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In traditional Simultaneous Localisation and Mapping (SLAM) algorithms based on Extended
Kalman Filtering (EKF-SLAM), the uncertainty of state estimation will increase rapidly with
the development of the exploration process and the increase of map area. Likewise, the com-
putational complexity of the EKF-SLAM is proportional to the square of the number of feature
points contained in the state variables in a single filtering process. A new SLAM algorithm com-
bining the local submaps and the body-fixed coordinates of the rover is presented in this paper.
The algorithm can reduce the computational complexity and enhance computational speed in
consideration of the processing capability of the onboard computer. Due to the introduction of
local submaps, the algorithm represented in this paper is able to reduce the number of feature
points contained in the state variables in each single filtering process. Therefore, the algorithm
could reduce the computational complexity and improve the computational speed. In addition,
rover body-fixed SLAM could improve the navigation accuracy of a rover and decrease the
cumulative linearization error by coordinates transformation during the update process, which
is shown in the simulation results.
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1. INTRODUCTION. Deep space exploration has become a hot research topic for sev-
eral countries, and the development of a rover system for complex environments has
become a key issue in planetary surface exploration. The Simultaneous Localisation and
Mapping (SLAM) algorithm can achieve self-localisation without prior information by
constructing an incremental map, and this technique has great potential for rover systems
(Islam et al., 2017).

In general, semi-autonomous positioning methods are common for rover surface explo-
ration, but accuracy is affected by the reliability of the rover system and the computational
ability of the onboard computer (Meng and Hutao, 2014). The methods are unstable and
inaccurate when the rover drives on rough terrain, because the wheels of the rover may skid.
In such cases, the rover can obtain relative position and altitude information more easily
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through a SLAM algorithm, and this can play an important role in autonomous navigation
missions (Tan et al., 2013).

The original SLAM algorithm was presented by Leonard and Durrant-Whyte (1991)
and could locate position while modelling environmental maps. The Extended Kalman
Filter (EKF)-SLAM algorithm was established by Dissanayake et al. (2001) and is based
on a Kalman Filter (KF) on the general computational framework of a SLAM algorithm
for mobile robots. In the EKF-SLAM algorithm, Dissanayake et al. (2001) proved that a
solution to the SLAM problem is indeed possible and gave the underlying structure of the
solution to the SLAM problem.

In early SLAM research, scholars focussed on a Two-Dimensional (2D) model of the
SLAM problem, but this is not suitable for complex planetary terrain. Therefore, the Six-
Degree Of Freedom (6-DOF) SLAM for outdoor environments was developed by Nuchter
et al. (2007).

The traditional EKF-SLAM method has an obvious limitation: the computational com-
plexity is proportional to the square of the number of feature points contained in the state
variables in a single filtering process. Many scholars have focussed on reducing the com-
putational complexity of EKF-SLAM. Martinez-Cantin and Castellanos (2006) addressed
the consistency issue of the EKF-SLAM problem and proposed a local map sequenc-
ing algorithm, which can reduce the computational cost in the majority of updates. The
submaps method was presented as a useful way to solve this problem by Paz and Neira
(2006) and Joly and Rives (2009). The computational complexity will decrease by this
method.

Also, the limitation of EKF linearization errors is a big problem for EKF-SLAM. The
existing methods include the alternative linearization method (Martinez-Cantin and Catel-
lanos, 2005) and nonparametric method (Thrun et al., 2004). The traditional EKF-SLAM
method is established in global coordinates, then the accumulated uncertainty of the pose of
the rover and the uncertainty of the position of feature points are introduced into the obser-
vation equation, which increases the linearization error. In the body-fixed SLAM method,
the feature points will be updated in the body coordinates of the rover; only the uncer-
tainty of camera range and Inertial Measurement Unit (IMU) measurement noise are added
to the linearization of the observation equation, which greatly reduces the linearization
error.

In addition, the terrain of the planet is complex, and the computing ability of the onboard
computer is limited. It is necessary to reduce the computational complexity, increase
the computational speed and decrease the algorithm error during the large-scale cruising
exploration. A flow chart of this paper’s structure is given in Figure 1.

2. MOTION MODEL OF THE ROVER. The set of the coordinate systems adopted to
describe the rover’s motion is shown in Figure 2.

2.1. Notation and hypotheses. In the following: OG − xGyGZG is the global coordi-
nate system, which is considered inertial. OR − xRyRzR is the body coordinate system of the
rover, where xR points to the direction of the rover’s motion and yR points to the left direc-
tion of the rover’s motion. OC − xCyCzC is the coordinate system of the binocular camera,
where xC points to the vertical direction of the camera lens and zC points to the opposite
direction of the connecting stick. OAi − xAi yAi zAi is the coordinate system of the rover’s i-th
wheel. OWi − xWi yWi zWi is the coordinate system of the contact point for the rover’s i-th
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Figure 1. A flow chart of the paper’s structure.

