2

x , E(k) ∼ k−9/2
x , B2(k) ∼ k−3

x

TABLE 4. Summary of power laws for the numerical simulations in the inertial sub-range.

study, cases without a magnetic field β ini → ∞ and with a magnetic field β ini = 5000
at tγRT = 0 are considered. The relevant simulation parameters are shown in table 2
under run-3–6. In figure 6, the mass density (ρ/ρL) is shown at different times for
Re = 2 × 103 and Re = 2 × 106 for β ini → ∞. It is seen that the growth of the RTI
decreases with decreasing Re or increasing viscosity (μ). Figure 7 shows mass density
(ρ/ρL) at different times for the two Reynolds numbers Re = 2 × 103 and Re = 2 × 106,
but for β ini = 5000. Here, the size of the RTI fingers decreases further when applying a
horizontal magnetic field compared with the inviscid case presented in § 4.1. The magnetic
field has a stabilizing effect in addition to viscous stabilization on the growth of RTI. To
further illustrate the complementary role of viscous and magnetic field stabilization, the
peak bubble-to-spike distance (h/Lx) over time (tγRT) is presented for both β ini → ∞ and
β ini = 5000 and for different constant Reynolds numbers (Re) in figure 8. Note that, as
Re increases, the growth rate of the RTI approaches the growth rate for the inviscid cases
(μ = 0) with and without the initial magnetic field. For β ini → ∞, the growth rates from
the simulations are 0.55γRT and 0.64γRT for Re = 2 × 103 and Re = 2 × 106, respectively.
The analytical expression for the growth rate of RTI in a compressible viscous fluid is
given by Menikoff et al. (1977) as

γ vis
RT =

√
Atgk

(√
1 + ω − √

ω
)
, (4.14)

where ω = ν̄2k3/Atg and ν̄ = (μl + μh)/(ρl + ρh) is the density averaged kinematic
viscosity. In figure 9, the analytical form of γ vis

RT /γRT is shown as a function of
wavenumber kxLx for Re = 2 × 103 and Re = 2 × 106. For Re = 2 × 103, it is seen that
the analytical growth rate is maximum for kxLx ≈ 60π, which corresponds to a wavelength
of approximately Lx/30. Similarly, for Re = 2 × 106, the analytical growth rate becomes
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(b)(a)

FIGURE 6. Plot of mass density (ρ/ρL) profile at different times for different constant values
of Re; where β ini → ∞ and Prm = ∞ (η = 0). Note the stabilizing effect of viscosity on
short-wavelength RTI.

(b)(a)

FIGURE 7. Plot of mass density (ρ/ρL) profile at different times for different constant values of
Re; where β ini = 5000 and Prm = ∞ (η = 0). Note the viscous and magnetic field stabilization
acting in tandem to damp RTI growth.

maximum for kxLx ≈ 76π, or a wavelength of approximately Lx/38. This is consistent
with the simulation results from figure 7. The theoretical growth rates of the mode
having wavelength Lx/30 and for the mode having wavelength Lx/38 are approximately
0.56γRT and 0.65γRT, respectively. The growth rates obtained from simulations show good
agreement with the analytical results.

Note that, when viscosity increases, the morphology of the RTI spikes appear to be
smooth and exhibit different characteristics, as seen in figure 7. Due to the presence of
viscosity, the traditional mushroom cap structure on the tip of the RTI fingers is inhibited
and forms smooth structures. The presence of viscosity also strongly suppresses the growth
of the small-scale structures and short-wavelength modes.

The plasma β as a function of peak bubble-to-spike distance (h/Lx) for different Re
for β ini = 5000 is presented in figure 10. Note that the plasma β is independent of Re
if presented as a function of the peak bubble-to-spike amplitude instead of as a function
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FIGURE 8. Plot of peak bubble-to-spike distance (h/Lx) over time (tγRT) for β ini → ∞ and
β ini = 5000 and for different constant values of Re; where η = 0. Note the effects of viscous and
magnetic stabilization on RTI growth.

