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Abstract. The two-dimensional dynamics of nonlinear ion-acoustic waves in a
weakly magnetized plasma comprising cold ions and trapped as well as free elec-
trons is considered. It is shown that owing to departure from the Boltzmann
electron distribution to a vortex-like one, the dynamics of small but finite-amplitude
ion-acoustic waves is governed by a new nonlinear equation which is valid for both
unmagnetized and magnetized plasmas. For exactly vanishing magnetic fields the
modified Kadomtsev–Petviashvili (mKP) equation is recovered. For weakmagnetic
fields, however, the dynamics is mainly different from themKP equation, depending
on the amplitude. By increasing the magnetic field, the new equation becomes
similar (but not identical) to the modified Zakharov–Kuznetsov (mZK) equation,
which is fulfilled for very strong magnetic fields. The plane periodic and solitary
wave solutions of this equation are obtained using the appropriate scalings.

1. Introduction
It is well known that the weakly nonlinear one-dimensional description of ion-
acoustic waves in plasmas is given by the Korteweg–de Vries (KdV) equation
(Washimi and Taniuti 1966). This equation has solitary wave and periodic wave
solutions, both of which have been shown to be stable (Benjamin 1972). The KdV
equation in two dimensions, known as the Kadomtsev–Petviashvili (KP) equation
(Kadomtsev and Petviashvili 1970), was derived for ion-acoustic waves in non-
magnetized plasma comprising cold ions and hot isothermal electrons by Kako and
Rowlands (1976). On the other hand, if the plasma is magnetized, the governing
equations are the Zakharov–Kuznetsov (ZK) equation (Zakharov and Kuznetsov
1974) in strong magnetic fields and the Laedke–Spatschek equation (Laedke and
Spatschek 1982a) in weak magnetic fields. The stability of solutions of the KP, ZK
and the Laedke–Spatschek equations to two-dimensional long wavelength perturb-
ations has been investigated (Infeld et al. 1978; Laedke and Spatschek 1982a and
1982b; Allen and Rowlands 1993). In the more realistic situation in which electrons
are non-isothermal (vortex-like electron distribution), Schamel (1973) showed that
the equivalent governing equation for one dimension is a modified form of the
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KdV equation, and is known as the Schamel equation. So far, two equations are
known for the propagation of a two-dimensional perturbation with non-isothermal
electrons. The modified Kadomtsev–Petviashvili (mKP) equation is found for a
weak transverse coordinate dependence in a non-magnetized plasma. O’Keir and
Parkes (1997) investigated the stability solutions of mKP to two-dimensional long-
wavelength perturbations. On the other hand, Munro and Parkes (1999, 2000)
showed that in very strong external magnetic fields, the governing ZK equation has
a modified form, referred to as the modified Zakharov–Kuznetsov (mZK) equation.
It is shown that for small but finite amplitudes, only with extreme values of
Ωc (Ωc = 0,Ωc/δ → ∞), The equations have been derived for non-isothermal
electrons. Here Ωi/ωpi is the ratio of the ion cyclotron frequency to the ion plasma
frequency and is the amplitude parameter of the solitary waves. For small but finite
Ωc, which occur in most experiments (Laedke and Spatschek 1982a), neither limit
is adequate. In this paper, we try to fill out this gap and to derive a new model
equation, which is valid for finite Ωc/δ values. In the presence of trapped electrons
and weak magnetic fields, we show that, the governing equation is a modified form
of the Laedke–Spatschek equation and using appropriate scalings obtain exact
solutions with solitons and periodic structures.
This paper is organized as follows. The basic equations governing plasma model

under investigation are given in Sec. 2. Derivation of the mKP and mZK equations
is briefly given by the reductive perturbation method in Sec. 3. The new scaling
leading to a newmodel equation for ion-acoustic waves is obtained in Sec. 4. Finally,
a brief discussion is presented in Sec. 5.

2. Basic equations
We consider a plasma, which consists of positively charged cold ions and hot
electrons, in the presence of an external magnetic field (B0‖x̂, where x̂ is a unit
vector along the x direction). The nonlinear behavior of ion-acoustic waves in this
plasma system may be described by the following set of fluid equations:

∂n

∂t
+ ∇ · (nV ) = 0, (1)

∂V

∂t
+ (V · ∇)V + ∇ϕ + Ωcx̂× V = 0, (2)

