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The spatial distribution of a scalar undergoing advection and diffusion is impacted by the
velocity variability sampled by tracer particles. In spatially structured velocity fields, such
as porous medium flows, Lagrangian velocities along streamlines are often characterized
by a well-defined correlation length and can thus be described by spatial-Markov
processes. Diffusion, on the other hand, is generally modelled as a temporal process,
making it challenging to capture advective and diffusive dynamics in a single framework.
We develop a description of transport based on a spatial-Markov velocity process along
Lagrangian particle trajectories, incorporating the effect of diffusion as a local averaging
process in velocity space. The impact of flow structure on this diffusive averaging is
quantified through an effective shear rate. The latter is fully determined by the point
statistics of velocity magnitudes together with characteristic longitudinal and transverse
length scales associated with the flow field. For infinite longitudinal correlation length,
our framework recovers Taylor dispersion, and in the absence of diffusion it reduces to
a standard spatial-Markov velocity model. We derive dynamical equations governing the
evolution of particle position and velocity and obtain scaling laws for the dependence of
longitudinal dispersion on Péclet number. These results provide new insights into the role
of shear and diffusion on dispersion processes in heterogeneous media.

Key words: mixing and dispersion, porous media

1. Introduction

Transport processes in heterogeneous media are determined by the sampling of the
underlying heterogeneous flow field through advection and diffusion, leading to rich
dynamical behaviour and departure from classical Fickian dynamics (Berkowitz et al.
2006; Klages, Radons & Sokolov 2008). The evolution of Lagrangian velocities along
particle trajectories can be modelled as a stochastic process, taking into account the
statistical properties of the underlying flow field and diffusion (Pope 2011; Sund, Aquino
& Bolster 2019). Such approaches are greatly simplified if the changes in velocity may
be conceptualized as a Markov process, that is, if their evolution depends only on the
current state and not on past history (Meyer & Tchelepi 2010; Meyer & Saggini 2016).
In spatially structured velocity fields, such as porous medium flows, it has been found
that the Lagrangian velocity structure often follows spatial-Markov dynamics (Le Borgne,
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Dentz & Carrera 2008; Dentz et al. 2016; Puyguiraud, Gouze & Dentz 2019b). This
means that Lagrangian velocities vary little over spatial scales below a characteristic length
scale corresponding to a well-defined velocity field correlation length. In such cases, low
velocities persist for longer times than high velocities, because Lagrangian particles take
longer times to cross a correlation length at lower velocities. In terms of the temporal
Lagrangian velocity statistics, this phenomenon may lead to intermittent velocity time
series and consequent loss of the Markov property in time (De Anna et al. 2013; Kang
et al. 2014; Holzner et al. 2015).

Stochastic Lagrangian methods describe transport in terms of random particle
displacements and associated transit times (Sund et al. 2019). The stochastic character of
these models reflects the statistical properties of the underlying heterogeneity, which can
be conceptualized in different manners. For example, time domain random walks consider
transport in single-medium realizations with prescribed statistical properties (McCarthy
1993; Banton, Delay & Porel 1997; Delay & Bodin 2001; Painter et al. 2008; Russian,
Dentz & Gouze 2016; Aquino & Dentz 2018), whereas in a continuous time random
walk successive displacements are independent with statistics determined by medium
heterogeneity (Scher & Lax 1973; Metzler & Klafter 2000; Berkowitz et al. 2006). In
this context, spatial-Markov descriptions often lead to significant simplifications which
facilitate analytical treatment, parameterization based on physical, measurable quantities,
and efficient numerical simulation. Spatial-Markov models may be seen as a variation
on the continuous time random walk representation of Lagrangian particle movement,
with a fixed spatial step and a one-step correlation between successive waiting times or
particle velocities (Le Borgne et al. 2008; Dentz et al. 2016). In some cases, simple Markov
processes such as Bernoulli relaxation or Ornstein–Uhlenbeck for the spatial evolution of
Lagrangian velocities have been shown to capture the key features of purely advective
transport, leading to efficient methods for predicting larger-scale transport properties such
as longitudinal dispersion (Comolli, Hakoun & Dentz 2019; Puyguiraud, Gouze & Dentz
2019a). In recent years, spatial-Markov models have also been extensively employed to
describe conservative transport in porous media (Kang et al. 2011, 2014), fractured media
(Kang et al. 2015, 2017), surface flows (Sherman et al. 2017), and inertial and turbulent
flows (Bolster et al. 2014; Sund et al. 2015; Kim & Kang 2020), as well as mixing and
reaction (Sund et al. 2017a; Sund, Porta & Bolster 2017b; Sherman et al. 2019; Wright
et al. 2019). Despite the popularity and practical success of spatial-Markov methods over
the last decade, a mechanistic model of the role of diffusion in this type of framework
remains unavailable. In applications, the transition probabilities characterizing the spatial
evolution of Lagrangian velocities in the presence of both advection and diffusion are
typically parameterized based on small-scale simulations, and the resulting model is then
applied to predict large-scale transport.

As a scalar tracer is transported through a heterogeneous medium, the statistics
of velocity sampled by the tracer plume evolve in space and time as the underlying
heterogeneity is sampled by moving tracer particles (Dentz et al. 2016; Puyguiraud et al.
2019a; Icardi & Dentz 2020). Under purely advective transport, particles experience this
variability as they move along streamlines. In the presence of diffusion, a tracer particle is
not confined to a single streamline and also experiences the variability across streamlines.
In the classical Brownian motion picture, diffusion is modelled as a temporal process,
and coupling advective space-Markovian Lagrangian velocity dynamics with diffusion
remains an open problem. Previous approaches (Dentz et al. 2004; Bijeljic & Blunt 2006)
have introduced a heuristic diffusive cutoff at the level of the crossing times. In this work
we provide an explicit construction of a spatial-Markov velocity process accounting for
diffusion and heterogeneous advection.
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FIGURE 1. Conceptual illustration of the central concepts behind the diffusing-velocity random
walk. As Lagrangian particles are transported, they undergo advective changes in velocity due
to variability along streamlines as well as diffusion-induced averaging over, and transitions to,
nearby streamlines. The transverse variability of the flow field is encoded in a velocity-dependent
effective shear rate αe(v), which is determined by statistical properties of the flow field. This
conceptual illustration is two dimensional and includes the presence of a solid phase (black
circles), but the proposed approach is applicable also to three dimensions and arbitrary flow
fields characterized by well-defined characteristic lengths along the longitudinal and transverse
directions, as developed in detail in the main text.

Diffusion across nearby streamlines leads to a local averaging over the transverse
spatial structure of the velocity field. Thus, transverse diffusion in real space translates
to an averaging effect in velocity space. We quantify the impact of the spatial structure
on this averaging process through an effective shear rate, characterized in terms of
flow properties. Transport along the longitudinal direction is then described in terms of
equidistant spatial steps along particle trajectories, together with transit times according
to the velocity process. Due to the nature of the velocity transitions induced by
diffusion, which, as we will show, correspond to a dispersive process in velocity space,
we name the approach the diffusing-velocity random walk (DVRW). A conceptual
illustration of the DVRW approach for advective–diffusive transitions is presented
in figure 1.

The general outline of the paper is as follows. First, in § 2 we discuss the description
of transport as a spatial-Markov process in general terms. Section 3 is devoted to the
formulation of the DVRW approach, incorporating the impact of advective and diffusive
velocity transitions. In § 4 we present some general considerations about Eulerian velocity
statistics. These are then employed to relate the effective shear rate to flow characteristics
in § 5. In § 6 we develop predictions for asymptotic longitudinal dispersion in the presence
of both advective and diffusive transitions. Overall conclusions are presented in § 7, and
some supporting technical derivations and numerical validation results may be found in
the appendices.
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2. Transport as a spatial-Markov process

We present, as a starting point, a generic formulation of transport as a spatial-Markov
process (Le Borgne et al. 2008). We start from a discrete formulation and then proceed
to consider its continuum limit. Finally, we provide general forms for the dynamical
equations of some key transport quantities. This general formulation will be adapted to
describe the role of advective and diffusive transitions in the sections that follow.

2.1. Discrete formulation
The velocity magnitudes Vk after k spatial steps of fixed length Δs along streamlines are
assumed to form a Markov chain. This spatial-Markov velocity process is characterized
by its transition probabilities. Discretizing velocity magnitudes into classes, the transition
probabilities rij(s) describe the probability that a tracer particle will be in class i at distance
s + Δs, given that it was in class j at distance s.

We consider transport to be advection dominated along the local flow direction, with
diffusion playing a role locally along the transverse direction(s). At a given velocity v, a
spatial step is associated with a duration Δs/v. The time Tk after k spatial steps is thus
described by the stochastic recursion relation

Tk+1 = Tk + Δs
Vk
, (2.1)

with the initial time T0 = 0. The distribution of initial velocities V0 is determined by
the initial spatial distribution of scalar, which is mapped onto the initial distribution
of velocities according to the Eulerian velocity field. For example, an homogeneous
spatial distribution corresponds to velocities distributed according to the Eulerian velocity
probability density function (PDF), which will be discussed in detail in § 4. In what
follows, we will characterize the Markov chain describing the evolution of velocity along
a particle’s trajectory through its transition probabilities, which depend on the statistical
properties of the underlying flow field. The evolution of particle longitudinal positions
(along the mean flow direction) is then modelled as

Xk+1 = Xk + kΔs
χ
, (2.2)

where χ is the average tortuosity, which can be computed as the spatial average of the
magnitude of Eulerian velocities divided by the spatial average of their projection along
the mean flow direction (Koponen, Kataja & Timonen 1996; Puyguiraud et al. 2019b).

The use of the average tortuosity to relate longitudinal displacements to displacements
along streamlines is common in spatial-Markov models, and it has been applied
successfully to describe transport at the pore scale (Puyguiraud et al. 2019a,b). We will
assume this approximation in the following developments. For completeness and clarity,
we first briefly discuss some of its limitations and possible extensions. An important
limitation is the inability to account for recirculation zones, which, if present, can be
reached by diffusion and lead to long retention times before solute can again exit by
diffusion. Such effects would be mostly naturally included in the present framework by
introducing transition probabilities into an additional zero-velocity state, with distributed
retention times with statistics determined by diffusion and the geometry of recirculation
zones, in the spirit of mobile-immobile or multi-rate mass transfer models (see, e.g. Coats
& Smith 1964; Haggerty & Gorelick 1995; Comolli et al. 2016). Such an approach could
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in addition be used to account for retention times due to sorption and desorption and
related effects. Similarly, the average-tortuosity approximation does not explicitly account
for local flow reversal, and it is in general not expected to be adequate if a strong variability
in tortousity, rather than in velocity, is responsible for the main effects of transport
variability across streamlines. At the expense of greater model complexity and difficulty
of parameterization, the present approach could in principle be used in conjunction with
variable tortuosity, in terms of statistics or mean values conditioned on longitudinal
position and/or velocity. Flow reversal, if important, would require allowing for negative
displacements in longitudinal position to be associated with steps along streamlines.

An important simplification brought about by the average-tortuosity approximation
relates to the description of quantities at fixed longitudinal distance from injection. An
important example, which we will discuss below, are breakthrough curves, representing
mass flux per unit time at fixed control planes transverse to the mean flow direction. Under
this approximation, distributions on a control plane at distance x from injection coincide
with distributions at fixed distance s = χx measured along streamlines. Therefore,
fixed-s statistics, which are most naturally obtained in a spatial-Markov model, directly
determine control-plane statistics. In general, the relationship between fixed-s and fixed-x
distributions is more complex and depends also on the statistics of tortuosity.