Figure 2. Coordinate system of the rover’s motion.
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wheel and the planet surface, where xWi points to the tangential direction of the contact
point’s surface and zWi points to the normal direction of the contact point’s surface. Imi
is the distance between the i-th feature point and the binocular camera. dx is the distance
between the i-th feature point and the binocular camera along the xC coordinate axis. ds is
the distance between the i-th feature point and the binocular camera along the zC coordi-
nate axis. [a, b, c] is the installation location of the binocular camera in the OR − xRyRzR
coordinate of the rover. rW is the radius of the rover’s wheel and B is the width of the rover.

2.2. Kinematic model of the rover. The rover investigated in this paper is a four-
wheel differential rover with three translational Degrees Of Freedom (DOF) and three
rotational DOF. The attitude of the rover is determined by the contact point of the soil
surface and the rover. Linear velocity and angular velocity are control variables during the
process of the rover’s motion, which is determined by the angular velocity of two sets of
differential wheels (Yen et al., 1999).[

xR, yR, zR,φx,φy ,φz
]T denotes position and attitude vectors of the rover, where

φz,φy ,φx stand for yaw angle, pitch angle and roll angle, respectively. The motion model
equation is the following:

ẋ = rw

(
θ̇L(t) + θ̇R(t)

2

)

ωz =
rw

B
(
θ̇L(t) − θ̇R(t)

) (1)

where θ̇L(t) is the rotation velocity of the left wheel, θ̇R(t) is the rotation velocity of the right
wheel, rw is the radius of the wheel, B is the distance between two wheels. ν(t) ∈ R3 is the
linear velocity which points to the x axis, ω(t) ∈ R3 is the angular velocity which points to
the z axis, ẋ and ωz are parameters of linear velocity and angular velocity. ν(t) = [ẋ, 0, 0]T

and ω(t) = [0, 0,ωz]T.
The control inputs are controlled in the body coordinate system of the rover. Therefore,

the linear velocities and angular velocities need to be converted to a global coordinate
system. The rotation matrix CG

R is expressed as:

CG
R =

⎡
⎣cφysφz −cφxsφz + sφxsφysφz sφxsφz + cφxsφycφz

cφysφz cφxcφz + sφxsφysφz −sφxcφz + cφxsφysφysφz
−sφy sφxcφy cφxcφy

⎤
⎦ (2)

where c represents cosine, s represents sine and CG
R represents the transformation matrix

from the rover coordinates to global coordinates.
The transformation matrix of the angular velocity SG

ω is:

SG
ω =

⎡
⎢⎢⎢⎣

1 sφxtφy cφxtφy

0 cφx −sφx

0
sφx

cφy

cφx

cφy

⎤
⎥⎥⎥⎦ (3)
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where t represents tangent and SG
ω represents the transformation matrix of the angular

velocity. The entire kinematic model equation of the rover can be written as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋR

ẏR

żR

φ̇x

φ̇y

φ̇z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

[
CG

R 0

0 SG
ω

] [
v
ω

]
(4)

where v is the linear velocity of the rover and w is the angular velocity.
Since the attitude of the rover is determined by the contact point of the soil and the rover,

the motion of a single wheel needs to be analysed. The coordinates of the contact point can
be obtained in the coordinate system of the rover’s wheel:

⎡
⎢⎢⎢⎢⎣

X Ai
Wi

YAi
Wi

ZAi
Wi

1

⎤
⎥⎥⎥⎥⎦ = CAi

Wi

⎡
⎢⎢⎢⎣

XWi

YWi

ZWi

1

⎤
⎥⎥⎥⎦ i = 1, 2, 3, 4 (5)

where i represents the i-th wheel of the rover, CAi
Wi

is the transformation matrix from
the coordinate system of the contact point to the coordinate system of the rover and(
XWi , YWi , ZWi

)
are the coordinates of the contact point. CAi

Wi
can be represented as:

CAi
Wi

=

⎡
⎢⎢⎣

cos δi 0 sin δi −rw sin δi
0 1 0 0

− sin δi 0 cos δi −rw cos δi

0 0 0 1

⎤
⎥⎥⎦ (6)

where δi is the angle between the normal vector of the contact point and the zAi axis of
coordinate system of the rover.

2.3. Installation model of the binocular camera. Three-dimensional ranging infor-
mation is a common measurement in the localisation system of rovers. A binocular camera
is used as a ranging sensor in this paper. The navigation observations are a series of three-
dimensional point clouds which are generated by matching pairs of visual features. The
installation model of the binocular camera on the rover is shown in Figure 3 (vertical view)
and Figure 4 (lateral view).

