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Abstract

In the analysis of logic programs, abstract domains for detecting sharing and linearity

information are widely used. Devising abstract unification algorithms for such domains has

proved to be rather hard. At the moment, the available algorithms are correct but not

optimal; i.e., they cannot fully exploit the information conveyed by the abstract domains.

In this paper, we define a new (infinite) domain ShLinω which can be thought of as a

general framework from which other domains can be easily derived by abstraction. ShLinω

makes the interaction between sharing and linearity explicit. We provide a constructive

characterization of the optimal abstract unification operator on ShLinω , and we lift it to two

well-known abstractions of ShLinω , namely, to the classical Sharing× Lin abstract domain

and to the more precise ShLin2 abstract domain by Andy King. In the case of single-binding

substitutions, we obtain optimal abstract unification algorithms for such domains.

KEYWORDS: static analysis, abstract interpretation, sharing, linearity, unification

1 Introduction

In the analysis of logic programs, the theory of abstract interpretation (Cousot and

Cousot 1979, 1992a) has been widely used to design new analyses and to improve

existing ones. Given a concrete semantics working over a concrete domain, an

abstract interpretation formalizes an analysis by providing an abstract domain and

an abstract semantics (working on the abstract domain) and relating them to their

concrete counterparts. An abstract domain is a collection of abstract objects which

encode the property to analyze. The concrete and abstract domains are related by

means of abstraction and concretization maps, which allow each concrete object to be

abstracted into an abstract object which describes it. The abstract semantics, in most

cases, is given by a set of abstract operators on the abstract domain, which are the

counterparts of the concrete ones. For example, in the case of logic programs, one can

individuate in the concrete semantics the main operations (unification, projection,

union), and an abstract semantics can be specified by giving the abstract unification,

abstract projection, and abstract union operations. The theory of abstract inter-

pretation assures us that for any concrete operator, there exists a best abstract
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operator, called the optimal operator. It computes the most precise result among

all possible correct operators, on a given abstract domain. Designing the optimal

abstract counterpart of each concrete operator is often a very difficult task. In fact,

even if the definition of the optimal operator for any abstract domain is known from

the theory of abstract interpretation (as a composition of the concrete operator and

the abstraction map), the hard task is to provide an explicit definition of the abstract

operators and to devise algorithms on the abstract domain which compute them.

1.1 The context

The property of sharing has been the subject of many papers (Hans and Winkler

1992; Jacobs and Langen 1992; Muthukumar and Hermenegildo 1992; Codish et al.

1999; Bagnara et al. 2002), from both the theoretical and the practical point of

view. Typical applications of sharing analysis are in the fields of optimization of

unification (Søndergaard 1986) and parallelization of logic programs (Hermenegildo

and Rossi 1995). The goal of (set) sharing analysis is to detect sets of variables

which share a common variable in the answer substitutions. For instance, consider

the substitution {x/f(u, v), y/g(u, u, u), z/v}. We say that x and y share the variable

u, while x and z share the variable v, and no single variable is shared by x, y, and

z. Many domains concerning sharing properties also consider linearity in order to

improve the precision of the analysis. We say that a term is linear if it does not

contain multiple occurrences of the same variable. For instance, the term f(x, f(y, z))

is linear, while f(x, f(y, x)) is not, since x occurs twice.

1.2 The problem

It is now widely recognized that the original domain proposed for sharing analysis,

namely, Sharing (Langen 1990; Jacobs and Langen 1992), is not very precise, so that

it is often combined with other domains for handling freeness, linearity, groundness,

or structural information (see Bagnara et al. 2005 for a comparative evaluation). In

particular, adding some kind of linearity information seems to be very profitable,

both for the gain in precision and speed which can be obtained and for the fact

that it can be easily and elegantly embedded inside the sharing groups (see King

1994). In the literature, many authors have proposed abstract unification operators

(e.g., Codish et al. 1991; Hans and Winkler 1992; Muthukumar and Hermenegildo

1992; King 1994) for domains of sharing properties, encoding different amounts of

linearity information. However, optimal operators for combined analysis of sharing

and linearity have never been devised, either for the domain ShLin2 (King 1994) or

for the more broadly adopted Sharing×Lin (Hans and Winkler 1992; Muthukumar

and Hermenegildo 1992).

With the lack of optimal operators, the analysis loses precision and might even

be slower. The latter is typical of sharing analysis, where abstract domains are

usually defined in such a way that the less information we have, the more complex

the abstract objects are. This is not the case for other kinds of analyses, such as
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groundness analysis, where the complexity of abstract objects may grow according

to the amount of groundness information they encode.

The lack of optimal operators is due to the fact that the role played by linearity

in the unification process has never been fully clarified. The traditional domains

which combine sharing and linearity information are too abstract to capture in a

clean way the effect of repeated occurrences of a variable in a term and most of the

effects of (non)linearity are obscured by the abstraction process.

1.3 The solution

We propose an abstract domain ShLinω which is able to encode the amount of

nonlinearity, i.e., which keeps track of the exact number of occurrences of the same

variable in a term. Consider again the substitution θ = {x/f(u, v), y/g(u, u, u), z/v}.
Intuitively, to each variable w in the range of the substitution, we associate the

multiset of domain variables which are bound to a term where w occurs, and we

call it an ω-sharing group. For instance, we associate, to the variable u, the ω-

sharing group {x, y, y, y}, to denote that u appears once in θ(x) and three times in

θ(y). To the variable v, we associate the ω-sharing group {x, z}, to denote that v

appears once in θ(x) and once in θ(z). Then we consider the collection of all the

multisets so obtained {{x, y, y, y}, {x, z}}, which describes both the sharing property

and the exact amount of nonlinearity in the given substitution. The domain we

obtain is conceptually simple but cannot be directly used for static analysis, without

a widening operator (Cousot and Cousot 1992c), since it contains infinite ascending

chains. However, in this domain the role played by (non)linearity is manifest, and

we can provide a constructive characterization of the optimal abstract unification

operator. The cornerstone of the abstract unification is the concept of sharing graph

which plays the same role as alternating paths (Søndergaard 1986; King 2000) for

pair-sharing analysis. We use sharing graphs to combine different ω-sharing groups

during unification. The use of sharing graphs offers a new perspective for looking

at variables in the process of unification and simplifies the proofs of correctness and

optimality of the abstract operators.

We prove that sharing graphs yield an optimal abstract unification operator for

single-binding substitutions. We also provide a purely algebraic characterization of

the unification process, which should help in implementing the domain through

widening operators and in devising abstract operators for further abstractions of

ShLinω .

1.4 The applications

We consider two well-known domains for sharing properties, namely, the reduced

product (Cousot and Cousot 1979) Sharing × Lin and the more precise domain

ShLin2 by Andy King, and show that they can be immediately obtained as

abstractions of ShLinω . By exploiting the unification operator on ShLinω , we provide

the optimal abstract unification operators, in the case of single-binding substitutions,

for both domains. We show that we gain in precision w.r.t. any previous attempt to
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design an abstract unification operator on these domains. This is the first time that

abstract unification has been provided optimal for a domain including sharing and

linearity information.

Surprisingly, the optimal abstract operators are able to improve not only aliasing

and linearity information but also groundness. We show that in certain cases, we

improve over Pos (Armstrong et al. 1994). This is mainly due to the fact that our

operators exploit the occur-check condition. As far as we know, there is no abstract

unification operator in the literature, for a domain dealing with sharing, freeness,

and linearity, which is more precise than Def for groundness.

Unification for multibinding substitutions is usually computed by considering one

binding at a time. For instance, the unification of a substitution θ with {x1/t1,

x2/t2, . . . , xn/tn} is performed by first computing the unification of θ with {x1/t1}
and then unifying the result with {x2/t2, . . . , xn/tn}. Actually, computing abstract

unification one binding at a time is optimal in ShLinω (Amato and Scozzari 2005).

We show that this is not the case for ShLin2 and Sharing × Lin. This means that

the classical schema of computing unification iteratively on the number of bindings

cannot be used when looking for optimality with multibinding substitutions, at least

with these two domains.

1.5 Structure of the paper

In Section 2 we recall some basic notions and the notations about substitutions,

multisets, and abstract interpretation. In Section 3 we briefly recall the domain of

existential substitutions and its operators, which will be used throughout the paper.

In Section 4 we define the domain ShLinω , together with the unification operator,

and we show the optimality result and give an alternative algebraic characterization

of the unification operator. In Section 5 we exploit our results to devise the optimal

unification operators for ShLin2 and Sharing × Lin, in the case of single-binding

substitutions. Section 6 gives some evidence that there are practical advantages in

using the optimal unification operators for ShLin2 and Sharing × Lin. In Section

7 we compare our domains and operators with those known in the literature. We

conclude with some open questions for future work. The proofs of the main results

of the paper are in Appendix A, and the proofs of the results in Section 5 are in

Appendix B.

The paper is a substantial expansion of Amato and Scozzari (2003), which

introduces preliminary results of optimality for domains involving sharing and

linearity properties.

2 Notation

Given a set A, let ℘(A) be the powerset of A and ℘f(A) be the set of finite subsets

of A. Given two posets (A,�A) and (B,�B), we denote by A→B the poset of

monotonic functions from A to B ordered pointwise. We use �A→B to denote the

order relation over A→B. When an order for A or B is not specified, we assume the
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least informative order (x � y ⇐⇒ x = y). We also use A � B to denote disjoint

union and |A| for the cardinality of the set A.

2.1 Terms and substitutions

In the following, we fix a first-order signature and a denumerable set of variables V.

Given a term or other syntactic object o, we denote by vars(o) the set of variables

occurring in o and by occ(v, o) the number of occurrences of v in o. When it does

not cause ambiguities, we abuse the notation and prefer to use o itself in the place

of vars(o). For example, if t is a term and x ∈ V, then x ∈ t should be read as

x ∈ vars(t).

We denote by ε the empty substitution, by {x1/t1, . . . , xn/tn} a substitution θ

with θ(xi) = ti �= xi, and by dom(θ) = {x ∈ V | θ(x) �= x} and rng(θ) =

∪x∈dom(θ)vars(θ(x)) the domain and range of θ respectively. Let vars(θ) be the

set dom(θ) ∪ rng(θ), and given U ∈ ℘f(V), let θ|U be the projection of θ over

U, i.e., the unique substitution such that θ|U(x) = θ(x) if x ∈ U and θ|U(x) = x

otherwise. Given θ1 and θ2, two substitutions with disjoint domains, we denote by

θ1 � θ2 the substitution θ such that dom(θ) = dom(θ1)∪ dom(θ2) and θ(x) = θi(x) if

x ∈ dom(θi), for each i ∈ {1, 2}. The application of a substitution θ to a term t is

written as tθ or θ(t). Given two substitutions θ and δ, their composition, denoted by

θ ◦ δ, is given by (θ ◦ δ)(x) = θ(δ(x)). A substitution θ is idempotent when θ ◦ θ = θ

or, equivalently, when dom(θ) ∩ rng(θ) = ∅. A substitution ρ is called renaming

if it is a bijection from V to V. (This is equivalent to saying that there exists a

substitution ρ−1 such that ρ◦ρ−1 = ρ−1 ◦ρ = ε.) Instantiation induces a preorder on

substitutions: θ is more general than δ, denoted by δ � θ, if there exists σ such that

σ◦θ = δ. If ≈ is the equivalence relation induced by �, we say that σ and θ are equal

up to renaming when σ ≈ θ. The sets of substitutions, idempotent substitutions,

and renamings are denoted by Subst , ISubst , and Ren respectively. Given a set of

equations E, we write σ = mgu(E) to denote that σ is a most general unifier of E.

Any idempotent substitution σ is a most general unifier of the corresponding set

of equations Eq(σ) = {x = σ(x) | x ∈ dom(σ)}. In the following, we will abuse the

notation and denote by mgu(σ1, . . . , σn) the substitution mgu(Eq(σ1) ∪ . . . ∪ Eq(σn)),

when it exists. In spite of a single-binding substitution {x/t} we often use just the

binding x/t. In the rest of the paper we assume that a binding x/t is idempotent,

namely, that x /∈ vars(t).

A position is a sequence of positive natural numbers. We denote with Ξ the set

of all positions and with �+ the set of all positive natural numbers. Given a term t

and a position ξ, we define t(ξ) inductively as follows:

t(ε) = t (where ε denotes the empty sequence)

t(i · ξ′) =

{
ti(ξ

′) if t ≡ f(t1, . . . , tn) and i � n;

undefined otherwise.

For any variable x, an occurrence of x in t is a position ξ such that t(ξ) = x.
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In the rest of the paper, we use U, V , W to denote finite sets of variables;

h, k, u, v, w, x, y, z for variables; t for terms; f, r, s for term symbols; a, b for constants;

η, θ, σ, δ for substitutions; ρ for renamings.

2.2 Multisets

A multiset is a set in which repetitions are allowed. We denote by {{x1, . . . , xm}} a

multiset, where x1, . . . , xm is a sequence with (possible) repetitions. We denote by

{{}} the empty multiset. We will often use the polynomial notation vi11 . . . vinn , where

v1, . . . , vn is a sequence without repetitions, to denote a multiset A whose element vj
appears ij times. The set {vj | ij > 0} is called the support of A and is denoted by

�A�. We also use the functional notation A : {v1, . . . , vn}→�, where A(vj) = ij .

In this paper, we only consider multisets whose support is finite. We denote with

℘m(X) the set of all the multisets whose support is any finite subset of X. For

example, both a2c4 and a1b2c3 are elements of ℘m({a, b, c}). The cardinality of a

multiset is |A| =
∑

v∈�A� A(v).

The new fundamental operation for multisets is the sum, defined as

A � B = λv ∈ �A� ∪ �B�.A(v) + B(v).

Multiset sum is associative and commutative and {{}} is the neutral element. Note

that we also use � to denote disjoint union for standard sets. The context will allow

us to identify the proper semantics of �.

Given a multiset A and X ⊆ �A�, the restriction of A over X, denoted by A|X , is

the only multiset B such that �B� = X and B(v) = A(v) for each v ∈ X. Finally, if

A ∈ ℘m(X), E[x] is an integer expression and x ∈ X, we define∑
x∈A

E[x] =
∑

x∈�A�

A(x) · E[x].

For example, given a multiset A = {{5, 5, 6, 8, 8, 8}},
∑

x∈A x
2 = 2×52+62+3×82 = 278.

2.3 Abstract interpretation

Given two sets C and A of concrete and abstract objects respectively, an abstract

interpretation (Cousot and Cousot 1992b) is given by an approximation relation

� ⊆ A × C . When a � c holds, this means that a is a correct abstraction of c. In

particular, we are interested in the case in which (A,�A) is a poset and a �A a′

means that a is more precise than a′. In this case we require that if a�c and a �A a′,

then a′ � c, too. In more detail, we require what Cousot and Cousot (1992b) call

the existence of a best abstract approximation assumption, i.e., the existence of a map

α : C → A such that for all a ∈ A, c ∈ C , it holds that a � c ⇐⇒ α(c) �A a. The

map α is called the abstraction function and maps each c to its best approximation

in A.

Given a (possibly partial) function f : C → C , we say that f̃ : A→ A is a correct

abstraction of f and write f̃ � f, whenever

a � c⇒ f̃(a) � f(c),
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assuming that f̃(a)�f(c) is true whenever f(c) is not defined. We say that f̃ : A→ A

is the optimal abstraction of f when it is the best correct approximation of f, i.e.,

when f̃ � f and

∀f′ : A→ A. f′ � f ⇒ f̃ �A→A f′.

In some cases, we prefer to deal with a stronger framework, in which the domain

C is also endowed with a partial order �C and α : C → A is a left adjoint to

γ : A→ C , i.e.,

∀c ∈ C.∀a ∈ A.α(c) �A a ⇐⇒ c �C γ(a).

The pair 〈α, γ〉 is called a Galois connection. In particular, we will only consider the

case of Galois insertions, which are Galois connections such that α ◦ γ is the identity

map. If 〈α, γ〉 is a Galois insertion and f : C → C is a monotone map, the optimal

abstraction f̃ always exists, and it is definable as f̃ = α ◦ f ◦ γ.

3 The domain of existential substitutions

The choice of the concrete domain depends on the observable properties we want

to analyze. Most of the semantics suited for the analysis of logic programs are

based on computed answer substitutions, and most of the domains are expressed

as abstractions of sets of substitutions. In general, we are not really interested in

the substitutions, but in their quotient set w.r.t. an appropriate equivalence relation.

Let us consider a one-clause program p(x, x), the goal p(x, y), and the following

answer substitutions: θ1 = {y/x}, θ2 = {x/y}, θ3 = {x/u, y/u}, and θ4 = {x/v, y/v}.
Although θ1 and θ2 are equal up to renaming, the same does not hold for θ3

and θ4. Nonetheless, they essentially represent the same answer, since u and v are

just two different variables we chose when renaming apart the clause p(x, x) from

the goal p(x, y), and therefore are not relevant to the user. On the other hand, if

θ3 and θ4 are answer substitutions for the goal q(x, y, u), then they correspond to

computed answers q(u, u, u) and q(v, v, u) and therefore are fundamentally different.

As a consequence, the equivalence relation we need to consider must be coarser then

renaming and must take into account the set of variables of interest, i.e., the set

of variables which appear in the goal. For these reasons, we think that the best

solution is to use a domain of equivalence classes of substitutions. Among the

various domains proposed in the literature (e.g., Jacobs and Langen 1992; Marriott

et al. 1994; Levi and Spoto 2003), we adopt the domain of existential substitutions

(Amato and Scozzari 2009), since it is explicitly defined as a quotient of a set

of substitutions, w.r.t. a suitable equivalence relation. Moreover, the domain is

equipped with all the necessary operators for defining a denotational semantics,

namely, projection, renaming, and unification. We briefly recall the basic definitions

of the domain and the unification operator.

Given θ1, θ2 ∈ Subst and U ∈ ℘f(V), the preorder �U is defined as follows:

θ1 �U θ2 ⇐⇒ ∃δ ∈ Subst .∀x ∈ U. θ1(x) = δ(θ2(x)).
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The notation θ1 �U θ2 states that θ1 is an instance of θ2 w.r.t. the variables in U.

The equivalence relation induced by the preorder �U is given by

θ1 ∼U θ2 ⇐⇒ ∃ρ ∈ Ren .∀x ∈ U. θ1(x) = ρ(θ2(x)).

This relation precisely captures the extended notion of renaming which is needed to

work with computed answer substitutions.

Example 3.1

It is easy to check that {x/w, y/u} ∼{x,y} ε by choosing the renaming ρ = {x/w,
w/x, y/u, u/y}. Note that ∼U is coarser than the standard equivalence relation ≈:

there is no renaming ρ such that ε = ρ ◦ {x/w, y/u}. As it happens for �, if we

enlarge the set of variables of interest, not all equivalences between substitutions are

preserved: for instance, {x/w, y/u} �∼{w,x,y} ε. �

Let ISubst∼U
be the quotient set of ISubst w.r.t. ∼U . The domain ISubst∼ of

existential substitutions is defined as the disjoint union of all the ISubst∼U
for

U ∈ ℘f(V), namely,

ISubst∼ =
⊎

U∈℘f (V)

ISubst∼U
.

In the following we write [θ]U for the equivalence class of θ w.r.t. ∼U . The partial

order � over ISubst∼ is given by

[θ]U � [θ′]V ⇐⇒ U ⊇ V ∧ θ �V θ′.

Intuitively, [θ]U � [θ′]V means that θ is an instance of θ′ w.r.t. the variables in V ,

provided that they are all variables of interest of θ.

To ease notation, we often omit braces from the sets of variables of interest when

they are given extensionally. So we write [θ]x,y instead of [θ]{x,y} and ∼x,y,z instead

of ∼{x,y,z}. When the set of variables of interest is clear from the context or when

it is not relevant, it will be omitted. Finally, we omit the braces which enclose the

bindings of a substitution when the latter occurs inside an equivalence class; i.e., we

write [x/y]U instead of [{x/y}]U .

3.1 Unification

Given U,V ∈ ℘f(V), [θ1]U, [θ2]V ∈ ISubst∼, the most general unifier between these

two classes is defined as the mgu of suitably chosen representatives, where variables

not of interest are renamed apart. In formulas

mgu([θ1]U, [θ2]V ) = [mgu(θ′1, θ
′
2)]U∪V , (1)

where θ1 ∼U θ′1 ∈ ISubst , θ2 ∼V θ′2 ∈ ISubst , and (U ∪ vars(θ′1)) ∩ (V ∪ vars(θ′2)) ⊆
U ∩ V . The last condition is needed to avoid variable clashes between the chosen

representatives θ′1 and θ′2. Moreover, mgu is the greatest lower bound of ISubst∼
ordered by �.
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Example 3.2

Let θ1 = {x/a, y/r(v1, v1, v2)} and θ2 = {y/r(a, v2, v1), z/b}. Then

mgu([θ1]x,y, [θ2]y,z) = [x/a, y/r(a, a, v), z/b]x,y,z ,

by choosing θ′1 = θ1 and θ′2 = {y/r(a, w, v), z/b}. In this case we have

{x/a, y/r(a, a, v), z/b}∼x,y,z

mgu(θ′1, θ
′
2) = {x/a, y/r(a, a, v), z/b, v1/a, w/a, v2/v}. �

A different version of unification is obtained when one of the two arguments is an

existential substitution and the other one is a standard substitution. In this case, the

latter argument may be viewed as an existential substitution where all the variables

are of interest:

mgu([θ]U, δ) = mgu([θ]U, [δ]vars(δ)). (2)

Note that deriving the general unification in (1) from the special case in (2) is not

possible. This is because there are elements in ISubst∼ which cannot be obtained as

[δ]vars(δ) for any δ ∈ ISubst (see Example 4.10).

This is the form of unification which is better suited for analysis of logic programs,

where existential substitutions are the denotations of programs while standard

substitutions are the result of unification between goals and heads of clauses.