2.2. Continuum limit
As we will see, it is convenient in our formulation to define velocity classes related to
diffusive averaging in terms of the discretization Δs. Using this approach, the continuum
limit of Δs → 0 will also correspond to infinitesimal velocity class sizes and transition
times Δs/Vk. Therefore, it will be associated with a continuous stochastic process for the
random time needed to travel distance s along times. In this sense, the recursion relation
(2.1) in the limit Δs → 0 defines a stochastic process

T(s) =
∫ s

0

ds′

VS(s′)
, (2.3)

where VS is the Markov process corresponding to the continuum limit of the Markov chain
defined by the transition probabilities introduced above.

The change in a quantity qi(s), depending on velocity class i and given distance s, due to
all possible velocity transitions over a step Δs is given by qi(s + Δs)− qi(s) = ∑

j /= i rijqj,
where rij is the transition probability from class j to class i and the sum extends over
all velocity classes j /= i. Let q(v; s) be the associated continuous density, i.e. qi(s) =∫ bi+1

bi
dv q(v; s) ≈ Δviq(vi; s), where the velocity class i is defined as comprising velocities

v ∈ [bi, bi+1[ and Δvi = bi+1 − bi. Then, in the limit Δs → 0,

∂q(v; s)
∂s

= Lq(v; s), (2.4)

where L is the continuum operator describing velocity transitions, defined through

Lq(vi; s) = lim
Δs→0

rij(s)− δij

ΔsΔvi
. (2.5)

We are now in a position to develop general forms for the dynamical equations governing
transport quantities. The actual dynamics will then depend on the particular form of
transition operator L, which embodies the transition probabilities of the spatial-Markov
velocity process.
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The space-Lagrangian velocity PDF describes the velocity point statistics of Lagrangian
particles at a fixed distance travelled along streamlines. Note that, in the presence of
diffusion, the same particle trajectory spans multiple streamlines. In addition to advective
transport along streamlines, diffusion transverse to the local flow direction induces
transitions to nearby streamlines, as will be formalized in what follows. As discussed
above, under the average-tortuosity approximation adopted here, this presents no further
difficulties, as transport in the average flow direction can be directly related to the total
distance travelled along (a collection of) streamlines. Using (2.4), we obtain a master
equation for its evolution in space,

∂pS(v; s)
∂s

= LpS(v; s), (2.6)

with no-flux boundary conditions for velocity in order to conserve probability. For a given
initial condition in s, corresponding to the velocity distribution at s = 0, the solution of
(2.6) represents the distribution of velocities at fixed s over an ensemble of trajectories,
irrespective of the arrival time. Equation (2.6), together with the initial condition, defines
the continuous stochastic velocity process VS.

Other important transport quantities are breakthrough curves (mass flux per unit time
at a given distance) and concentration profiles (PDF of positions at a given time). Due
to correlations introduced by the velocity process, it is convenient to first consider the
joint probability density of velocity and arrival time at a fixed distance, defined such that
ψ(v, t; s) dv dt is the probability of arriving at a given distance s at a time in [t, t + dt[ and
with velocity in [v, v + dv[. Proceeding similarly to above, see appendix A for details, we
obtain the dynamical equation

∂ψ(v, t; s)
∂s

+ v−1 ∂ψ(v, t; s)
∂t

= Lψ(v, t; s). (2.7)

The boundary and initial conditions are no-flux in velocity as before, along
with ψ(v, t; 0) = pS(v; 0)δ(t) and ψ(v, 0; s) = 0. Note that, by definition, we have∫∞

0 dtψ(v, t; s) = pS(v; s). Indeed, integrating out t in (2.7) leads to (2.6) for the
space-Lagrangian velocity PDF. The first passage time PDF at distance s is given by
φ(t; s) = ∫∞

0 dv ψ(v, t; s). Particle positions as a function of time are given by XT(t) =
X[S(t)] = S(t)/χ , where S(t) describes the random distance travelled by advection
along streamlines. Since S(t) always increases with time, and longitudinal position is
approximated using the average tortuosity, each Lagrangian particle in this model crosses
a given longitudinal position at most once. The breakthrough curves, normalized to unit
total mass, are thus related to the first passage times by f (t; x) = φ(t;χx).

In order to obtain the PDF of particle positions at a given time, we employ the concept
of subordination (Feller 2008; Meerschaert & Sikorskii 2012), which may be thought of
as a stochastic change of independent variable. For example, consider XU(u) describing
the random position of a particle as a function of time u spent moving. If the time spent
moving as a function of total time t is itself a random variable U(t), the position of the
particle as a function of total time is given by the subordinated process XT(t) = XU[U(t)].
The total time T(u) given time u spent moving is called the subordinator, and U(t)
is called its conjugate process. Here, the time T(s) as a function of fixed distance s
plays the role of the subordinator, and S(t) is its conjugate process at fixed time t.
According to the theory of subordination, the PDF of S(t) is then given by Feller (2008),

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

95
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.957
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Benson & Meerschaert (2009) and Meerschaert & Sikorskii (2012):

h(s; t) =
∫ t

0
dt′
∂f (t′; s)
∂s

. (2.8)

Integrating out velocity in (2.7), and noting that, as reflected by the boundary conditions,
conservation of probability leads to the integral on the right-hand side vanishing, this may
be written as

h(s; t) =
∫ ∞

0
dv v−1ψ(v, t; s). (2.9)

By definition, h(s; t) ds is the probability of having travelled a distance in [s, s + ds[ along
streamlines by time t. The spatial concentration, normalized to unit mass, is the PDF of
particle positions XT(t) = S(t)/χ , and it is therefore given by c(x; t) = χh(χx; t).

Finally, consider the time-Lagrangian velocity PDF, describing particle velocities at
fixed time rather than distance, that is, the PDF of velocities VT(t) = VS[S(t)] at fixed t.
Using the same approach as before leads to

pT(v; t) =
∫ ∞

0
ds v−1ψ(v, t; s). (2.10)

We note that equations for multi-point PDFs, corresponding to the joint PDFs of quantities
at more than one time or distance, may be obtained through similar procedures, see Dentz
et al. (2016).

3. The diffusing-velocity random walk

As outlined in the introduction, velocity transitions may occur due to both transverse
diffusion and velocity variability along each streamline. We now proceed to quantify the
impact of these two processes within the generic spatial-Markov framework outlined in
the previous section. To this end, we first present an adapted derivation of the formulation
of advective velocity transitions developed by Dentz et al. (2016). We then develop a new
approach to quantify the impact of transverse diffusion on velocity transitions. Finally, we
combine the two to arrive at the general DVRW framework.

3.1. Advective transitions
We consider first advective transitions along streamlines, in the absence of diffusion.
Let r A

ij be the velocity transition probabilities of the spatial-Markov process associated
with advective transitions, i.e. due to changes in velocity along a streamline. In order to
characterize the continuum limit Δs → 0, we make use of the fact that the velocity process
is Markov, with some correlation length �// corresponding to the longitudinal correlation
length of the velocity field. We write, to first order in Δs,

r A
ij = Δs

�//
βij(1 − δij)+

[
1 − Δs

�//
(1 − βii)

]
δij, (3.1)

where δ·· is the Kronecker delta. The first term corresponds to the probability of changing
velocity class and the second of staying in the same class. The βij encode the dependency
of the transition probabilities on the velocity classes. To ensure normalization, i.e.∑

i r A
ij = 1, we must have βjj = 1 −∑

i /= j βij.
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Recall that rij − δij, seen as a function of velocity class j for each velocity class i, defines
an operator describing the change in velocity class due to a transition, see (2.5). Equation
(3.1) leads, to first order in Δs, to

r A
ij − δij = Δs

�//
(βij − δij). (3.2)

Thus, in the continuum limit, we recover the dynamical equations of § 2 with a transition
operator L = LA describing advective transitions along streamlines. This is in general an
integral (as opposed to differential) operator, because the velocity transitions may be long
range in velocity space. Indeed, according to (2.5), we have, for an arbitrary density q(v)
as a function of velocity v,

LAq(v) = �−1
//

∫ ∞

0
dv′ [β(v | v′)− δ(v − v′)

]
q(v′), (3.3)

where β is the transition PDF along streamlines (units [β] = 1/V = T/L), i.e. β(v | v′) dv
is the transition probability from velocity v′ to a velocity in [v, v + dv[. It corresponds to
the limit

β(vi | vj) = lim
Δs→0

βij

Δvi
. (3.4)

In this case, it has been shown that, under ergodicity and incompressibility, the equilibrium
space-Lagrangian velocity PDF is the flux-weighted Eulerian PDF (see § 4), irrespective
of the initial condition, and the equilibrium time-Lagrangian velocity PDF is the Eulerian
velocity PDF (Dentz et al. 2016; Puyguiraud et al. 2019a,b). Non-stationary transition
probabilities can be encoded in s-dependent βij and would lead to s-dependent β(v | v′).
We note that, in natural media such as geological structures, non-stationarity is typically
most naturally described in terms of distance x along the mean flow direction, which under
the average-tortuosity approximation is directly related to s via s = χx .

The details of the dynamics depend on the choice of process governing the transition
probabilities between velocity classes and on the underlying Eulerian velocity distribution.
As in Dentz et al. (2016), we will focus on the case of Bernoulli relaxation. This process
is defined by the transition probabilities

r A
ij = e−Δs/�//δij +

(
1 − e−Δs/�//

)
p∞

i . (3.5)

The physical interpretation of this set-up is as follows. Velocities persist on the scale of
the correlation length �//, and when a transition occurs, the probability of the new velocity
being in class i is given by the prescribed equilibrium probability p∞

i . Thus, the velocity
distribution ‘relaxes’ towards the equilibrium distribution on a spatial scale of the order of
�//. The exponential probability of persistence in (3.5) is a consequence of the assumption
that the probability of transition per unit length is constant and equal to 1/�//. In this sense,
the Bernoulli process may be seen as the simplest Markov process converging to a given
equilibrium distribution on a given scale. For small Δs, this corresponds, according to
(3.1), to βij = p∞

i , the equilibrium probability of velocity class i. The continuum-limit
transition PDF is given by β(vi | vj) = p∞(vi), the equilibrium PDF evaluated at vi,
irrespective of vj. As mentioned above, the equilibrium PDF should in this context be
taken equal to the flux-weighted Eulerian PDF.

Under the Bernoulli relaxation process, all velocities relax towards the equilibrium
distribution at the same spatial rate. Other processes may be used to account for
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The diffusing-velocity random walk 910 A12-9

velocity-dependent relaxation while retaining the Markov property and stationarity of the
transitions. For example, a process based on the classical Ornstein–Uhlenbeck process
describing temporal velocity fluctuations in Brownian motion (Uhlenbeck & Ornstein
1930) has been successfully employed to capture slower spatial relaxation of low velocities
in connection with transport in a heterogeneous porous medium (Puyguiraud et al. 2019a).
Conversely, in the presence of preferential high-velocity channels, one expects stronger
correlation, and consequently slower spatial relaxation, at high velocities. In general, in
the present formulation, velocity-dependent relaxation corresponds to j-dependent βij.
From (3.2), where the latter always occur in the combination βij/�//, we see that this
leads, in effect, to a velocity-dependent correlation length. In this sense, we may interpret
�///

∑
i /= j βij = �///(1 − βjj) as an effective correlation length associated with velocity

class j. The probability of leaving a velocity class in a given step is then inversely
proportional to the effective correlation length. Note that the βij are in principle arbitrary,
so long as probability is conserved,

∑
i βij = 1, and they lead to the correct equilibrium

distribution, the flux-weighted Eulerian PDF. Even when the overall velocity distribution
across all particles has reached equilibrium, single-particle velocities remain dynamic,
with the spatial velocity series of each particle undergoing purely advective transport being
directly determined by the choice of βij.