The binocular camera is fixed on an oblique stick with two DOF at a certain angle.
The stick, whose length is La, is able to rotate around the connecting bolt with an angular
velocity ωφ . φL is the angle between the control stick and the vertical direction of the
platform. θL is the angle between the control stick and the horizontal forward direction
of the rover. The coordinate system of the camera has its origin at the connecting bolt
for convenience. The stick can also rotate with an angular velocity ωδ about the platform
system. A wide range of the three-dimensional terrains is achieved by the camera’s control
inputs uL =

[
ωδ ,ωφ

]
.
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Figure 3. An installation model for the binocular camera (vertical view).

Figure 4. An installation model for the binocular camera (lateral view).

Valid feature points are selected according to measuring distances. In this paper, the i-th
valid point is equivalent to the i-th feature point in the external environment. Aiming at the
i-th feature point, the measurement model of the camera can be written as follows:

lmi =
√(

pL,x − mi,x
)2 +

(
pL,y − mi,y

)2 +
(
pL,x − mi,x

)2 (7)

where pL is the fixed point of the binocular camera in the global coordinate system and
mi is the i-th feature point in the global coordinate system. The new feature point will
be projected to the global coordinate system by the SLAM algorithm when a new feature
point is observed. For each valid feature point, the position in the coordinate system of the
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camera is given by:

miC =

⎡
⎣mxC,i

myC,i
mzC,i

⎤
⎦ =

⎡
⎣lm,i cosψi

lm,i sinψi
La

⎤
⎦ i = 1, · · · , N (8)

where ψi is the scanning azimuth angle for the i-th feature point in the coordinate system of
the camera and N is the number of feature points at that moment. The rotation matrix CH

C
from the coordinate system of the camera to the coordinate system of the holder platform is:

CH
C =

⎡
⎣1 0 0

0 cosφL sinφL
0 − sinφL cosφL

⎤
⎦ (9)

The attitude transition from the coordinate system of the holder platform to the coordinate
system of the rover is just one rotation around the z axis, thus the rotation matrix CR

H is:

CR
H =

⎡
⎣ cos δL sin δL 0

− sin δL cos δL 0
0 0 1

⎤
⎦ (10)

therefore, the position of the feature point in the global coordinate system can be described
as:

miG = pR + CG
R

⎛
⎝CR

H CH
C miC +

⎡
⎣a

b
c

⎤
⎦

⎞
⎠ i = 1, · · · , N (11)

where pR = [xR, yR, zR]T is the position of the rover in the global coordinate system and
d = [a, b, c] is the position of the holder platform in the coordinate system of the rover.

3. STANDARD EKF-SLAM PROBLEM FOR THE ROVER.
3.1. System state equation. The state of the rover includes three position coordinates

and three attitude angles. The state equation can be obtained by discretising the motion
model of the rover, that is:

XG(k) = XG(k − 1) +�T

[
CG

R (k) 0

0 CG
ω(k)

] [
vR(k) + ṽR

ωR(k) + ω̃R

]
(12)

where �T is a discrete interval time, ṽR ∼ N (0, Qv) and ω̃R ∼ N (0, Qω) are control noise
and k is the discrete time coefficient. The positions of the valid feature points in the local
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maps are static, thus the recursive state equation for a new feature point is:

Xmi (k) = Xmi (k − 1) (13)

It is assumed that the estimated values of the state variables and the covariance matrix are
X̂(k) and P(k) at time k, respectively:

X̂(k) =

[
X̂R(k)

X̂m(k)

]
(14)

P(k) =

[
PRR(k) PRm(k)
PT

Rm(k) Pmm(k)

]
(15)

where X̂R(k) is the estimated value of the position and attitude of the rover, X̂m(k) is the
estimated value of the feature point, PRR(k) is the covariance matrix of the rover, Pmm(k) is
the covariance matrix of the feature point and PRm(k) is the cross covariance of the rover
and the feature point.

The predicted value of the position and attitude of the rover at time k can be defined as:

X̂R(k|k − 1) = X̂R(k − 1) +

[
Ĉ

G
R (k − 1) 0

0 Ŝ
G
ω(k − 1)

] [
T2aR(k)
T2ωR(k)

]
(16)

where aR(k) and ωR(k) are the linear acceleration and angular velocity of the rover, assumed
measured by an IMU and Ŝ

G
ω(k − 1) is the transformation matrix of the angular velocity as

in Equation (3). The predicted state variables and covariance matrix are then given as:

X̂(k|k − 1) =

[
X̂R(k|k − 1)

X̂m(k − 1)

]
(17)

P(k|k − 1) = ∇fX (k)P(k − 1)∇f T
X (k) + Q(k) (18)

where ∇fX (k) is the Jacobian matrix to the state equation f (·) and Q(k) is the variance
matrix of random state error. We assume QIMU(k) is the covariance matrix of random state
error generated by the IMU, thus:

P(k|k − 1) = ∇fR(k)P(k − 1)∇f T
R (k) + ∇fa,ω(k)QIMU∇f T

a,ω(k) + Q(k) (19)