Therefore, the rest of the paper will be concerned with the problem of devising

optimal abstract operators corresponding to (2), for three different abstract domains.

Of course, unification is not the only operator needed to give semantics to logic

programs: we also need projection, renaming, and union. However, providing optimal

abstract counterparts for these operators is generally a trivial task and will not be

considered here.

We want to conclude the section with a small remark about our choice of the

concrete domain. By adopting existential substitutions and the corresponding notion

of unification, we greatly simplify all the semantic definitions which are heavily based

on renaming variables apart. This is because all the details concerning renamings

are shifted toward the inner level of the semantic domain, where they are more

easily managed (Jacobs and Langen 1992; Amato and Scozzari 2009).

4 The abstract domain ShLinω

The domain Sharing × Lin is one of the best known domains in the literature

that combine sharing and linearity information. The domain Sharing records the

information of variable aliasing, by abstracting the substitution θ = {x/f(u, v),

y/g(u, u, u), z/v} into the set {uxy, vxz}. The object uxy, called a sharing group,

states that θ(u), θ(x), and θ(y) do share some variable (the variable u in this case).

Analogously, the sharing group vxz states that θ(v), θ(x), and θ(z) do share (in this

case the variable v). One of the simplest way of adding linearity information is to

record, in a separate object, the set of variables w such that θ(w) is a linear term.

In our example, only θ(y) is not linear. Thus the substitution is abstracted into the

https://doi.org/10.1017/S1471068409990160 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409990160


58 G. Amato and F. Scozzari

pair ({uxy, vxz}, {u, v, x, z}). Another known domain in the literature is ASub whose

main difference w.r.t. Sharing × Lin is that it only records sharing information

between pairs of variables. Thus, in ASub, each sharing group has at most two

elements. Developing optimal unification operators for such abstract domains is a

difficult task. In our opinion, this is because the gap between the substitutions and

Sharing×Lin (or ASub) is too wide and the combined effect of aliasing and linearity

is difficult to grasp.

We solve this problem by defining a new abstract domain ShLinω which can

be used to approximate ISubst∼. Since ShLinω has infinite ascending chains, in

most cases it cannot be directly used for the analysis. It should be thought of as a

general framework from which other domains can be easily derived by abstraction.

In this sense, ShLinω closes the gap between the concrete domain of substitutions

and the abstractions like Sharing × Lin or ASub. The structure of ShLinω has

made it possible to develop clean and optimal abstract unification operators. From

these, optimal operators for the simpler domains are easy to obtain, at least for

single-binding substitutions.

The idea underlying ShLinω is to count the exact number of occurrences of the

same variable in a term. It extends the standard domain Sharing by recording, for

each v ∈ V and θ ∈ ISubst , not only the set {w ∈ V | v ∈ θ(w)} but also the

multiset λw ∈ V.occ(v, θ(w)).

Definition 4.1 (ω-sharing group)

An ω-sharing group is a multiset of variables, i.e., an element of ℘m(V).

Example 4.2

Given variables u, v, w, x, y ∈ V, examples of ω-sharing groups are u2v3x19, xyz, and

u23vwx2y3. �

Definition 4.3

Given a substitution θ and a variable v ∈ V, we define

θ−1(v) = λw. occ(v, θ(w)).

Intuitively, θ−1(v) is an ω-sharing group which maps each variable w to the number

of occurrences of v in θ(w).

Example 4.4

Given θ = {x/f(u, u, u), y/g(u, v), z/f(u, v, v)}, we have that θ−1(u) = ux3yz, θ−1(v) =

vyz2, θ−1(w) = w, and θ−1(x) = {{}}. �

Definition 4.5 (Correct approximation)

Given a set of variables U and a set of ω-sharing groups S (i.e., S ⊆ ℘m(U)), we

say that the pair (S,U) correctly approximates a substitution [θ]W if U = W and

for each v ∈ V, θ−1(v)|W ∈ S . In the following we denote by [S]U the pair (S,U)

and write [S]U � [θ]W to mean that [S]U correctly approximates [θ]W .

Therefore, [S]U correctly approximates [θ]U when S contains at least all the ω-

sharing groups which may arise in θ, restricted to the variables U. Note that [θ]U
is an equivalence class of substitutions, as defined in Section 3, while [S]U is just a
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symbol to denote the pair of objects (S,U). We prefer this notation for the sake of

uniformity with substitutions.

Theorem 4.6

The relation � is well defined.

We can now define the domain ShLinω of ω-sharing groups.

Definition 4.7 (ShLinω)

The domain ShLinω is defined as

ShLinω = {[S]U | U ∈ ℘f(V), S ⊆ ℘m(U), S �= ∅ ⇒ {{}} ∈ S}

and ordered by [S1]U1
�ω [S2]U2

iff U1 = U2 and S1 ⊆ S2.

The order relation corresponds to the approximation ordering, since bigger (w.r.t

�ω) elements correctly approximate a larger number of substitutions than smaller

elements. The existence of the empty multiset, when S is not empty, is required

in order to obtain a Galois insertion, instead of a Galois connection. In order

to simplify the notation, in the following we write an object [{{{}}, B1, . . . , Bn}]U ∈
ShLinω as [B1, . . . , Bn]U by omitting the braces and the empty multiset. Moreover, if

X ∈ ShLinω , we write B ∈ X in place of X = [S]U ∧ B ∈ S .

Definition 4.8 (Abstraction for ShLinω)

We define the abstraction for a substitution [θ]U as

αω([θ]U) = [{θ−1(v)|U | v ∈ V}]U.

This is the least element of ShLinω which correctly approximates [θ]U . Note that by

the proof of Theorem 4.6 it immediately follows that αω is well defined; i.e., it does

not depend from the choice of the representative for [θ]U .

Example 4.9

Given θ = {x/r(y, u, u), z/y, v/u} and U = {w, x, y, z}, we have θ−1(u) = x2vu,

θ−1(y) = xyz, θ−1(z) = θ−1(v) = θ−1(x) = {{}}, and θ−1(s) = s for all the other

variables (included w). Projecting over U we obtain αω([θ]U) = [x2, xyz, w]U . �

Example 4.10

As we have said in Section 3, we show an element of ISubst∼, namely, the existential

substitution [x/r(v, v)]x, which cannot be obtained as [δ]vars(δ) for any substitution δ.

In fact, consider any ω-sharing group B = δ−1(u)|vars(δ) ∈ αω([δ]vars(δ)). Then either

u /∈ rng(δ) and B = {{}} or u ∈ rng(δ) and B(u) = 1. However, α([x/r(v, v)]x) = [x2]x
and x2 does not contain any variable with multiplicity one. �

4.1 Multigraphs

In order to define an abstract unification operator over ShLinω , we need to introduce

the concept of multigraph. We call (directed) multigraph a graph in which multiple

distinguished edges are allowed between nodes. We use the definition of multigraph

which is customary in category theory (Mac Lane 1988).
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Definition 4.11 (Multigraph)

A multigraph G is a tuple 〈NG, EG, srcG, tgtG〉, where NG �= ∅ and EG are the sets

of nodes and edges respectively; srcG : EG→NG is the source function which maps

each edge to its start node; and tgtG : EG→NG is the target function which maps

each edge to its end node.

A labeled multigraph G is a multigraph equipped with a labeling function lG :

NG → LG which maps each node to its label in the given set LG.

We write e : n1 → n2 ∈ G to denote the edge e ∈ EG such that srcG(e) = n1

and tgtG(e) = n2. We also write n1 → n2 ∈ G to denote any edge e ∈ EG such

that srcG(e) = n1 and tgtG(e) = n2. Moreover, with |n1 → n2 ∈ G| we denote the

cardinality of the set {e ∈ EG | srcG(e) = n1 ∧ tgtG(e) = n2}. In the notation above,

we omit “∈ G” whenever the multigraph G is clear from the context.

We call in-degree (respectively out-degree) of a node n the cardinality of the set

{e ∈ EG | tgt(e) = n} (respectively {e ∈ EG | src(e) = n}).
Given a multigraph G, a path π is a nonempty sequence of nodes n1, . . . , nk such

that for each i ∈ {1, . . . , k − 1}, there is either an edge ni → ni+1 ∈ G or an edge

ni+1 → ni ∈ G. Nodes n1 and nk are the endpoints of π, and we say that π connects

n1 and nk . A multigraph is connected when all pairs of nodes are connected by at

least one path.

4.2 Abstract unification

We need to find the abstract counterpart of mgu over ShLinω , i.e., an operation

mguω such that if [S]U � [θ]U , then

mguω([S]U, δ) � mgu([θ]U, δ) (3)

for each δ ∈ ISubst . Note that we are looking for an abstract counterpart to the

mixed unification in (2), where one of the two arguments is a plain substitution. In

particular, we would like to find an operator which is the minimum element that

satisfies the condition in (3), i.e., the optimal abstract counterpart of mgu. Observe

that for a fixed U, the set of all the elements [S]U ∈ ShLinω is a complete lattice

w.r.t. �ω with the top element given by [℘m(U)]U and the meet operator given by∧
ω{[Si]U | i ∈ I} =

[⋂
i∈I Si

]
U
,

for any family {[Si]U | i ∈ I} of elements of ShLinω . Moreover, the relation � is meet

preserving on the left, since if [Si]U�[θ]U for each i ∈ I , then
∧

ω{[Si]U | i ∈ I}�[θ]U .

Therefore, we may define the abstract mgu as follows:

mguω([S]U, δ) =
∧

ω
{[S ′]U ′ | ∀θ.[S]U � [θ]U ⇒ [S ′]U ′ � mgu([θ]U, δ)},

where the definitions of � and mgu force U ′ to be U ∪ vars(δ). Note that this is just

a translation of the general definition of optimal operator in Cousot and Cousot

(1992b), and it satisfies (3).

This definition is completely nonconstructive. The rest of this section is devoted to

providing a constructive characterization for mguω([S]U, δ). We begin to characterize

the operation of abstract unification by means of graph theoretic notions.
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Definition 4.12 (Multiplicity of ω-sharing groups)

The multiplicity of an ω-sharing group B in a term t is defined as

χ(B, t) =
∑
v∈B

occ(v, t) =
∑

v∈�B�

B(v) · occ(v, t).

For instance, χ(x3yz4, r(x, y, f(x, y, z))) = 3× 2 + 1× 2 + 4× 1 = 12. The meaning of

the map χ is made clear by the following proposition.

Proposition 4.13

Given a substitution θ, a variable v, and a term t, we have that χ(θ−1(v), t) =

occ(v, θ(t)). Moreover, given a set of variables U, when vars(t) ⊆ U, it holds that

χ(θ−1(v)|U, t) = occ(v, θ(t)).

Example 4.14

Let B = xy2z3 and θ = {y/r(x, x), z/r(x, x, x)}, so that θ−1(x) = {xy2z3}. Given

t ≡ s(x, z) we have

occ(x, θ(t)) = occ(x, s(x, r(x, x, x))) = 4,

and

χ(B, t) = B(x) · occ(x, t) + B(z) · occ(z, t) = 1× 1 + 3× 1 = 4. �

If [S]U �[θ]U and we unify [θ]U with δ, some of the ω-sharing groups in S may be

glued together to obtain a bigger resultant group. It happens that the gluing of the

sharing groups during the unification of [θ]U with a single-binding substitution {x/t}
may be represented by special labeled multigraphs which we call sharing graphs.

Example 4.15

Let S = {x3, y} and U = {x, y}. We look for a representation of the unification

process between any substitution θ approximated by S and the binding x/r(y).

We show that multigraphs can be easily used for this purpose. For instance, the

substitution θ = {x/r(g(u, u, u))} is approximated by S . By unifying θ with {x/r(y)}
we obtain δ = {x/r(g(u, u, u)), y/g(u, u, u)}. Note that any approximation of δ on the

variables {x, y} must include the sharing group x3y3 generated by the variable u.

Thus, any correct approximation of the unification must also contain x3y3.

We want to associate to any ω-sharing group B in δ a special multigraph which

represents the way the ω-sharing groups in S have been merged in order to obtain

B. The nodes of this multigraph are the ω-sharing groups in S (possibly repeated

any number of times). The following is a sharing graph for x/r(y) and S:
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where pedices and apices on a sharing group B are respectively the values of χ(B, x)

and χ(B, r(y)). For instance, since χ(x3, x) = 3, we put the pedice 3 on the node

x3 to mean that x is bound to a term containing three occurrences of the same

variable. Symmetrically, since χ(x3, r(y)) = 0, we put the apice 0 on the node x3. The

in-degree and the out-degree of the nodes reflect the values of apices and pedices.

In this case, we have three outgoing edges from x3 and no ingoing edges. Moreover,

the multigraph must be connected, in order to guarantee that we can use a single

variable to form the sharing group x3y3.

By summing the labels of all the nodes, namely, x3 � y � y � y, we obtain the

ω-sharing group x3y3 which must appear in any correct approximation of the

unification. �

Given any labeled multigraph G, in the rest of the paper we assume that the

codomain of the labeling function lG is ℘m(V), the set of ω-sharing groups.

Definition 4.16 (Sharing graph)

A sharing graph for the binding x/t and a set of ω-sharing groups S is a labeled

multigraph G such that

(1) G is connected;

(2) for each node n ∈ NG, lG(n) ∈ S;

(3) for each node n ∈ NG, the out-degree of n is equal to χ(lG(n), x) and the

in-degree of n is equal to χ(lG(n), t).

The resultant ω-sharing group of G is

res(G) =
⊎
n∈NG

lG(n).

Example 4.17

Let S = {ux2, xy, vz, wz, xyz}. The following is a sharing graph for x/r(y, z) and S:
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where pedices and apices on a sharing group B are respectively the value of χ(B, x)

and χ(B, r(y, z)). Therefore the resultant sharing group is uvwx4y2z2. �

It is worth noting that given any set of ω-sharing groups S and binding x/t,

there exist many different sharing graphs for x/t and S . Each sharing graph yields

a resultant sharing group which must be included in the result of the abstract

unification operator. Of course, different sharing graphs may give the same resultant

sharing group. The abstract unification operator is defined by collecting all the

resultant sharing groups.

https://doi.org/10.1017/S1471068409990160 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409990160


On the interaction between sharing and linearity 63

Definition 4.18 (Single-binding unification)

Let U ∈ ℘f(V), S be a set of ω-sharing groups with [S]U ∈ ShLinω , x/t be a

binding, and vars(x/t) ⊆ U. The set of resultant ω-sharing groups for x/t and S is

mguω(S, x/t) = {res(G) | G is a sharing graph for S and x/t}.

We lift mguω to an operation over ShLinω:

mguω([S]U, x/t) = [mgu(S, x/t)]U.

This is a particular case of the abstract unification operator, for single-binding

substitutions and vars(x/t) ⊆ U.

Example 4.19

Let S be as in Example 4.17. The following is a sharing graph for x/r(y, y, z) and S:
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where pedices and apices on a sharing group B are respectively the value of χ(B, x)

and χ(B, r(y, y, z)). Therefore ux3yz ∈ mguω(S, x/r(y, y, z)). Note that this sharing

group can actually be generated by the substitution θ = {x/r(v1, v1, v2), y/v2, z/v2,

u/v1, v/a, w/a}, where a is a ground term. Let U = {u, v, w, x, y, z}. It is the case

that [S]U � [θ]U and mgu([θ]U, {x/r(y, y, z)}) performs exactly the variable aliasings

depicted by the sharing graph. Actually mgu([θ]U, {x/r(y, y, z)}) = [x/r(v1, v1, v1),

y/v1, u/v1, v/a, w/a]U = [η]U , and η−1(v1)|U = ux3yz. �

We give here an intuition of the way sharing graphs work. Assume given a set of

ω-sharing groups [S]U and a binding x/t with vars(x/t) ⊆ U. We want to compute

[mguω(S, x/t)]U . To this aim, for any substitution θ approximated by [S]U , that is,

[S]U � [θ]U , we compute αω(mgu([θ]U, {x/t})).
For any B1, B2 ∈ S , assume that there exist v1, v2 ∈ V such that B1 = θ−1(v1)|U

and B2 = θ−1(v2)|U . When unifying θ with the binding x/t, we use the fact that

mgu(Eq(θ) ∪ {x = t}) = mgu({θ(x) = θ(t)}) ◦ θ. By Proposition 4.13, θ(x) contains

χ(B1, x) instances of v1 and χ(B2, x) instances of v2. Symmetrically, θ(t) contains

χ(B1, t) instances of v1 and χ(B2, t) instances of v2.

Assume that θ(x) and θ(t) only differ for the variables occurring in them (and

not for the structure of terms). Then, an arrow from the sharing group B1 to B2

represents the fact that in mgu({θ(x) = θ(t)}), one of the copies of v1 is aliased to

one of the copies of v2, i.e., that there are corresponding positions in θ(x) and θ(t)

where the two terms contain the variables v1 and v2 respectively. The third condition

for sharing graphs implies that each occurrence of v1 and v2 is aliased to some

other variable. The first condition (the sharing graph must be connected) ensures

that all the variables corresponding to the ω-sharing groups involved in the sharing

graph are aliased to each other. In other words, given any two such variables, they

are aliased. Although here we are only considering the case in which θ(x) and θ(t)

differ for the variables occurring in them, we will show that it is enough to reach

correctness and optimality. The next example applies this intuition to a concrete

case.
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Example 4.20

Consider Example 4.19, where θ = {x/r(v1, v1, v2), y/v2, z/v2, u/v1, v/a, w/a} and U =

{u, v, w, x, y, z}. Let B1 = ux2 and B2 = xyz; thus B1 = θ−1(v1)|U and B2 = θ−1(v2)|U .

When unifying θ with the binding x/r(y, y, z) we have that θ(x) = r(v1, v1, v2) and

θ(r(y, y, z)) = r(v2, v2, v2).

Note that θ(x) contains χ(ux2, x) = 2 instances of v1 and χ(xyz, x) = 1 instance

of v2. Symmetrically, θ(r(y, y, z)) contains χ(ux2, r(y, y, z)) = 0 instances of v1 and

χ(xyz, r(y, y, z)) = 3 instances of v2. Moreover, θ(x) and θ(r(y, y, z)) only differ for the

variables occurring in them. Thus, the three edges in the sharing graph of Example

4.19 correspond to the following aliasings:

θ(x) = r(v1, v1, v2)

θ(r(y, y, z))= r(v2, v2, v2)�� �� ��

In particular, the last arrow from v2 to itself corresponds to the self-loop in the

sharing graph. �

The unification operator mguω([S]U, x/t) can be extended to the case vars(x/t) �
U. The idea is to enlarge S by including all the singletons in vars(x/t) \U.

Definition 4.21 (Single-binding unification with extension)

Let U ∈ ℘f(V), S be a set of ω-sharing groups with [S]U ∈ ShLinω and x/t be a

binding:

mguω([S]U, x/t) = mguω([S ∪ {{{v}} | v ∈ vars(x/t) \U}]U∪vars(x/t), x/t).

Note that for a generic abstract domain, the method of extending the abstract

object to include all the variables in the concrete substitution δ may result in a

nonoptimal abstract unification. For example, this is what happens in the case of

the domain Sharing, as shown in Amato and Scozzari (to appear). However, we

will prove that in the case of ShLinω , the abstract mgu in Definition 4.21 is optimal.

This operator can be extended to multibinding substitutions in the obvious way,

namely, by iterating the single-binding operator.

Definition 4.22 (Multibinding unification)

We define mguω([S]U, δ) with δ ∈ ISubst and [S]U ∈ ShLinω by induction on the

number of bindings:

mguω([S]U, ε) = [S]U,

mguω([S]U, {x/t} � δ) = mguω(mguω([S]U, x/t), δ).

It is possible to prove that mguω([S]U, δ) is optimal for multibinding substitutions

(Amato and Scozzari 2005). Since optimality of iterative multibinding unification is

not inherited by the abstractions of ShLinω (as we show in Section 5.3), we will focus

on single-binding unification. In the rest of the paper, we only consider bindings x/t

which are idempotent, namely, such that x /∈ vars(t).
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4.3 Correctness of abstract unification

We now show that mguω([S]U, δ) is correct w.r.t. concrete unification. We show

correctness for multibinding substitutions, since it is a trivial extension of the single-

binding case. In fact, composition of correct operators is still correct.

First of all, we extend the definition of θ−1 to the case in which it is applied to a

sharing group B.

Definition 4.23
Given θ ∈ ISubst and B an ω-sharing group, we define

θ−1(B) = λv ∈ V.χ(B, θ(v)).

In order to prove the correctness of abstract unification, we need the following

auxiliary property.

Proposition 4.24
Given substitutions θ, η ∈ ISubst and an ω-sharing group B, we have

(η ◦ θ)−1(B) = θ−1(η−1(B)).

Theorem 4.25 (Correctness of mguω)
The operation mguω is correct w.r.t. mgu, i.e.,

∀[S]U ∈ ShLinω, δ ∈ ISubst . [S]U � [θ]U =⇒ mguω([S]U, δ) � mgu([θ]U, δ).

Example 4.26
Let θ = {x/r(s(u, u, u), v, w), y/v′, z/w′}, δ = {x/r(y, y, z)}, and U = {x, y, z}. There-

fore αω([θ]U) = [x3, x, y, z]U . If we proceed with the concrete unification of [θ]U with

δ, we have mgu([θ]U, δ) = [θ′]U with θ′ = mgu(θ, δ) = η ◦ θ and η = mgu(θ(x) =

θ(r(y, y, z))). This gives the following results:

η = {v′/s(u, u, u), v/s(u, u, u), w′/w},
θ′ = {x/r(s(u, u, u), s(u, u, u), w), y/s(u, u, u), z/w, v′/s(u, u, u), w′/w},

with [θ′]U = [θ]U . Now, let η′ be obtained from η by replacing each occurrence of a

variable in rng(η) with a different fresh variable, β = η′ ◦ θ, and ρ be a substitution

mapping variables to variables such that ρ(β(x)) = θ′(x) for each x ∈ U. Note that

ρ is not a renaming, since it is not bijective. We have

η = {v/s(u1, u2, u3), v
′/s(u4, u5, u6), w

′/u7},
β = {x/r(s(u, u, u), s(u1, u2, u3), w), y/s(u4, u5, u6), z/u7, v

′/s(u4, u5, u6), w
′/u7},

ρ = {u1/u, u2/u, u3/u, u4/u, u5/u, u6/u, u7/w}.