3.2. Diffusive transitions
Next, we examine the role of diffusion, disregarding advective transitions for the moment.
This corresponds to the limit of infinite correlation length �// → ∞. It is directly
applicable to stratified flow, where velocity is constant along each streamline, and velocity
transitions are due only to transverse diffusion across streamlines. This will lead us to
discrete and continuous formulations of transverse diffusion as a spatial-Markov process.

3.2.1. Discrete formulation
The characteristic transverse length explored by diffusing particles in a time interval Δt

is given by
√

2DΔt, and a spatial displacement of length Δs at velocity v corresponds to a
duration Δt = Δs/v. The local averaging of velocities due to transverse diffusion during
this time interval depends on the spatial structure of the velocity field. The cornerstone
of our approach is the notion of a velocity-dependent effective shear, see figure 1. We
describe the local variation of the flow around regions of velocity v in terms of an effective
transverse shear rate magnitude αe(v), so that the range of velocities averaged by diffusion
around velocity v is given by

Δv(v) = αe(v)
√

2DΔs/v. (3.6)

The actual transverse velocity gradient magnitude depends in general on position, and
a given value of velocity at a randomly chosen spatial location is thus associated with
a PDF of possible shear values. Our approach may be seen as a mean-field formulation
associating an average shear rate αe(v) with each velocity value v.

We consider for now that the effective shear rate αe(v) is known as a function of velocity
magnitude, and we will derive the consequences for transport. Section 5 will be devoted
to relating the effective shear rate to physical properties, in particular the underlying
flow statistics. Note that, analogously to above with the transition PDF β characterizing
advective transitions, we have assumed that αe(v) does not depend on distance s.
A non-stationary model can be formulated using the present approach, but we refrain from
exploring it here for simplicity.
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The changes in velocity at each step are modelled as a spatial-Markov process, which is
characterized by the diffusive transition probabilities r D

ij from each velocity class j to each
velocity class i over a step Δs along the flow direction. We discretize velocity magnitudes
v into classes v ∈ [bi, bi+1[. The width Δvi = bi+1 − bi of each class is determined by
transverse diffusive averaging according to (3.6). That is, we set Δvi = αi

√
2DΔs/vi,

where vi is the average velocity within class i and αi = αe(vi). A recursive construction
valid in the limit of small class widths is given in appendix B. The class widths Δvi vanish
in the limit Δs → 0, so that small-Δvi approximations are reasonable for small Δs. The
same is true of the transition times Δs/vi.

In each step Δs, diffusion averages over the current velocity class, and induces
transitions to the nearest classes according to the transition probabilities

r D
ij = r+

j δi,j+1 + r−
j δi,j−1, (3.7)

where r±
j are the transition probabilities from class j to class j ± 1, with r+

j + r−
j = 1.

For the j = 0 velocity class, we have r+
0 = 1 and r−

0 = 0, since there is no class below.
Conversely, for the highest velocity class, transitions are always to the class below. For
the remaining classes, the diffusive transition probabilities are obtained as follows. By
construction, during a transition, diffusion homogenizes a transverse length corresponding
to a velocity class. The transition is thus associated with a transition time Δt = Δs/vj,
where vj is the (arithmetic) average velocity in the class. However, for a given Δt, the
amount of distance travelled at a given velocity v is proportional to v. This means that
the probability of a particle having velocity v when it finishes the spatial step Δs is
proportional to v. In other words, the velocity distribution within a class after a spatial
transition is flux weighted. Imposing a diffusive transition to the velocity class below if
the particle has a velocity lower than the class average (and to the class above otherwise)
leads to r−

j = ∫ vj

bj
dv v/

∫ bj+1

bj
dv′ v′. Thus, r−

j = (v2
j − b2

j )/(b
2
j+1 − b2

j ). Approximating the
class average vj by the class centre, we have bj = vj − Δvj/2 and b2

j+1 − b2
j = (bj+1 −

bj)(bj+1 + bj) = 2vjΔvj, so that

r±
j = 1

2
± Δvj

8vj
. (3.8)

3.2.2. Continuum limit
According to the previous construction, as Δs → 0, both the velocity class widths

Δvi → 0 and the corresponding transition times Δs/vi → 0, indicating that this
corresponds to a genuine continuous limit. We now examine this limit in detail, and we
obtain the continuum stochastic process underlying diffusive transitions, as well as the
associated transition operator.

In the continuum limit, (3.7) leads to the operator L = LD associated with diffusive
transitions, see (2.5). Because diffusive transitions are local, the corresponding operator is
differential. For an arbitrary density q,

LDq(v) = ∂

∂v

[
γ (v)

∂q(v)
∂v

− μ(v)q(v)
]

; (3.9)

see appendix C for details on the derivation. The spatial velocity diffusivity γ ([γ ] =
V2/L = L/T2) corresponds to the limit γ (vi) = limΔs→0 Δv2

i /(2Δs) and is given by

γ (v) = Dv−1αe(v)
2, (3.10)
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and

μ(v) =
(
v−1 − ∂

∂v

)
γ (v)

2
(3.11)

is a spatial velocity drift ([μ] = V/L = 1/T). The first term in this drift is due to the
fact that particles are more likely to transition to higher velocities by diffusion within
a class, due to the flux-weighting effect discussed above. The second arises because
velocity classes, corresponding to spatial averaging by diffusion over a constant spatial
step, have velocity-dependent sizes. Thus, particles spend longer distances at velocities
where classes are smaller, giving rise to an effective drift towards these velocities. The size
of the velocity class decreases with velocity, because shorter crossing times are associated
with smaller diffusion lengths, and increases with effective shear, because higher effective
shear corresponds to stronger variation of velocity over the same transverse distance (see
figure 1). In particular, the space-Lagrangian velocity PDF obeys the master equation (2.6)
with L = LD. The boundary conditions in v must ensure conservation of probability, so
that we have the no-flux condition γ ∂pS/∂v − μpS = 0 at the minimum and maximum
velocities.

3.3. Combining advective and diffusive transitions
We now combine the diffusive and advective transition mechanisms to obtain the complete
transition probabilities of the DVRW framework, see figure 1. We impose that, if (and only
if) a particle does not undergo an advective transition along a streamline, diffusion causes
a transition to one of the nearest velocity classes. That is, the transition probabilities in the
presence of both advection and diffusion become

rij = r A
ij (1 − δij)+ r A

jj

(
r+

j δi,j+1 + r−
j δi,j−1

)
. (3.12)

Thus, to first order in Δs, the changes in velocity class are determined by

rij − δij = Δs
�//
(βij − δij)+ r+

j δi,j+1 − δij + r−
j δi,j−1. (3.13)

Due to the Markovian nature of the process, the somewhat artificial requirement
that diffusive transitions occur only when an advective transition does not occur is
inconsequential in the limit of small Δs. This can be seen from the fact that rij − δij, which
defines the operator characterizing the change in velocity classes over Δs, is composed of
the sum of terms associated with purely advective and purely diffusive velocity transitions
to leading order in Δs; thus, the transition operator in the continuum limit becomes the
sum of the diffusive and advective contributions. This leads to the same continuum-limit
dynamical equations as before, with the transition operator now given by L = LA + LD,
see (3.3) and (3.9), representing the effect of both advective and diffusive transitions. That
is, for an arbitrary density q,

Lq(v) = �−1
//

∫ ∞

0
dv′ [β(v | v′)− δ(v − v′)

]
q(v′)+ ∂

∂v

[
γ (v)

∂q(v)
∂v

− μ(v)q(v)
]
.

(3.14)

Note that, if there is no velocity variation along streamlines, or equivalently �// → ∞,
then r A

ij = δij, and we recover the pure diffusion formulation, valid for stratified flow.
Conversely, D = 0 recovers the purely advective scenario discussed above.
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4. Eulerian velocity statistics

As seen from (3.9)–(3.11), the effective shear αe(v) plays a key role in quantifying
diffusive transitions. In order to relate it to flow properties, and in particular to velocity
statistics, let us first discuss some properties of the Eulerian PDF of velocity magnitudes,
defined as the probability of finding a certain velocity magnitude value at a uniformly
random spatial location.

Denoting the spatial velocity field magnitude at position x in a domain Ω by vE(x), the
Eulerian velocity PDF is then defined as

pE(v) = |Ω|−1
∫
Ω

dx δ[v − vE(x)], (4.1)

where δ(·) is the Dirac delta, and for a d-dimensional spatial domain A, |A| denotes its
measure (number of elements, area or volume, respectively, for d = 1, 2, 3). Assuming
a smooth, non-constant velocity field, changing variables in the Dirac delta (Hörmander
2015) leads to

pE(v) =
∫
Λ(v)

dσ(x)
|Ω||∇vE(x)| . (4.2)

In d spatial dimensions,Λ(v) is the (d − 1)-dimensional spatial surface where the velocity
field has magnitude v, Λ(v) = {x ∈ Ω : vE(x) = v}, and dσ(x) is the corresponding
(d − 1)-area element at the point x on Λ(v). The harmonic average of the local shear
rate magnitude |∇vE(x)| over this surface is given by

αh(v) =
[
|Λ(v)|−1

∫
Λ(v)

dσ(x)
|∇vE(x)|

]−1

, (4.3)

leading to

pE(v) = |Λ(v)|
|Ω|αh(v)

, (4.4)

which shows that the Eulerian PDF is directly related to the harmonic average of the local
shear rate given a velocity magnitude. Note that this result is valid for an arbitrary smooth
velocity field that is not constant. For a piecewise-smooth velocity field, the result applies
piecewise. If the velocity field has fully degenerate maxima or minima, that is, regions of
finite volume (in two dimensions, area) where velocity is constant, they yield Dirac-delta
contributions corresponding to that velocity, with a probability mass (coefficient) given by
the ratio of the region volume and |Ω|. This can easily be seen from the definition of the
Eulerian PDF, (4.1).

Throughout, an overline will denote the ensemble average (over tracer particles), and VE
will stand for a random variable distributed according to pE, corresponding to the velocity
at a uniformly random spatial point. Using the previous result, it follows that

αh(VE) = |Ω|−1
∫ ∞

0
dv |Λ(v)|. (4.5)

We introduce also the flux-weighted Eulerian PDF, defined according to

pF(v) = v

VE
pE(v), (4.6)

which plays an important role in our formulation.
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The diffusing-velocity random walk 910 A12-13

We now consider the Eulerian PDF of velocities at a fixed distance s along streamlines.
LetΩ⊥(s) be the (d − 1)-dimensional cross-section ofΩ at fixed s, and letΛ(v; s) = {x ∈
Ω⊥(s) : vE(x) = v} be the (d − 2)-surface of constant velocity on Ω⊥(s). The gradient of
the velocity magnitude transverse to the flow direction is given by ∇⊥vE, where ∇⊥ =
∇ − (v/|v|2)v · ∇. Adapting the previous derivation,

pE(v; s) = |Λ(v; s)|
|Ω⊥(s)|αh(v; s)

, (4.7)

where αh(v; s) is the harmonic average of |∇⊥vE| over Λ(v; s). Note that the Eulerian
velocity PDF at fixed s is not sensitive to gradients along the flow direction;
their contribution to the full PDF arises through their effect on the variation of
|Λ(v; s)|/αh(v; s) with s. For stratified flows, where velocity is constant along each
streamline, pE(v; s) = pE(v) always holds. This equality also holds for more general flows,
as long as the point statistics of velocity over any given transverse plane coincide with
those of the full domain. We will assume this to be the case in what follows for simplicity.