∇2ϕ = ne − n, (3)

where n is the ion number density normalized to the equilibrium plasma density
n0; V is the ion fluid velocity normalized to the ion speed of sound cs = (Tef/mi),
with Tef being the constant temperature of the free electrons andmi being the mass
of positively charged ions; ϕ is the electrostatic wave potential normalized to Tef/e,
with e being the magnitude of the electron charge. The time and space variables are
given in the units of the ion plasma period ω−1

pi = (mi/4πn0e
2)1/2 and the Debye

length λD = csωpi, respectively. Ωc = B0/
√

4πn0mi is the ion cyclotron frequency
normalized to ωpi and can vary from small values to ∼1 for practical applications.
To model an electron distribution with trapped particles, we employ a vortex-like

electron distribution function after Schamel (1972, 1973) that solves the electron
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Vlasov equation. Thus, we have

fef =
1√
2π

e−(v2−2ϕ)/2 (|v| >
√

2ϕ), (4a)

fet =
1√
2π

e−β(v2−2ϕ)/2 (|v| �
√

2ϕ), (4b)

where the subscripts f and t indicate the free and trapped electron contributions,
respectively. It may be noted here that the distribution function, as presented
above is continuous in velocity space and satisfies the regularity requirements for an
admissible BGK solution [Schamel 1973]. It should be mentioned that the velocity
v is normalized to the electron thermal velocity vte and β which is the ratio of
the free electron temperature (Tef ) to the trapped electron temperature (Tet), is
a parameter determining the number of trapped electrons. It has been assumed
that the velocity of nonlinear ion-acoustic waves is small in comparison with the
electron thermal velocity. Integrating the electron distribution functions over the
velocity space, we readily obtain the electron number density ne as

ne = eϕ erf c(
√

ϕ) +
eβϕ√

|β|
erf(

√
βϕ) (β � 0), (5a)

ne = eϕ erf c(
√

ϕ) +
eβϕ√
π|β|

W (
√

−βϕ) (β < 0), (5b)

whereW is the Dawson integral. If we expand this ne for the small-amplitude limit
and keep the terms up to ϕ2, it is found that ne is the same for both β > 0 and
β < 0 and is finally given by

ne = 1 + ϕ − 4
3bϕ3/2 + 1

2ϕ2, (6)

where b = (1 − β)π1/2 measures the deviation from isothermality. We assume that
b � 0, which is suggested by experiment (Schamel 1973). It should be noted here
that if we neglect resonant effects (b = 0), ne is reduced to the Maxwellian electron
distribution.

3. Derivation of the mKP and mZK equations
To derive the mKP equation, we use the standard reductive perturbation method
and in order to find a suitable choice of scalings for the independent variables, we
use a linear dispersion argument, similar to that used by Infeld and Rowlands
(1990) in their derivation of the ZK equation. Accordingly, we choose the following
scalings for the independent variables:

ξ = ε1/4(x − t), σ = ε1/2y, τ = ε3/4t. (7)

From the basic equations (1)–(3) and (5a), we expand the density, fluid velocities
and electrical potential asymptotically by a smallness parameter ε as

n = 1 + εn(1) + ε3/2n(2) + · · · , (8a)

ϕ = εϕ(1) + ε3/2ϕ(2) + · · · , (8b)

νx = εν(1)
x + ε3/2v(2)

x + · · · , (8c)

νy = ε1/4(εν(1)
y + ε3/2ν(2)

y + · · · ). (8d)
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For Ωc = 0 and using the scalings above, the basic equation is simplified to the
modified Kadomtsev–Petviashvili equation (O’Keir and Parkes 1997),

(∂τ n + bn1/2∂ξn + 1
2∂3

ξ n)ξ + 1
2∂2

σn = 0. (9)

Here, we have set n(1) = n. The corresponding one-dimensional version of the
mKP equation was derived by Schamel (1973), and is known as the Schamel equa-
tion. The mKP equation has solutions that represent plane periodic and solitary
travelling waves (O’Keir and Parkes 1997; Chakraberty and Das 1998); these are,
of course, also solutions of the Schamel equation. On the other hand, for Ωc ∼ 1
the mZK equation can be derived. To include the E ×B and polarization drifts, we
replace in (5b) and (6) the following variables:

σ = ε1/4y, η = ε1/4z, ν⊥ = ε5/4ν
(1)
⊥ + ε3/2ν

(2)
⊥ + · · · . (10)

The longitudinal dynamics and therefore the longitudinal scaling is unchanged
compared with (5b) and (6). Straightforward but lengthy calculations lead to the
mZK equation (Munro and Parkes 2000)

∂τ n + bn1/2∂ξn + 1
2∂3

ξ n + 1
2 (1 + Ω−2

c )∂ξ(∂2
σ + ∂2

η )n = 0. (11)

The stability of plane periodic and solitary traveling wave solutions of (7) and (8b)
to two-dimensional long-wavelength perturbations has been investigated. As dis-
cussed in O’Keir and Parkes (1997) and Munro and Parkes (2000), the solitary
wave solutions are stable with respect to transverse perturbations when Ωc = 0,
on the other hand, for Ωc ∼ 1, soliton solutions are unstable. We can see that
for small but finite Ωc the situation is unknown so far. While the mKP equation
suggests stability, the mZK equation predicts instability. But one should realize
that actually both derivations break down in the intermediate region, where Ωc is
small but finite.