Following the proof, we build a multigraph G as follows:
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Note that we have chosen to annotate every sharing group with the corresponding

variable in vars(β(U)). This is not a sharing graph, since it is not connected, but

if we take Y = �ρ−1(u)� = {u, u1, u2, u3, u4, u5, u6}, the restriction of G to the nodes

annotated with a variable in Y is a sharing graph whose resultant ω-sharing group

is x6y3. �

4.4 Optimality of abstract unification

We now prove that mguω is not only correct but also optimal for a single-binding

substitution; i.e., it is the least correct abstraction. This means proving that given

a set of ω-sharing groups [S]U ∈ ShLinω , a binding x/t, and an ω-sharing group

B ∈ mguω([S]U, x/t), there exists a substitution [δ]U such that [S]U � [δ]U and

B ∈ αω(mgu([δ]U, {x/t})). First of all, we prove optimality of mguω([S]U, x/t) in the

special case of vars(x/t) ⊆ U. Next, we extend this result to the general case.

Example 4.27

Consider S = {xu, xv, y} and the binding x/s(y, y). The following is a sharing graph

for x/s(y, y) and S whose resultant ω-sharing group is x2uvy:

�

�

�

�
xu

0

1

����
��

��
��

�

�

�

�
xv

0

1

��
��

��
��

�

�

�

�
y

2

0

We show how to find a substitution [δ]U such that the ω-sharing group x2uvy ∈
αω(mgu([δ]U, {x/s(y, y)})). Let U = {u, v, x, y}. For each node n of the sharing graph,

we consider a different fresh variable wn. Assume that the node labeled with xu in

the upper-left corner is node 1, and proceed clockwise to number the other nodes.

For each variable z ∈ U \ {x}, we associate to δ(z) a term containing all the

variables wi such that the label of the ith node contains the variable z. Thus, we

define δ(u) = r(w1), where w1 correspond to the node containing u. Analogously, we

define δ(v) = r(w2) and δ(y) = r(w3).

We now define δ(x) in a different way, namely, by replacing in s(y, y) each

occurrence of the variable y with a term similar to δ(y), with the difference that w3

is replaced with the variables w1 and w2. The choice of w1 and w2 is obvious by

looking at the sharing graph, since the first and second nodes are the sources of the

two edges targeted at the node three. Therefore we obtain δ(x) = s(r(w1), r(w2)).

Summing up, we have

δ = {u/r(w1), v/r(w2), x/s(r(w1), r(w2)), y/r(w3)}.

It is easy to check that [S]U � [δ]U and

mgu(δ, {x/s(y, y)}) =

{u/r(w1), v/r(w1), x/s(r(w1), r(w1)), y/r(w1), w2/w1, w3/w1};

hence αω([mgu(δ, {x/s(y, y)})]U) = [x2uvy]U . �
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In the above example we have shown how to find a special substitution such

that its fresh variables are unified according to the arrows in a sharing graph.

The same idea is exploited in the next theorem for proving the optimality of the

abstract unification operator mguω . For any ω-sharing group X ∈ mguω([S]U, x/t),

we provide a substitution δ obtained as in Example 4.27, such that [S]U approximates

[δ]U and X ∈ αω(mgu([δ]U, {x/t)}).

Theorem 4.28 (Optimality of mguω)

The single-binding unification mguω([S]U, x/t) is optimal w.r.t. mgu, under the

assumption that vars(x/t) ⊆ U, i.e.,

∀B ∈ mguω([S]U, x/t) ∃δ ∈ ISubst . [S]U � [δ]U and B ∈ αω(mgu([δ]U, {x/t})).

The previous proof requires that vars(x/t) ⊆ U. However, the same construction

also works when this condition does not hold.

Example 4.29

Given U = {x, y} and S = {x2, x2y}, we want to compute mguω([S]U, x/s(y, z)). By

extending the domain of the variables of interests, we obtain [S ′]V = [x2, x2y, z]x,y,z .

One of the sharing graphs for x/s(y, z) and [S ′]V is

�

�

�

�
x2

0

2

��

		

�

�

�

�
x2y
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2

		 ����
��

��
��

�

�

�

�
z

1

0

�

�

�

�
z

1

0

�

�

�

�
z

1

0

Following the proof of the previous theorem, we obtain the substitution

δ′ = {x/s(r(w1), r(w1, w2, w2)), y/r(w2), z/r(w3, w4, w5)},

where [S ′]V � [δ′]V and x4yz3 ∈ αω(mgu([δ′]V , {x/s(y, z)})). However we are looking

for a substitution δ such that [S]U � [δ]U and x4yz3 ∈ αω(mgu([δ]U, {x/s(y, z)})).
Nonetheless, we may choose δ = δ′ (or, if we prefer, δ = δ′|x,y) to get the required

substitution. �

This is not a fortuitous coincidence. We may show that it consistently happens

every time we apply Theorem 4.28 to an abstract unification where vars(x/t) � U.

Therefore, we can prove the main result of the paper.

Theorem 4.30 (Optimality of mguω with extension)

The single-binding unification mguω with extension is optimal w.r.t. mgu.

4.5 A characterization for resultant sharing groups

The domain ShLinω has not been designed to be directly implemented, but some

of its abstractions could. Providing a simpler definition for the set of resultant ω-

sharing groups could help in developing the abstract operators for its abstractions.
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We show that given a set S of ω-sharing groups and a binding x/t, the set of

resultant ω-sharing groups has an elegant algebraic characterization.

By definition of sharing graph, a set of nodes N labeled with ω-sharing groups of

S can be turned into a sharing graph for S and x/t iff the condition on the out-degree

and in-degree is satisfied and the obtained graph is connected. The condition on the

degrees says that for each node s labeled with the sharing group Bs, the out-degree

of s must be equal to χ(Bs, x). Symmetrically, the in-degree must be equal to χ(Bs, t).

As a consequence, the sum of the out-degrees of all the nodes
∑

s∈N χ(Bs, x) must

be equal to the sum of the in-degrees of all the nodes
∑

s∈N χ(Bs, t). This is because

each edge has a source and a target node. Moreover, in order to be connected, any

graph needs at least |N| − 1 edges. Since the number of edges is equal to the sum of

in-degrees of all the nodes, it turns out that such a sum must be equal to or greater

than |N| − 1. Surprisingly, this is enough to construct a sharing graph from N.

Theorem 4.31

Let S be a set of ω-sharing groups and x/t be a binding. Then B ∈ mguω(S, x/t) iff

there exist n ∈ �+, B1, . . . , Bn ∈ S which satisfy the following conditions:

(1) B = �1�i�nBi;

(2)
∑

1�i�n χ(Bi, x) =
∑

1�i�n χ(Bi, t) � n− 1;

(3) either n = 1 or ∀1 � i � n. χ(Bi, x) + χ(Bi, t) > 0.

Following the above theorem, we can give an algebraic characterization of the

abstract unification operator as follows.

Corollary 4.32 (Algebraic characterization of mguω)

Given a set of ω-sharing groups S and a binding x/t, we have that

mguω(S, x/t) = (S \ rel (S, x, t)) ∪{
�R | R ∈ ℘m(rel (S, x, t)),

∑
B∈R

χ(B, x) =
∑
B∈R

χ(B, t) � |R| − 1

}
,

where

rel (S, x, t) = {B ∈ S. χ(B, x) + χ(B, t) > 0}
= {B ∈ S. �B� ∩ vars(x/t) �= ∅}.

Example 4.33

Consider S = {xa, xb, z2, zc} and the equation x = z. Then if we choose R =

{{xa, xb, z2}}, we have
∑

B∈R χ(B, x) = 2 =
∑

B∈R χ(B, z) � |R| − 1. Therefore

x2z2ab ∈ mguω(S, x/z). If we take R = {{xa, xb, zc, zc}}, although
∑

B∈R χ(B, x) =

2 =
∑

B∈R χ(B, z), we have |R| − 1 = 3. This only proves that z2c2x2ab cannot be

obtained by the multiset R. If we check for every possible multiset over S , we have

that z2c2x2ab /∈ mguω(S, x/z). �

This characterization of the abstract mgu will be the key point for devising the

optimal abstract unification operators on the abstractions of ShLinω . Let α be the

abstraction function from ISubst∼ to an abstract domain A. If we are able to factor

https://doi.org/10.1017/S1471068409990160 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409990160


On the interaction between sharing and linearity 69

α through a Galois connection 〈α′ : ShLinω → A, γ′ : A → ShLinω〉 as α = α′ ◦ αω ,

then the optimal abstract unification for α is exactly α′(mguω(γ′(·), ·)). However, this

expression is helpful when it may be simplified in order to use only objects in A.

Our algebraic characterization makes the simplification feasible, as we show in the

following section.

5 Practical domains for program analysis

We consider two domains for sharing analysis with linearity information, namely,

the domain proposed in King (1994) and the classical reduced product Sharing ×
Lin. They are defined as abstractions of ShLinω through Galois insertions. This

allows us to design optimal abstract operators for both of them, by exploiting the

results introduced so far. By composing each Galois insertion with αω , we get the

corresponding abstraction function for substitutions (Cousot and Cousot 1992a,

Section 4.2.3.1).

5.1 King’s domain for linearity and aliasing

We first consider the domain for combined analysis of sharing and linearity in King

(1994)(King 1994). The idea is to enhance the domain Sharing by annotating each

sharing group with linearity information on each variable. For instance, the object

xy∞z represents the sharing group xyz and the information that y may be nonlinear

(while x and z are definitely linear). The objects in this domain can be easily viewed

as abstraction of ω-sharing groups. Intuitively, in order to abstract an ω-sharing

groups, one simply needs to replace each exponent equal to or greater than two with

∞. Let us now formalize the domain as an abstraction of ShLinω .

An ω-sharing group (which is a multiset V→� whose support is finite) is

abstracted into a map o : V→{0, 1,∞} such that its support �o� = {v ∈ V | o(v) �=
0} is finite. We call such a map the 2-sharing group. We use a polynomial notation

for 2-sharing groups as for ω-sharing groups. For instance, o = xy∞z denotes the

2-sharing group whose support is �o� = {x, y, z}, such that o(x) = o(z) = 1 and

o(y) = ∞. We denote with ∅ the 2-sharing group with empty support. Note that in

King (1994)(King 1994) the number 2 is used as an exponent instead of ∞, but we

prefer this notation to be coherent with ω-sharing groups.

We denote min{o(x), 2} by om(x), where the ordering on � is extended in the

obvious way; i.e., for all n ∈ � we have that n < ∞. A 2-sharing group o represents

the sets γ2(o) of ω-sharing group given by

γ2(o) = {B ∈ ℘m(V) | �o� = �B� ∧ ∀x ∈ �o�.om(x) � B(x) � o(x)}.

For instance, the 2-sharing group xy∞z represents the set of ω-sharing groups

{xy2z, xy3z, xy4z, xy5z, . . .}. The idea is to use 2-sharing groups to keep track of

linearity: if o(x) = ∞, it means that the variable x is not linear in the 2-sharing

group o. In the rest of this section, we use the term “sharing group” as a short form

of 2-sharing group, when this does not cause ambiguity.
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An ω-sharing group B may be abstracted into the 2-sharing group α2(B) given

by

α2(B) = λv ∈ �B�.

{
1 if B(x) = 1,

∞ otherwise.

The next proposition shows two useful properties of the maps α2 and γ2.

Proposition 5.1

The following properties hold:

(1) α2(
⊎
R) =

⊎
α2(R).

(2) rel (γ2(S), x, t)) = γ2(rel (S, x, t)).

Since we do not want to represent definite nonlinearity, we introduce an order

relation over sharing groups,

o � o′ ⇐⇒ �o� = �o′� ∧ ∀x ∈ �o�. o(x) � o′(x),

and we restrict our attention to downward closed sets of sharing groups. We denote

by Sg2(V ) the set of 2-sharing groups whose support is a subset of V . The domain

we are interested in is the following:

ShLin2 = {[S]U | S ∈ ℘↓(Sg2(U)), U ∈ ℘f(V), S �= ∅ ⇒ ∅ ∈ S},

where ℘↓(Sg2(U)) is the powerset of downward closed subsets of Sg2(U) according

to � and [S1]U1
�2 [S2]U2

iff U1 = U2 and S1 ⊆ S2. For instance, the set {xy∞z} is not

downward closed, while {xyz, xy∞z} is downward closed. There is a Galois insertion

of ShLin2 into ShLinω given by the pair of adjoint maps γ2 : ShLin2→ ShLinω and

α2 : ShLinω→ ShLin2:

γ2([S]U) =
[⋃

{γ2(o) | o ∈ S}
]
U
,

α2([S]U) =
[
↓{α2(B) | B ∈ S}

]
U
.

With an abuse of notation, we also apply γ2 and α2 to subsets of ω-sharing groups

and 2-sharing groups respectively, by ignoring the set of variables of interest. For

instance, γ2({xyz, xy∞z}) = {xyz, xy2z, xy3z, xy4z, xy5z, . . .}.

Theorem 5.2

The pair 〈α2, γ2〉 is a Galois insertion.

Now we may define the optimal mgu for ShLin2 and single-binding substitutions as

follows:

Definition 5.3 (Unification for ShLin2)

Given [S]U ∈ ShLin2 and the binding x/t, we define

mgu2([S]U, x/t) = α2(mguω(γ2([S]U), x/t)).
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By construction, mgu2 is the optimal abstraction of mguω and hence also of mgu.

In the case in which vars(x/t) ⊆ U, by using additivity of α2 we get

mgu2([S]U, x/t) =
[
α2(γ2(S) \ rel (γ2(S), x, t)) ∪

α2

(
{�R | R ∈ ℘m(rel (γ2(S), x, t)),∑

B∈R
χ(B, x) =

∑
B∈R

χ(B, t) � |R| − 1}
)]

U
. (4)

Now we want to simplify equation (4). In particular we would like to get rid of

the abstraction and concretization maps and to express the result using only objects

and operators in ShLin2. Therefore, we need to define operations in ShLin2 which

correspond to � and χ in ShLinω .

The operation on 2-sharing groups which corresponds to multiset union on ω-

sharing groups is given by

o � o′ = λv ∈ V.o(v)⊕ o′(v),

where 0⊕ x = x⊕ 0 = x and ∞⊕ x = x⊕∞ = 1⊕ 1 = ∞. We will use
⊎
{{o1, . . . , on}}

for o1� . . .�on. Given a sharing group o, we also define the delinearization operator:

o2 = o � o. (5)

Note that o2 = λx ∈ �o�.∞. The operator is extended pointwise to sets and multisets.

A fundamental role is played by the notion of multiplicity of a sharing group in

a term. While the multiplicity of an ω-sharing group in a term is a single natural

number, every object in ShLin2 represents a set of ω-sharing groups; hence its multi-

plicity should be a set of natural numbers. Actually, it is enough to consider intervals.

We define the minimum χm and maximum χM multiplicity of o in t as follows:

χm(o, t) =
∑
v∈�o�

om(v) · occ(v, t) χM(o, t) =
∑
v∈�o�

o(v) · occ(v, t).

Sum and product on integers are lifted in the obvious way; namely, the sum is ∞
iff at least one of the addenda is ∞ and n · ∞ = ∞ · n = ∞ for any n ∈ �+, while

0 ·∞ = ∞· 0 = 0. The maximum multiplicity χM(o, t) either is equal to the minimum

multiplicity χm(o, t) or is infinite. Note that if B is an ω-sharing group represented

by o, i.e., B ∈ γ2(o), then χm(o, t) � χ(B, t) � χM(o, t). Actually, not all the values

between χm(o, t) and χM(o, t) may be assumed by χ(B, t).

Example 5.4

Let o = x∞ and t = f(x, x). According, to our definition, χ(o, t) = [4,∞). However,

it is obvious that if B ∈ γ2(o), then χ(B, t) is an even number. �

According to the above definitions, we define the multiplicity of a multiset of

sharing groups as

χ(Y , t) =
{
n ∈ � |

∑
o∈Y

χm(o, t) � n �
∑
o∈Y

χM(o, t)
}
.

Even if this is a superset of all the possible values which can be obtained by

combining the multiplicities of all the sharing groups in Y , this definition is

sufficiently accurate to allow us to design the optimal abstract unification.
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We extend in the obvious way the definition of rel (see Corollary 4.32) from

ω-sharing groups to 2-sharing groups, i.e.,

rel (S, x, t) = {o ∈ S | �o� ∩ vars(x/t) �= ∅},

and we prove the following.

Theorem 5.5 (Characterization of abstract unification for ShLin2)

Given [S]U ∈ ShLinω and the binding x/t with vars(x/t) ⊆ U, we have that

mgu2([S]U, x/t) = [(S \ S ′)∪
↓{
⊎
Y | Y ∈ ℘m(S ′), n ∈ χ(Y , x) ∩ χ(Y , t). n � |Y | − 1}]U,

where S ′ = rel (S, x, t).

Example 5.6

Let S = ↓{∅, ux∞, vx∞, x∞y, z∞} and Y = {{ux∞, vx∞, xy, z∞}}. We have that χ(Y , x) =

{n | n � 5} and χ(Y , f(z, z)) = {n | n � 4}. Since f(z, z) contains two occurrences

of z, the “actual” multiplicity of the sharing group z∞ in f(z, z) should be a

multiple of two. But we do not need to check this condition and can safely

approximate this set with {n | n � 4}. This works because we can always choose

a number which is contained in both χ(Y , x) and χ(Y , t) and which is an “actual”

multiplicity. For instance, we can take n = 6 ∈ χ(Y , x) ∩ χ(Y , f(z, z)), and since

we have 6 � 3 = |Y | − 1, we get that the sharing group
⊎
Y = uvx∞yz∞

belongs to mgu2([S]U, x/f(z, z)). This sharing group can be generated by the

substitution {x/f(f(u, u, y), f(v, v, y)), z/f(w,w, w)} when the variables of interest

are {u, v, x, y, z}. �

Theorem 5.5 gives a characterization of the abstract unification over ShLin2.

However, it cannot be directly implemented, since one needs to check a certain

condition for each element of ℘m(rel (S, x, t)), which is an infinite set. Nonetheless,

this is an important starting point to prove correctness and completeness of the

abstract unification algorithm which we are going to introduce.

The characterization in Theorem 5.5 may be used even when vars(x/t) � U, if we

first enlarge the set of variables of interest in order to include all vars(x/t).

Theorem 5.7 (Characterization of abstract unification with extension for ShLin2)

Given [S]U in ShLin2 and the binding x/t, let V = {v1, . . . , vn} be vars(x/t) \ U.

Then,

mgu2([S]U, x/t) = mgu2([S ∪ {v1, . . . , vn}]U∪V , x/t).

The previous theorem states that enlarging the set of variables of interest preserves

optimality.

5.2 An algorithm for abstract unification in ShLin2

In order to obtain an algorithm from the characterization in Theorem 5.5 we need

to avoid the use of ℘m(rel (S, x, t)) and to develop a procedure able to compute

the resultant sharing groups by inspecting subsets (not multisets) of rel (S, x, t). In

general, any X ⊆ rel (S, x, t) yields more than one sharing group, since every element
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in X may be considered more than once. However, since ShLin2 is downward closed,

it is enough to compute the maximal resultant sharing groups.

Given X ⊆ rel (S, x, t) and the binding x/t, assume that we are only interested

in those sharing groups whose support is �
⊎
X�. By joining (multiple copies of)

the sharing groups in X, any resultant sharing group o is between
⊎
X and

⊎
X2,

i.e.,
⊎
X � o �

⊎
X2, where X2 is the pointwise extension of the delinearization

operator (see equation (5)). Note that if X is badly chosen, it is possible that we are

not able to generate any sharing group with this support. In this computation, the

notion of multiplicity of a sharing group in a term plays a major role.

For example, given the binding x/t, if χM(o, x) � 1 for each o ∈ X, then
⊎
X is

a resultant sharing group only if there is a unique sharing group o ∈ X such that

vars(t) ∩ �o� �= ∅. If there are o1, o2 ∈ X such that χM(o1, x) > 1 and χM(o2, t) > 1,

then
⊎
X is a resultant sharing group. Moreover, we may join two copies of each

sharing group in X, and therefore also
⊎
X2 is a resultant sharing group.

Now we can define the notions of linearity and nonlinearity on the abstract

domain. In addition, we also introduce a new notion of strong nonlinearity. Given

X ⊆ rel (S, x, t), we partition X in three subsets Xx = {o ∈ X | χM(o, t) = 0},
Xt = {o ∈ X | χM(o, x) = 0}, and Xxt = X \ (Xx ∪Xt).

Definition 5.8

Given a set S of sharing groups and X ⊆ rel (S, x, t), we say that X is

• linear for the term t if for all o ∈ X it holds that χM(o, t) � 1;

• nonlinear for the term t if there exists o ∈ X such that χM(o, t) > 1;

• strongly nonlinear for the term t if there exists o ∈ X such that χM(o, t) = ∞
or there exists o ∈ Xxt such that χM(o, t) > 1.

Analogously, we define linearity and nonlinearity of X for the variable x.

Note that if t is a variable, the nonlinear and strongly nonlinear cases coincide. We

now present the algorithm for computing the abstract unification in ShLin2.