As an example, consider Poiseuille flow in d = 2 dimensions. The Eulerian velocity
field is in this case given by

vE( y) = vM

[
1 −

(
2y

L

)2
]
, (4.8)

where L = |Ω⊥| is the transverse domain width, y ∈ [−L/2,L/2] is the position in the
transverse direction and vM is the maximum velocity, occurring at y = 0. The full Eulerian
PDF is equal to the PDF over the transverse direction, since there is no variability along
the longitudinal direction. The absolute value of the gradient of velocity is uniquely
determined by the velocity, and we have

αh(v) = 4vM

L

√
1 − v

vM
. (4.9)

Since the same absolute value of the gradient occurs at exactly two points (except at the
maximum, where it is zero), we have |Λ(v)| = 2. According to (4.4), the Eulerian PDF is
thus given by

pE(v) = 1
2vM

√
1 − v/vM

, (4.10)

and the average velocity is VE = 2vM/3. Note the square-root divergence near the
maximum, which is in agreement with the discussion in appendix D for d = 1, the
effective dimension of variability of this flow field.

5. Effective shear rate

This section is devoted to linking the effective shear αe(v) rate to flow characteristics,
in particular point statistics as encoded in the Eulerian PDF. In what follows, we will
achieve this by requiring that the DVRW formulation satisfy two criteria in the limit of
longitudinal correlation length �// → ∞ (i.e. when only diffusive transitions are present):
(i) reproducing the asymptotic space-Lagrangian velocity PDF as distance s → ∞; and
(ii) reproducing the asymptotic Taylor dispersion coefficient as time t → ∞.
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5.1. Equilibrium velocity PDF
As shown in § 3.2, the space-Lagrangian velocity PDF for purely diffusive velocity
transitions obeys the master equation ∂pS(v; s)/∂s = LDpS(v; s), with the diffusive
transition operator LD given by (3.9). Thus, the equilibrium PDF solves LDp∞

S (v) = 0.
Integrating this equation using no-flux boundary conditions, and imposing normalization,
we obtain

p∞
S (v) = v

αe(v)

[∫ ∞

0
dv′ v′

αe(v′)

]−1

. (5.1)

According to Taylor dispersion theory, the equilibrium distribution of velocities for a
stratified flow after diffusion samples the full transverse variability is the flux-weighted
Eulerian distribution, p∞

S (v) = pF(v). When only velocity transitions by transverse
diffusion are considered, which is equivalent to taking the limit of an infinite longitudinal
correlation length �// in (3.14) for the transition operator L, the DVRW becomes equivalent
to transport in stratified flow. Asymptotic dispersion should then agree with the Taylor
result.

According to (5.1), p∞
S (v) ∝ v/αe(v), where the proportionality factor is v-independent

and ensures normalization. Obtaining the flux-weighted Eulerian PDF, (4.6), as the
space-Lagrangian equilibrium PDF thus requires αe(v) ∝ 1/pE(v), so that p∞

S (v) ∝
vpE(v). Therefore, we write for the effective shear rate

αe(v) = αe(VE)

δvpE(v)
(5.2)

for v ∈]vm, vM[ (and zero otherwise) and with δv = vM − vm the difference between the
maximum and minimum velocities. Note that we have fixed the velocity-independent
coefficient in terms of the average effective shear rate αe(VE) = ∫∞

0 dv pE(v)αe(v). We
will show shortly that this average is determined by asymptotic longitudinal dispersion.
It is worth noting also that a physical instance of a velocity field in a finite domain
always exhibits a finite maximum velocity. However, theoretical Eulerian PDFs, applying
in principle to an infinite domain or an infinite number of domain realizations, may be
defined for any positive velocity magnitude. We will later obtain a form of the effective
shear rate which does not explicitly depend on the maximum and minimum velocity values
and is suitable for direct computation for an arbitrary Eulerian PDF.

In order to provide intuition for the velocity dependence of the effective shear rate,
consider the stratified flow profile shown in figure 2, corresponding to a cut in the direction
transverse to a two-dimensional flow, which we name the M-flow. This synthetic example,
where the local shear magnitude is constant and equal to α, is chosen to highlight the role
of the multiplicity (number of spatial occurrences) |Λ(v)| associated with each velocity.
Velocity magnitude v occurs |Λ(v)| = ΛM = 4 times for v larger than a critical velocity
vc, and |Λ(v)| = Λm = 2 times for v < vc. This implies that the centre and outer parts of
the flow cover velocity variations δvM,m = |vM,m − vc| over lengths �M,m = ΛM,mδvM,m/α,
respectively. Similarly, the effective shear rate αM,m

e ∝ δvM,m/�M,m = α/ΛM,m for velocities
above and below the critical velocity vc. Noting that pE(v) ∝ |Λ(v)|/α, see (4.4), we see
that, indeed, αe(v) ∝ 1/pE(v).

5.2. Longitudinal dispersion
Next, we turn to the asymptotic behaviour of longitudinal dispersion for purely diffusive
velocity transitions, that is, in the limit of infinite longitudinal correlation length �//
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FIGURE 2. Transverse velocity magnitude profile for the M-flow. The key relevant features of
this illustrative example are: (i) the multiplicity (number of spatial occurrences) of velocity
magnitudes above (below) the critical value vc is ΛM = 4 (Λm = 2); (ii) the transverse gradient
magnitude is constant. It is given by α = δvm/(�m/Λm) = δvM/(�M/ΛM).

as before. First, consider VT(t), the Lagrangian velocity process along particle trajectories
as a function of travel time t. We have, for particle positions as a function of time,

XT(t) = χ−1
∫ t

0
dt′ VT(t′), (5.3)

from which XT(t) = χ−1
∫ t

0 dt′ VT(t′).
The previous results imply that the equilibrium time-Lagrangian velocity PDF coincides

with the Eulerian PDF, as expected from Taylor dispersion theory. To see this, consider
the joint PDF of velocity and arrival time, (2.7) with L = LD. Integrating out s and using
(2.10) for the time-Lagrangian velocity PDF leads to

∂pT(v; t)
∂t

= pS(v; 0)δ(t)+ LD

∫ ∞

0
dsψ(v, t; s). (5.4)

For the steady state, we must thus have
∫∞

0 dsψ(v, t; s) ∝ pF(v) and, therefore, using
normalization,

p∞
T (v) = pE(v). (5.5)

Since, by definition, the time-Lagrangian PDF is the PDF of VT(t), this implies that VT(t)
converges to VE and, therefore, asymptotically, XT(t) = χ−1VEt. Similarly, calculating
X2

T(t) leads to a longitudinal dispersion

σ 2(t) = χ−2
∫ t

0
dt′
∫ t

0
dt′′ V ′

T(t′)V
′
T(t′′), (5.6)

where for late times V ′
T(t) = VT(t)− VE are the velocity fluctuations about the mean as

a function of particle travel time. In a statistically stationary velocity field, the velocity
correlations at late times depend only on the time difference, V ′

T(t′)V
′
T(t′′) = Cv(|t′′ − t′|).
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This yields the Green–Kubo relation (Kubo, Toda & Hashitsume 1985) for the longitudinal
dispersion coefficient,

D//(t) = 1
2

dσ 2(t)
dt

= χ−2
∫ t

0
dt′ Cv(t′). (5.7)

The integral of the correlation function of velocity fluctuations, when it converges, is
given by the product of the velocity autocorrelation and a correlation time. The first is
proportional to VE

2
and, for purely diffusive velocity transitions, the second is of the order

of the diffusion time τD = L2/(2D), where L is the characteristic width of the domain
cross-section. For large t, the integral can be approximated by extending the upper limit to
infinity, leading to the asymptotic Taylor dispersion coefficient

DT = η
VE

2
L2

χ 2D
, (5.8)

where η is a dimensionless coefficient characterizing the impact of the spatial organization
of velocities. This is the form of the asymptotic longitudinal dispersion coefficient
whenever the only mechanism for sampling velocity variability is diffusive (for example,
in stratified flows), and it arises once the full variability has been sampled. While η does
not have a simple general form, it can be expressed in terms of the normalized velocity
fluctuations within the transverse domain (see Aris (1956) and appendix E),

ν( y) = vE( y)

VE
− 1, y ∈ Ω⊥. (5.9)

In two dimensions, it is given by

η = L−3
∫ L/2

−L/2
dy

[∫ y

0
dy′ ν( y′)

]2

, (5.10)

whereas for an axisymmetric flow, we have, with ν(r) in terms of the radial coordinate
r = √

y · y,

η = 8
L4

∫ L/2

0

dr
r

[∫ r

0
dr′ r′ν(r′)

]2

. (5.11)

The longitudinal dispersion coefficient corresponding to the DVRW for purely diffusive
velocity transitions can be computed from the dynamical equation (2.7) for the joint
PDF of velocity and arrival time, with the transition operator L = LD given by (3.9),
together with (2.9) for the concentration PDF. As shown in appendix F.1, the asymptotic
longitudinal dispersion coefficient is given by

D∞ = Iδv2

αe(VE)
2
L2

VE
2
L2

χ 2D
, (5.12)

where the dimensionless coefficient I is a property of the Eulerian velocity PDF,

I =
∫ ∞

0
dv pE(v)[CE(v)− CF(v)]2. (5.13)

Here, we have introduced CE,F(v
′) = ∫ v

0 dv′ pE,F(v
′) as the Eulerian and flux-weighted

Eulerian cumulative distribution functions, respectively.
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We require that, when only diffusive transitions are present, the DVRW should
reproduce the correct Taylor dispersion coefficient, D∞ = DT . The first fraction in (5.12)
must then equal η, see (5.8). This represents a second constraint on the average effective
shear rate, which must be given by

αe(VE) =
√

I
η

δv

L
. (5.14)

Together with (5.2), which enforced the first constraint of reproducing the correct
asymptotic space-Lagrangian velocity PDF, we obtain

αe(v) =
√

I/η
LpE(v)

. (5.15)

5.3. Role of statistical and spatial flow structure
From (4.5) and (5.14), we may write

αe(VE) =
√

I
ηω2

αh(VE), ω = L
δv

∫ ∞

0
dv |Λ(v)|. (5.16a,b)

It may be surprising to observe that the ratio between the average effective shear and
the average harmonic shear may differ from unity. The reason for this lies in the fact
that the average harmonic shear rate, as defined by (4.3), does not provide information
about the spatial organization of the velocity field. As we have seen, the velocity
dependence of the effective shear rate is fixed by the Eulerian PDF. Different spatial
organizations, however, lead to different Taylor dispersion coefficients, as encoded in η,
and this information must thus be included in the effective shear rate through its average
value.