4. Effect of weak magnetic fields on ion-acoustic waves
In Sec. 3 we have shown that in the two limits Ωc = 0, and Ωc ∼ 1, qualitatively
different results occur for the two-dimensional dynamics. Most particle applications
are in the region where Ωc � 1 (Laedke and Spatschek 1982a). The behavior of ion-
acoustic waves in that region is correctly described by neither the mKP equation
nor by the mZK equation. Therefore, we now derive a new nonlinear equation for
long-wavelength ion-acoustic waves propagating in a magnetized plasma, which is
valid in this intermediate region. Since we want to cover the transitions from stable
to unstable behavior, we are guided by the mKP equation scalings and take care of
the drift term, which dominates in the mZK scalings. Thus, we choose the following
scaling for the independent variables:

ξ = ε1/4(x − t), σ = ε1/2y, (12a)

η = ε1/2z, τ = ε3/4t, (12b)

together with the additional condition, Ωc ∼ ε1/4. For the dependent variables we
shall assume expansions to be of the form

n = 1 + εrn 1n(1) + εrn 2n(2) + · · · , (13a)

ϕ = εrϕ 1ϕ(1) + εrϕ 2ϕ(2) + · · · , (13b)
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νx = εrx 1ν(1)
x + εrx 2ν(2)

x + · · · , (13c)

ν⊥ = εr⊥1ν
(1)
⊥ + εr⊥2ν

(2)
⊥ + · · · . (13d)

By balancing the effects of nonlinearity and dispersion (Benjamin 1972), we can
find the appropriate values for rn , rϕ , r⊥ and rx as follows. Using the scalings (8c)
and the expansions (8d) with the set of non-dimensional equations (1)–(3) and (5a),
we equate coefficients of like powers of ε. At the lowest order, meaningful equations
can be obtained only if

∂n(1)

∂ξ
=

∂v
(1)
x

∂ξ
rn1 = rx1 (14)

∂v
(1)
x

∂ξ
=

∂ϕ(1)

∂ξ
rx1 = rϕ1 (15)

∂v
(1)
y

∂ξ
=

∂ϕ(1)

∂σ
− Ωcv(1)

z r⊥1 = rϕ1 +
1
4

(16)

∂v
(1)
z

∂ξ
=

∂ϕ(1)

∂η
− Ωcv(1)

y rϕ1 = r⊥1 − 1
4

(17)

ϕ(1) = n(1) rϕ1 = rn1. (18)

To balance the nonlinearity with the dispersion, we require that rx1 = 1. It
follows from the last five equations that rn1 = rϕ1 = rx1 and r⊥1 = 5

4 . Note that

v
(1)
y and v

(1)
z are the components of the E × B drift. Therefore we can also find the

value of r⊥1 by looking at the E × B drift. At the next order we obtain

∂n(1)

∂τ
− ∂n(2)

∂ξ
+

∂v
(2)
x

∂ξ
+

∂v
(1)
y

∂σ
+

∂v
(1)
z

∂η
= 0 rx2 = rn2, (19)

∂v
(1)
x

∂τ
+

∂ϕ(2)

∂ξ
− ∂v

(2)
x

∂ξ
= 0 rϕ2 = rϕ1 +

1
2
, (20)

∂v
(2)
y

∂ξ
=

∂v
(1)
y

∂τ
+

∂ϕ(2)

∂σ
− Ωcv(2)

z r⊥2 = r⊥1 +
1
2
, (21)

∂v
(2)
z

∂ξ
=

∂v
(1)
z

∂τ
+

∂ϕ(2)

∂η
+ Ωcv(2)

y r⊥2 = rϕ2 +
1
4
, (22)

∂2ϕ(1)

∂ξ2
= ϕ(2) − 4

3
bϕ(1)3/ 2 − n(2) rϕ2 = rn2, (23)

where v
(1)
y and v

(1)
z are the components of the ion polarization drift. From equa-

tions (9), (10) and (12b) we obtain

n(1) = ϕ(1) = v(1)
x . (24)