Theorem 5.9 (Abstract unification algorithm for ShLin2)

Given [S]U ∈ ShLin2 and the binding x/t with vars(x/t) ⊆ U, we have

mgu2([S]U, x/t) = [(S \ S ′) ∪ ↓
⋃
X⊆S ′

res(X, x, t)]U,

where S ′ = rel (S, x, t) and res(X, x, t) is defined as follows:

(1) if X is nonlinear for x and t, then res(X, x, t) = {
⊎
X2};

(2) if X is nonlinear for x and linear for t, |Xx| � 1 and |Xt| � 1, then we have

res(X, x, t) = {(
⊎

Xx) � (
⊎
X2

xt) � (
⊎
X2

t )};
(3) if X is linear for x and strongly nonlinear for t, |Xx| � 1 and |Xt| � 1, then we

have res(X, x, t) = {(
⊎
X2

x) � (
⊎
X2

xt) � (
⊎
Xt)};

(4) if X is linear for x and not strongly nonlinear for t, |Xt| � 1, then we have

res(X, x, t) = {(
⊎
Z) � (

⊎
X2

xt) � (
⊎
Xt) |Z ∈ ℘m(Xx),

|Z | = χM(Xt, t) = χm(Xt, t),

�Z� = Xx};

(5) otherwise res(X, x, t) = ∅.
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Example 5.10

Let U = {u, v, x, y} and consider the set of 2-sharing groups S = {∅, xu, x∞, xy, yv}
and consider the binding x/r(y, y). Note that S ′ = {xu, x∞, xy, yv}. Let us compute

res(X, x, r(y, y)) for some X’s, subsets of S ′.

• X = {x∞, yv}. In this case, χM(x∞, x) = ∞ and χM(yv, r(y, y) = 2; hence X is

nonlinear for x and r(y, y). From the first case of Theorem 5.9, we have that

res(X, x, r(y, y)) = {
⊎
X2} = {

⊎
{x∞, y∞v∞} = {x∞y∞v∞}.

• X = {xu, xy, yv}. Then X is linear for x and strongly nonlinear for r(y, y),

since xy ∈ Xxt and χM(xy, r(y, y)) = 2. From the third case, it follows that

res(X, x, t) = {(
⊎
{xu}2) � (

⊎
{xy}2) � (

⊎
{yv})} = {x∞y∞u∞v}.

• X = {xu, yv}. Then X is linear for x and not strongly nonlinear for r(y, y). (Note

that χM(yv, r(y, y)) = 2 > 1 and yv ∈ Xt; hence X is nonlinear for r(y, y), but

it is not strongly nonlinear.) Since χM(Xt, r(y, y)) = 2, we only need to consider

those Z ∈ ℘m(Xx) such that |Z | = 2. There is only one such set, which is

Z = {{xu, xu}}. Therefore res(X, x, r(y, y)) = {(
⊎
{{xu, xu}})� (

⊎
{}2)� (

⊎
{yv})} =

{x∞yu∞v}. �

Note that given X ⊆ S ′, if x does not appear in any sharing group of S , then

res(X, x, t) ⊆ {∅}. In fact, we can only apply the fourth or the fifth case. In the

fourth case, we have that Xx = Xxt = ∅, and thus the only Z ∈ ℘m(Xx) is the

empty multiset. Thus, |Z | = 0, which implies that Xt = ∅, and res(X, x, t) = {∅}. In

the fifth case, the result is trivially the emptyset. Symmetrically, when none of the

variables of t appears in S , again we can apply only the fourth or the fifth case and

res(X, x, t) ⊆ {∅}.

Example 5.11

Consider S and U as in Example 5.10. We compute mgu2([S]U, x/r(y, y)). We show

the value of res(X, x, r(y, y)) for every X ⊆ S ′ = rel (S, x, r(y, y)) which contains both

the variables x and y:

X res(S, x, r(y, y)) Case in Theorem 5.9

x∞, xy x∞y∞ 1

x∞, yv x∞y∞v∞ 1

x∞, xy, yv x∞y∞v∞ 1

x∞, xu, xy x∞y∞u∞ 1

x∞, xu, yv x∞y∞u∞v∞ 1

x∞, xu, xy, yv x∞y∞u∞v∞ 1

xu, xy x∞y∞u∞ 3

xu, yv x∞yu∞v 4

xu, xy, yv x∞y∞u∞v 3

Hence

mgu2([S]U, x/r(y, y)) =

↓{∅, x∞y∞, x∞y∞v∞, x∞y∞u∞, x∞y∞u∞v∞, x∞yu∞v, x∞y∞u∞v}. �
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The main difference between the algorithm in Theorem 5.9 and the characteriza-

tion in Theorem 5.5 is that in the former X is a subset of S ′ while in Theorem 5.5 Y

is a multiset over S ′. Since the number of subsets of S ′ is finite, the characterization

in Theorem 5.9 is an algorithm.

Obviously, a direct implementation of mgu2 would be very slow, so that appropri-

ate data structures and procedures should be developed for a real implementation.

Although this is mostly out of the scope of this paper, we show here that the

definition of mgu2([S]U, x/t) may be modified to consider only maximal subsets

of rel (S, x, t). This should help in reducing the computational complexity of the

abstract operator.

Given [A]U ∈ ShLin2, let maxA be the set of maximal elements of A, i.e.,

maxA = {a ∈ A | �b ∈ A.b >2 a}. Given a sharing group o, we define the linearized

version of o, denoted by l(o), as

l(o)(v) =

{
1 if v ∈ �o�,

0 otherwise.

The linearization operator l is extended pointwise to sets of sharing groups. We

show that instead of choosing X as a subset of S ′ in the definition of mgu2, we may

only consider those X’s which are subsets of max S ′.

Theorem 5.12

Given [S]U ∈ ShLin2 and the binding x/t with vars(x/t) ⊆ U, we have

mgu2([S]U, x/t) = [(S \ S ′) ∪ ↓
⋃

X⊆max S ′

(res(X, x, t) ∪ res ′(X, x, t))]U,

where S ′ = rel (S, x, t) and

res ′(X, x, t) =

{
{
⊎

X2} if X = Xxt and l(X) is linear for t,

∅ otherwise.

The next examples compare our optimal abstract unification operator to the

original one and show the increase in precision.

Example 5.13

Let U = {u, v, w, x, y}. Consider the set of 2-sharing groups S = {∅, xu, xv, xw, y}. We

compute mgu2([S]U, x/r(y, y)). Since rel (S, x, r(y, y)) = S , we need to consider any

X ⊆ S . If y /∈ X, then clearly res(X, x, r(y, y)) = ∅. If y ∈ X, since χM(y, r(y, y)) = 2,

it follows that X is linear for x and not strongly nonlinear for r(y, y). Thus

mgu2([S]U, x/r(y, y)) = [↓{∅, x∞u∞y, x∞uvy, x2uwy, x∞v∞y, x∞vwy, x∞w∞y}]U

On the other hand, computing with the unification algorithm given in King (1994),

the result is

↓{∅, x∞u∞y, x∞u∞v∞y, x∞u∞w∞y,
x∞v∞y, x∞v∞w∞y, x∞w∞y, x∞u∞v∞w∞y}.
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The old algorithm is not able to infer the linearity which arises when combining

two distinct sharing groups from {xu, xv, xw} with {y}. Moreover, it does not assert

that the variables u, v, w cannot share a common variable. �

Example 5.14

Let U = {u, x, y, z} and S = {∅, xu, xy, yz}. By computing mgu2([S]U, x/r(y)) we

obtain ↓{∅, x∞y∞, x∞uy∞z}, which shows that u and z are linear after the unification.

This is not the case when computing with the unification algorithm in King (1994),

since we obtain ↓{∅, x∞y∞, x∞u∞y∞z∞, x∞u∞y∞, x∞y∞z∞}. Note that we also improve

the groundness information. In fact, in our result, groundness of u implies groundness

of z. �

Both examples show the increased precision w.r.t. King’s algorithm. In the first ex-

ample, we obtain optimality thanks to the introduction of the notion of (non-)strong

nonlinearity. In the second example, we improve the result, since we do not need to

consider independence between x and t, in order to exploit linearity information.

5.3 Unification for multibinding substitutions

The unification operator on ShLin2 has been defined for single-binding substitutions.

It is possible to extend this operator to multibinding substitutions in the obvious

way, namely, by iterating the single-binding operators:

mgu2([S]U, {x/t} � θ) = mgu2(mgu2([S]U, x/t), θ).

However, defined in such a way, mgu2 is not optimal. Consider, for example,

S = {∅, xz, yw}, U = {x, y, z, w}, and the substitution θ = {x/r(y, y), z/w}. We

have that mgu2([S]U, x/r(y, y)) = [↓ {∅, x∞z∞yw}]U . Since x∞zyw �2 x∞z∞yw, by

applying the third case of mgu2 to Y = {x∞zyw} we get

mgu2([↓ {∅, z∞x∞yw}]U, z/w) = [↓ {∅, x∞y∞z∞w∞}]U.

However,

α2(mguω(γ2([{∅, xz, yw}]U, θ)))

= α2(mguω([{xz, yw}]U, θ))

= α2(mguω([{wx2yz2}]U, {z/w}))

= α2([{{}}]U) = [∅]U,

which shows that mgu2 is not optimal. Note that we do not use optimality of mguω

to prove this result, since correctness is enough.

The problem is that to be able to conclude that the unification of S with θ is

ground, we need to keep track of the fact that after the first binding w is linear

and z is definitively nonlinear. Since ShLin2 is downward closed, we are not able to

state this property. Note that in the case we have presented here, by changing the

order of the bindings we get an optimal result in ShLin2, but this happens just by

accident.

Now, consider the substitution θ = {x/r(y, . . . , y), z/s(y, . . . , y), u/v} with S =

{∅, xu, zv, y} and U = {u, v, x, y, z}. Assume that r(y, . . . , y) is an n-ary term and that
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s(y, . . . , y) is an m-ary term with n �= m and n, m � 2. We have that

mgu2([S]U, x/r(y, . . . , y)) = [↓{∅, x∞u∞y, zv}]U,
mgu2([↓{∅, x∞u∞y, zv}]U, z/s(y, . . . , y)) = [↓{∅, x∞u∞z∞v∞y}]U,
mgu2([↓{∅, x∞u∞z∞v∞y}]U, u/v) = [↓{∅, x∞u∞z∞v∞y}]U.

On the other hand, we have that

α2(mguω(γ2([{∅, xu, zv, y}]U, θ)))
= α2(mguω([{xu, zv, y}]U, θ))
= α2(mguω([{xnuny, zv}]U, {z/s(y, . . . , y), u/v}))
= α2(mguω([{xnunyzmvm}]U, {u/v}))
= α2([{{}}]U) = [∅]U.

However, if n = m, we have

α2(mguω(γ2([{∅, xu, zv, y}]U, θ)))
= α2([{{{}}} ∪ {xknuknykzknvkn | k ∈ �}]U)

= [↓{∅, x∞u∞z∞v∞y}]U.

In this case, keeping track of the variables which are definitively nonlinear does not

help. It seems that in order to compute abstract unification one binding at a time,

we need to work in a domain which is able to keep track of the exact multiplicity of

variables in a sharing group. Actually, this is how ShLinω works. Obviously, we could

try to develop a different algorithm for unification in ShLin2 which directly works

with multibinding substitutions. However, since the algorithm for single-binding

substitutions is already quite complex, we think this is not worth the effort.

5.4 The domain Sharing× Lin

The reduced product ShLin = Sharing× Lin has been used for a long time in the

analysis of aliasing properties, since it was recognized that the precision of these

analyses could be greatly improved by keeping track of the linear variables. Among

the papers which consider the domain ShLin, we refer to Hans and Winkler (1992)

and Hill et al. (2004). Actually, these papers also deal with freeness properties, which

we do not consider here, to further improve precision. Although the domain ShLin

has been used for many years, the optimal unification operator is as yet unknown,

even for a single-binding substitution. We provide here a new abstract operator for

ShLin, designed from the abstract unification for ShLin2, and we prove that it is

optimal for single-binding substitutions.

The domain ShLin keeps track of linearity by recording, for each object of

Sharing, the set of linear variables. Each element is now a triple: the first component

is an object of Sharing; the second component is an object of Lin, that is, the set of

variables which are linear in all the sharing groups of the first component; and the

third component is the set of variables of interest. It is immediate that ShLin is an

abstraction of ShLin2 (and thus of ShLinω). In the following, we briefly recall the
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definition of the abstract domain and provide the abstraction function from ShLin2,

ShLin = {[S, L,U] | S ⊆ ℘(U), (S �= ∅ ⇒ ∅ ∈ S), L ⊇ U \ vars(S), U ∈ ℘f(V)},

with the approximation relation �sl defined as [S, L,U] �sl [S ′, L′, U ′] iff U = U ′,

S ⊆ S ′, L ⊇ L′. There is a Galois insertion of ShLin into ShLin2 given by the pair

of maps,

αsl ([S]U) = [{�o� | o ∈ S}, {x ∈ U | ∀o ∈ S. o(x) � 1}, U],

γsl ([S, L,U]) = [{BL | B ∈ S}]U,

where BL is the 2-sharing group which has the same support of B, with linear

variables dictated by the set L. In formula

BL = λv ∈ V.

⎧⎪⎪⎨
⎪⎪⎩
∞ if B ∈ U \ L,

1 if B ∈ L,

0 otherwise.

The functional composition of αω , α2, and αsl gives the standard abstraction

map from substitutions to ShLin. We still use the polynomial notation to represent

sharing groups, but now all the exponents are fixed to one. Note that the last

component U in [S, L,U] is redundant, since it can be retrieved as L∪ vars(S). This

is because the set L contains all the ground variables.

5.5 Abstract unification for Sharing× Lin

In order to obtain a correct and optimal abstract unification over ShLin, the trivial

way is to directly compute αsl (mgu2(γsl ([S, L,U]), x/t)). However, we prefer to give

an unification operator similar to the other operators for ShLin in the literature

(Howe and King 2003; Hill et al. 2004; Bagnara et al. 2005). As for the domain

ShLin2, we now provide the notions of multiplicity and linearity over ShLin.

Given a set L of linear variables, we define the maximum multiplicity of a sharing

group o in a term t as follows:

χLM(o, t) =

{∑
v∈o occ(v, t) if o ∩ vars(t) ⊆ L,

∞ otherwise.

According to the similar definition for 2-sharing groups, given [S, L,U] ∈ ShLin, we

say that (S, L) is linear for a term t when for all o ∈ S it holds that χLM(o, t) � 1.

Note that when t is a variable, the definition boils down to check whether t ∈ L.

Given X ⊆ rel (S, x, t), we fix the set L of linear variables and partition X into

the three subsets Xx = {o ∈ X | χLM(o, t) = 0}, Xt = {o ∈ X | χLM(o, x) = 0}, and

Xxt = X \ (Xx ∪Xt). Moreover, we need to define the following subsets of X:

X=∞
t = {B ∈ Xt | χLM(B, t) = ∞}, X∈�

t = {B ∈ Xt | χLM(B, t) ∈ �},
X=1

t = {B ∈ Xt | χLM(B, t) = 1}, X>1
t = {B ∈ Xt | χLM(B, t) > 1},

X=1
xt = {B ∈ Xxt | χLM(B, t) = 1}, X>1

xt = {Xxt | χLM(B, t) > 1}.
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Since we do not deal with definite linearity, we need to take into account the sharing

groups which can be obtained by linearizing variables. This may be accomplished

by using the set U instead of L when computing the multiplicity. We denote by XU
xt

the set

XU
xt = {B ∈ Xxt | χUM(B, t) = 1},

which corresponds to the linearizable sharing groups.

Moreover, given sets A1, . . . , An with n � 2 we denote by bin(A1, . . . , An) the set

{
⋃
{a1, . . . , an} | a1 ∈ A1, . . . , an ∈ An}, by A∗ the set {

⋃
B | B ⊆ A}, and by A+ the set

{
⋃
B | B ⊆ A,B �= ∅}. This notation slightly deviates from most of other literature

on Sharing, where A∗ does not include the empty set. We prefer to adopt a double

notation, namely, A∗ and A+, which is more standard in the rest of the research

community.

Definition 5.15 (Abstract unification algorithm for ShLin)

Given [S, L,U] ∈ ShLin and the binding x/t such that vars(x/t) ⊆ U, we define

mgusl ([S, L,U], x/t) = [(S \X) ∪K,U ′ ∪ L′, U],

where X = rel (S, x, t) = {B ∈ S | B ∩ vars(x/t) �= ∅} and U ′ = U \ vars((S \X)∪K).

Here, K is the set of new sharing groups created by the unification process and U ′

is the set of variables which do not appear in any sharing group of the result, i.e.,

the set of ground variables. K is defined as follows:

• If x ∈ L,

K = bin(X=∞
t , X+

x , X
∗
xt) ∪

bin(Xt ∪ {∅}, X>1
xt , X

+
x , X

∗
xt) ∪

bin({{o} ∪ (∪Z) | o ∈ X∈�
t , Z ⊆ Xx, 1 � |Z | � χLM(o, t)}, (X=1

xt )∗) ∪
(XU

xt)
+. (6)

• If x /∈ L,

K = bin(X>1
t ∪X>1

xt , Xx ∪Xxt, X
∗) ∪

bin((X=1
t )+, Xx ∪X=1

xt , (X
=1
xt )∗) ∪

(X=1
xt )+. (7)

Finally, the set L′ of linear variables which are not ground is

L′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L \ (vars(Xx ∪Xxt) ∩ vars(Xt ∪Xxt)) if (S, L) is linear for x and t,

L \ vars(Xx ∪Xxt) otherwise, if (S, L) is linear for x,

L \ vars(Xt ∪Xxt) otherwise, if (S, L) is linear for t,

L \ vars(X) otherwise.

(8)

Theorem 5.16 (Optimality of mgusl )

The operator mgusl in Definition 5.15 is correct and optimal w.r.t. mgu, when

vars(x/t) ⊆ U.
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Example 5.17

Let S = {∅, xv, xy, zw}, L = {v, w, x, y}, and U = {v, w, x, y, z} and consider the

binding x/f(y, z). It is easy to check that (S, L) is linear for x but not for t.

Applying our operator, we obtain mgusl ([S, L,U], x/f(y, z)) = [S ′, L′, U] with S ′ =

{∅, xy, vwxyz, vwxz} and L′ = {w}. This is more precise than the operators for

Sharing× Lin in Hans and Winkler (1992). Actually, even using the optimizations

proposed in Howe and King (2003) and Hill et al. (2004), one obtains as result the

object

[{vxy, vwxz, xy, wxyz, vwxyz}, {w}, U].

The optimization proposed in Bagnara et al. (2005) is not applicable as it is, since

it requires vars(rel (S, x)) and vars(rel (S, f(y, z))) to be disjoint. Even assuming that

this test for independence may be removed as unnecessary, the final result would be

the same as above. In both cases, our operator is able to prove that vxy and wxyz

are not possible sharing groups.

Note that in a domain for rational trees, the sharing group vxy is needed for

correctness, since the unification of {x/f(f(v, y), c), z/w} with the binding x/f(y, z)

succeeds with {x/f(f(v, y), c), z/c, w/c, y/f(v, y)}. This means that we are able to

exploit the occur-check of the unification in finite trees. As a consequence, our

abstract unification operator is not correct w.r.t. a concrete domain of rational

substitutions (King 2000). �

An alternative would be to compute the abstract unification following Theorem

5.9 with χM and � replaced by χLM and ∪ respectively. (We can obviously ignore the

delinearization operator ( )2, since B ∪ B = B.) However, we do not pursue further

this approach.

In the case vars(x/t) � U, we may proceed as for ShLinω and ShLin2: enlarge the

set of variables of interest in order to include all vars(x/t), and compute unification

with mgusl .

Definition 5.18 (Abstract unification algorithm with extension in ShLin)

Given [S, L,U] ∈ ShLin and the binding x/t, let V = {v1, . . . , vn} be vars(x/t) \ U.

We define

mgusl ([S, L,U], x/t) = mgusl ([S ∪ {v1, . . . , vn}, L ∪ V ,U ∪ V ], x/t).

Theorem 5.19 (Optimality of mgusl with extension)

The operator mgusl in Definition 5.18 is the optimal abstraction of mgu.

Although the abstract operator mgusl is optimal for the unification with a single

binding, the optimal operator for a multibinding substitution cannot be obtained

by considering one binding at a time. This is a consequence of the fact that the

corresponding operator for single-binding unification on ShLin2 cannot be extended

to an optimal multibinding operator by simply considering one binding at a time.
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In fact, all the counterexamples in Section 5.3 are also counterexamples for mgusl ,

since it is the case that [S]U = γsl (αsl ([S]U)).

6 Optimal unification in practice

In this section, we give some evidence that there are practical advantages in using

the optimal unification operators for ShLin. It is far beyond the scope of this

paper to provide an experimental evaluation of the new algorithms, but the results

in Bagnara et al. (2005) give some hints on its possible outcome. Bagnara et al.

(2005) introduced an improvement for Sharing× Lin× Free, exploiting some ideas

from King’s unification operator for the domain ShLin2. In this way, they improved

precision in a few cases and showed that efficiency of the analysis is more likely

to be increased than decreased. In fact, even if the final result of the analysis does

not change, a more precise operator may reduce the number of sharing groups

in the intermediate steps, which helps performance. Hence, we expect the optimal

unification for ShLin to further improve the analysis, in both efficiency and precision.

This is more evident if we consider that Bagnara et al. (2005) measured precision

in terms of the number of independent pairs (as well as definitively ground, free,

and linear variables) and did not consider set-sharing. However, Bueno and Garcı́a

de la Banda (2004) showed that set-sharing information may be useful in several

application of the analysis, such as parallelization of logic programs. Hence, a

greater improvement in precision is to be expected if we consider the full set-sharing

property.

We now provide a concrete example of a simple program in which our abstract

operators give better results than the operators known in the literature.