FIGURE 9. Plot of γ vis
RT /γRT as a function of wavenumber kxLx for different constant values

of Re; where η = 0. Note that the viscous cases produce a peak growth in the linear regime
corresponding to kxLx ≈ 60π.

of time. This shows that the dynamics of magnetic field is not affected by the viscosity
for the same amplitude of the RTI growth but the actual RTI growth as a function of
time is impacted by the different Re, as noted from figure 8. Also note that plasma
β decreases with time or height as RTI grows for all Re considered. This is because
the value of magnetic field increases as RTI grows in the system. Figure 11 presents
enstrophy (Z), kinetic energy (E) and magnetic field energy (B2(k)) spectra at time
tγRTt = 17.5 as a function of wavenumber kxLx for different values of Re. The scaling
of these power laws in both the injection range and inertial sub-range for these cases
(run-3–6) is summarized in tables 3 and 4. Note that the spectral power of the magnetic
energy does not change with Re but the spectral power of enstrophy and kinetic energy
increases with an increasing value of Re for all available modes. This shows that the
dynamics of magnetic field energy is independent of Re or viscosity. It was shown by
Kulsrud et al. (1997) that the dynamics of the magnetic field can be completely described
by the ion fluid vorticity in the absence of viscosity and resistivity but in the presence
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FIGURE 10. Plot of plasma β as a function of peak bubble-to-spike distance (h/Lx) for different
values of Re; where β ini = 5000 and Prm = ∞ (η = 0). Note that the plasma β is independent
of Re when compared at the same RTI amplitude.

of a Biermann battery, which is not considered in this work. Including the viscosity and
resistivity in the MHD equations considered here, a theoretical treatment is included to
illustrate the dynamics of the magnetic field and vorticity in the presence of viscosity and
resistivity. Following the same method as shown by Kulsrud et al. (1997), the momentum
equation (2.2) can be written in terms of vorticity (ω) as

∂ω

∂t
= ∇ρ × ∇P

ρ2
+ ∇ × (u × ω)+ ∇ × J × B

ρ
− ∇ × ∇ · π

ρ
, (4.15)

where J represents the net current density. Similarly, (2.4) can be modified in terms of the
ion cyclotron frequency (ωci = ZieB/mi) as

∂ωci

∂t
= ∇ × (u × ωci)− 1

μ0
∇ × (η∇ × ωci). (4.16)

The last terms on the right-hand sides of (4.15) and (4.16) are responsible for the
dissipation of the vorticity and magnetic field, respectively. The dynamics of vorticity
and kinetic energy depends on the viscous stress tensor π and the corresponding Re. This
is consistent with the numerical results presented here. On the other hand, the dynamics
of vorticity is independent of resistivity η or magnetic Reynolds number Rem, but the
dynamics of the magnetic field depends on the Rem. To illustrate this, simulations are
performed for different constant values of Rem discussed in the next section.

4.3. Simulation results for constant resistivity, inviscid cases (Prm = 0): run-7–8
In this section, simulation results are presented for different constant magnetic Reynolds
numbers (Rem) but with no viscosity (μ = 0) (see run-7–8 in table 2). In this study,
Prm = 0. In all these simulations, an initial horizontal magnetic field with β ini = 5000
is applied. In figure 12, the mass density (ρ/ρL) profile at different times is presented
for Rem = 285 and Rem = 1105. It is seen that the growth of the RTI increases with a
decrease in magnetic Reynolds number (Rem) or increase of resistivity (η). This is because
the resistivity diffuses the magnetic field and reduces the magnetic stabilization. As a
result, the RTI growth increases due the reduction of effective magnetic field tension. In
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(a) (b) (c)

FIGURE 11. Evolution of enstrophy (Z), kinetic energy (E) and magnetic field energy (B2)
spectra at late time tγRT = 17.5 as a function of wavenumber (kxLx) for different constant values
of Re; where η = 0. Note that the spectra of enstrophy and kinetic energy in the inertial range
of dissipation (kxLx � 80π) change with Re but the spectra of magnetic field in this range are
independent of Re.