The impact on dispersion due solely to the point statistics of velocity is quantified by the
coefficient I. Using the definition of the Eulerian PDF, (4.1), we can express I as a spatial
integral,

I = |Ω⊥|−3
∫
Ω⊥

d y
[∫

Ω⊥
d y′ ν( y′)H[vE( y)− vE( y′)]

]2

, (5.17)

where H(·) is the Heaviside step function, meaning the inner integral extends over
positions y′ at which the velocity magnitude is smaller than at y. Details on the derivation
may be found in appendix F.1. The relationship between I and η, i.e. between the impact of
the statistical and spatial structures, becomes apparent when one considers certain special
cases. Consider the following particular scenario in d = 2 dimensions. First, assume
constant |Λ(v)| = |Λ(VE)|. This case, for which we have also ω = |Λ(VE)|, describes
a situation where every velocity value appears ω times. Further assume that the velocity
gradient magnitude is the same at each of these values, so that the shear rate magnitude
may be written as a function of velocity. This implies the velocity profile has a simple
spatial structure: the transverse domain is divided into subregions of equal length L/ω,
within each of which the velocity magnitude is monotonic. Furthermore, the velocity
profile in adjacent regions is symmetric with respect to reflection across the boundary
between them. Examples of this type (in d = 2) are Couette flow, Poiseuille flow and
triangular flow (corresponding to the M-flow, see figure 2, with δvM = 0). This spatial
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Flow ω I η αe(VE)/αh(VE)

Couette (d = 2) 1 1/30 1/30 =1
Triangular (d = 2) 2 1/30 1/120 =1

M-flow (d = 2)
8

6 − λ
∑6

i=0 ciλ
i

120 K(λ)

∑6
i=0 diλ

i

1920 K(λ)
≈7.74 × 10−1–1.02

Poiseuille (d = 2) 2 2/105 1/210 =1
Poiseuille (d = 3) 8/3 1/30 1/192 ≈9.49 × 10−1

TABLE 1. Values of ω, I and η for different stratified flows. The last column shows
the value

√
I/(ηω2) of the ratio of the average effective shear to the harmonic average

shear. Poiseuille flow for d = 3 dimensions refers to a paraboloid profile in a cylindrical
pipe. Coefficients for the M-flow are given in terms of λ = |Λ(VE)|; the polynomial
coefficients for η and I are given by ci = (2368,−5760, 5840,−2880, 740,−96, 5) and di =
(3904,−9600, 10 160,−4800, 1100,−120, 5), i = 0, . . . , 6, and K(λ) = [(6 − λ)2 − 2(4 −
λ)2]2.

structure, together with the fact that the integral of the velocity fluctuations in each
subregion is null, leads, according to (5.17), to

I = L−3
∫ L/2

−L/2
dy

[
ω

∫ y

0
dy′ ν( y′)

]2

, (5.18)

where the factor of ω in the inner integral is due to the equal contribution of each
subregion. Comparing to (5.10), this corresponds to I = ω2η, so that, from (5.16a,b),
αe(VE) = αh(VE). However, breaking either of the previous hypotheses will in general
result in αe(VE) /=αh(VE). For example, for an axisymmetric flow in d = 3, we have

I = 512
L6

∫ L/2

0
dr r

[∫ r

0
dr′ r′ν(r′)

]2

, (5.19)

so that, in general, αe(VE) /=αh(VE) even in this simple scenario, compare (5.11). For
illustration purposes, we computed η, ω, I and αe(VE)/αh(VE) = √

I/(ηω2) for a number
of simple stratified flows; the results are summarized in table 1.

With these results in mind, we identify

�⊥ =
√
η

I
L (5.20)

as the relevant length scale characterizing the variability of the velocity field in the
transverse direction. When

√
I/η = ω, which holds in the simple scenario discussed

above, this length scale coincides with the spatial period over which the Eulerian statistics
of the velocity field repeat. Substituting in (5.15), the effective shear rate becomes

αe(v) = 1
�⊥pE(v)

. (5.21)

This is the central result connecting the effective shear rate, which, together with
the usual diffusion coefficient, determines the diffusive transitions of the DVRW, to
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flow properties. This connection was achieved by enforcing that the DVRW predictions
for the asymptotic space-Lagrangian velocity distribution and longitudinal dispersion
coefficient reduce to known results for purely diffusive velocity transitions, that is, for
infinite velocity correlation length along streamlines.

The characteristic transverse length scale embodies the impact of the interplay between
the statistical and spatial structures of the flow field in the transverse direction. In the
absence of detailed information, it can be estimated based on the characteristic transverse
length over which the full variability of the velocity structure is covered. If the spatial
structure of the flow is known on a transverse section of the domain, I may be computed
according to the corresponding Eulerian PDF, see (5.13), and η may be obtained by
computing the Taylor dispersion coefficient for a stratified flow characterized by the
flow field magnitudes on the cross-section, see (5.8). The assumption of stationarity
we have made here, according to which the effective shear rate does not depend on
distance s, is satisfied when these quantities remain constant across different domain
cross-sections. Although we do not explore the resulting non-stationary model here, the
approach generalizes to cross-section-dependent quantities.

We numerically validated the formulation of diffusive transitions in terms of the
effective shear rate for transport in some instances of the stratified flows from table 1
by comparing simulations of the discretized Lagrangian formulation of the DVRW to
standard particle tracking simulations with a fixed time step. The results are discussed
in appendix G.

6. Dispersion under heterogeneous advection and diffusion

In order to illustrate the impact of the interplay between advection and diffusion on
transport, let us consider longitudinal dispersion under heterogeneous advection and
diffusion. Following Dentz et al. (2016), we consider as a rich example a gamma
distribution of Eulerian velocities (figure 3 inset). The gamma PDF, expressed in terms
of the mean velocity VE, is given by

pE(v) =
(
θv

VE

)θ e−θv/VE

vΓ (θ)
, (6.1)

where Γ (·) is the gamma function and θ > 0 is a parameter controlling the power-law
dependence ∝vθ−1 at low velocities. This type of PDF, which combines low-velocity
power-law behaviour with an exponential cutoff at high velocities, has been employed
to model the velocity PDFs in porous medium flows both at the pore and Darcy scales
(Berkowitz et al. 2006; Holzner et al. 2015). The flux-weighted Eulerian PDF is again
gamma,

pF(v) =
(
θv

VE

)θ e−θv/VE

VEΓ (θ)
, (6.2)

with the same exponential cutoff and a low-velocity dependency ∝vθ .

6.1. Pure advection
We first summarize some known results on dispersion in gamma-distributed velocity
fields, in the absence of diffusion (Dentz et al. 2016). Recall that, at late times, the PDF
of velocities associated with crossing a fixed distance is pF, and let VF be a random
variable distributed according to the latter. Consider that velocity transitions due to
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FIGURE 3. Asymptotic longitudinal dispersion coefficient as a function of Péclet number, with
velocity transitions along streamlines according to a Bernoulli relaxation process and transitions
across streamlines according to transverse diffusion. The three values of θ shown highlight
the three possible asymptotic qualitative behaviours discussed in the text. The inset shows
corresponding Eulerian velocity gamma PDFs, with low velocities having a probability density
∼vθ−1.

changes along streamlines happen roughly after each correlation length �//. The times
�///VF to cross a correlation length then have PDF p//(t) = pF(�///t)�///t2, and their average
is τ// = �///VF = �///VE. The large-time tail of this PDF is associated with small velocities,
which, for the gamma PDF, are associated with the behaviour pF(v) ∼ (v/VE)

θ/VE.
Therefore, p//(t) ∼ (�///VE)

1+θ t−2−θ . The stable exponent corresponding to this tailing
behaviour is 1 + θ (Feller 2008; Meerschaert & Sikorskii 2012). Thus, the crossing times
associated with a gamma distribution of Eulerian velocities always have a finite mean, but
their variance is infinite for θ � 1 (for a general discussion of crossing times with infinite
moments, see, e.g. Berkowitz et al. (2006)).

When θ > 1, the crossing times have both a finite mean and variance, and the relevant
correlation time in the Green–Kubo formula (5.7) for dispersion is of the order of τ//. This
leads to a dispersion coefficient ∼ VE

2
τ// = VE�//. For θ < 1, on the other hand, the mean

of the crossing times is finite, but their variance is infinite. In this case, the variability
of waiting times about the mean dominates dispersion. The variance of crossing times
observed by time t is σ 2

c (t) ∼ ∫ t
0 duu2p//(u) ∼ τ 2

// (t/τ//)
1−θ . The relative importance of the

fluctuations about the mean with respect to the mean value is σ 2
c (t)/τ

2
// , and we estimate

the relevant correlation time as τ//σ 2
c (t)/τ

2
// ∼ τ//(t/τ//)1−θ . This leads, according to (5.7),

to a dispersion coefficient ∼ VE
2
τ//(t/τ//)1−θ = VE

2−θ
�θ//t

1−θ .
This semi-heuristic argument can be made precise, leading to an exact form for

dispersion for an arbitrary Eulerian PDF under the Bernoulli process, see appendix F.2. In
agreement with the scaling arguments above, for gamma-distributed Eulerian velocities
and an initial condition according to the Eulerian velocity distribution, we find the
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late-time (t � τ//) longitudinal dispersion coefficient

χ 2D//(t) =

⎧⎪⎪⎨
⎪⎪⎩
(1 − θ)−1θθVE�//

(
t/τ//

)1−θ
, 0 < θ < 1,

VE�// ln
(
e−1t/τ//

)
, θ = 1,

(θ − 1)−1VE�//, θ > 1.

(6.3)

The special case θ = 1, for which the gamma distribution reduces to exponential, leads
to a logarithmic correction. Note also that the leading coefficient, in the case of θ < 1,
is sensitive to the initial condition, although the scalings with time, mean velocity and
correlation length are not. These results correspond to Fickian diffusion for θ > 1, and
superdiffusive behaviour, that is, dispersion σ 2(t) growing superlinearly with t, for θ � 1.

6.2. Advection–diffusion
We now employ the DVRW formulation to quantify asymptotic longitudinal dispersion
when both advective and diffusive transitions are present. Diffusion changes the way in
which tracer particles sample the velocity field when compared to pure advection, and it
is therefore expected to impact dispersion properties (see figure 1). The equality of the
equilibrium PDFs for advective and diffusive transitions, which holds under conditions of
ergodicity and incompressibility, implies that the flux-weighted Eulerian PDF is also the
equilibrium PDF in the presence of both types of transition. However, diffusion impacts
the temporal correlation properties, which determine dispersion as discussed in § 5.2.
This leads to a complex dependency of dispersion properties on Péclet number (Bear
1989; Sallès et al. 1993; Deng, Singh & Bengtsson 2001; Kandhai et al. 2002; Bijeljic
& Blunt 2006; Puyguiraud et al. 2019b). Previous attempts to quantify this behaviour
have introduced a cutoff resulting from longitudinal diffusion in the distribution of local
transit times arising from the distribution of velocities (Bijeljic & Blunt 2006). The
DVRW framework allows for deriving a mechanistic description of the interplay between
transverse diffusion and advection. This interplay is mediated by the effective shear rate,
and it leads to new dispersion laws.