6.1 An example: Difference lists

We work with difference lists, an alternative data structure to lists for representing

a sequence of elements. A difference list is a term of the kind A \ B, where A and

B are lists, which represents the list obtained by removing B from the tail of A.

For example, using PROLOG notation for lists, [1, 2, 3, 4] \ [3, 4] represents the list

[1, 2], while [1, 2, 3|x] \ x and [1, 2, 3] \ [] represent the list [1, 2, 3]. The difference

lists whose tails are variables (such as [1, 2, 3|x] \x) are mostly useful, since they can

be concatenated in constant time. An overview of difference lists may be found in

Sterling and Shapiro (1994).

We define the predicate difflist/3, which translates lists to difference lists and vice

versa. The goal ← difflist(l, h, t) succeeds when the difference list h \ t represents the

standard list l. For example, difflist([], x, x) and difflist([1, 2, 3], [1, 2, 3|x], x) succeed

without any further instantiation of variables. In order to improve the precision of

the analysis, we keep head and tail of difference lists in separate predicate arguments.

The code for difflist/3, in head normal form, is the following:

difflist(l, h, t) ← l = [], h = t.

difflist(l, h, t) ← l = [x|l′], h = [x|h′], difflist(l′, h′, t).
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where l, l′ (list), h, h′ (head), t (tail), and x are variables. We informally compute the

goal-independent analysis of difflist on the domain ShLin, which gives

�difflist�0 = [{∅}, {l, h, t}, {l, h, t}],
�difflist�1 = [{∅, ht, hl}, {l, h, t}, {l, h, t}],
�difflist�2 = �difflist�1.

The result of the analysis is not affected by our improved unification operator: the

standard mgu for ShLin, as given in Hans and Winkler (1992), yields exactly the

same result. Now, suppose we want to analyze the goal ← difflist(l, h, h). This

corresponds to the goal ← difflist(l, h, t), h = t in head normal form. Its semantics

may be computed, using our operators, as

mgusl([{∅, ht, hl}, {l, h, t}, {l, h, t}], h/t) = [{∅, ht}, {l}, {l, h, t}].

By projecting over l and h, we get [{∅, h}, {l}, {l, h}]. Hence, the analysis is able to

infer that upon exiting the goal ← difflist(l, h, h), the variable l is ground.

By using the standard mgu for ShLin in Hans and Winkler (1992), we get

[{∅, ht, htl}, {l}, {l, h, t}]; (9)

hence l is detected to be linear but not ground. The optimizations introduced in

Howe and King (2003), Hill et al. (2004) and Bagnara et al. (2005) do not improve

this result. This is a consequence of the fact that these optimizations have been

developed to be correct also for rational trees. In this case, you cannot infer that

l is ground after ← difflist(l, h, h), since the substitution in rational solved form

{l/[v], h/[v|h]} is a correct answer for the same goal.

If we perform the analysis in ShLin2, using our operators we have �difflist� =

[{∅, hl, ht}]lht and the result for the goal ← difflist(l, h, h) is [{∅, h}]lh. However, by

using the original operator in King (1994), the semantics of difflist does not change,

but the result for the goal ← difflist(l, h, h) is [{∅, h∞, h∞l∞}]lh; thus l is not proven

to be either ground or linear.

The fact that optimal operators improve groundness information is somehow

surprising. Generally, one expects that groundness affects aliasing analysis, but not

vice versa. In fact, it is well known that Sharing is a refinement (Cortesi et al.

1997) of the domain Def. However, as far as groundness is concerned, the precision

of Sharing and Def is the same; i.e., the other objects included in Sharing do

not improve groundness analysis (Cortesi et al. 1998). As far as we know, there

is no abstract unification operator in the literature, for a domain dealing with

sharing, freeness, and linearity, which is more precise than Def for groundness.

On the contrary, the example above shows that ShLin, endowed with the optimal

unification, improves over Def. Amazingly, in this example ShLin is even better

than Pos (Armstrong et al. 1994). In the latter, the abstract semantics of difflist is

h ↔ (l ∧ t), i.e., h is ground iff both l and t are ground. The result of the analysis

for the goal ← difflist(l, h, h) is ∃t (h ↔ (l ∧ t) ∧ h ↔ t). This is equivalent to h → l

which does not imply groundness of l. Actually, h→ l is the groundness information

which may be inferred by (9).
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6.2 Another example for ShLin2

As far as we know, there is no implementation or experimental evaluation of the

domain ShLin2. We think that it would be worthwhile to give such an implementation

and that there is some evidence that ShLin2 improves over ShLin also in practice.

For instance, we show a simple program in which King’s domain is more precise

than ShLin with optimal operators.

We provide a variant of the predicate difflist/3, which we call difflist ′/2, with

only two arguments—head and tail of the difference list are encoded in the second

argument as the term head \ tail :

difflist ′(l, d) ← l = [], d = h \ h.
difflist ′(l, d) ← l = [x|l′], d = [x|h] \ t, d′ = h \ t, difflist ′(l′, d′).

We informally compute the goal-independent analysis of difflist ′ on the domain

ShLin, which gives

�difflist ′�0 = [{∅}, {d, l}, {d, l}],
�difflist ′�1 = [{∅, dl, d}, {l}, {d, l}],
�difflist ′�2 = �difflist ′�1.

The same analysis, computed over ShLin2, gives

�difflist ′�0 = [{∅}]dl ,
�difflist ′�1 = [{∅, dl, d, d∞}]dl ,
�difflist ′�2 = �difflist ′�1.

Now, suppose we want to analyze the goal ← difflist ′(l, d), d = [x1, x2|h] \ t, which

extracts the first two elements from the difference list d. In ShLin we have the

following:

mgusl([{∅, dl, d}, {l}, {d, l}], d/[x1, x2|h] \ t)
= [{∅} ∪ bin({dl, d}, {x1, x2, h, t}∗), {l}, {d, l, x1, x2, h, t}].

Note that the sharing group dlx1x2 is part of the result. If we repeat the analysis in

ShLin2, we have

mgu2([{∅, dl, d, d∞}]dl , d/[x1, x2|h] \ t) =
[
{∅, dlx1, dlx2, dlh, dlt} ∪

↓{
⊎

X | X ∈ ℘({d∞x∞1 , d∞x∞2 , d∞h∞, d∞t∞})}
]
dlx1x2ht

.

This result does not contain the sharing group dlx1x2.

Generally speaking, it is easier to analyze the predicate difflist/3 than difflist ′/2.

Codish et al. (2000) proposed a method named untupling which is able to automat-

ically recover difflist/3 from difflist ′/2.

7 Related work

In this paper, we work with a concrete domain of substitutions on finite trees. In

the literature, some authors deal with rational trees.
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Since any correct operator for rational trees is also correct for finite trees, we can

compare the unification operators for rational trees with ours. (Of course, this is not

entirely fair as far as the precision is concerned.) The opposite is not true, since an

abstract unification operator for finite trees may be able to exploit the occur-check

condition. We have shown in Example 5.17 that our optimal operator can exploit

the occur-check condition, and thus it is not correct for rational trees.

7.1 Sharing

It is well known that the abstract unification operator of the domain Sharing alone

(i.e., without any freeness or linearity information) is optimal. Cortesi and Filé (1999)

gave a formal proof of optimality, considering a slightly different unification operator

with two abstract objects and a concrete substitution. Since the two abstract objects

are renamed apart, it is equivalent to consider a single abstract object. The basic

idea underlying the proof is to exhibit, for each sharing group in the result of the

unification, a pair of concrete substitutions generating the resulting sharing group.

We follow the same constructive schema in the proof of optimality for ShLinω (but

we look for a single substitution, due to the different concrete operator). Instead,

to prove optimality for ShLin and ShLin2, we use a direct approach and show that

the abstract unification operator corresponds to the best correct abstraction (i.e.,

α ◦mguω ◦ γ) of the unification on ShLinω with simple (although tedious) algebraic

manipulations.

A different unification operator has been proposed in Amato and Scozzari (2002,

to appear) for goal-dependent analysis of Sharing. In this paper, the standard

unification operator is split into two different operators for forward and backward

unification. Both operators are proved to be optimal, and the overall analysis is

strictly more precise than the analysis performed on Sharing equipped with the

standard operator.

As far as we know, these are the only optimality results for domains encoding

aliasing properties.

7.2 Sharing× Lin

In most of the work combining sharing and linearity, freeness information is included

in the abstract domain. In fact, freeness may improve the precision of the aliasing

component, and it is also interesting by itself, for example, in the parallelization

of logic programs (Hermenegildo and Rossi 1995). In this comparison, we do not

consider the freeness component.

The first work which combines set-sharing with linearity is that of Langren (1990),

followed by that of Hans and Winkler (1992). The initial unification algorithm has

been improved by Howe and King (2003) and Hill et al. (2004) by removing an

independence test. This increases the number of cases in which linearity information

may be exploited. Bagnara et al. (2005) proposed a different improvement, adopting

an idea by King (1994) for the domain ShLin2, which simplifies the unification of a
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linear term with a nonlinear one. Example 5.17 shows that even adopting all these

improvements, we still obtain a strictly more precise operator. Since our operator is

optimal, any further improvement is now impossible.

Bagnara et al. (2002) showed that if we are only interested in pair-sharing

information, Sharing is redundant. They proposed a new domain SS ρ which is

obtained by discharging redundant sharing groups. A sharing group B in a set

S is redundant if |B| > 2 and ∀x, y ∈ B. ∃C ∈ S. {x, y} ⊆ C ⊂ B. Analyses

performed with SS ρ are shown to be as precise as those performed with Sharing, if

only pair-sharing information is required. Hill et al. (2004) introduced the domain

SS ρ × Lin × Free. Example 5.17 shows that our operator is still more precise (of

course, without considering the freeness component) because of the sharing group

vxy which does not appear in S ′ and is not redundant for SS ρ. In any case, Bueno

and Garcı́a de la Banda (2004) have shown that classical applications of sharing

analyses, such as parallelization of logic programs, are able to exploit information

which is encoded in Sharing× Free but not in SS ρ × Free.

An alternative presentation of Sharing × Lin, based on set logic programs, has

been introduced by Codish et al. (2000). However, the proposed operators are not

optimal, as shown in Hill et al. 2004.

The domain ShLin2 was introduced by King (1994), which provides correct

operators for abstract unification. However, these operators are not optimal, as

Examples 5.13 and 5.14 show.

7.3 ASub

An alternative approach to aliasing analysis is to only record sharing between pairs

of variables (and possibly linearity and groundness information). The best known

domain of this category is ASub, introduced by Søndergaard (1986) and formalized

by Codish et al. (1991). The domain ASub is the reduced product of pair-sharing, Lin

and Con (Jones and Søndergaard 1987), which is the simplest domain for definite

groundness. Recently, King (2000) reformulated the proofs in order to work with

rational trees. Moreover, King’s algorithms are parametric w.r.t. the groundness

domain, allowing the replacement of Con with more precise domains such as Def

and Pos.

The domain Sharing × Lin is strictly more precise than ASub, since it embeds

more groundness information (equivalent to Def) and set-sharing information. Since

our operator for Sharing× Lin is optimal, we are sure that the analyses performed

in Sharing× Lin are strictly more precise than those in ASub.

The following is a counterexample to the optimality of the abstract unification in

King (2000), in the case of finite trees, when pair-sharing is equipped with Def or

Pos.

Example 7.1

Consider the object κ = (x↔ y, {xy}), where the first component is a formula of Def

and Pos and {xy} is the set of pairs of variables which may possibly share. In this

domain, linearity information is embedded in the second component in the following
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way: If v is not linear, then vv must be included in the second component. Thus, both

x, y, and z are linear in (x ↔ y, {xy}). We want to unify κ with x/f(y, z). By using

the algorithm (King 2000), we obtain (y ↔ x ∧ x→ z, {xy, xz, yz, xx, yy}). However,

in Sharing×Lin we may represent κ with [S, L,U] = [{xy, z}, {x, y, z}, {x, y, z}] and

mgusl ([S, L,U], x/f(y, z)) = [{xy}, {z}, {x, y, z}] which proves that z is ground. �

Actually, King (2000) did not state explicitly how to compute the groundness

component of the result, although he said that it must be computed before the

linearity and pair-sharing components, in order to improve precision. However, it

seems safe to assume that the author’s intention was to compute the groundness

component using the abstract operators already known and therefore independently

from the pair-sharing component. This is what makes our operator more precise,

since linearity information may help in tracking ground variables when working

over finite trees.

7.3.1 Alternating paths

The domain ASub and its derivatives (King 2000) use the concept of alternating path.

Alternating paths may seem the counterparts, for pair-sharing, of sharing graphs.

We now investigate this idea, and show to what extent this correspondence is

faithful.

We call carrier graph a special graph defined by a set of equations E. Each distinct

occurrence of a variable in E is a node. Edges in the carrier graphs can be of two

types:

• edges of type one between two variable occurrences if the occurrences are on

opposite sides of a single equation in E and

• edges of type two linking two (distinct) occurrences of the same variable.

An alternating path is a sequence of edges of alternating type over the carrier

graph.

Alternating paths in ASub (and derivatives) are used to prove correctness of the

abstract unification operators. For example, they are used to prove Proposition

3.1 in King (2000). Sharing graphs are used in this paper to prove Theorem 4.31,

which is the starting point to prove correctness and optimality of the unification

algorithms for ShLin2 and ShLin. However, sharing graphs are also used to compute

the abstract unification in ShLinω . Even if alternating paths are not used, in the

literature, for computing abstract unification, they could. For any object of pair-

sharing o, which is a set of pairs of variables, consider any substitution θ in the

concretization of o. Then, the object o is an abstraction of the set of alternating

paths in θ. More precisely, it represents all the paths which start and end with edges

of type one, which we call admissible paths. They are abstracted by considering only

the start and end variables. In order to unify o with the binding x/t, we build a

carrier graph with all the occurrences of variables in o and x/t. For each pair of

variables in o, we add an edge of type one. We add edges of types one and two for

the binding x/t, as explained above. Finally, we add all the type two edges between
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any occurrence in x/t and any occurrence of the same variable in o. We consider

all the admissible paths over the graph so obtained. It is not difficult to check that

the result of the unification algorithm for pair-sharing in King (2000), without any

additional groundness domain, is the set of all the start and end variables for all

these admissible paths.

Example 7.2

Let S = {xv} be the set of pairs of variables which share, and consider the binding

x/r(y, y). We obtain the carrier graph

y

2v
1

x
2

x

1
							

1














y

which gives origin to several alternating paths. Among them, there is an admissible

path from v to v, which proves that v is not linear after the unification. �

The first difference between alternating paths and sharing graphs is that all the

alternating paths are subgraphs of the same carrier graph, while each sharing graph

has a different structure, with a different set of nodes. The second difference is that

the information coming from the abstract object and the binding is encoded in a

different way. For instance, consider the set S = {xy} and the binding x/z. We obtain

a carrier graph with four nodes x, y, x, z, two edges x
1 y and x

1
z of

type one, and an edge x
2

x of type two. Therefore, the sharing information

coming from the initial pair-sharing and the binding is treated symmetrically and

is entirely encoded on the edges. Performing unification on the carrier graph boils

down to devising the alternating paths on the graph. On the contrary, each sharing

graph has a set of nodes labeled by xy, x, and z, with suitable multiplicities. The

labels of the nodes encode the initial pair-sharing information, while the binding

affects the multiplicity of nodes. The process of unification consists of adding the

necessary arrows to get a sharing graph.

If we consider a single alternating path in a carrier graph and the sharing graph

for the same pair-sharing information and the same binding, they are obviously

related, although not in a straightforward manner. Consider an admissible path and

delete all type two edges, collapsing in a single node their start and end nodes.

(Type two edges are used in the carrier graph to avoid the creation of invalid paths,

but in a single alternating path they do not add information.) Then, each type one

edge coming from the initial pair-sharing information corresponds to a node in the

sharing graph, while a type one edge coming from the binding becomes an arrow in

the sharing graph.
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Example 7.3

Consider Example 7.2. We depict the (admissible) alternating path from v to v, its

collapsed version, and the corresponding sharing graph:

v
1

x
2

x
1 y 2 y 1

x
2

x
1

v

v
1

x
1 y 1

x
1

v

�

�

�

�
xv

0

1

��
�

�

�

�
y

2

0

�

�

�

�
xv

0

1

��

Note that while in the carrier graph, nonlinearity of the variable x is handled by

duplicating the variable y which occurs twice, in alternating paths without type two

nodes, the duplicated variables are x and v, which are connected to y. The same

holds in the sharing graph, where we have only one node labeled by y and two

nodes labeled by xv. � �

In sharing graphs we also require the multiplicities of a node to be equal to its in-

and out-degrees. This makes handling groundness at the same level as sharing and

linearity, without requiring a separate domain, possible. Remember that a sharing

group S with multiplicity n corresponds, in the concrete domain, to a variable u

such that θ−1(u) = S . If the degree of the node labeled with this sharing group is

not n, this means that one of the occurrences of u is bound to a ground term. This

would make ground the entire connected component containing S . Hence, in order

to correctly and precisely propagate groundness, we just forbid this kind of sharing

graphs. On the contrary, the pair-sharing algorithm in King (2000), which focuses

on a single path in the carrier graph, is not able to extract groundness information

without the help of an auxiliary domain.

7.4 Lagoon and Stuckey’s domain

Lagoon and Stuckey (2002) have recently proposed a different approach to pair-

sharing analysis. The authors use multigraphs, called relation graphs, to represent

sharing and linearity information. The nodes of the multigraph are variables, and

two of them may share only if there is a traversable path from one variable to the

other. Intuitively, each binding generates edges of different types. The definition of

traversable paths is very similar to that of alternating paths. A traversable path is a

sequence of edges, such that contiguous edges are always of different types.

This domain should be coupled with a groundness domain, and operators are

parametric w.r.t. the latter one. The authors show that relation graphs, when coupled

with the Def groundness domain, are more precise than Sharing and ASub. However,

this is not the case for Sharing × Lin, at least in the case of finite trees, since the

operators in Lagoon and Stuckey (2002) are not able to use linearity to improve the

precision of the groundness component.
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Example 7.4

As shown in Example 7.1, if we unify [S, L,U] = [{xy, z}, {x, y, z}, {x, y, z}] with the

binding x/f(y, z), we obtain mgusl ([S, L,U], x/f(y, z)) = [{xy}, {z}, {x, y, z}], proving

that z is ground after the unification. In the domains ΩDef and ΩPos of Lagoon and

Stuckey (2002), the abstract object corresponding to [S, L,U] is

μ1 =
(
x y , x↔ y

)
.

Intuitively, the first element of μ1 encodes the sharing information, namely, that

x and y may share (while z does not share either with x or with y). The second

element of μ1 is an element of Pos (and also of Def) and denotes the groundness

information that x is ground iff y is ground.

The unification of μ1 with x/f(y, z) in ΩPos is realized by abstracting the

substitution and composing the two abstract object. The abstraction of x/f(y, z)

is

μ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y

x

							

��
��

��
�

z

, x↔ (y ∧ z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

The first element says that x shares with both y and z, while y and z do not share.

The second element says that x is ground iff both y and z are ground.

The abstract conjunction is

μ1 � μ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

y

x

��
��

��
�

z

, (x↔ y) ∧ (x→ z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where edges drawn in different styles are compatible, namely, that they come from

different bindings. From this result, it is not possible to infer that z is ground after

the unification. �

In the actual implementation, Lagoon and Stuckey (2002) used another representa-

tion for their domain. Each pair of variables is annotated with a formula denoting

the groundness models under which the corresponding pair-sharing may occur. For

example, a pair uv annotated with the formula ū ∧ v̄ ∧ w̄ ∧ z̄ means that u and

v may share only if none of u, v, w, z is ground. We conjecture that this domain

may be embedded in King’s ShLin2. The next example shows how to perform this

embedding.

https://doi.org/10.1017/S1471068409990160 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409990160


90 G. Amato and F. Scozzari

Example 7.5
We consider the example in Figure 4 in Lagoon and Stuckey (2002). The variables

of interest are u, v, w, z:

uw : ū ∧ w̄ uz : ū ∧ z̄

vz : v̄ ∧ z̄ uu : ū ∧ w̄ ∧ z̄

uv : ū ∧ v̄ ∧ w̄ ∧ z̄ vv : v̄ ∧ w̄ ∧ z̄

wz : w̄ ∧ z̄ vw : v̄ ∧ w̄

For instance, uv : ū∧ v̄∧ w̄∧ z̄ means that u and v may share only if u, v, w, z are not

ground, while uu : ū ∧ w̄ ∧ z̄ means that u is (possibly) not linear only if u, w, z are

not ground. Each of these formulas may be viewed as a condition over 2-sharing

groups. For example uv : ū ∧ v̄ ∧ w̄ ∧ z̄ means that every 2-sharing group which

contains u and v should also contain w and z, while uu : ū ∧ w̄ ∧ z̄ means that each

2-sharing group in which u is nonlinear should also contain w and z. In order to

find the object of ShLin2 which corresponds to this example, it is enough to collect

all the 2-sharing groups which satisfy all the conditions enforced by the formulas.

In this case, we get ↓{u∞v∞wz, u∞wz, v∞wz, uw, vz, wz, uz, vw, u, v, w, z}. �

7.4.1 Traversable paths

The idea behind traversable paths is very similar to the concept of alternating path,

and relation graphs are quite similar to carrier graphs. From a carrier graph, we

can obtain a relation graph by removing type two edges and introducing a different

type of edge for each binding. This works because the use of nonlinear terms is

forbidden: a binding like x/r(y, y) has to be replaced by two bindings x/r(y, z) and

y/z. However, the main difference w.r.t. traditional pair-sharing (and also ShLinω)

is that Lagoon and Stuckey (2002) did not abstract traversable paths to the set

of pairs of variables, but they kept in the abstract object the set of all the edges

generated during the unification process. In this way, they are able to record that

in order for two variables x and y to share, the only possible path touches another

variable z. Hence, if z is ground, x and y cannot share: in this way they recovered

pair-sharing dependence information which would be lost otherwise.