(b)(a)

FIGURE 12. Plot of mass density (ρ/ρL) profile at different times for Rem = 285 and Rem =
1105; where β ini = 5000 and μ = 0. Note that a smaller Rem, corresponding to a larger η,
produces an increase in RTI growth compared with a larger Rem.

this figure, it is to be noted that the morphology of the RTI spikes in terms of mushroom
cap structures on the tip of the fingers is seen to be independent of Rem. Also of note
is the appearance of additional small-scale structures for higher resistivity cases. This is
also expected as the magnetic field opposes development of the small-scale structures.
In figure 13, the peak bubble-to-spike distance (h/Lx) over time (tγRT) is presented for
different constant values of Rem to illustrate the effect of magnetic Reynolds number on the
growth rate of RTI in HED plasmas. It is found that the growth rate increases with increase
in resistivity. The numerical growth rates are obtained from the simulations for Rem = 285
and Rem = 1105 as 0.68γRT and 0.53γRT, respectively. Including a finite constant resistivity
η, Jukes (1963) has shown that the analytical growth rate of RTI changes with resistivity
η as

γ res
RT ∝ η1/3. (4.17)

The growth rates obtained from the simulations also obey the analytical scaling.
The plasma β is plotted as a function of peak bubble-to-spike distance (h/Lx) for

different Rem in figure 14. Note that plasma β decreases with peak bubble-to-spike distance
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FIGURE 13. Plot of peak bubble-to-spike distance (h/Lx) over time (tγRT) for different constant
values of Rem; where β ini = 5000 and μ = 0. Note that the growth rate increases with a decrease
in Rem, corresponding to an increase in η.

FIGURE 14. Plot of plasma β as a function of peak bubble-to-spike distance (h/Lx) for different
constant values of Rem; where β ini = 5000 and μ = 0. Note that the plasma β changes with Rem.

for all values of Rem but at different rates depending on the value of Rem. The rate at which
the plasma beta decreases is larger for high Rem. This shows that the dynamics of the
magnetic field is not independent of resistivity. This is due to the fact that the magnetic
field gets diffused more for low Rem, leading to a higher plasma β.

In figure 15, a plot of enstrophy (Z), kinetic energy (E) and magnetic field energy (B2(k))
spectra at time (tγRTt = 17.5) as a function of wavenumber kxLx is shown for different
values of Rem. The scaling of these power laws in both the injection range and inertial
sub-range for these cases (run-7–8) is summarized in tables 3 and 4. It is observed that
the magnetic field spectra change significantly by changing the value of Rem, whereas the
spectra of enstrophy and kinetic energy do not show any significant dependence on the
value of Rem. The spectral power of magnetic field energy increases with increasing value
of Rem for all the available modes. This justifies that the dynamics of the magnetic field
energy depends on Rem or η. But the dynamics of enstrophy and kinetic energy does not
depend on Rem. This is consistent with (4.15) and (4.16).
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(a) (b) (c)

FIGURE 15. Evolution of enstrophy (Z), kinetic energy (E) and magnetic field energy (B2)
spectra at late time tγRT = 17.5 as a function of wavenumber (kxLx) for different constant values
of Rem; where β ini = 5000 and μ = 0. Note that the spectra of enstrophy and kinetic energy
in the inertial range of dissipation (kxLx � 80π) are independent of Rem but the spectra of the
magnetic field in this range change with Rem.

(b)(a)

FIGURE 16. Plot of the mass density (ρ/ρL) profile at different times for Rem = 285
(Prm = 0.1) and Rem = 1105 (Prm = 0.5); where Re = 2 × 103 and β ini = 5000.