When diffusion is present, averaging takes place across nearby velocities. In other
words, a Lagrangian particle that would be retained in a low-velocity area can be removed
by transverse diffusion into a faster streamline, effectively cutting off transition times and
enforcing a loss of velocity correlation. Even at arbitrarily high Péclet number, this effect
is important because it is concerned with velocities that are arbitrarily smaller than the
Eulerian mean value. According to the DVRW formulation, transverse diffusion over a
correlation length averages over a velocity range Δv//(v) = αe(v)

√
2D�///v. Diffusion thus

enforces a minimum average velocity that can be sampled by a Lagrangian particle over a
correlation length according to Δv//(vmin) = 2vmin , so that vmin = [Dα2

e (vmin)�///2]1/3. This
minimum velocity corresponds to a maximum transit time τmax = �///vmin , so that

τmax =
[

2�2
//

Dα2
e (vmin)

]1/3

. (6.4)

The maximum correlation time decreases with increasing effective shear rate at low
velocities, which corresponds to increased velocity variation over the same spatial
distance, as τmax ∼ αe(vmin)

−2/3. Note that this result constitutes an implicit equation for
τmax , since vmin = �///τmax .
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As we have seen, the persistence of low velocities under purely advective transport
may drive non-Fickian dispersion behaviour. As discussed above, when the Eulerian
PDF of low velocities scales like a power law, pE(v) ∼ (v/VE)

θ/v for θ < 1, the transit
times across a correlation length are broadly distributed and longitudinal dispersion grows

asymptotically like D//(t) ∼ VE
2−θ
�θ//t

1−θ . In the presence of diffusion, after a time t = τmax ,
larger crossing times are cut off due to diffusive averaging at low velocities and dispersion
stabilizes at a value

D∞ = D//(τmax) ∼ VE
2−θ
�
(2+θ)/3
//

[
Dα2

e (vmin)
]−((1−θ)/3)

. (6.5)

Using the relationship between the effective shear rate and the Eulerian PDF, (5.21), and
defining the Péclet number Pe = �//VE/D in terms of the longitudinal correlation length,
the previous results yield the scalings

vmin ∼ Pe2θ/(1+2θ), τmin ∼ Pe−(2θ/(1+2θ)), αe(vmin) ∼ Pe3θ/(1+2θ). (6.6a–c)

We have used the power-law dependency of the Eulerian PDF for low velocities compared
to the mean at vmin , which holds at high Péclet number because vmin/VE decreases with
Pe. We see that the effective shear rate associated with the minimum velocity increases
with Pe. For 0 < θ < 1, this impacts the dispersion coefficient through a factor of
αe(vmin)

−2(1−θ)/3 ∼ Pe−2θ(1−θ)/(1+2θ), which decreases with Pe.
As expected, diffusive averaging decreases the dispersion coefficient, because it

smooths out velocity variability. However, as we have seen, correlation properties along
streamlines contribute an additional factor ∼VE

2−θ
, leading overall to an asymptotic

dispersion coefficient which grows with Pe,

D∞
D

∼ Pe(2+θ)/(1+2θ). (6.7)

Our approach thus predicts a non-trivial scaling of the dispersion coefficient at high
Pe for broadly distributed crossing times. The presence of a maximum correlation time
implies a return to Fickianity at sufficiently late times whenever diffusion is present,
and the corresponding dispersion coefficient results from the interplay between diffusion
and advective heterogeneity, which is mediated by the effective shear rate. The scaling
exponent characterizing the behaviour of the dispersion coefficient with Pe decreases
with θ . As θ approaches unity, we recover the usual linear Pe dependency characteristic
of advection-dominated transport with finite-mean crossing times. On the other hand, as θ
approaches zero, the dependency approaches quadratic, as for classical Taylor dispersion.

It should be noted that our scaling predictions differ from previous results. Bijeljic
& Blunt (2006) employed a heuristic cutoff at the level of the transit times, which they
identified with the diffusion time associated with homogenizing a longitudinal correlation
length. This led, for 0 < θ < 1, to the prediction of an intermediate scaling of the
longitudinal dispersion coefficient related to the stable exponent of the crossing times
as Pe3−(1+θ) = Pe2−θ , followed by a regime linear in Pe. In contrast, our results suggest
that shear plays a key role in the interplay between heterogeneous advection and diffusion,
leading to D∞ ∼ Pe(2+θ)/(1+2θ). The case presented in Bijeljic & Blunt (2006) corresponds
to θ = 0.8, leading to a transition between D∞ ∼ Pe1.2 and D∞ ∼ Pe in their model for
high Péclet numbers. Our approach predicts instead a single regime in this range of Péclet
with an intermediate scaling exponent ≈1.08. Note that this scaling might be difficult
to distinguish experimentally from a transition between the two exponents 1.2 and 1.
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The largest differences between the two modelling frameworks would be observed for
the smallest θ > 0, where our approach predicts a scaling exponent approaching 2 rather
than unity.

In order to characterize the different regimes that arise for late-time longitudinal
dispersion in more detail, we proceed to non-dimensionalize the dynamical variables.
Diffusive transitions are associated with a time scale τ⊥ = �2

⊥/(2D) and a corresponding
longitudinal length scale L// = VEτ⊥. On the other hand, advective transitions are
associated with the correlation length �//, which corresponds to the time scale τ// =
�///VE. We non-dimensionalize velocity as v∗ = v/VE, distance as s∗ = s/L// and time
as t∗ = t/τ⊥. Consider now the transition operator L = LA + LD, (3.14). In terms of the
non-dimensional variables, the dimensionless transition operator L∗ = L//L = ζPeL∗

A +
L∗

D/2, with L∗
A,D = L//LA,D and

ζ = τ⊥
τ//

= �2
⊥

2�2
//

(6.8)

the ratio of longitudinal and transverse time scales.
This non-dimensional form highlights the dominant transition mechanisms occurring

under different flow conditions. Diffusive transitions dominate for Pe � 1/ζ , and
advective transitions for Pe � 1/ζ . For Pe � 1, diffusion dominates longitudinal
dispersion, a scenario which we have disregarded here. According to Taylor dispersion,
(5.8), and the definition of the transverse length scale, (5.20), the late-time longitudinal
dispersion coefficient when only diffusive transitions are considered is given by

χ 2D∞
D

= 2IζPe2. (6.9)

Thus, the effects of diffusion in the longitudinal direction equal those of transverse
diffusion on the asymptotic dispersion coefficient when Pe = Pe⊥, with

Pe⊥ = (2Iζ )−1/2, (6.10)

for which χ 2D∞/D = 1. This implies that the transverse-diffusion-dominated regime has
a width of order 1/

√
ζ in the Péclet scale and disappears for sufficiently small ζ .

The details of the behaviour of the large-Pe regime and its onset depend on the particular
form of the advective transitions and Eulerian PDF. We focus now on the example of a
gamma distribution of Eulerian velocities together with a Bernoulli relaxation process of
correlation length �//, as above. We have, by direct computation according to (5.13),

I = Γ (3θ)
27θΓ (θ)Γ (1 + θ)2

. (6.11)

Computing the maximum correlation time according to (6.4) with the effective shear rate
according to the gamma PDF leads to

τ ∗
max = τmax

τ⊥
=
[

2
Γ (θ)

(
θ

ζPe

)θ]2/(1+2θ)

, (6.12)

valid for high Pe so that the minimum average velocity vmin is small compared to VE. We
consider an initial condition according to the Eulerian velocity PDF, corresponding to a
transversely homogeneous spatial injection, at the longitudinal origin x = 0. Dispersion in
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the absence of diffusion is then given by (6.3). Non-dimensionalizing the latter by dividing
by the diffusion coefficient and substituting the maximum cutoff time for θ � 1, (6.12),
leads to an explicit form of (6.7) for asymptotic dispersion,

χ 2D∞
D

=

⎧⎪⎪⎨
⎪⎪⎩

[
2/Γ (1 + θ)

]2(1−θ)/(1+2θ) [(1 − θ)ζ ]−1 (θζPe)(2+θ)/(1+2θ) , 0 < θ < 1,

Pe ln
[
4 e−3ζPe

]
/3, θ = 1,

(θ − 1)−1Pe, θ > 1,
(6.13)

for t � τ// for θ > 1 and t � τmax for θ � 1.
These results can be used to estimate the characteristic Pe corresponding to the onset of

the large-Pe regime more precisely. Equating the two dispersion-regime expressions (6.9)
and (6.13), we approximate the critical Pe = Pe// associated with the onset of the regime
dominated by advective transitions as

Pe// =

⎧⎪⎪⎨
⎪⎪⎩
θ [2/Γ (θ)]2(1−θ)/3θ [2ζ θ (1 − θ)I]−1/θ , 0 < θ < 1,

e4/(4ζ ), θ = 1,

[2ζ(θ − 1)I]−1, θ > 1.

(6.14)

As expected from the discussion above, the advection-dominated regime is characterized
by an onset inversely proportional to ζ in all cases. Note that, for θ = 1, the asymptotic
expressions for the intermediate and high Péclet regimes are never equal, due to the
divergent behaviour of the logarithm for small arguments. Thus, we estimate in this case
Pe⊥ as the value for which the two expressions have a ratio closest to unity. The high-Pe
expression is always smaller by a factor of 9 e−4 ≈ 0.165 at this point.

Thus, for sufficiently late times, we have three possible scaling regimes for the
dependence of the dispersion coefficient on Péclet number: (i) Pe � Pe⊥: longitudinal
diffusion dominates; in this case, which we do not treat explicitly, D∞/D = 1; (ii) Pe⊥ �
Pe � Pe//: transverse diffusion across streamlines dominates velocity transitions, leading
to classical Taylor dispersion, D∞/D ∼ Pe2; and (iii) Pe � Pe//: advective transitions
along streamlines dominate, but transverse diffusion ensures Fickianity, and we have
D∞/D ∼ Peϑ , with an exponent 1 � ϑ < 2 that depends on the Eulerian PDF through
θ (6.13). If Pe// � Pe⊥, there is no intermediate Pe2 regime.

Figure 3 shows the behaviour of the asymptotic longitudinal dispersion coefficient as a
function of Péclet number for this set-up, for fixed ζ = 10−1 and θ = 1/2, 1, 3/2. Time
is non-dimensionalized by τ⊥, distance s by L// and position x by L///χ . A convenient
parameterization of the non-dimensional problem is obtained by setting D = 1/2, χ = 1,
�⊥ = 1, �// = (2ζ )−1/2 and VE = (ζ/2)1/2Pe. The free non-dimensional parameters are
Pe, ζ and θ . These set, respectively, the relation between diffusive and advective time
scales, the relation between the time scales of these two processes, and the low-velocity
scaling of the Eulerian velocity PDF. The asymptotic dispersion coefficient in these units
is given by D∗

∞ = χ 2τ⊥D∞/L2
//, so that χ 2D∞/D = 2D∗

∞ in our parameterization. We
set the discretization according to the minimum between (G 1) with Δv = 5 × 10−2VE/θ
and Δs = 5 × 10−2�//, and we used 103 particles (see appendix G for a discussion of the
convergence properties of the DVRW). Dispersion was computed using the DVRW for 20
logarithmically spaced asymptotic times between t∗ = 5 and t∗ = 10. The corresponding
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dispersion coefficient was obtained by backward-difference differentiation and averaged
over the resulting values to reduce numerical error.

The results are in agreement with the theoretical predictions. For θ = 1/2, 1, 3/2,
the regime onsets are estimated as (Pe⊥,Pe//) ≈ (6, 9 × 101), (8, 1 × 102), (10, 2 × 102),
respectively. The three corresponding scaling regimes of dispersion with Péclet number
are shown in figure 3. Note that, for θ = 3/2, there is a wide intermediate range of
Péclet numbers (∼102–106) over which different mechanisms are at play, causing the
behaviour of dispersion with Pe to deviate from the pure scaling laws derived above. The
pure advection-dominated regime scaling is then reached only at very large Pe ∼ 106,
whereas for θ = 1/2, 1, the asymptotic regime provides accurate predictions at much
lower Pe ∼ 102, 103.

7. Conclusions

We have presented a new theoretical framework that couples heterogeneous advection
and diffusion into a spatial-Markov stochastic process. Our model, the DVRW, allows
for taking advantage of the fact that Lagrangian velocity dynamics in spatially structured
flows are Markovian in space, while incorporating the effect of diffusion. Aside from
its potential as a simulation technique, the DVRW formulation allows for the analytical
development of dynamical equations for key transport quantities, highlighting the role of
statistical properties of the flow in their evolution. In particular, we have shown how this
approach provides new scaling laws describing dispersion properties at different Péclet
numbers, explicitly incorporating the interplay between transverse diffusion and advective
shear.

In the DVRW framework, diffusive transitions across nearby streamlines are determined
by the following flow properties: (i) point statistics of velocity magnitude, as embodied by
the Eulerian PDF; (ii) average tortuosity; and (iii) a characteristic transverse length scale,
encoding information about the transverse spatial and statistical structure of Eulerian
velocities. These properties are combined into an effective shear rate, which, together
with the usual diffusion coefficient, governs diffusive transitions in velocity space. As
in previous works, transitions along streamlines are described by transition probabilities,
which can typically be modelled with recourse to simple processes parameterized by (i) the
Eulerian PDF; (ii) average tortuosity; and (iii) a longitudinal velocity correlation length.