We could follow the same approach and use multilayer sharing graphs (namely,

sets of sharing graphs over the same set of nodes, where each layer represents the

unification with a single binding) as abstract objects, without collapsing them to

sharing groups. We do not think this would improve precision of the domain very

much, since a sharing group is already a much more concrete abstraction of a graph

w.r.t. the set of all the connected pairs of variables. In fact, already Sharing can

encode the information that grounding a certain variable z, two variables x and y

become independent. Moreover, in the Example 7.5 we have shown that relation

graphs may be encoded into ShLin2.

7.5 Rational trees

In the recent years, many authors have studied the behavior of logic programs

on rational trees (King 2000; Hill et al. 2004), which formalize the standard
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implementations of logic languages. We have shown that our operators, which

are optimal for finite trees, are not correct for rational trees, since they exploit the

occur-check to reduce the sharing groups generated by the abstract unification (see

Example 5.17). It would be interesting to adapt our framework to work with rational

trees, in order to obtain optimal operators also in this case. Since a rational tree may

contain infinite occurrences of a variable, the notion of ω-sharing group needs to

be extended in order to allow infinite exponents. Also, we need to consider infinite

sharing graphs (or, at least, a representation of them) and find suitable regularity

conditions for them, analogous to the regularity conditions on rational trees.

Example 7.6

Consider the set of ω-sharing groups S = {xy, z} and the binding x/r(z, y). On

rational trees, unifying δ = {x/y} (such that [S]xyz � [δ]xyz) with x/r(z, y) would

get the substitution {x/r(z, x), y/r(z, y)} in rational solved form. This, intuitively,

corresponds to the sharing group xωyωz in which the exponent ω denotes an infinite

number of occurrences. A possible (infinite) sharing graph generating this sharing

group is the following:

· · ·
�
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�

�
xy
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1

�

�

�

�
xy

1

1
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�

�
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0
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Although the structure of abstract objects and operators for adapting ShLinω to

work with rational trees is more complex, we expect the optimal abstract operators

for rational trees on ShLin2 and Sharing× Lin to be simpler than those presented

here for finite trees. This is because we do not need to worry about the occur-check

condition (embedded in our unification operator) and infinite multiplicities.

8 Conclusion and future works

We summarize the main results of this paper:

• We define a new domain ShLinω as a general framework for investigating

sharing and linearity properties and provided the optimal unification operator.

• We show that ShLinω is a useful starting point for studying further abstrac-

tions. We obtain the optimal operators for single-binding abstract unification

in Sharing×Lin and ShLin2, and we show that these are strictly more precise

than all the other operators in the literature for the same domains.

• We show, for the first time, an optimality result for a domain which combines

aliasing and linearity information.

Moreover, as a negative result, we prove that the standard schema of the iterative

unification algorithm (one binding at a time) does not lead to optimal operators

for the domains ShLin2 and Sharing × Lin. As a side result, we show that ShLin

and ShLin2 with optimal operators may be more precise than Pos for groundness

analysis.

Several things remain to be explored: First of all, we need to study the impact on

the precision and performance obtained by adopting the new optimal operators and
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domains. We plan to implement the operators on ShLin2 and Sharing× Lin within

the CiaoPP static analyzer (Bueno et al. 1997). Moreover, we plan to analyze the

domain SS ρ × Lin (Bagnara et al. 2002) in our framework and, possibly, to devise

a variant of ShLin2 which enjoys a similar closure property for redundant sharing

groups. This could be of great impact on the efficiency of the analysis. Last but not

least, we plan to translate our framework to the case of unification over rational

trees.

Appendix A

Proofs of Section 4

In this section we give the proofs of the main results of the paper.

Theorem 4.6

The relation � is well defined.

Proof

It is enough to prove that {θ1
−1(v)|U | v ∈ V} = {θ2

−1(v)|U | v ∈ V} when θ1 ∼U θ2.

Assume that θ1 ∼U θ2; then by definition of ∼U there exists a renaming ρ such

that ρ(θ1(u)) = θ2(u) for each u ∈ U. Given S = θ−1
1 (v)|U , if w = ρ(v) we have

θ−1
2 (w)|U = θ−1

1 (v)|U = S . This concludes the proof. �

Proposition 4.13

Given a substitution θ, a variable v, and a term t, we have that χ(θ−1(v), t) =

occ(v, θ(t)). Moreover, given a set of variables U, when vars(t) ⊆ U, it holds that

χ(θ−1(v)|U, t) = occ(v, θ(t)).

Proof

Let B = θ−1(v). The proof is by induction on the structure of the term t. If t ≡ a is a

constant, then occ(v, θ(a)) = occ(v, a) = 0 which is equal to χ(B, a), since occ(w, a) = 0

for each w ∈ V. If t ≡ w is a variable, then occ(v, θ(w)) = θ−1(v)(w) = B(w). At the

same time, χ(B, t) = B(w), since occ(w,w) = 1 and occ(y, w) = 0 for y �≡ w. For the

inductive case, if t ≡ f(t1, . . . , tn), we have occ(v, t) =
∑n

i=1 occ(v, ti) =
∑n

i=1 χ(B, ti)

by inductive hypothesis. Moreover

χ(B, t) =
∑

v∈�B�

(B(v) ·
n∑

i=1

occ(v, ti)) =

n∑
i=1

∑
v∈�B�

B(v) · occ(v, ti) =

n∑
i=1

χ(B, ti).

Let U be a set of variables with vars(t) ⊆ U. By definition, χ(θ−1(v)|U, t) =∑
w∈θ−1(v)|U occ(w, t). Since vars(t) ⊆ U, for any w /∈ U it holds that occ(w, t) = 0,

and thus χ(θ−1(v)|U, t) = χ(θ−1(v), t). �

Proposition 4.24

Given substitutions θ, η ∈ ISubst and an ω-sharing group B, we have

(η ◦ θ)−1(B) = θ−1(η−1(B)).
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Proof

Using the definitions and simple algebraic manipulations, we have

θ−1(η−1(B))

= λw.χ
(
λv.χ(B, η(v)), θ(w)

)
= λw.

∑
y

χ(B, η(y)) · occ(y, θ(w))

= λw.
∑
y

(∑
x

B(x) · occ(x, η(y))
)
· occ(y, θ(w))

= λw.
∑
x

B(x) ·
∑
y

occ(x, η(y)) · occ(y, θ(w))

= λw.
∑
x

B(x) ·
∑
y

η−1(x)(y) · occ(y, θ(w))

= λw.
∑
x

B(x) · χ(η−1(x), θ(w)).

By Proposition 4.13, we have that χ(η−1(x), θ(w)) = occ(x, η(θ(w)) and therefore

θ−1(η−1(B)) = (η ◦ θ)−1(B). �

Theorem 4.25 (Correctness of mguω)

The operation mguω is correct w.r.t. mgu, i.e.,

∀[S]U ∈ ShLinω, δ ∈ ISubst . [S]U � [θ]U =⇒ mguω([S]U, δ) � mgu([θ]U, δ).

Proof

Given [S]U�[θ]U and δ ∈ ISubst , we need to prove that mguω([S]U, δ)�mgu([θ]U, δ)

or the equivalent property αω(mgu([θ]U, δ)) �ω mguω([S]U, δ).

Since mguω is defined inductively on the number of bindings in δ, it is enough to

prove that mguω([S]U, x/t) � mgu([θ]U, {x/t}) for a single binding x/t. Since com-

position of correct operators is still correct, it follows that multibinding unification

is correct.

Moreover, when vars(x/t) �⊆ U, we exploit the identity mgu([θ]U, {x/t}) =

mgu(mgu([θ]U, [ε]vars(x/t)), {x/t}). When computing mgu([θ]U, [ε]vars(x/t)) all the vari-

ables in vars(x/t) \ U occurring in θ are renamed apart from x/t itself. Therefore

each v ∈ vars(x/t) \U is free (hence linear) in mgu([θ]U, [ε]vars(x/t)), i.e.,

αω(mgu([θ]U, [ε]vars(x/t))) =
[
S ∪ {{{v}} | v ∈ vars(x/t) \U}

]
U∪vars(x/t)

.

Therefore, it is enough to prove that mguω([S]U, x/t) � mgu([θ]U, {x/t}) when

vars(x/t) ⊆ U. Let B be a sharing group in αω(mgu([θ]U, {x/t})), we prove that

B ∈ mguω([S]U, x/t).

If B = {{}}, we consider a multigraph G with only one node labeled by {{}} and no

edges. It is easy to check that G is a sharing graph for S (since {{}} ∈ S) and x/t and

that res(G) = {{}}. Therefore, in the following we consider only the case B �= {{}}.
The proof is composed of three parts: first, we look for a (special) substitution β

obtained by renaming some variables in θ and such that β is still approximated by
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S; second, we define a multigraph G exploiting the variables of β; third, we show

that we can restrict G to a smaller sharing graph whose resultant ω-sharing group

is exactly B.

First part. Without loss of generality, we assume that dom(θ) = U (this is always

possible since in any class [θ]U , there exists a substitution whose domain is exactly

U). Let θ′ = mgu(θ, {x/t}) = η ◦ θ with η = mgu({θ(x) = θ(t)}), and we have

[θ′]U = mgu([θ]U, [x/t]U). Since dom(θ) = U, we have vars(η) ∩U = ∅. Consider η′

obtained from η by replacing each occurrence of a variable in rng(η) with a different

fresh variable. This means that there exists ρ ∈ Subst mapping variables to variables

such that ρ(η′(x)) = η(x) for each x ∈ dom(η). Namely, we have

ρ = {v1/v2 | ∃x ∈ dom(η), ξ ∈ Ξ s.t. η′(x)(ξ) = v1 ∧ η(x)(ξ) = v2}.

Note that ρ is not a renaming, since it is not bijective. We now show that β = η′ ◦ θ
has the property that [S]U � [β]U . For any C ∈ α([β]U), we may distinguish three

cases:

• C = {{}}. In this case C ∈ S by definition of ShLinω .

• C = β−1(w)|U for w ∈ rng(θ) \ dom(η). In this case occ(w, (η′ ◦ θ)(v)) =

occ(w, θ(v)) for each v ∈ V; therefore β−1(w)|U = θ−1(w)|U ∈ S .

• C = β−1(w)|U for w ∈ rng(η′). Hence there exists v ∈ rng(θ) such that

occ(w, η′(v)) = 1 and occ(w, η′(v′)) = 0 for each v′ /∈ {v′, w}. Hence, for each

u ∈ U, occ(w, η′(θ(u))) = n iff occ(v, θ(u)) = n, and this implies C = θ−1(v)|U ∈
S .

Moreover ρ(β(u)) = θ′(u) for each u ∈ U; therefore θ′ ∼U ρ ◦ β.

Second part. Consider the labeled multigraph G such that NG = {v | v ∈
vars(β(U))}, lG(v) = β−1(v)|U ∈ S and EG = {ξ | β(x)(ξ) ∈ V}. Note that if

β(x)(ξ) ∈ V, then β(t)(ξ) ∈ V, too. Each position ξ in EG is an arrow such that

srcG(ξ) = β(x)(ξ) and tgtG(ξ) = β(t)(ξ). Observe that the second condition in the

definition of sharing graph for S and x/t is satisfied, since [S]U � [β]U .

Let us check the third condition. For each node v ∈ NG, if χ(β−1(v)|U, x) = n

by Proposition 4.13 we have occ(v, β(x)) = n; i.e., there are n positions in β(x)

corresponding to v. Therefore the out-degree of v is n. In the same way, we have

that χ(β−1(v)|U, t) is the in-degree of v.

Third part. Given B = θ′−1(u)|U , by Proposition 4.24 we have B = β−1(ρ−1(u))|U .

Since θ′ �U β �U θ, [θ′]U = mgu([β]U, {x/t}) = [mgu(β, {x/t})]U . Therefore ρ ◦
β′ ∼U θ′ = mgu(θ, {x/t}) ∼U mgu(β, {x/t}) = mgu(β(x) = β(t)) ◦ β. We call δ the

result of mgu(β(x) = β(t)) and note that β(x) = β(t) is equivalent to the set of

equations X = {v1 = v2 | there is a position ξ such that β(x)(ξ) = v1 ∧ β(t)(ξ) = v2}.
The relation ρ ◦ β ∼U δ ◦ β means that if w1, w2 ∈ β(U) and ρ(w1) = ρ(w2), then

δ(w1) = δ(w2). The latter implies that in X there are equations of the kind x1 = x2,

x2 = x3, . . . , xn−1 = xn with x1 = w1 and xn = w2, i.e., w1 and w2 are connected in

the graph G.

Therefore, let Y = {w | ρ(w) = u} = �ρ−1(u)�. This is not empty, since B �= {{}}. If

ξ is an edge such that srcG(ξ) ∈ Y , then tgtG(ξ) ∈ Y , since β(x)(ξ) = β(t)(ξ) ∈ X.

The converse also holds. Hence, if we restrict the graph G to the set of nodes Y ,
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we obtain a sharing graph whose resultant ω-sharing group is
⊎

w∈Y β−1(w)|U =

β−1(ρ−1(u))|U = B. �

Theorem 4.28 (Optimality of mguω)

The single-binding unification mguω([S]U, x/t) is optimal w.r.t. mgu, under the

assumption that vars(x/t) ⊆ U, i.e.,

∀B ∈ mguω([S]U, x/t) ∃δ ∈ ISubst . [S]U � [δ]U and B ∈ αω(mgu([δ]U, {x/t})).

Proof

Let X ∈ mguω(S, x/t). By definition of mguω , there exists a sharing graph G such

that X ∈ res(G). Let NG = {n1, . . . , nk}. We want to define a substitution δ such that

[S]U � [δ]U and X ∈ αω(mgu([δ]U, {x/t})). If X = {{}} this is trivial; hence we assume

that X �= {{}}. The structure of the proof is as follows: first, we define a substitution

δ which unifies with x/t; second, we show that δ is approximated by [S]U , namely,

[S]U � [δ]U; third, we show that X ∈ αω(mgu([δ]U, {x/t})).
First part. We now define a substitution δ which unifies with x/t. For each node

n ∈ NG we consider a fresh variable wn, and we denote by W the set of all these

new variables.

For any y ∈ U \ {x} we define a term ty of arity
∑

n∈NG
lG(n)(y) as follows:

ty = r(wn1
, . . . , wn1︸ ︷︷ ︸

lG(n1)(y) times

, wn2
, . . . , wn2︸ ︷︷ ︸

lG(n2)(y) times

, . . . , wnk , . . . , wnk︸ ︷︷ ︸
lG(nk)(y) times

).

We know that there exists a map f : EG →V such that for each variable y and node

n, the set of edges targeted at n and labeled with y by f is exactly lG(n)(y) · occ(y, t).
Namely, we require

|{e ∈ EG | f(e) = y ∧ tgtG(e) = n}| = lG(n)(y) · occ(y, t).

The idea is that each edge targeted at the node n is actually targeted at one of

the specific variables in lG(n). In particular, each variable y ∈ �lG(n)� should have

exactly lG(n)(y) · occ(y, t) edges targeted at it, so that the total number of edges

pointing n is
∑

y∈U lG(n)(y) · occ(y, t) = χ(lG(n), t), i.e., the in-degree of n. The map

f chooses, for each edge targeted at n, a variable in lG(n) according to the previous

idea.

Now, for each node n and variable y ∈ U, we denote by Mn,y the set of edges

pointing at y in n, i.e., Mn,y = {e ∈ EG | tgtG(e) = n ∧ f(e) = y}. Thus Mn,y may

be partitioned in occ(y, t) sets of lG(n)(y) elements, denoted by Mn,y,ξ such that

∪{Mn,y,ξ | t(ξ) = y} = Mn,y .

We may define some variations of the terms ty by replacing the variables occurring

in them with those in the set Mn,y,l . In particular, for y ∈ U \{x} and any occurrence

ξ of a variable y in t, we define the term t
y
ξ of arity

∑
n∈NG

lG(n)(y) as

t
y
ξ = r(w(Mn1 ,y,ξ), w(Mn2 ,y,ξ), . . . , w(Mnk,y,ξ)),

where if M = {e1, . . . , eq}, we define w(M) as the sequence wn′1
, . . . , wn′q where n′j =

srcEG
(ej).
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Note that ty and t
y
ξ have, in corresponding positions, variables related to nodes

which are connected through edges. We are now ready to define the substitution δ

in the following way:

• δ(x) is the same as t with the difference that each occurrence ξ of a variable

y ∈ t is replaced by the term t
y
ξ;

• for y ∈ U \ {x}, δ(y) = ty;

• in all the other cases, i.e., v /∈ U, δ(v) = v.

Second part. Now we show that [S]U � [δ]U . We need to consider all the variables

v ∈ V and check that δ−1(v)|U ∈ S . We distinguish several cases.

• If we choose the variable wn for some n ∈ N, by construction occ(wn, ty) =

lG(n)(y). Moreover, since G is a sharing graph, there are lG(n)(x) edges in E

departing from n and targeted at nodes m such that χ(lG(m), t) �= 0. Thus∑
y∈vars(t),m∈NG

|{e ∈Mm,y|srcEG
(e) = n}| = lG(n)(x) and occ(δ(x), wn) = lG(n)(x).

Since for each v ∈ U we have that occ(δ(v), wn) = lG(n)(v), we obtain the

required result which is δ−1(wn)|U = lG(n) ∈ S .

• If we choose a variable v ∈ U, then v ∈ dom(δ) and δ−1(v) = {{}} ∈ S .

• Finally, if v /∈ U ∪W , then δ−1(v) = {{v}} and δ−1(v)|U = {{}} ∈ S .

Third part. We now show that X ∈ αω(mgu([δ]U, {x/t})). By definition of mgu

over ISubst∼, we have that mgu([δ]U, {x/t}) = [mgu(δ, {x/t})]U . We obtain

η = mgu(δ, {x/t})
= {x/t} ◦mgu

(
{y = ty | y ∈ U \ {x}} ∪ {y = t

y
ξ | t(ξ) = y}

)
= {x/t} ◦ {y/ty | y ∈ U \ {x}} ◦mgu{ty = t

y
ξ | t(ξ) = y}. (A1)

Let F be the set of equations {ty = t
y
j | t(j) = y}. We show that for any edge

n→ m ∈ EG, it follows from F that wn = wm. Since n→ m ∈ EG, for some y ∈ vars(t)

it holds that f(n → m) = y. This implies that n → m ∈ Mm,y , and therefore there

exists a position ξ such that n → m ∈ Mm,y,ξ . By definition of t
y
ξ , it means that

wn ∈ vars(tyξ), in the same position at which wm occurs in ty; hence wn = wm follows

from ty = t
y
ξ ∈ F .

We know that G is connected; hence for any n, m ∈ NG, the set of equations in F

implies wn = wm. We choose a particular node n̄ ∈ NG, and for what we said before,

we have mgu(F) = {wn/wn̄ | n ∈ NG \ {n̄}}. We show that η−1(wn̄)|U = X:

η−1(wn̄)|U
= {x/t}−1({y/ty | y ∈ U \ {x}}−1({{wn1

, . . . , wnk}}))|U

= {x/t}−1({{wn1
, . . . , wnk}} � λy ∈ U \ {x}.

∑
n∈NG

lG(n)(y))|U

= λy ∈ U \ {x}.
∑
n∈NG

lG(n)(y) � {{x
∑

y∈V occ(y,t)·
∑

n∈NG
lG(n)(y)}}

= λy ∈ U \ {x}.
∑
n∈NG

lG(n)(y) � {{x
∑

n∈NG
χ(lG(n),t)}}.
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Since G is a sharing graph, the total out-degree
∑

n∈NG
χ(lG(n), t) is equal to the total

in-degree
∑

n∈NG
χ(lG(n), x). Hence

η−1(wn̄)|U
= λy ∈ U \ {x}.

∑
n∈NG

lG(n)(y) � {{x
∑

n∈NG
χ(lG(n),x)}}

= λy ∈ U.
∑
n∈NG

lG(n)(y)

= res(G).

This concludes the proof. �

Theorem 4.30 (Optimality of mguω with extension)

The single-binding unification mguω with extension is optimal w.r.t. mgu.

Proof

Let S ′ = S ∪ {{{v}} | v ∈ vars(x/t) \ U}, V = U ∪ vars(x/t), and X ∈ mguω(S ′, x/t).

We want to find [δ]U such that [S]U � [δ]U and X ∈ αω(mgu([δ]U, {x/t})).
Following the previous theorem, we find δ such that X ∈ αω(mgu([δ]V , {x/t}))

and [S ′]V � [δ]V . We want to prove that [S]U � [δ]U and αω(mgu([δ]V , {x/t})) �ω

αω(mgu([δ]U, {x/t})), so that [δ]U is the existential substitutions we are looking for.

We first show that [S]U � [δ]U . Let v ∈ V. Since [S ′]V � [δ]V , it follows that

δ−1(v)|V ∈ S ′:

• If δ−1(v)|V ∈ S , then δ−1(v)|V = δ−1(v)|U , since vars(S) ⊆ U, and thus

δ−1(v)|U ∈ S .

• If δ−1(v)|V /∈ S , then δ−1(v)|V ∈ {{{v}} | v ∈ vars(x/t) \ U}. Then δ−1(v)|U =

{{}} ∈ S .

Now we distinguish two cases: either x ∈ U or x /∈ U.

If x ∈ U, with the same considerations which led to (A1), we have

mgu({x/t}, δ) = mgu({x = t} ∪ Eq(δ|U) ∪ Eq(δ|V\U)) =

= mgu({x = t} ∪ Eq(δ|U) ∪ {y = ty | y ∈ vars(t) \U}.