The predicted value of the whole covariance matrix can be simplified as:

P(k|k − 1) =

[∇fR(k)PRR(k − 1)∇f T
R (k) + QRR(k) ∇fR(k)PRm(k − 1)

∇f T
R (k)PmR(k − 1) Pmm(k − 1)

]
(20)

where QRR(k) is the simplified form of the measurement noise variance matrix and state
error variance, which can be described as:

QRR(k) = ∇fa,ω(k)QIMU∇f T
a,ω(k) + Q(k) (21)
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where the Jacobian matrix ∇fa,ω(k) and ∇fR(k) are obtained as follows:

∇fa,ω(k) =

⎡
⎣T2Ĉ

G
R (k − 1) 0

0 TŜ
G
ω(k − 1)

⎤
⎦ (22)

∇fR(k) =
∂X̂R(k|k − 1)

∂X̂R(k − 1)
(23)

QIMU is the covariance of the IMU:

QIMU =
[
σ 2

a
σ 2
ω

]
(24)

where σa is the standard deviation of the accelerometer’s random noise and σω is the stan-
dard deviation of the gyroscope’s random noise. At this moment, if new feature points are
added to the global map, the EKF update process can be completed.

3.2. Map augmentation. It is assumed that the feature points have been obtained by
a binocular camera, but the valid feature points cannot be brought into the state estimation
process directly, since they need to be transformed into the global coordinate system. The
observed variable zj (k) is associated to a new feature point mj at time k:

zj (k) =

[
Imj (k)
ψj (k)

]T

= hk(XG(k), mj ) + vk (25)

where vk ∼ N(0, RLL) is the gaussian white noise with zero mean and RLL is the variance.
The position of the feature point mj in the global coordinate system is:

mjG (k) = gkG (zj (k), X̂G(k)) = P̂R(k) + Ĉ
G
R (k)

(
CR

H CH
C mjC (k) + pR

)
(26)

where mjC (k) is the position of the feature point in the coordinate system of the binocular
camera, whose relation to the observed variable is:

mjC (k) = gkC (zj (k)) =

⎡
⎣lmj (k) cosψj (k)

lmj (k) sinψj (k)
La

⎤
⎦ (27)

Finally, the specific form of the observation equation becomes:

ẑj = hk(X̂G, mj ) =

⎡
⎢⎢⎣

√
(qxc)2

( qyc)2

arctan(qyc/qxc)
La

⎤
⎥⎥⎦

qC = Ĉ
C
H Ĉ

H
R Ĉ

R
GmjG − Ĉ

C
H Ĉ

H
R (Ĉ

R
GpG + dH

R )

(28)

where qC represents the position of the feature point mj in the coordinate system of the
binocular camera.
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So far, the augmentation process for the new feature points has been completed. Next,
the augmentation for the variance matrix of the system state needs to be finished. The
covariance matrix of the feature point itself is:

mjG (k) = gkG (zj (k), X̂G(k))

GX̂G
=
∂gkG (zj (k), X̂G(k))

∂X̂G(k)

Gzj =
∂gkG (zj (k), X̂G(k))

∂zj

(29)

Then, the variance matrix of the new feature point and the covariance matrix of the
planetary rover can be initialised as follows:

Pmm = GX̂G
PRRGT

X̂G
+ Gzj RLLGT

zj

Pmx = GX̂G
PRx = GX̂G

[
PRR PX̂GM

] (30)

where M in PX̂GM is the initial collection of the map features, which is just a symbol for the
initialisation map, the symbol L will be used to represent the global map when the features
are added to the state equation. Finally, the augmentation matrices of the system state and
variance become:

XR(k) →

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

XR(k)

Lk =

⎡
⎢⎢⎢⎢⎣

m1G

m2G

...
mNG

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

PRR(k) →
[

PRR(k) PT
mx

Pmx Pmm

]
(31)

3.3. State updates and revisit. The predicted observed value ẑ(k|k − 1) is given in
Section 3.2. When the observed value of the landmark feature is obtained by the sensor of
the rover, the residual error r(k) between real measured value z(k) and predicted observed
value ẑ(k|k − 1) can be expressed as:

r(k) = z(k) − ẑ (k|k − 1) (32)

Therefore, the matrix S(k) which is the covariance matrix of the residual error of the
observed value is:

S(k) = ∇hX (k)P (k|k − 1)∇hT
X (k) + Qv(k) (33)

where ∇hX (k) is the Jacobian matrix of the observation model with respect to the state
variables and Qv(k) is the covariance matrix of the observation model. It is assumed that
only one feature point is observed during each observation process, then ∇hX (k) can be
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expressed as:

∇hX (k) =
∂h(k)
∂X

∣∣∣∣
X=X̂(k|k−1)

=
[∇hR(k) 0 · · · 0 ∇hj (k) 0 · · ·] (34)

where ∇hR(k) is the Jacobian matrix of the observation model for the position and attitude
variables of the rover and ∇hj (k) is the Jacobian matrix of the observation model for the
feature point state.