The present work has been mainly concerned with formulating the approach while
clarifying its physical meaning and characterizing the necessary parameters. Subsequent
work is necessary towards parameterizing and applying the DVRW formulation to
predict transport in realistic heterogeneous media, and in particular to test the practical
applicability of the predicted scaling laws for dispersion. Since it quantifies single-particle
trajectories in the presence of diffusion and heterogeneous advection, the DVRW
formulation also opens up other promising avenues for future research, such as upscaling
effective reaction dynamics in the presence of flow heterogeneity.
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Appendix A. Joint PDF of velocity and arrival time

The joint PDF of velocity and arrival time, given distance s travelled along streamlines,
is defined as

ψ(v, t; s) = δ[VS(s)− v][T(s)− t], (A 1)

where the overline denotes an ensemble average over tracer particles and δ(·) is the Dirac
delta. Reverting to the discrete version of the dynamics, see (2.1), we consider the joint
density ψi(t; s) of arriving at time t and having velocity in class i given distance s. We
have ψi(t; s) = Δviδ(Vk − vi)(Tk − t) and ψi(t; s + Δs) = Δviδ(Vk+1 − vi)(Tk+1 − t) to
first order in Δs. Using (2.1) to express Tk+1 in terms of Tk and Vk and introducing a
partition of unity for the latter being in velocity class j, we obtain, again to leading order
in Δs,

ψi(t; s + Δs) = Δvi

∑
j�0

Δvjδ
(
Tk + Δs/vj − t

)
δ(Vk − vj)δ(Vk+1 − vi)

=
∑
j�0

rij(s)ψj
(
t − Δs/vj; s

)
, (A 2)

where we have used the Markov property to break the average and identified the average
of Δviδ(Vk+1 − vi) given Vk = vj as the transition probability from velocity class j to i at
distance s. Taylor expanding ψj(t − Δs/vj; s) around t leads to

ψi(t; s + Δs)− ψi(t; s)
ΔsΔvi

=
∑
j�0

rij − δij

ΔsΔvi
ψj (t; s)− 1

Δvivj

∂ψi(t; s + Δs)
∂t

. (A 3)

This yields the dynamical equation (2.7) in the limit Δs → 0.

Appendix B. Diffusion-averaged velocity class widths

Consider velocities discretized into classes [bi, bi+1[. The width Δvi = bi+1 − bi of
class i represents the range of velocities averaged by diffusion over a spatial step of
length Δs along streamlines. The width of class i, associated with arithmetic average
velocity vi, is given by Δvi = αi

√
2DΔs/vi, where αi = αe(vi). In the limit of small

class widths, consider the approximation vi ≈ (bi+1 + bi)/2 and αi ≈ αe(bi) respectively
for the class average velocities and effective shear rates. Replacing vi = bi + Δvi/2 in
Δvi = αi

√
2DΔs/vi yields the cubic equation Δv2

i (Δvi + 2bi) = 4Dα2
i Δs. Using the

standard cubic solutions and some algebra, we arrive at

Δvi = ai

{[
(1 +

√
ξi)

1/3 − (1 −
√
ξi)

1/3
]2

+ (1 − ξi)
1/3

}
, (B 1)

where ai = (Dα2
i Δs)1/3 and ξi = 1 − 8b3

i /(27a3
i ). Class edges can then be obtained

recursively up to a maximum velocity vM according to bj+1 = bi + Δvi with b0 = vm.
For 0 � ξ � 1, the expression for Δvi is clearly real and positive. At small velocities,

for 8b3
i /(27Dα2

i Δs) � 1, we obtain Δvi ≈ (4Dα2
i Δs)1/3, which in particular holds exactly

for class i = 0 if vm = 0. For ξ < 0, it may be convenient to work with the explicitly
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real expression

Δvi = ai(1 + |ξ |)1/3
[

1 − 4 sin2
(

arctan
√|ξ |

3

)]
, (B 2)

which is obtained by expressing the conjugate pair 1 ± √|ξ | in terms of their absolute
value and phase and simplifying the resulting expression. Note that the argument of
the sine is smaller than π/6, so that this expression is also positive. Expanding for
|ξi| ≈ 8b2

i /(27Dα2
i Δs) � 1, we obtain Δvi ≈

√
2Dα2

0Δs/bi, which holds at sufficiently
high velocities. This situation corresponds to Δvi � 2bi, or vi ≈ bi.

The approach above breaks down if αe(bi) is zero or divergent. This happens where the
Eulerian PDF diverges or is zero at bi, respectively, see (5.21). The above construction
can be employed separately within velocity intervals where the Eulerian PDF pE(v) is
finite and non-zero, except that the approximation αe(vi) ≈ αe(bi) cannot be used at the
leftmost class within each interval. In this case, we use αi = αe(bi + Δvi/2), which leads
to an implicit equation for Δvi. This equation can be solved numerically in general, and
possibly analytically if the local form of the velocity PDF is known.

Appendix C. Diffusive transitions in the continuum limit

The transition probabilities associated with diffusive transitions, characterized by (3.7)
and (3.8), give

r D
ij − δij = r+

j δi,j+1 − δij + r−
j δi,j−1. (C 1)

Let qi be a quantity dependent on velocity class i, and let q(v) be the associated continuous
density, i.e. qi = ∫ bi+1

bi
dv q(v) ≈ Δviq(vi). We have

∑
j�0

r D
ij − δij

ΔsΔvi
qj = r−

i+1qi+1 − qi + r+
i−1qi−1

ΔsΔvi
. (C 2)

Expanding in Taylor series around vi,

Δvi±1 ≈ Δvi

(
1 ± ∂Δv(v)

∂v

∣∣∣∣
vi

)
, (C 3)

where Δv(v) = √
2Dαe(v)2Δs/v, and

Δvi±1q(vi±1) ≈ Δviq(vi)± Δvi
∂Δv(v)q(v)

∂v

∣∣∣∣
vi

+ Δv2
i

2
∂2Δv(v)q(v)

∂2v

∣∣∣∣
vi

. (C 4)

We thus find, to leading order in Δs,

r D
ij − δij

ΔsΔvi
= 1

2Δs

[
∂Δv(v)

∂v

∂Δv(v)q(v)
∂v

+ Δv(v)
∂2Δv(v)q(v)

∂v2
− Δv(v)

∂

∂v

q(v)
2v

]
vi

= 1
2Δs

∂

∂v

[
Δv(v)2

∂q(v)
∂v

− q(v)
(

1
v

− ∂

∂v

)
Δv(v)2

2

]
vi

. (C 5)

This leads to
∂q(v; s)
∂s

= LDq(v; s), (C 6)

with the diffusive transition operator LD given according to (3.9).
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Appendix D. Spatial extrema and the Eulerian PDF

We present here a simple scaling argument to identify the qualitative impact of a spatial
extremum (maximum or minimum) on the Eulerian PDF. Near a non-degenerate (point)
extremum vM in d dimensions, at a spatial distance Δx , we have |Λ(v)| ∝ |Δx |d−1.
The associated change in velocity is |Δv| ∝ |∇v||Δx |, and the gradient behaves as
|∇v| ∝ |∇2v||Δx |, so that |Δx | ∝ |Δv|1/2/|∇2v|1/2. Thus, the contribution near a spatial
extremum to the Eulerian PDF is

pE(vM + Δv) ∝ |Δx |d−1

|Ω||∇2v||Δx | = |Δv|d/2−1

|Ω||∇2v|d/2 . (D 1)

This means that a non-degenerate spatial extremum corresponds to a square-root
divergence in d = 1, a Δv-independent contribution in d = 2, and a zero in d = 3.

It is interesting to note that the Eulerian PDF associated with Poiseuille flow in
a cylindrical pipe is velocity independent. This can be understood as follows. The
probability density for a given velocity is inversely proportional to the corresponding
velocity gradient magnitude, which in turn is proportional to

√
1 − v/vM. In a cylindrical

pipe, the flow profile is a paraboloid, and the higher gradients near the pipe walls
are compensated by the fact that, due to the axisymmetry of the profile, the spatial
frequency of occurrence of a given velocity is proportional to |Λ(v)| ∝ √

1 − v/vM. This
results in a constant probability density across velocities. Couette flow in two spatial
dimensions, the constant-shear flow arising between a stationary plate and a plate moving
at constant velocity, also has this property, because the velocity gradient is constant and
each velocity occurs the same number of times (exactly once). However, this flow presents
no non-degenerate spatial maxima.

Appendix E. Taylor dispersion

The Taylor dispersion coefficient is given by DT = ηχ−2VE
2
L2/D. Here, we discuss

the dimensionless coefficient η. It is given by η = |Ω⊥|−1
∫
Ω⊥

d yν( y)ϕ( y), where the
dimensionless function ϕ solves (Aris 1956)

L2∇2ϕ( y) = −ν( y), y ∈ Ω⊥, n · ∇ϕ( y) = 0, y ∈ ∂Ω⊥, (E 1a,b)

where n is the unit outward normal to the transverse domain boundary ∂Ω⊥. We note that
this determines ϕ up to an additive constant, which does not affect η because the spatial
integral of the velocity fluctuations is null.

If the flow depends only on a one-dimensional transverse coordinate y, integrating this
equation leads, up to an additive constant, to

ϕ( y) = −
∫ y

−L/2
dy′

∫ y′

−L/2
dy′′ ν( y′′). (E 2)

Thus,

η = −
∫ L/2

−L/2
dy ν( y)

∫ y

−L/2
dy′

∫ y′

−L/2
dy′′ ν( y′′). (E 3)

Integrating by parts in the outer integral leads to (5.10). For axisymmetric flows, depending
only on r = √

y · y, we have
∫ L/2

0 dr rν(r) = 0. Using ∇2 = r−1d2/dr2r for the Laplacian
in cylindrical coordinates and |Ω⊥| = π(L/2)2, and following the same procedure as
before, we obtain (5.11).
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Appendix F. Longitudinal dispersion

This appendix is concerned with determining asymptotic longitudinal dispersion. First,
we present the derivation for the DVRW formulation under purely diffusive velocity
transitions. Next, we discuss the dispersion coefficient for advective transitions only, for
the case of a Bernoulli relaxation process.

F.1. Purely diffusive velocity transitions
We start by defining

Ik(v, t) =
⎧⎨
⎩
∫ ∞

0
ds skψ(v, t; s), k � 0,

ψ(v, t; 0) = pS(v; 0)δ(t), k = −1.
(F 1)

According to (2.9), the raw moments of concentration are given, for k � 0, by

ρk(t) = χ−k
∫ ∞

0
dv v−1Ik(v, t). (F 2)

The average position is thus given by XT(t) = ρ1(t) and longitudinal dispersion by the
variance σ 2(t) = ρ2(t)− ρ1(t)2. Multiplying (2.7) by s and integrating in s, we find, for
k � 1, the recursion relations

v−1 ∂Ik(v, t)
∂t

= LDIk(v, t)+ kIk−1(v, t). (F 3)

Integrating in v yields also

dρk(t)
dt

= χ−kk
∫ ∞

0
dv Ik−1(v, t). (F 4)

This gives directly ρ0(t) = 1, confirming that the concentration PDF is correctly
normalized. It is easy to see by inspection that (F 3) for k = 1 admits asymptotic solutions
of the form I∞

0 (v) ∝ pF(v), so that, in order to satisfy ρ0(t) = 1, we have I∞
0 (v) =

VEpF(v). Then, (F 4) for k = 1 yields the asymptotic mean position ρ1(t) = χ−1VEt. This
means that, as expected, the average position grows asymptotically according to the mean
velocity (corrected by the tortuosity).