4.4. Simulation results for constant viscosity, constant resistivity cases: run-9–12
Simulations have also been performed for different values of constant Re with the inclusion
of different constant values of Rem (see run-9–12 in table 2). In this case, all the simulations
use an applied horizontal magnetic field corresponding to β ini = 5000. Figure 16 presents
the mass density (ρ/ρL) profile at different times for Rem = 285 (Prm = 0.1) and
Rem = 1105 (Prm = 0.5) with Re = 2 × 103. Similarly, the mass density (ρ/ρL) profile
at different times for Rem = 285 (Prm = 1 × 10−4) and Rem = 1105 (Prm = 5 × 10−4) for
Re = 2 × 106 is presented in figure 17. Note that the morphology of the RTI fingers does
not exhibit a strong dependence on Rem for the values considered here, but shows a more
significant dependence with Re. The mushroom caps on the tip of the RTI fingers are
inhibited for high viscosity. When viscosity is held constant, the growth rate increases with
an increase in resistivity. On the other hand, the growth rate decreases with an increase in
viscosity when resistivity is held constant.

The power law scaling of the enstrophy (Z), kinetic energy (E) and magnetic field energy
(B2(k)) spectra as a function of wavenumber kxLx is quantified for these runs (run-9–12)
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(b)(a)

FIGURE 17. Plot of the mass density (ρ/ρL) profile at different times for Rem = 285
(Prm = 1 × 10−4) and Rem = 1105 (Prm = 5 × 10−4); where Re = 2 × 106 and β ini = 5000.

(a) (b) (c)

FIGURE 18. Evolution of enstrophy (Z), kinetic energy (E) and magnetic field energy (B2)
spectra at late time tγRT = 17.5 as a function of wavenumber (kxLx) for different constant values
of Re; where β ini = 5000 and Rem = 285. Note that the spectra of enstrophy and kinetic energy
in the inertial range of dissipation (kxLx � 80π) change with Re but the spectra of the magnetic
field in this range are independent of Re.

in both the injection range as well as the inertial sub-range. The scalings of these power
laws are given in tables 3 and 4 for run-9–12. Figure 18 presents the enstrophy (Z), kinetic
energy (E) and magnetic field energy (B2(k)) spectra at time tγRTt = 17.5 as a function
kxLx for different values of Re; where the value of Rem is held constant to Rem = 285 for
β ini = 5000. It is seen here that the spectra of enstrophy and kinetic energy change with
Re, whereas the magnetic field spectra do not change with Re. Similarly, the enstrophy
(Z), kinetic energy (E) and magnetic field energy (B2(k)) spectra at time tγRTt = 17.5 as
a function kxLx for different values of Rem are plotted in figure 19 holding Re constant
at Re = 2 × 103 for β ini = 5000. Note that Rem does not affect the spectra of enstrophy
and kinetic energy, whereas the magnetic field spectra depend on Rem. These findings are
consistent with those in §§ 4.2 and 4.3.

4.5. Simulation results for fully varying viscosity, irresistive cases (Prm = ∞):
run-13–14

Next, the self-consistent fully varying Re profile shown in figure 1 is considered without
resistivity (see run-13–14 in table 2). The simulations have been performed using both
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(a) (b) (c)

FIGURE 19. Evolution of enstrophy (Z), kinetic energy (E) and magnetic field energy (B2)
spectra at late time tγRT = 17.5 as a function of wavenumber (kxLx) for different constant values
of Rem; where β ini = 5000 and Re = 2 × 103. Note that the spectra of enstrophy and kinetic
energy in the inertial range of dissipation (kxLx � 80π) are independent of Rem but the spectra
of the magnetic field change with Rem.

β ini → ∞ and β ini = 5000. In figure 20, the mass density (ρ/ρL) profile is presented
at different times for β ini → ∞ and β ini = 5000. To further illustrate the effect of a
fully varying Re profile on the RTI, the peak bubble-to-spike distance (h/Lx) over time
(tγRT) is presented for β ini → ∞ and β ini = 5000 for this case in figure 21 along with
the bubble-to-spike amplitudes for constant Re cases. The growth and nature of the RTI
for fully varying viscosity for β ini → ∞ and β ini = 5000 is close to that of the high
viscosity case or low Reynolds number (Re = 2 × 103) case. This is because the RTI
fingers largely grow in the lower density regime (y < 0) at the interface due to the high
Atwood number considered here. The mixing is not significant in the high density regime.
In the lower density regime, the value of Re = 2 × 103, which has significantly higher
viscosity compared with the high density regime (y > 0). Therefore, the evolution of
RTI is dominated by the high viscosity regime. Hence, viscosity, even if disparate, plays
an important role in the RTI process in such parameter regimes with and without an
applied horizontal magnetic field. Similar to the previous cases, the power law scaling of
enstrophy (Z), kinetic energy (E) and magnetic field energy (B2) spectra as a function of
wavenumber kxLx in both the injection range and inertial sub-range are summarized in
tables 3 and 4 under run-13–14.