Taking the derivative (14) with respect to ξ, and using equations (13b) and (15),
we obtain from (13a)

2
∂n(1)

∂τ
+ 2bϕ(1)1/ 2 ∂n(1)

∂ξ
+

∂3n(1)

∂ξ3
+

∂v
(1)
y

∂σ
+

∂v
(1)
z

∂η
= 0, (25)
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whereas equations (9) and (10) yield(
∂2

∂ξ2
+ Ω2

c

)
v(1)

y =
∂2ϕ(1)

∂σ∂ξ
− Ωc

∂ϕ(1)

∂η
, (26a)

(
∂2

∂ξ2
+ Ω2

c

)
v(1)

z =
∂2ϕ(1)

∂η∂ξ
+ Ωc

∂ϕ(1)

∂σ
. (26b)

Now, using equations (16) and (17), one can eliminate v
(1)
y and v

(1)
z , and obtain

∂τ n + bn1/2∂ξn + 1
2∂3

ξ n + 1
2 (∂2

ξ + Ω2
c )

−1∂ξ (∂2
σ + ∂2

η )n = 0, (27)

where we have set n(1) = n. Equation (18) is the new nonlinear equation for ion-
acoustic waves in weak magnetic fields with non-isothermal electrons. It should be
noted here that, for the case of isothermal electrons the equation corresponding
to (18) is known as the Laedke–Spatschek equation which has the same linear
terms as (18) but its nonlinear term is different (Infeld and Rowlands 1990). We
can see in (18) first of all that for the one-dimensional version of this equation
(∂σ = 0, ∂η = 0), we recover the Schamel equation as a modified form of the KdV
equation. Secondly, for Ωc = 0, (18) may be regarded as a weakly two-dimensional
generalization of the Schamel equation, known as the mKP equation. Finally, for
Ωc � ∂2

ξ , an equation similar to the mZK equation (8b) arises. However, it should
not be expected that (8b) and (18) have a common region of applicability since they
have been derived for complementary Ωc regions. In this case, we can transform (18)
to the standard form of the mZK equation to study plane periodic and solitary wave
solutions. Therefore, we choose the following scalings for variables:

t = 8τ x = ξ σ = Ω−2
c y, (28a)

η = Ω−2
c z u =

b2

225
n, (28b)

with the new scalings (19), we obtain

16∂tu + 30u1/2∂xu + ∇2ux = 0, (29)

where ∇2 = ∂2
x +∂2

y +∂2
z is the isotropic Laplacian. In order to study solutions (20)

that represent plane periodic and solitary traveling waves propagating in the direc-
tion, we introduce the wave variable ζ = x − δt, where δ is a positive real constant.
The periodic solution of (20) in this case is

u0(ζ) = r2, (30)

with

r = r2 + (r3 − r2) cn2(pζ�m), (31a)

p2 = r3 − r1, m =
r3 − r2

r3 − r1
. (31b)

Here r1, r2 and r3 are the three real roots of

−4r3 + 6κr2 + 2κ3A = 0, (32)

obtained from the first equation of (21) and two integrations (20) and A is an
integration constant such that −1 < A < 0, κ = 2

3δ and r1 < r2 < r3 (Schamel
1973). The solution has a period time of 2K(m)/p, where K(m) is a complete
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elliptic integral of the first kind (Abramowitz and Stegun 1972). For m = 1, which
corresponds to A = 0, the solution is a solitary wave hump given by

u0(ζ) = δ2 sec h4(δ1/2ζ). (33)

A detailed discussion of the solutions of (20) and the investigation of the stability
of its periodic and solitary wave solutions against two-dimensional long-wavelength
perturbations can be found in the works of Munro and Parkes (2000, 2004) and
Wazwaz (2005).

5. Conclusions
A new nonlinear equation in two dimensions has been derived for ion-acoustic
waves in a plasma consisting of cold ions and non-isothermal electrons. We have
shown that this equation is a modified form of the Laedke–Spatschek equation
in the presence of trapped electrons and weak magnetic fields. The new equation
transforms into the mKP form for Ωc = 0, and is similar to the mZK equation for
strong external magnetic fields (Ωc ∼ 1). It covers the most important region Ωc ∼
δ, where the transition from stable to unstable behavior occurs. With appropriate
scalings, this equation may be transformed into one form of the mZK equation.
In this case, exact solutions with solitons and periodic structures are obtained.
It may be stressed here that the results of this investigation should be useful in
understanding the nonlinear features of electrostatic disturbances in magnetized
laboratory and space plasmas where positively charged ions and free and trapped
electrons are the plasma species.
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