After the observed variables are associated with the map state and the feature point state,
the estimated state variables and the covariance matrix of the state variables can be updated
by using the gain matrix W(k). The process is:

X̂(k) = X̂ (k|k − 1) + W(k)r(k) (35)

P(k) = P (k|k − 1)− W(k)S(k)WT(k) (36)

W(k) = P (k|k − 1)∇xhT(k)S−1(k) (37)

The revisit process is similar to the update process of the EKF, which is the most important
link.

It is assumed that the feature point miC observed by the rover at time k is the feature
point associated to the feature point mjG in the map, so the feature point mjG is added to the
map at time (k − w), where w denotes a certain time interval. Therefore, the rover is able
to update the EKF state combining the information from mjG and miC , which reduces the
cumulative uncertainty of the state estimation from time (k − w) to time k.

4. SLAM WITH LOCAL SUBMAPS. The computational complexity is proportional to
the square of the number of feature points contained in the state variables in a single filtering
process. The local submap method can reduce the computational complexity of the SLAM
by updating the covariance of whole system within a suitable interval (Wang et al., 2018).
The local submaps are updated independently before joining the global map. Estimation of
the local map is irrelevant to the estimation of the global map; therefore, the covariance of
the local status and the global status is zero. The global estimation is not changed during the
local update because it is irrelevant, which decreases the computational complexity during
the prediction process. First, an independent local submap is established for the feature
points observed by the camera in the early stage. Then, when the feature points contained
in the submap reach a certain threshold value, namely, the submap reaches a certain scale,
the local submap can be converted to the global state vector, which constitutes the global
map. Next, the local submap is initialised for new feature points. Finally, a number of
observations are consistently integrated into the global map after a time interval, which
reduces the uncertainty of the state variables of the rover.

4.1. System state variables. The system state variables of the local submap method
are:

XlS(k) =

⎡
⎢⎢⎢⎣

GXS(k)
GXi(k)
SXR(k)
SXi(k)

⎤
⎥⎥⎥⎦ (38)
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where GXS(k) is the position and attitude vector of local submap in the global map, GXi(k)
is the position of the feature point in the global map, SXR(k) is the position and attitude
vector of the rover in the local submap and SXi(k) is the position of the feature point in
the local submap. GXm(k) and SXm(k) can be used to represent the collection of the feature
points in global map and the collection of the feature points in the local submap.

4.2. System state estimation process. The state covariance matrix includes the covari-
ance of the global state variables and the local state variables and the cross covariance
between them. However, the cross covariance between the global state variables and the
local state variables is zero. Therefore, the state covariance matrix PlS(k) can be represented
as:

PlS(k) =

⎡
⎢⎢⎢⎣

GPSS(k) GPmS(k) 0 0
GPSm(k) GPmm(k) 0 0

0 0 SPRR(k) SPRm(k)
0 0 SPmR(k) SPmm(k)

⎤
⎥⎥⎥⎦ (39)

where GPSS(k) is the covariance matrix of the position estimation of the local submap in the
global reference and SPRR(k) is the covariance matrix of the position and attitude estimation
of the rover in the local reference.

The predicted state value is then:

XlS (k|k − 1) =

⎡
⎢⎣

GX(k − 1)
f

(
SXR(k − 1), u(k)

)
SXm(k − 1)

⎤
⎥⎦ (40)

The covariance matrix is updated by the rover model during the prediction process. The
global estimation is not changed during the local update, because the local submaps are
updated independently before joining the global map. The computational complexity is
reduced because of the irrelevance. PlS(k|k − 1) is given as:

PlS(k|k − 1) =

⎡
⎢⎣

GP(k − 1) 0 0
0 ∇fX (k)SPRR(k − 1)∇f T

X (k) + Q(k) ∇fX (k)SPRm(k − 1)

0
(∇fX (k)SPRm(k − 1)

)T SPmm(k − 1)

⎤
⎥⎦

(41)
The predicted state value ẑ(k|k − 1) in the local submap method is:

ẑ (k|k − 1) = h
(

SX̂R(k − 1), SX̂i(k − 1)
)

(42)

The observation residuals and the covariance are:

r(k) = z(k) − ẑ (k|k − 1) (43)

S(k) = ∇hX (k)SP (k|k − 1)∇hT
X (k) + Qv(k) (44)

Finally, the update process can be written as:

X̂lS(k) = X̂lS (k|k − 1) + W(k)r(k) (45)

PlS(k) = PlS (k|k − 1)− W(k)S(k)WT(k) (46)

W(k) = PlS (k|k − 1)∇X hT(k)S−1(k) (47)
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The feature points contained in the local reference are far less than those contained in
the global reference, therefore the computational complexity will be reduced significantly.
PlS(k) and W(k) are given as:

PlS(k) =

[
GP (k|k − 1) 0

0 SP (k|k − 1)− W(k)S(k)WT(k)

]
(48)

W(k) = SP (k|k − 1)∇hT
X (k)S−1(k) (49)

4.3. The transformation from local submap to global map. The submap needs to be
transformed to the global map, when the submap reaches a certain scale. Then a new
submap is established and initialised. It is assumed that T(k) is the transformation matrix
from the local reference to the global reference.