4.6. Simulation results for fully varying viscosity, constant resistivity cases: run-15–16
Simulations are performed considering fully varying Re with the inclusion of different
values of constant Rem (Rem = 285 and Rem = 1105). These correspond to Prm in the range
0.5–4 × 10−6 for Rem = 285 and Prm in the range 2–1.5 × 10−5 for Rem = 1105. In these
studies, an applied horizontal magnetic field corresponding to β ini = 5000 is included as
before. Figure 22 shows the mass density (ρ/ρL) profile at different times for Rem = 285
and Rem = 1105. It is seen that the growth of the RTI spikes increases with the decrease of
Rem as expected. In figure 23, the peak bubble-to-spike distance (h/Lx) over time (tγRT) for
different values of Rem is shown. Note that the growth of RTI is higher for high resistivity
(blue solid line) compared with that obtained for low resistivity (red solid line) when also
including the fully varying viscosity. The plasma β as a function of peak bubble-to-spike
distance (h/Lx) for different values of constant Rem (solid blue and red line) is presented
in figure 24, where β ini = 5000 and fully varying Re are considered. The magnetic field
decreases for the lower value of Rem = 285, which corresponds to higher η. Furthermore,
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(b)(a)

FIGURE 20. Plot of the mass density (ρ/ρL) profile at different times for β ini → ∞ and
β ini = 5000; where fully varying Re is considered with no resistivity (η = 0). Note the viscous
stabilization of RTI due to the high viscosity of the low density region.

FIGURE 21. Plot of peak bubble-to-spike distance (h/Lx) over time (tγRT) for β ini → ∞ and
β ini = 5000 for different values of Re; where η = 0. Note that the fully varying Re case has
viscous stabilization corresponding to the viscosity of the lower density fluid.

it is observed here that the morphology of the RTI fingers is not significantly affected by
the resistivity. The power law scaling of enstrophy (Z), kinetic energy (E) and magnetic
field energy (B2) spectra as a function of wavenumber kxLx in both the injection range and
inertial sub-range for these cases is summarized in tables 3 and 4 in the column under
run-15–16.

4.7. Simulation results for fully varying viscosity, fully varying resistivity case: run-17
The final set of simulations is performed for a fully varying Re along with a fully varying
Rem profile. These correspond to Prm in the range 2–4 × 10−6. Note that the resistivity
profile used for this case is the modified resistivity profile shown in figure 1. In this
case, an applied horizontal magnetic field corresponding to β ini = 5000 is included, as
in the previous cases. Figure 25 presents the mass density (ρ/ρL) profiles for fully varying
viscosity and resistivity profiles at different times. It is observed that the structure of RTI is
quite different from the conventional mushroom cap structure. The morphology of the RTI
spikes exhibits less Kelvin–Helmholtz formation and shows the suppression of small-scale
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(b)(a)

FIGURE 22. Plot of mass density (ρ/ρL) profiles at different times for Rem = 285 and Rem =
1105; where β ini = 5000 and fully varying Re is considered. Note increased growth of RTI for
lower Rem as expected, even with a fully varying Re.