For each y ∈ vars(t) \ U there exist a position ξy such that t(ξy) = y and

{x/t} ∪ Eq(δ|U) ∪ {y = ty} is equivalent to {x/t} ∪ Eq(δ|U) ∪ {tyξy = ty}. Note that

since y /∈ U, ty (which is actually δ(y)) is linear and independent from x/t and the

other bindings in δ. Therefore

mgu({x = t} ∪ Eq(δ|U) ∪ {y = ty | y ∈ vars(t) \U}
= mgu({x = t} ∪ Eq(δ|U) ∪ {tyξy = ty | y ∈ vars(t) \U}
= mgu({x = t} ∪ Eq(δ|U)) � β′,

where β′ = mgu({tyξy = ty | y ∈ vars(t) \ U}) and dom(β′) = vars({ty | y ∈
vars(t) \U}). It follows that

αω([mgu({x = t} ∪ Eq(δ|U)) � β′]V )

= αω([mgu({x = t} ∪ Eq(δ|U))]V )

= αω(mgu([δ]U, {x/t})).
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If x /∈ U, then

mgu({x/t}, δ) = mgu({x = t} ∪ Eq(δ|U) ∪ Eq(δ|vars(t)\U) ∪ Eq(δ|{x})
= mgu({x = t} ∪ Eq(δ|U) ∪ {y = ty | y ∈ vars(t) \U}∪
{ty = t

y
ξ | t(ξ) = y}

Note that x appears in S ′ only in the multiset {{x}}. Moreover, if n is a node labeled

by {{x}}, there is only one edge which departs from n and there are no edges which

arrive in n. This means that

• wn does not appear in any ty for y ∈ V \ {x};
• δ(x) is linear, since given edges e �= e′, we have that srcEG

(e) �= srcEG
(e′).

As a result, δ(x) is linear and does not share variables with x/t or the other bindings

in δ. The last formula may be rewritten as

mgu({x = t} ∪ Eq(δ|U) ∪ {y = ty | y ∈ vars(t) \U}) � β,

where β is a substitution such that dom(β) = vars(δ(x)) ⊆W . It is obvious that

αω([mgu({x = t} ∪ Eq(δ|U) ∪ {y = ty | y ∈ vars(t) \U}) � β]V )

= αω([mgu({x = t} ∪ Eq(δ|U) ∪ {y = ty | y ∈ vars(t) \U})]V ),

since dom(β) ∩ V = ∅.
Let U1 = vars(t) \U; then

mgu({x = t} ∪ Eq(δ|U) ∪ Eq(δ|U1
))

= δ|U ◦mgu(δ|U({x = t} ∪ Eq(δ|U1
)))

= δ|U ◦mgu({x = δ|U(t)}) ∪ Eq(δ|U1
)))

[since vars(δ|U1
) ∩ vars(δ|U) = ∅ and x �∈ vars(δ|U1

)]

= δ|U ◦ {x/δ|U(t)} ◦ δ|U1

[since {x} /∈ vars(δ|U1
)].

Note that δ|U ◦ {x/δ|U(t)} is mgu(δ|U, {x/t}). We call γ = δ|U ◦ {x/δ|U(t)}, and we

prove that αω([γ]V ) �ω αω([γ ◦ δ|U1
]V ).

Consider a variable v ∈ V. If v /∈ vars(δ|U1
) there is nothing to prove. If

v ∈ rng(δ|U1
) we know that v does not occur anywhere else in δ|U1

and γ. Then

(γ◦δ|U1
)−1(v) = γ−1({{y, v}}) = γ−1(y)�{{v}} for the unique y such that v ∈ vars(δ|U1

(y)).

Therefore, since v /∈ V , the sharing group over V we obtain in γ ◦ δ|U1
from v may

be obtained in γ from the variable y. If v ∈ dom(δ|U1
), then (γ ◦ δ|U1

)−1(v) = {{}},
which occurs in every element of ShLinω . �

Theorem 4.31

Let S be a set of ω-sharing groups and x/t be a binding. Then B ∈ mguω(S, x/t) iff

there exist n ∈ �+, B1, . . . , Bn ∈ S which satisfy the following conditions:

(1) B = �1�i�nBi,

(2)
∑

1�i�n χ(Bi, x) =
∑

1�i�n χ(Bi, t) � n− 1,

(3) either n = 1 or ∀1 � i � n. χ(Bi, x) + χ(Bi, t) > 0.
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Proof

We first prove that these conditions are necessary. Assume that B is a resultant

sharing group for S and x/t, obtained by the sharing graph G. We show that there

exist a finite set I and, for each i ∈ I , a multiset Bi ∈ S , which satisfy the above

conditions.

Take I = NG and Bi = lG(i) for each i ∈ I , so that B = �i∈IBi. Since in-degree of

each node then is χ(Bi, x), the sum of the in-degrees of all the nodes is
∑

i∈I χ(Bi, x),

and the sum of the out-degree is
∑

i∈I χ(Bi, t). Both of them must be equal to the

number of edges in EG. Moreover, each connected graph with |I | nodes has at least

|I |− 1 edges. Finally, if a connected graph has more than one node, then every node

i has an adjacent edge. Therefore, either χ(Bi, x) or χ(Bi, t) is not zero.

Now we prove that the conditions are sufficient. Let I = {1, . . . , n}. If n = 1 and

χ(Bi, x)+χ(Bi, t) = 0 for the only i ∈ I , simply consider a sharing graph with a single

node labeled with Bi and no edges. Otherwise, we partition the set I in three parts:

• Nx = {i ∈ I | χ(Bi, x) = 0};
• Nt = {i ∈ I | χ(Bi, t) = 0};
• N = {i ∈ I | χ(Bi, x) �= 0, χ(Bi, t) �= 0}.

Note that this is a partition of I since, by hypothesis, ∀i ∈ I. χ(Bi, x) + χ(Bi, t) > 0.

Now we define a connected labeled multigraph G whose sets of nodes is I and whose

labeling function is λi ∈ I.Bi. In order to define the edges, we distinguish two cases.

N �= ∅: Let N = {b1, . . . , bm} with m � 1 and consider the set of edges

{a→ b1 | a ∈ Nt} ∪ {b1 → c | c ∈ Nx} ∪ {bi → bi+1 | i ∈ {1, . . . , m− 1}}.

N = ∅: If Nt = ∅, then also Nx = ∅ and there is nothing to prove. We assume that

Nt �= ∅, and thus Nx �= ∅. Let ā ∈ Nt, c̄ ∈ Nx and consider the set of edges

{ā→ c | c ∈ Nx} ∪ {a→ c̄ | a ∈ Nt \ {ā}}.

Note that in both cases, we obtain a multigraph with the following properties:

(1) It is connected.

(2) It has exactly n− 1 edges; i.e., it is a tree (if we do not consider the direction

of edges).

(3) There is no edge targeted at a node i with χ(i, t) = 0 and no edge whose source

is a node i with χ(i, x) = 0.

In the rest of the proof, we call pre-sharing graph a multigraph which satisfies the

above properties.

If indeg(i) is the in-degree of a node and outdeg(i) the out-degree, we call

unbalancement factor of the graph the value∑
{outdeg(i)− χ(Bi, x) | i ∈ I, outdeg(i) > χ(Bi, x)}

+
∑

{indeg(i)− χ(Bi, t) | i ∈ I, indeg(i) > χ(Bi, t)}.
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We prove that given a pre-sharing graph with unbalancement factor k, we can build

another pre-sharing graph with unbalancement factor strictly less than k. As a result,

there is a pre-sharing graph with unbalancement factor equal to zero.

Assume that the graph has unbalancement factor k. There is at least an unbalanced

node. Assume without loss of generality that the unbalanced node is j and that

outdeg(j) > χ(Bj, x). Since
∑

i∈I χ(Bi, x) � n − 1, there exists a node l such that

outdeg(l) < χ(Bl, x). Let e be the unique edge with source j such that if we remove

e from the graph, l becomes disconnected from j. Since no edge starts from a node

i with χ(Bi, x) = 0, χ(Bj, x) > 0. This means that outdeg(j) > 1, and there is at

least another edge starting from j. Assume that it is e′ : j → j ′. Remove this edge

and replace it with an edge l → j ′. It is obvious that the result is a pre-sharing

graph with a smaller unbalancement factor than the original one. The case for

indeg(j) > χ(Bj, t) is symmetric.

Once the unbalancement factor is zero, since
∑

i∈I χ(Bi, x) =
∑

i∈I χ(Bi, t) we can

freely add other edges in such a way to complete the graph w.r.t. the condition on

the degree of nodes. We obtain a sharing graph G such that res(G) = B. �

Appendix B

Proofs of Section 5

In this section we give the proofs of correctness and optimality for the abstract

unification operators mgu2 and mgusl .

Proposition 5.1

The following properties hold:

(1) α2(
⊎
R) =

⊎
α2(R).

(2) rel (γ2(S), x, t)) = γ2(rel (S, x, t)).

Proof
We begin by proving the first property:

α2(�{{B1, . . . , Bn}})

= α2

(
λv ∈

⋃
1�i�n

�Bi�.
∑

1�i�n

Bi(v)
)

= λv ∈
⋃

1�i�n

�Bi�.

{
1 if

∑
1�i�n Bi(v) = 1

∞ otherwise

= �{{o1, . . . , on}} where oi = λv ∈ �Bi�.

{
1 if Bi(v) = 1

∞ otherwise

= �{{α2(B1), . . . , α2(Bn)}}.

Now we proceed with the proof of the second property:

rel (γ2(S), x, t))

=
⋃
{γ2(o) | o ∈ S,�γ2(o)� ∩ vars(x = t) �= ∅}

=
⋃
{γ2(o) | o ∈ S,�o� ∩ vars(x = t) �= ∅} (since �o� = �γ2(o)�)

= γ2(rel (S, x, t))). �
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Theorem 5.2

〈α2, γ2〉 : ShLin2 � ShLinω is a Galois insertion.

Proof

It is obvious that α2 and γ2 are monotone functions and that they are both join-

morphisms. Extensionality of γ2 ◦ α2 follows from the fact that given an ω-sharing

group B, we have B ∈ γ2(α2(B)). Finally, given a 2-sharing group o, we have

α2(γ2(o)) = {o}. This implies that α2 ◦ γ2 is the identity. �

Theorem 5.5

Given [S]U ∈ ShLinω and the binding x/t with vars(x/t) ⊆ U, we have that

mgu2([S]U, x/t) = [(S \ S ′)∪
↓{
⊎
Y | Y ∈ ℘m(S ′), n ∈ χ(Y , x) ∩ χ(Y , t). n � |Y | − 1}]U,

where S ′ = rel (S, x, t).

Proof

By using Proposition 5.1 point 2 and since o �= o′ ⇒ γ2(o) ∩ γ2(o
′) = ∅, we get

α2(γ2(S) \ rel (γ2(S), x, t))

= α2(γ2(S) \ γ2(rel (S, x, t)))

= α2(γ2(S \ rel (S, x, t)))

= S \ rel (S, x, t).

Therefore, we get the equality

mgu2([S]U, x/t) =
[
S \ rel (S, x, t)∪

α2

(
{�R | R ∈ ℘m(rel (γ2(S), x, t)),

∑
B∈R

χ(B, x) =
∑
B∈R

χ(B, t) � |R| − 1}
)]

U
.

Now, with simple algebraic manipulations, we obtain

α2({�R | R ∈ ℘m(rel (γ2(S), x, t)),
∑
B∈R

χ(B, x) =
∑
B∈R

χ(B, t) � |R| − 1})

= α2({�R | R ∈ ℘m(γ2(rel (S, x, t))),
∑
B∈R

χ(B, x) =
∑
B∈R

χ(B, t) � |R| − 1})

= α2({�{{B1, . . . , Bk}} | k ∈ �,

∀i.Bi ∈ γ2(rel (S, x, t)),
∑

1�i�k

χ(Bi, x) =
∑

1�i�k

χ(Bi, t) � k − 1})

= α2({�{{B1, . . . , Bk}} | k ∈ �, {{o1, . . . , ok}} ∈ ℘m(rel (S, x, t)),

∀i.Bi ∈ γ2(oi),
∑

1�i�k

χ(Bi, x) =
∑

1�i�k

χ(Bi, t) � k − 1})

= α2({�{{B1, . . . , Bk}} | k ∈ �, {{o1, . . . , ok}} ∈ ℘m(rel (S, x, t)),

∀i.α2(Bi) = oi,
∑

1�i�k

χ(Bi, x) =
∑

1�i�k

χ(Bi, t) � k − 1})

(such oi’s do always exist, since rel (S, x, t) is downward closed)
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= ↓{α2(�{{B1, . . . , Bk}}) | k ∈ �, {{o1, . . . , ok}} ∈ ℘m(rel (S, x, t)),

∀i.α2(Bi) = oi,
∑

1�i�k

χ(Bi, x) =
∑

1�i�k

χ(Bi, t) � k − 1}

= ↓{�{{α2(B1), . . . , α2(Bk)}} | k ∈ �, {{o1, . . . , ok}} ∈ ℘m(rel (S, x, t)),

∀i.α2(Bi) = oi,
∑

1�i�k

χ(Bi, x) =
∑

1�i�k

χ(Bi, t) � k − 1}

(by Proposition 5.1 point 5.1)

= ↓{�{{o1, . . . , ok}} | k ∈ �, {{o1, . . . , ok}} ∈ ℘m(rel (S, x, t)),

∀i.α2(Bi) = oi,
∑

1�i�k

χ(Bi, x) =
∑

1�i�k

χ(Bi, t) � k − 1}}

= ↓{�{{o1, . . . , ok}} | k ∈ �, {{o1, . . . , ok}} ∈ ℘m(rel (S, x, t)),

∀i.α2(Bi) = oi, ∀i.α2(B
′
i ) = oi,

∑
1�i�k

χ(Bi, x) =
∑

1�i�k

χ(B′
i , t) � k − 1}

(we discuss later why this is faithful)

= ↓{�{{o1, . . . , ok}} | k ∈ �, {{o1, . . . , ok}} ∈ ℘m(rel (S, x, t)), n � k − 1,

n ∈ {
∑

1�i�k

Bi(x) | ∀i.α2(Bi) = oi} ∩ {
∑

1�i�k

χ(B′
i , t) | ∀i.α2(B

′
i ) = oi}}

= ↓{�{{o1, . . . , ok}} | k ∈ �, {{o1, . . . , ok}} ∈ ℘m(rel (S, x, t)), n � k − 1

n ∈ [
∑

1�i�k

oim(x),
∑

1�i�k

oi(x)] ∩ {
∑

1�i�k

χ(B′
i , t) | ∀i.α2(B

′
i) = oi}}.

The move from a single family {Bi}1�i�k to different families {Bi}1�i�k and

{B′
i}1�i�k is possible since if

∀i.α2(Bi) = oi and ∀i.α2(B
′
i ) = oi and

∑
1�i�k

χ(Bi, x) =
∑

1�i�k

χ(B′
i , t) � k − 1,

we may define a family {Ci}1�i�k such that Ci(x) = Bi(x) and Ci(v) = B′(v) for each

v �= x. It is immediate to check that the Ci’s satisfy the condition

∀i.α2(Ci) = oi and
∑

1�i�k

χ(Ci, x) =
∑

1�i�k

χ(Ci, t) � k − 1.

If we denote with c({{o1, . . . , ok}}, t) the set {
∑

1�i�k χ(Bi, t) | ∀i.α2(Bi) = oi}, what

remains to prove is that

↓{
⊎

X | X ∈ ℘m(rel (S, x, t)), n ∈ χ(X, x) ∩ c(X, t).n � |X| − 1}

= ↓{
⊎

X | X ∈ ℘m(rel (S, x, t)), n ∈ χ(X, x) ∩ χ(X, t), n � |X| − 1},

where the only difference is that we have replaced c(X, t) with χ(X, t).

We begin by examining the relationship between c(X, t) and χ(X, t). First of all, it

is obvious that c(X, t) ⊆ χ(X, t); therefore we only need to prove half of the equality.

If there exists o ∈ X such that χM(o, t) = ∞, then c(X, t) is an infinite set. We

call n its least element. Under the same conditions, χ(X, t) is the interval [n,∞]. If

there is no o ∈ X such that χM(o, t) = ∞, then c(X, t) = χ(X, t) and they are both

singletons.
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In the same way, if there exists some o ∈ X such that o(x) = ∞, then χ(X, x) is an

interval of the kind [n,∞). However, if there is no such o, then χ(X, x) is a singleton,

whose unique element is |{o ∈ X | o(x) = 1}|.
Assume that we have X ∈ ℘m(rel (S, x, t)) such that there exists n ∈ χ(X, x)∩χ(X, t)

with n � |X| − 1. We want to prove that we may find a multiset Y ∈ ℘m(rel (S, x, t))

such that there exists m � |Y | − 1 with m ∈ χ(Y , x) ∩ c(Y , t) and
⊎
X �

⊎
Y . This

is enough to complete the proof of the theorem.

We distinguish several cases.

• χ(X, x) and χ(X, t) are both infinite. In this case, c(X, t) is infinite. Moroever,

since χ(X, x) is an interval, there are infinite natural numbers in χ(X, x)∩c(X, t).

We may take Y = X.

• χ(X, t) is infinite and χ(X, x) is a singleton {v}; then v = |{o ∈ X | o(x) =

1}| � k. Since it must be v � k− 1, there are only two choices: either v = k or

v = k − 1. We distinguish the two subcases:

(i) v = k−1. In this case, there exists o ∈ X such that χm(o, t) = 0 and o(x) = 1;

otherwise it is not possible that v � χm(X, t). Since χ(X, t) is infinite, the

same holds for c(X, t); hence we may find an n ∈ c(X, t) such that n � v.

Consider Y = X � (n − v) ∗ {{o}}. We have χ(Y , x) = {v + (n − v)} = n,

c(Y , t) = c(X, t), and |Y | = |X|+n−v = n+1. Therefore n ∈ c(Y , x)∩c(Y , t)

and n � |Y | − 1.
⊎
Y is a valid result, and

⊎
X �

⊎
Y .

(ii) v = k. If there is an o ∈ X such that χm(o, t) = 0, the proof proceeds

as in the previous case. Otherwise, χm(X, t) � k, and since it should be

v = k � χm(X, t), we have χm(X, t) = k. Therefore k ∈ c(X, t) too, since

min c(X, t) = min χ(X, t), and we may take Y = X.

• If χ(X, t) is finite, then χ(X, t) = c(X, t), and we take Y = X. �

Theorem 5.7

Given [S]U in ShLin2 and the binding x/t, let V = {v1, . . . , vn} be vars(x/t) \ U.

Then,

mgu2([S]U, x/t) = mgu2([S ∪ {v1, . . . , vn}]U∪V , x/t).

Proof

First of all, given a finite set of variables V , let us define the extension operator

extV : ShLinω → ShLinω such that extV ([S]U) = [S ∪ {{{v}} | v ∈ V \U}]U∪V . Given

V = vars(x/t) \U = {v1, . . . , vn}, we have that

mgu2([S]U, x/t) = α2(mguω(γ2([S]U), x/t))

= α2(mguω(extV (γ2([S]U)), x/t)).

We also know that

mgu2([S ∪ {v1, . . . , vn}]U∪V , x/t)
= α2(mguω(γ2([S ∪ {v1, . . . , vn}]U∪V ), x/t)).

Hence, it is enough to prove that

extV (γ2([S]U)) = γ2([S ∪ {v1, . . . , vn}]U∪V ).
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By definition of γ2, we have that

γ2([S ∪ {v1, . . . , vn}]U∪V )

=
[⋃

{γ2(o) | o ∈ S ∪ {v1, . . . , vn}}
]
U∪V

=
[⋃

{γ2(o) | o ∈ S} ∪ {{{v1}}, . . . , {{vn}}}
]
U∪V [since γ2(vi) = {{vi}}]

= extV (γ2([S]U)),

which completes the proof. �

Theorem 5.9

Given [S]U ∈ ShLin2 and the binding x/t with vars(x/t) ⊆ U, we have

mgu2([S]U, x/t) = [(S \ S ′) ∪ ↓
⋃
X⊆S ′

res(X, x, t)]U,

where S ′ = rel (S, x, t) and res(X, x, t) is defined as follows:

(1) if X is nonlinear for x and t, then res(X, x, t) = {
⊎
X2};

(2) if X is nonlinear for x and linear for t, |Xx| � 1 and |Xt| � 1, then we have

res(X, x, t) = {(
⊎
Xx) � (

⊎
X2

xt) � (
⊎
X2

t )};
(3) if X is linear for x and strongly nonlinear for t, |Xx| � 1 and |Xt| � 1, then we

have res(X, x, t) = {(
⊎
X2

x) � (
⊎
X2

xt) � (
⊎
Xt)};

(4) if X is linear for x and not strongly nonlinear for t, |Xt| � 1, then we have

res(X, x, t) = {(
⊎
Z) � (

⊎
X2

xt) � (
⊎
Xt) | Z ∈ ℘m(Xx),

|Z | = χM(Xt, t) = χm(Xt, t),

�Z� = Xx};

(5) otherwise res(X, x, t) = ∅.

Proof

By Theorem 5.5, we only need to show that

↓{
⊎

Y | Y ∈ ℘m(S ′), n ∈ χ(Y , x) ∩ χ(Y , t). n � |Y | − 1} = ↓
⋃
X⊆S ′

res(X, x, t), (B1)

where S ′ = rel (S, x, t). We prove the two different inclusions separately.

Left to right inclusion. Let ō ∈ res(X, x, t) for some X ⊆ rel (S, x, t). We want to

prove that there exist Y ∈ ℘m(S ′) and n ∈ χ(Y , x) ∩ χ(Y , t) such that n � |Y | − 1

and �Y = ō. We distinguish several cases.

• If X is nonlinear for x and t, it is �X2 = ō. We distinguish two subcases:

(i) if χM(X, t) = ∞, it is enough to take Y = X �X.