GX̂lS(k) = TG
S (k)X̂lS(k) (50)

GPlS(k) = ∇TG
S (k)PlS(k)

(∇TG
S (k)

)T
(51)

Global variables can be written as:

GX̂lS(k) =
[

GX̂S(k)
GX̂i(k)

]
= TG

S (k)
[

GX̂S(k)
SX̂i(k)

]
(52)

where TG
S (k) is the transformation matrix:

TG
S (k) =

[
I6 0

I3 0 CG
S (k)

]
(53)

where CG
S (k) is the transformation matrix from the local coordinate system to the global

coordinate system. The covariance matrix of the global variables can be expressed as:

GPlS(k) = ∇TG
S (k)

[
GPSS(k)

SPii(k)

] (∇TG
S (k)

)T
(54)

where ∇TG
S (k) is the Jacobian matrix of the transformation matrix to the state variables,

namely:

∇TG
S (k) =

∂TG
S (k)

∂
(

GX̂S(k), SX̂i(k)
) (55)

4.4. Estimation constraints for local feature points. The estimation of the feature
points in the global coordinate system cannot be applied to the update process in the local
coordinate system without the coordinate system connection. Moreover, local feature points
will be computed multiple times when proceeding to the coordinate transformation process.
In order to maintain the effectiveness of the algorithm, the independent estimation of the
feature points should be combined and applied to the global estimation process.

The consistent estimation of the feature point status can be made through the known
constraints between common states. The independent estimation of the feature point status
is integrated into the global coordinate system by the constraints between the state vari-
ables, which generates a consistent global estimation result. The constraint process can be
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simplified down to the weighted projection process of the crossing states, which can be
described as follows:

C
(

X̂(k)
)

= b (56)

An EKF algorithm can be used for approximate estimation, therefore the result of the
constraint is:

X̂c(k) = X̂(k) + Wc(k)
(

b − C(k)X̂(k)
)

(57)

Pc(k) = P(k) + Wc(k)Sc(k)WT
c (k) (58)

where:

Wc(k) = P(k)∇C(k)S−1
c (k) (59)

Sc(k) = ∇C(k)P(k)∇CT(k) (60)

The constraints can be described as:

C(k) =

⎡
⎢⎢⎢⎣

GXS(k)
GXi(k)
SXR(k)
SXi(k)

⎤
⎥⎥⎥⎦ = 0 (61)

where:

C(k) =
[−I I 0 −I

]
(62)

The process of transforming local feature points to the global map can be filtered by
Equations (57)–(60), where b = 0.

5. BODY-FIXED SLAM WITH LOCAL SUBMAPS. The errors in the linearization
process of the observation equation and rover’s motion model are the main cause of the
inconsistency. Therefore, reducing the linearization error is the important research content,
which can reduce the uncertainty of the estimation process and increase the consistency of
the algorithm.

The rover body-fixed SLAM algorithm with local submaps is presented in this section.
The traditional EKF-SLAM algorithm is established in the absolute coordinate system,
which increases the linearization error, due to the accumulative uncertainty of the rover’s
pose and the accumulative uncertainty of the feature points’ positions which are introduced
into the observation equation. The feature points will be updated in the coordinate system
of the planetary rover in the body-fixed SLAM algorithm, namely, only the uncertainty
of the binocular camera and IMU observed noise will be introduced into the linearization
process of the observation equation, which will reduce the linearization errors. In addition,
a better result can be obtained by combining the local submaps and transformation of the
coordinates.
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5.1. The state prediction process. The coordinate system of the rover is considered as
the reference coordinate in this section. The state variables of the system can be described
as follows:

RX =

⎡
⎢⎢⎢⎢⎣

RXB
RX1

...
RXnf

⎤
⎥⎥⎥⎥⎦ RP =

⎡
⎢⎢⎣

RPBB . . . RPBnf

...
. . .

...
RPnf B . . . RPnf nf

⎤
⎥⎥⎦ (63)

where RXB is the vector of the absolute coordinate in the coordinate system of the rover,
RPBB is the covariance of RXB, nf denotes the number of the feature points and RXi, i =
1, · · · , nf is the position of the feature points in the coordinate system of the rover.