FIGURE 23. Plot of peak bubble-to-spike distance (h/Lx) over time (tγRT) for different values
of Rem; where β ini = 5000 and fully varying Re is considered. Note that RTI growth is higher
for low Rem even with a fully varying Re. Also note that the fully varying Re and fully varying
Rem case asymptotes to the Rem corresponding to the lower fluid.

structures more significantly than the higher Rem = 1105, fully varying Re case presented
in figure 22. In figure 23, the peak bubble-to-spike distance (h/Lx) over time(tγRT) for fully
varying Rem and fully varying Re profiles is presented along with the constant Rem cases
(see yellow solid line). The growth rate for the fully varying resistivity case is close to
the growth rate obtained for the constant Rem = 1105 case. This is because the RTI mostly
grows in the low density regime where Rem = 1105. Therefore, the dynamics of RTI for the
high Atwood number regime can be described by the physical parameter space of the lower
fluid, which is governed by the viscosity and resistivity of the lower fluid. The plasma β as
a function of peak bubble-to-spike distance (h/Lx) for fully varying Rem and Re is shown
in figure 24 (see solid yellow line), where β ini = 5000 is considered. The dynamics of
the magnetic field and its corresponding growth, as noted by the decreasing plasma β,
for fully varying Rem and Re, is different from the constant magnetic Rem cases. The field
strength obtained lies in between the regimes of the upper and lower fluids (with their
corresponding resistivities). The power law scaling of enstrophy (Z), kinetic energy (E)
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FIGURE 24. Plot of plasma β as a function of peak bubble-to-spike distance (h/Lx) for Rem =
285, Rem = 1105 and fully varying Rem; where β ini = 5000 and fully varying Re are considered.
Note that the plasma β is higher late in time for lower Rem compared with a higher Rem, even
with a fully varying Re. Also note that the fully varying Rem case produces a magnetic field that
lies in between the regimes of the upper and lower fluids.

FIGURE 25. Plot of mass density (ρ/ρL) profiles at different times for fully varying viscosity
and resistivity case; where β ini = 5000. Note the morphology of the RTI in this case exhibiting
less Kelvin–Helmholtz formation than even the higher Rem = 1105, fully varying Re case
presented in figure 22.

and magnetic field energy (B2) spectra as a function of wavenumber kxLx in both the
injection range and inertial sub-range is summarized in tables 3 and 4 under run-17.

5. Summary and conclusion

In summary, the role of viscosity and resistivity on the RTI and magneto-RTI is studied
for a high Atwood number and high plasma-β regime in HED plasmas applicable to
both laboratory and astrophysical settings. This work describes 2-D RTI evolution and
resulting turbulence when surveying plasma-β and magnetic Prandtl number, Prm, for
these regimes. The simulations have been performed using fluid simulation techniques
based on the unstructured discontinuous Galerkin finite element method (Hesthaven &
Warburton 2007; Song 2020; Song & Srinivasan 2021). Using a visco-resistive-MHD
model, a detailed investigation of RTI in a 2-D planar geometry for experimentally and
observationally relevant parameters is presented. It has been shown here that the inclusion
of viscosity and resistivity in the system drastically changes the growth of the instability
and modifies its internal structure on smaller scales. The presence of viscosity inhibits
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the development of small-scale structures and significantly modifies the morphology of
the RTI spikes. On the other hand, the morphology of the RTI spikes is found to be
independent of resistivity but it assists in the development of small-scale structures via
the diffusion of the magnetic fields. The reduced magnetic field strength that results
in time permits shorter-wavelength modes to grow. Considering fully varying viscosity
and fully varying resistivity profiles in the simulation due to the strong dependence of
viscosity and resistivity on the disparate temperature profile across the interface, the effect
of both viscosity and resistivity is shown to be significant in the evolution of RTI in
HED plasmas. Furthermore, it is also found that the dynamics of the magnetic field is
explicitly independent of viscosity and likewise the resistivity does not affect the dynamics
of enstrophy and kinetic energy. Also presented here is the power law scaling of enstrophy,
kinetic energy and magnetic field energy over a wide range of viscosity and resistivity
in both the injection range and the inertial sub-range of spectra. This could provide a
useful tool for understanding RTI induced turbulent mixing in high Atwood number HED
plasmas and could aid in interpretation of observations of RTI induced turbulence spectra.
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