(ii) if χM(X, t) is finite, since X is nonlinear for t, there exists o′ ∈ X such

that χm(o′, t) > 1. Since S ′ is downward closed, consider o ∈ S such

that o(x) = min(o′(x), 1) and o(v) = o′(v) if v �= x. We show that there

exists a natural number n such that for Y = X � X � n{{o}}, we have

χm(Y , t) � χm(Y , x) and χm(Y , t) � |Y | − 1. Since χm(Y , x) � 2χm(X, x) + n,

we need to solve the inequalities 2χm(X, t) + nχm(o, t) � 2χm(X, x) + n and

2χm(X, t) + nχm(o, t) � 2|X| + n. Since χm(o, t) � 2, there always exists a
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solution for n. Since χM(X, x) = ∞, we have that
⊎
Y = ō is on the

left-hand side of (B1).

• If X is nonlinear for x and linear for t. We need to find m such that if we take

Y = Xx�2Xxt�2mXt, we have χm(Y , t) � χm(Y , x). In other words, we need to

solve the disequation 2χm(Xxt, t) + 2mχm(Xt, t) � χm(Xx, x) + 2χm(Xxt, x), which

is always possible, since |Xt| � 1. Since |Y | � 1 + 2|Xxt| + 2m|Xt| we have

χm(X, t) � |Y | − 1.

• If X is linear for x and strongly nonlinear for t, we distinguish two subcases:

(i) χM(X, t) = ∞. Let n = 2χm(Xxt, t) + χm(Xt, t) and consider any number

m such that 2m|Xx| + 2|Xxt| � n. (Such an m always exists, since |Xx| �
1.) Then, consider the multiset Y = 2mXx � 2Xxt � Xt, and we have

that χm(Y , x) = χM(Y , x) = 2m|Xx| + 2|Xxt| � χm(Y , t) by construction.

Moreover χM(Y , t) = ∞ and |Y | � 2m|Xx| + 2|Xxt| + 1. Then
⊎
Y ∈

res(X, x, t) is a valid resultant sharing group.

(ii) χM(X, t) is finite. Let o ∈ Xxt be a sharing group such that χM(o, t) > 1 and

o′ be a generic sharing group in Xx. We need to find two natural numbers

n and m such that if we take Y = 2Xx�2Xxt�Xt�m{{o}}�n{{o′}}, we obtain

χm(Y , x) = χm(Y , t) (from which χM(Y , x) = χM(Y , t) immediately follows)

and χm(Y , x) � |Y | − 1. This means we need to solve the equations

2|Xx|+ 2|Xxt|+ m + n = 2χm(Xxt, t) + χm(Xt, t) + mχm(o, t),

2|Xx|+ 2|Xxt|+ m + n � 2|Xx|+ 2|Xxt|+ |Xt|+ m + n− 1.

Since |Xt| � 1, the second equation is always satisfied. A solution for the

first equation always exists, since the greatest common divisor of χm(o, t)−1

and 1 is 1.

• If X is linear for x and X is not strongly nonlinear for t, consider the

multiset Y = Z �Xxt �Xxt �Xt. Then χm(Y , x) = χM(Y , x) = |Z |+ 2|Xxt| and

χm(Y , t) = χM(Y , t) = 2|Xxt| + χm(Xt, t). Since |Z | = χm(Xt, t), we have that

χm(Y , x) = χm(Y , t). Moreover, |Y | = |Z |+2|Xxt|+|Xt| � χm(Xt, t)+2|Xxt|+1 =

χm(Y , t) + 1.

Right to left inclusion. Let o =
⊎
X, where X ∈ ℘m(S ′) and there exists n � |X|−1

such that n ∈ χ(X, x)∩ χ(X, t). We show that there exists Y ⊆ S ′ and o′ ∈ res(Y , x, t)

such that o′ �2 o. Let k = |X|. We partition X in three multisets Xx = X|{o|χM (o,t)=0},

Xt = X|{o|χM (o,x)=0}, and X|xt = X|{o|χM (o,t)>0∧χM (o,t)>0}. Note that Xx, Xt, and Xxt

here are multisets and not ordinary set as in the definition of mgu2. We distinguish

several cases.

• If �X� is linear for x and strongly nonlinear for t, then χm(X, x) = χM(X, x)

= |Xx| + |Xxt| � k. Since χm(X, x) � k − 1, there are two cases: either |Xx| +
|Xxt| = k − 1 or |Xx|+ |Xxt| = k, which implies that |Xt| � 1.

Since �X� is strongly nonlinear for t, there exists o′′ ∈ Xt � Xxt such that

χM(o′′, t) � 2, and thus χm(X, t) � 2. Therefore χm(X, t) > |Xxt|. Since

χm(X, x) = χM(X, x) � χm(X, t), we have that |Xx| � 1. It follows that

o =
⊎

(Xx �Xxt �Xt) �2 (
⊎

�Xx�)2 � (
⊎

�Xxt�)2 � (
⊎

�Xt�) ∈ res(�X�, x, t).
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• If �X� is linear for x and not strongly nonlinear for t, then, as in the previous

case we have |Xt| � 1. Since X is not strongly nonlinear for t, χM(X, t) =

χm(X, t) = |Xxt| + χM(Xt, t). Moreover, χM(X, x) = χm(X, x) = |Xx| + |Xxt|.
By the condition n ∈ χ(X, x) ∩ χ(X, t), we get χM(Xt, t) = |Xx|. Therefore

o �2

⊎
�Xx� � (

⊎
�Xxt�)2 � (

⊎
Xt) ∈ res(�X�, x, t).

• If �X� is nonlinear for x and t, then o �2 (
⊎

�X�)2 ∈ res(�X�, x, t).
• If �X� is nonlinear for x and linear t, the proof is symmetric to the one of

the first case. �

Theorem 5.12

Given [S]U ∈ ShLin2 and the binding x/t with vars(x/t) ⊆ U, we have

mgu2([S]U, x/t) = [(S \ S ′) ∪ ↓
⋃

X⊆max S ′

(res(X, x, t) ∪ res ′(X, x, t))]U,

where S ′ = rel (S, x, t) and

res ′(X, x, t) =

{
{
⊎
X2} if X = Xxt and l(X) is linear for t,

∅ otherwise.

Proof

It clearly holds that

mgu2([S]U, x/t) ⊇ [(S \ S ′) ∪ ↓
⋃

X⊆max S ′

(res(X, x, t) ∪ res ′(X, x, t))]U, ( 2)

since, for each X ⊆ max S ′, if res ′(X, x, t) is nonempty, then
⊎
X2 may be generated

by the characterization in Theorem 5.9. It is enough to take X ′ = {l(o) | o ∈ X};
hence

⊎
X ′ =

⊎
X2 ∈ res(X ′, x, t) according to the last case of Theorem 5.9.

We prove the opposite inclusion. Let X ⊆ S ′ and assume that X � max S ′. There

exists X ′ ⊆ max S ′ obtained by replacing each a ∈ X with b ∈ max S ′ such that

a �2 b. We have that |X ′| � |X|, since two different elements in X may be replaced

with the same maximal element in X ′. We want to prove that either res(X, x, t) = ∅
or res(X, x, t) ⊆ ↓res(X ′, x, t) or res(X, x, t) ⊆ ↓res ′(X ′, x, t). Therefore, we assume

that res(X, x, t) �= ∅ and compare the linearity properties (linear, nonlinear, strongly

nonlinear) of X ′ w.r.t. those of X.

If they coincide, then it follows that res(X, x, t) ⊆ ↓res(X ′, x, t). This happens

because both res(X, x, t) and res(X ′, x, t) are obtained by the same case of Theorem

5.9. However, note that X ′ may have less elements than X, and therefore some

variable which is nonlinear in res(X, x, t) could be linear in res(X ′, x, t). Actually,

this never happens, since the elements in X ′ which are not explicitly delinearized are

either elements of the multiset Z in the third case of Theorem 5.9 (and therefore

may appear multiple times) or elements of Xt (Xx) subject to the condition |Xt| � 1

(|Xx| � 1).

Assume that the linearity properties of X and X ′ do not coincide. The only

interesting case is when X is linear for x and not strongly nonlinear for t. In all the

other cases, it is immediate from the definition that res(X, x, t) ⊆ ↓res(X ′, x, t).

If X ′ is not linear for x and for t, then it holds res(X, x, t) ⊆ ↓res(X ′, x, t) by

definition.
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If X ′ is linear for x and strongly nonlinear for t, then it is immediate from the

definition that res(X, x, t) ⊆ ↓res(X ′, x, t), provided that |Xx| � 1. Otherwise, it must

be |Xt| = 0, and therefore, in order to be res(X, x, t) �= ∅, we have X = Xxt and

χM(X, t) = 1, which means l(X ′) = X is linear for t. It follows that res(X, x, t) =

{
⊎
X2} = res ′(X ′, x, t).

If X ′ is not linear for x and linear for t, we show that |Xx| � 1. Assume, by

contradiction, that |Xx| > 1. Since X ′ is linear for t and |Xt| � 1, χM(Xt, t) =

χm(Xt, t) � 1, while |�Z�| = |Xx| > 1, which is a contradiction. Thus it must be

|Xx| � 1. If |Xx| = 0, then |Xt| = 0; hence res(X, x, t) = {
⊎
X2} and res(X, x, t) =

res ′(X, x, t). If |Xx| = 1, since X ′ is linear for t, it follows that |Z | = 1. Thus

res(X, x, t) ⊆ ↓res(X ′, x, t). �

Theorem 5.16

The operator mgusl in Definition 5.15 is correct and optimal w.r.t. mgu, when

vars(x/t) ⊆ U.

Proof

It is enough to prove that mgusl is correct and optimal w.r.t. mgu2, namely, that

mgusl ([S, L,U]), x/t) = αsl (mgu2(γsl ([S, L,U]), x/t)).

Let γsl ([S, L,U]) = [T ]U . By Theorem 5.12, it holds that

αsl (mgu2(γsl ([S, L,U]), x/t)

= αsl ([(T \ T ′) ∪ ↓
⋃

Y⊆maxT ′

(res(Y , x, t) ∪ res ′(Y , x, t)})]U

= αsl

(
[T \ T ′]U  2

⊔
Y⊆maxT ′

([↓res(Y , x, t)]U  2 [↓res ′(Y , x, t)}]U)
)
,

where T ′ = rel (T , x, t) and  2 is the lowest upper bound in ShLin2. By additivity of

αsl , this is equivalent to

αsl ([T \ T ′]U)  sl

⊔
Y⊆maxT ′

(αsl ([res(Y , x, t)]U)  sl αsl ([res
′(Y , x, t)]U)). ( 3)

Let X, L′, U ′, and K as in Definition 5.15, we have that mgusl ([S, L,U], x/t) is

equivalent to

[(S \X) ∪K,U ′ ∪ L′, U]. ( 4)

We need to prove that equations ( 3) and ( 4) do coincide. In the rest of the paper,

we assume that the result of ( 3) is [S ′′, L′′, U].

Sharing. We first prove that the Sharing components of the two equations are

equal, i.e., S ′′ = (S \X) ∪K . Given B ∈ S ′′, there are several cases. If B = �o� with

o ∈ T \ T ′, then B ∈ S \X.

If B = �o�, for o ∈ res ′(Y , x, t) with Y ⊆ maxT ′, then B =
⋃
{�o� | o ∈ Y } with

Y = Yxt and l(Y ) is linear for t. If x ∈ L, then B is generated by (XU
xt)

+, since l(Y )

is linear for t. If x /∈ L there are two cases: if Y is linear for t, then it is generated

by (X=1
xt )+, otherwise by bin(X>1

t ∪X>1
xt , Xx ∪Xxt, X

∗). Thus B ∈ K .

Now, assume that B = �o� with o ∈ res(Y , x, t) and ∅ �= Y ⊆ maxT ′. Then

B =
⋃
W , where W = {�o� | o ∈ Y }. Since Y is made of maximal elements and
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[T ]U = γ2([S, L,U]), we have that Y is linear for x iff x ∈ L. For the same reason,

Y is linear for t iff (W,L) is linear for t. As a consequence, if Y is nonlinear for t,

then (X,L) is nonlinear for t.

We proceed by cases.

Y nonlinear for x and t. Then res(Y , x, t) = {
⊎
Y 2}. Since (X,L) is nonlinear for x

and t, we have X>1
t ∪X>1

xt �= ∅ and Xx ∪Xxt �= ∅. Thus B ∈ bin(X>1
t ∪X>1

xt , Xx ∪
Xxt, X

∗) ⊆ K .

Y nonlinear for x and linear for t. By hypothesis |Yx| � 1 and |Yt| � 1; hence

o = (
⊎
Yx) � (

⊎
Y 2
xt) � (

⊎
Y 2
t ) and

B ∈ bin((X=1
t )+, Xx ∪X=1

xt , (X
=1
xt )∗) ⊆ K.

In particular, B ∈ bin((X=1
t )+, Xx, (X

=1
xt )∗) when |Yx| = 1; otherwise B ∈

bin((X=1
t )+, X=1

xt , (X
=1
xt )∗).

Y linear for x and strongly nonlinear for t. In this case we have that o = (
⊎
Y 2
x ) �

(
⊎
Y 2
xt) � (

⊎
Yt) with |Yx| � 1 and |Yt| � 1. By definition of strong nonlinearity,

we have two cases:

• There exists o ∈ Yxt such that χM(o, t) > 1. In this case

B ∈ bin(Xt ∪ {∅}, X>1
xt , X

+
x , X

∗
xt) ⊆ K.

• There exists o ∈ Yt such that χM(o, t) = ∞. In this case

B ∈ bin(X=∞
t , X+

x , X
∗
xt) ⊆ K.

Y linear for x and non strongly nonlinear for t. In this case

o = (
⊎

Z ′) � (
⊎

Y 2
xt) � (

⊎
Yt),

with |Yt| = 1, for some Z ′ ∈ ℘m(Yx) such that |Z ′| = χm(Yt, t) and �Z ′� = Yx. It

is obvious that

B ∈ bin({{o} ∪ (∪Z) | o ∈ X∈�
t , Z ⊆ Xx, 1 � |Z | � χLM(o, t)}, (X=1

xt )∗) ⊆ K,

by choosing Z = {�o� | o ∈ Z ′}.

This proves that if B ∈ S ′′, then B ∈ (S \ X) ∪ K . Now, we need to prove the

converse implication. If B ∈ S \X, then B = �o� for some o ∈ T , and it is obvious

that o ∈ T \ T ′; hence B ∈ S ′′.

Therefore, assume that B ∈ K , and consider the case in which x ∈ L and

B ∈ bin(X=∞
t , X+

x , X
∗
xt). We have that B = A ∪ (∪A′) ∪ (∪A′′) for some A ∈ X=∞

t , A′

nonempty subset of Xx and A′′ ⊆ Xxt. We may find o′ ∈ maxT ′, Y ′, Y ′′ ⊆ maxT ′

such that �o′� = A, �Y ′� = A′, and �Y ′′� = A′′. We have that Y ′′′ = {o′} ∪ Y ′ ∪ Y ′′

is linear for x and strongly nonlinear for t (due to the element o′), with |Y ′′′
x | � 1 and

|Y ′′′
t | � 1. Therefore, we may apply the definition of res to obtain res(Y ′′′, x, t) = {o}

with �o� = B; hence B ∈ S ′′.

With similar reasonings, we may prove that for every B ∈ K , we have B ∈ S ′′. In

particular, the second line of (6) corresponds to the case in which we choose a Y ′′′

which is linear for x and strongly nonlinear for t, due to an element o ∈ Y ′′′
xt which

https://doi.org/10.1017/S1471068409990160 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409990160


On the interaction between sharing and linearity 109

χM(o, t) > 1; the third line of (6) corresponds to the case that Y ′′′ is linear for X

and is not strongly nonlinear for t; the first line of (7) corresponds to the case that

Y ′′′ is nonlinear for both x and t; the second line of (7) corresponds to the case that

Y ′′′ is linear for t and nonlinear for x.

Finally, if x /∈ L and B ∈ (X=1
xt )+, it is possible that B cannot be obtained as

res(Y ′′′, x, t) for any Y ′′′ ⊆ maxT ′. However, B may be obtained as res ′(Y ′′′, x, t),

choosing Y ′′′ as in the previous cases. The same happens if x ∈ L and B ∈ (XU
xt)

+.

Linearity. We want to prove that L′′ = L′ ∪ U ′. First of all, let us define L′′g =

U \ vars(mgu2([T ]U, x/t)) the set of ground variables in mgu2([T ]U, x/t); hence

L′′g ⊆ L′′. We are going to prove that U ′ = L′′g and L′ \ U ′ = L′′ \ L′′g . The first

equality trivially follows from the fact that the sharing component of mgusl is

optimal; hence a variable occurs in a sharing group of S \ S ∪ K iff it occurs in a

2-sharing group of mgu2([T ]U, x/t).

Now, we consider a variable v ∈ U \ U ′ and prove that v ∈ L′ iff v ∈ L′′. There

are several cases. If we assume that v /∈ L, by (8) we have v /∈ L′. Moreover, if

Y ∈ maxT ′ and v ∈ �Y �, by maximality of Y we have Y (v) = ∞. Hence, by

Theorem 5.12, we have v /∈ L′′. If we assume that v /∈ X, by (8) we have v ∈ L′ iff

v ∈ L. Since vars(X) = vars(T ), we also have v ∈ L′′ iff v ∈ L and therefore v ∈ L′

iff v ∈ L′′.

The only case it remains to prove is v ∈ vars(X) ∩ L which, combined with the

condition v /∈ U ′, gives v ∈ vars(K) ∩ L. First of all, note that if v ∈ vars(Xxt),

then v /∈ L′ (by definition of L′) and v /∈ L′′ (since Xxt) appears delinearized in

every 2-sharing group resulting from res or res ′. If v /∈ vars(Xxt), we distinguish four

subcases.

• x ∈ L and (S, L) linear for t. Given Y ⊆ maxT ′, checking the fourth case of

Theorem 5.9 when χM(Yt, t) = 1, we have that res(Y , x, t) is not linear for v

iff v ∈ vars(Yxt) or v ∈ vars(Yx) ∩ vars(Yt). Note that there exists Y ⊆ maxT ′

s.t. v ∈ vars(Yxt)∪ (vars(Yx)∩ vars(Yt)) iff v ∈ vars(T ′
xt)∪ (vars(T ′

x)∩ vars(T ′
t )).

Finally v ∈ L′′ iff v ∈ vars(T ′
xt) ∪ (vars(T ′

x) ∩ vars(T ′
t )) iff v ∈ (Xxt ∪ (Xx ∩Xt))

iff v ∈ L′.

• x ∈ L and (S, L) not linear for t. Given Y ⊆ maxT ′, checking the third and

fourth cases (when χM(Y , t) > 1) of Theorem 5.9, we have that res(Y , x, t)

nonlinear for v implies v ∈ vars(Yxt) or v ∈ vars(Yx), which is equivalent to

v ∈ Xxt ∪ Xx, i.e., v /∈ L′. On the other hand, if v ∈ Xx, we distinguish the

following cases:

(i) (S, L) strongly nonlinear for t. There exists o ∈ T ′ such that χM(o, t) = ∞
or o ∈ T ′

xt such that χM(o, t) > 1. Moreover, there exists o′ ∈ T ′
x such that

v ∈ �o′�. If we take Y = {o, o′}, we have that res(Y , x, t) is not linear for

v; hence v /∈ L′′.

(ii) (S, L) is not strongly nonlinear for t. There exists o ∈ T ′
t such that 1 <

χM(o, t) < ∞. Moreover, there exists o′ ∈ T ′
x such that v ∈ �o′�. If we take

Y ′ = {o, o′}, by the fourth case in the definition of res , we have res(Y , x, t)

is not linear for v, i.e., v /∈ L′′.
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• x /∈ L and (S, L) linear for t. If v /∈ L′′, then v ∈ vars(Yxt) or v ∈ vars(Yt).

This implies v ∈ Xxt ∪Xt, i.e., v /∈ L′. On the other hand, if v ∈ Xt, there exist

o ∈ T ′
x such that χM(o, x) = ∞ and o′ ∈ T ′

t such that v ∈ �o′�. By definition

of res , we have that res({o, o′}, x, y) is not linear for v; hence v /∈ L′′.

• x /∈ L and (S, L) nonlinear for t. Since L′ = L \ X, it is obvious that v /∈ L′.

Moreover, there exist o ∈ T ′ such that χM(o, x) = ∞, o′ ∈ T ′ such that

χM(o, t) > 1 and o′′ ∈ T ′ such that v ∈ �o′′�. Note that it is possible that

o = o′ = o′′. By definition, we have res({o, o′, o′′}, x, t) is not linear for v; hence

v /∈ L′′. �

Theorem 5.19

The operator mgusl in Definition 5.18 is the optimal abstraction of mgu.

Proof

First of all, given a finite set of variables V , let us define the extension operator

extV : ShLin2 → ShLin2 such that extV ([S]U) = [S ∪ {v | v ∈ V \ U}]U∪V . Given

V = vars(x/t) \U, we have that

αsl (mgu2(γsl ([S, L,U], x/t)) = αsl (extV (mgu2(γsl ([S, L,U])), x/t)).

By Theorem 5.16 we have that

mgusl ([S, L,U], x/t) = mgusl ([S ∪ V , L ∪ V ,U ∪ V ], x/t)

= αsl (mgu2(γsl ([S ∪ V , L ∪ V ,U ∪ V ], x/t))).

Hence, it is enough to prove that

extV (γsl ([S, L,U]) = γ2([S ∪ V , L ∪ V ,U ∪ V ]).

By definition of γ2, we have that

γsl ([S ∪ V , L ∪ V ,U ∪ V ])

= [{BL∪V | B ∈ S} ∪ {BL∪V | B ∈ V }]U∪V
= [{BL | B ∈ S} ∪ V ]U∪V [since vL∪V = v]

= extV (γsl ([S, L,U]),

which completes the proof. �
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