The position of the feature point in the body coordinate at time k can be written as:

RXi(k) = RXk
k−1(k) ⊕ RXi(k − 1) (64)

where ⊕ denotes the vector sum including coordinate transformation and position shift. The
pose observed by the IMU is considered as an independent feature point, which is added
to the state variables. The predicted values of the state variables and covariance matrix can
be described as follows:

RX̂ (k|k − 1) =

[
RX̂(k − 1)

RX̂
k
k−1 (k|k − 1)

]

RP (k|k − 1) =

[
RP̂(k − 1)

QIMU

] (65)

where QIMU is the covariance matrix of the observation noise.
5.2. The state update process. The positions of the feature points need to be trans-

ferred into the body coordinates from global coordinates. The estimated value of the
observation ẑ (k|k − 1) is:

ẑ (k|k − 1) = h
(

RX̂i, RX̂
k
k−1

)
(66)

The residual error r(k) between the real measured value z(k) and predicted value ẑ (k|k − 1)
is:

r(k) = z(k) − ẑ (k|k − 1) (67)

The covariance matrix of the residual error of observation variable can be described as:

S(k) = ∇hRX (k)P (k|k − 1)∇hT
RX

(k) + Qv(k) (68)

The whole state update process is similar to those in previous sections. The covariance
matrix after augmentation is shown as follows, which should be noted:

RP(k) =
[

RP (k|k − 1)
Qv

]
(69)
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5.3. The state merging process. The position of the feature points and global
coordinate in the body coordinate should be updated by pose changes.

RX̂B(k) = RX̂B(k − 1) ⊕ RX̂
k
k−1(k) (70)

RX̂i(k) = RX̂i(k − 1) ⊕ RX̂
k
k−1(k) (71)

Meanwhile the update process of the state covariance can be obtained as:

RPBB(k) = ∇RX̂B

[
RPBB(k)

RPX̂ k
k−1

(k)

] (
∇RX̂B

)T
(72)

RPii(k) = ∇RX̂i

[
RPii(k)

RPX̂ k
k−1

(k)

] (
∇RX̂i

)T
(73)

where ∇RX̂B and ∇RX̂i are covariance matrices of the estimated variables RX̂B and RX̂i
during the update process. ∇RX̂B can be described as follows:

∇RX̂B =

[
∂RX̂B(k)

∂RX̂B(k − 1)

∂RX̂B(k)

∂RX̂
k
k−1(k)

]
(74)

the merging process can be done through Equations (71)–(74).
5.4. The constraints for body-fixed SLAM with submaps. The state variables and

covariance matrix are defined as follows, corresponding to the local submaps method:

RXl =

[
RXG
RXs

]
RPl =

[
RPG

RPs

]
(75)

the submaps will be integrated into the body-fixed global map when the submaps reach a
certain scale, and the process is shown in Section 3.

Only the changes in state variables and relative positions of the feature points are
updated in the body-fixed SLAM algorithm. Equation (75) can be written as follows:

RXl =

⎡
⎢⎢⎢⎣

RXG
B

RXG
i

RXs
l

RXs
i

⎤
⎥⎥⎥⎦ RPl =

[
RPG

RPs

]
(76)

where RXS
l is the accumulation values of the state changes in the submaps. RXG

i and RXs
i

represent the same feature point in the body-fixed coordinate and local submap, then we
have the following constraint:

cRXi = b (77)

where c =
[
0 I I −I

]
b = 0, because the same feature point should be the same

by coordinate transformation in different coordinate systems. The filtering process was
illustrated in Section 3.
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Figure 5. Three-dimensional trajectory of the planetary rover with the terrain constraint.

Table 1. The setting of simulation parameters.

Name Value

Sampling period 0·2 s
The sum of feature points in the map 200
The radius of wheel 0·2 m
The initial position of the rover [100, 20, −0·3174]
The SD of RN of accelerometer 2·0 × 10−3 m/s
The SD of RN of gyroscope 0·02◦/s
The SD of RN of measuring length 1·0 m
The SD of RN of measuring azimuth 4◦
The SD of RN of control stick 4◦
Sensor frequency of IMU 20 Hz
Sensor frequency of camera 0·5 Hz
Simulation time 400 s

Notice: SD denotes Standard Deviation, RN denotes Random Noise.

6. SIMULATION RESULTS. Simulation results are analysed in this section. It is
assumed that the trajectory of the planetary rover is a circle, so that the modified EKF-
SLAM can be analysed more conveniently. The Three-Dimensional (3D) trajectory of the
planetary rover with the terrain constraint is shown in Figure 5, where the solid pink line is
the trajectory of the centre of mass of the rover and the blue dotted lines are the trajectories
of the contact point of the wheels. Meanwhile, the trajectories of the contact point of the
wheels are enlarged in the upper-left figure in blue dotted lines.

200 landmarks represented as asterisks are distributed randomly in the map. The
simulation parameters used in the following simulation process are shown in Table 1.

The true path and the estimated trajectory by standard EKF-SLAM are shown in
Figure 6, where the bold pink line represents the planetary rover’s planned trajectory and
the fine blue line represents the estimated result by EKF-SLAM. The green points denote
feature points in the map, while the red points denote the observed feature points and the
black ellipses around the red points denote the uncertainty ellipses.

The position error curve and the attitude error curve of the rover based on standard
EKF-SLAM are shown in Figures 7 and 8, respectively, which are drawn in blue lines.

https://doi.org/10.1017/S0373463319000560 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463319000560


166 BO ZHENG AND OTHERS VOL. 73

Figure 6. Simulation results of the true path and the estimated trajectory by standard EKF-SLAM algorithm.

Figure 7. The position error curve of the rover (Standard EKF-SLAM).

Meanwhile, the green lines in Figures 7 and 8 are the covariance curves of the variables,
namely, position covariance curve and attitude covariance curve.

The position error is less than 1 m, and the attitude error is less than 0·5◦, which can be
analysed through the following simulation results. The trace of the covariance of feature
points is shown in Figure 9, from which a new feature point observed by the rover can be
seen; the trace of feature points increases immediately.

In the following part, the body-fixed SLAM algorithm with local submaps is analysed.
The actual motion trajectory of the rover and the sensor parameters are the same as above
in Table 1. The true path and the estimated trajectory based on body-fixed SLAM with local
submaps are shown in Figure 10, where the bold pink line denotes the actual trajectory and
the fine blue line denotes the estimated trajectory. The green points denote feature points
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Figure 8. The attitude error curve of the rover (Standard EKF-SLAM).

Figure 9. The trace of the covariance of feature points (Standard EKF-SLAM).

in the map, while the red points denote the observed feature points and the black ellipses
around the red points denote the uncertainty ellipses.

The position error curves and the attitude error curves of the rover based on body-fixed
SLAM are shown in Figures 11 and 12, respectively, which are drawn in blue lines. Mean-
while, the green lines in Figures 11 and 12 are the covariance curves of the variables,
namely, position covariance curve and attitude covariance curve.

The estimated error of position is kept within 1 m while the estimated error of the attitude
is kept within 0·5◦, which are shown in Figures 11 and 12. The accuracy of body-fixed
SLAM is close to standard EKF-SLAM. Moreover, the uncertainty ellipses are smaller in
Figure 8 than those in Figure 6. Therefore, the uncertainty of the rover’s motion in the
global map can be reduced because of the constraint filtering and local submaps.
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Figure 10. Simulation results of the true path and the estimated trajectory by body-fixed SLAM algorithm with
local submaps.

Figure 11. The position error curve of the rover (Body-fixed SLAM).

The Standard Deviation (SD) curve of the local position and azimuth deviation of the
rover is shown in Figure 13. The SD will decrease after each period of time using the body-
fixed SLAM algorithm compared with the standard EKF-SLAM algorithm in Figure 9.
The cumulative values of the feature points contained in the state variables of the standard
EKF-SLAM and body-fixed SLAM with local submaps are shown in Figure 14.

The computational complexity is proportional to the square of the number of feature
points contained in the state variables. Therefore, the computational complexity is reduced
significantly in body-fixed SLAM. This is because only the local submaps which contain
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Figure 12. The attitude error curve of the rover (Body-fixed SLAM).

Figure 13. The Standard Deviation (SD) curve of the local position and azimuth deviation of the rover
(Body-fixed SLAM).

minor feature points need to be updated in a single filtering process. In addition, the compu-
tational efficiency will be improved correspondingly. Some comparison results of the two
algorithms are listed in Table 2, from which we can see the difference of the two algorithms
clearly. The proposed method has a better performance.

7. CONCLUSIONS. In this paper, a body-fixed SLAM method with local submaps for
planetary surface exploration is proposed. The changes of the rover’s position are taken
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Figure 14. The cumulative values of the feature points contained in the state variables of standard EKF-SLAM
and body-fixed SLAM with local submaps.

Table 2. Some comparison results of the two algorithms.

Standard Body-fixed SLAM
EKF-SLAM with Submaps

The total number of the feature points contained in the
state variables

700 440

Computational complexity ∝ (700)3 ∝ (440)3

The triaxial position error of rover ≤1 m ≤0·5 m
The triaxial angle error of rover ≤0·5◦ ≤0·5◦
Time cost 69 s 41 s

as the state variables before the update of EKF, and then the process of update for EKF
is started. Finally, the position of feature points in the body-fixed coordinate is updated.
The error of the position and attitude can be controlled within acceptable ranges (1 m,
0·5◦) for a planetary rover by the body-fixed SLAM with submaps, which is shown in
the simulation results. However, lower computational complexity is obtained through the
joint algorithm presented in this paper. The algorithm can be used for planetary rovers
in exploration missions. In future research, the algorithm represented in this paper is also
expected to be used in multi-spacecraft formation exploration missions (Zhuo et al., 2018a;
2018b; 2018c).
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