The asymptotic longitudinal dispersion coefficient is obtained through a similar, albeit
more involved, approach. We expect the asymptotic form ρ2(t) = 2D∞t + χ−2VE

2
t2 for

the second raw moment of position, where D∞ is the asymptotic longitudinal dispersion
coefficient. Therefore, we look for an asymptotic solution to (F 3) for k = 1 of the
form I1(v, t) = a(v)+ b(v)t. Satisfying (F 4) with k = 2 requires

∫∞
0 dv a(v) = D∞ and∫∞

0 dv b(v) = χ−2VE
2
. On the other hand, (F 3) requires LDb(v) = 0; we conclude that

b(v) = χ−2VE
2
pF(v) and

LDa(v) = χ−2VE
[
pE(v)− pF(v)

]
. (F 5)

Using the boundary and initial conditions for ψ(v, t; s), integrating this equation yields

a(v) = ApF(v)+ VEv

χ 2Dαe(v)

∫ v

0
dv′ CE(v

′)− CF(v
′)

αe(v′)
, (F 6)
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where A is a so-far arbitrary coefficient. Using (5.2) for the effective shear, we obtain

a(v) = pF(v)

[
A + VE

2
δv2

χ 2Dαe(VE)
2 g(v)

]
, g(v) =

∫ v

0
dv′ pE(v

′)[CE(v
′)− CF(v

′)].

(F 7a,b)

Next, we use (F 2) for ρ1(t), which requires
∫∞

0 dv a(v)/v = 0 (as well as
∫∞

0 dv b(v)/v =
χ−2VE, which is satisfied). This fixes A and leads to

a(v) = VE
2
δv2pF(v)

χ 2αe(VE)
2

∫ ∞

0
dv′ g(v′)

[
δ(v − v′)− pE(v

′)
]
. (F 8)

Setting
∫∞

0 dv a(v) = D∞ yields

D∞ = IVE
2
δv2

χ 2Dαe(VE)
2 , (F 9)

where I = ∫∞
0 dv [pF(v)− pE(v)]g(v). Integrating by parts leads to

I =
∫ ∞

0
dv pE(v)[CE(v)− CF(v)]2. (F 10)

The quantity I may also be expressed as a spatial integral. To this end, we express
pE(v) as a spatial average according to its definition, (4.1). Then, the Eulerian cumulative
distribution function (CDF) is given by

CE(v) =
∫ v

0
dv |Ω⊥|−1

∫
Ω⊥

d y δ[vE( y)− v]

= |Ω⊥|−1
∫
Ω⊥

d y H[v − vE( y)], (F 11)

where H(·) is the Heaviside step function. Similarly, the flux-weighted Eulerian CDF reads
as

CF(v) = |Ω⊥|−1
∫
Ω⊥

d y
vE( y)

VE
H[v − vE( y)]. (F 12)

Substituting, we find that

I = |Ω⊥|−3
∫
Ω⊥

d y
∫ ∞

0
dv δ[vE( y)− v]

[∫
Ω⊥

d y′ ν(x ′)H[v − vE( y′)]
]2

, (F 13)

where ν( y) = vE( y)/VE − 1 are the normalized velocity fluctuations. Performing the
integral over v leads directly to (5.17).
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F.2. Purely advective velocity transitions
The temporal velocity correlation function is given, by definition, by

Cv(t, t′) = VT(t)VT(t′)− VT(t)VT(t′), (F 14)

where VT(t) is the Lagrangian velocity at time t. Following Dentz et al. (2016), we
introduce the propagator

g(v, t) = e−vt/�// (F 15)

and the transition time PDFs across a correlation length associated with the velocity PDF
pJ ,

φJ(t) = �−1
//

∫ ∞

0
dv g(v, t)vpJ(v), (F 16)

where J ∈ {0,E,F} and p0(v) = pT(v; 0) is the initial velocity PDF. We have for the
Bernoulli process (Dentz et al. 2016),

VT(t)VT(t′) =
∫ ∞

0
dv VT(t − t′ | v)vpT(v, t′), (F 17)

where VT(t | v) is the average velocity at time t + t′ conditioned on velocity v at time t′. Its
Laplace transform is given by (Dentz et al. 2016)

ṼT(λ | v) = vg̃(v, λ)+
∫ ∞

0
dv′ vv

′2pE(v
′)

�//VE

g̃(v, λ)g̃(v′, λ)

1 − φ̃F(λ)
, (F 18)

where the tilde denotes the Laplace transform (with respect to time) and λ is the associated
Laplace variable. Using the definition of φF(t), this can be rewritten as

ṼT(λ | v) = vg̃(v, λ)

1 − φ̃F(λ)
. (F 19)

Similarly, we have (Dentz et al. 2016)

ṼT(λ) = �//φ̃0(λ)+
∫ ∞

0
dv
v2pE(v)

VE

g̃(v, λ)φ̃0(λ)

1 − φ̃F(λ)
, (F 20)

from which

ṼT(λ) = �//φ̃0(λ)

1 − φ̃F(λ)
. (F 21)

We focus here on the case of an initial condition according to the Eulerian PDF,
p0(v) = pE(v). Direct computation from (F 16) shows that 1 − ∫ t

0 dt′ φF(t′) = φE(t)�///VE,
from which we conclude that 1 − φ̃F(λ) = (�//λ/VE)φ̃E(λ). This shows immediately that
ṼT(λ) = VE/λ, so that, inverting the Laplace transform, the average velocity is constant
and equal to VE, as expected. Furthermore, as shown in the main text, the time-Lagrangian
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velocity PDF is in this case stationary, and we have pT(v, t) = pE(v). Therefore, from
(F 17),

VT(t)VT(t′) =
∫ ∞

0
dv VT(t − t′ | v)vpE(v). (F 22)

We conclude that the velocity correlation function is stationary; for t > t′,

Cv(t, t′) = Cv(t − t′) =
∫ ∞

0
dv VT(t − t′ | v)vpE(v)− VE

2
. (F 23)

Taking Laplace transforms and using (F 19) yields

C̃v(λ) = VE�//

[
φ̃F(λ)

1 − φ̃F(λ)
− VE

�//λ

]
. (F 24)

Thus, using the Green–Kubo relation (5.7) gives

χ 2D̃∞(λ) = VE�//

λ

[
φ̃F(λ)

1 − φ̃F(λ)
− VE

�//λ

]
. (F 25)

For gamma-distributed Eulerian velocities, (6.1) and (6.2), we take the Laplace
transform of (F 16) and perform the integral to obtain

φ̃F(λ) = (1 + θ) exp
(
�//θλ

VE

)
E2+θ

(
�//θλ

VE

)
, (F 26)

where Eθ (x) = ∫∞
1 dt exp(−x t)/tθ is an exponential integral. This admits the small-λ

expansions

φ̃F(λ) ≈

⎧⎪⎪⎨
⎪⎪⎩

1 − τ//λ− Γ (−θ)(τ//λ)1+θ , θ < 1,

1 − τ//λ− ln(eγEτ//λ)(τ//λ)
2, θ = 1,

1 − τ//λ+ [θ/(θ − 1)](τ//λ)2, θ > 1,

(F 27)

where τ// = �///VE and γE ≈ 0.577 is the Euler–Mascheroni constant. Substituting in (F 25)
and inverting the Laplace transform to leading order in λ leads to (6.3).

Appendix G. Numerical validation of diffusive transitions

We consider, for validation and illustration purposes, transport in some instances of
the stratified flows from table 1. We employ a pulse initial condition of unit mass, at
the origin along the flow direction, and uniform along the direction transverse to the
flow, corresponding to an initial velocity distribution according to the Eulerian PDF.
We fix, in arbitrary units, L = 1, D = 5 × 10−4, and VE = 1. This corresponds to a
diffusion time τD = L2/(2D) = 103 to homogenize the transverse direction, an associated
advective distance LD = VEτD = 103, and a Péclet number associated with the width L of
VEL/D = 2 × 103.

We compare the results of our DVRW, implemented using the discrete Lagrangian
formulation, to standard fully resolved particle tracking random walk (PTRW) simulations
with fixed-time-step spatial transitions associated with advection and transverse diffusion.
The simulation results are in very good agreement for the breakthrough curves and
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FIGURE 4. Breakthrough curves (a) and concentration profiles (b) for two-dimensional
Poiseuille flow, under a pulse initial condition homogeneous along the direction transverse to
the flow. Times are shown in units of the diffusion time τD and positions in units of the advective
distance LD.
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FIGURE 5. Evolution of the time-Lagrangian (a) and space-Lagrangian (b) velocity PDFs for
two-dimensional Poiseuille flow. Times are shown in units of the diffusion time τD, distances
in units of the advective distance LD and velocities in units of the mean velocity VE. The initial
condition coincides with the Eulerian PDF, corresponding to a homogeneous injection along the
direction transverse to the flow.

concentration distributions as well as the velocity PDFs at fixed times and distances, as
shown for two-dimensional Poiseuille flow in figures 4 and 5, respectively. The results in
these figures correspond to Δs = 10−6LD for the DVRW and Δt = 10−5τD for the PTRW
simulations, using 105 particles in both cases.

A slight mismatch can be observed for concentrations very close to injection, see
figure 4(b), which occur at early times. This is due to the impact of discretization, which is
most noticeable at positions and times corresponding to few transitions. At large distances
(compared to LD), both concentrations and breakthrough curves become approximately
Gaussian, in accordance with the central limit theorem. Regarding the velocity PDFs,
figure 5, note how there is no change in the time-Lagrangian PDF, since the initial
condition coincides with the Eulerian PDF and is therefore the equilibrium solution. As for
the space-Lagrangian PDF, note the quick evolution towards the equilibrium flux-weighted
Eulerian PDF: for the last two distances, corresponding s = 2.6 × 10−1LD and 10LD, the
PDF has essentially already converged. Slight mismatches between the simulation results

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

95
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.957


910 A12-34 T. Aquino and T. Le Borgne

10–2 10–1 100

Time t

A
ve

ra
ge

 p
os

iti
on

 X
T 

(t
)

101 10–2 10–1 100

Time t

V
ar

ia
nc

e 
σ

2  
(t

)/
(2

D
T)

101
10–2

10–1

100

101

10–1

100

101

102

103

104 t

PTRW
VEt

DVRW
Couette
Triangular

Poiseuille (d = 2)
Poiseuille (d = 3)

M-flow, Λ(VE) = 3

(b)(a)

FIGURE 6. Mean (a) and variance (b) of tracer positions for different stratified flows, under a
pulse initial condition homogeneous along the direction transverse to the flow. Times are shown
in units of the diffusion time τD and position in units of the advective distance LD. Variances are
normalized in terms of the Taylor dispersion coefficient as indicated.

and the theoretical equilibria are due to the sampling discretization when computing the
PDFs.

The temporal evolution of the mean tracer position and longitudinal dispersion for four
examples of stratified flow are shown in figure 6. The discretizations used in this case
were Δs = 10−6LD, Δt = 10−6τD and 104 particles. The results show excellent agreement
between PTRW and DVRW simulations.

As usual for particle methods, precision scales approximately with the inverse of the
square root of the number of particles. As for the spatial discretization, note that the
relevant discretization for the DVRW is at the level of the Eulerian PDF, which is achieved
indirectly through discretizing the distance Δs along streamlines. In order to estimate the
discretization necessary to achieve a given precision in velocity space, consider (3.6)
describing diffusive velocity averaging and characterizing velocity class widths in the
discretized DVRW. Inverting this relation for Δs and using (5.21) for the effective shear
rate, we have, for a given precision Δv,

Δs = min
i

{vipE(vi)
2}τ⊥Δv2, (G 1)

where τ⊥ = �2
⊥/(2D) is the diffusion time associated with homogenizing a region of

characteristic length �⊥. If vpE(v) has zeros, the minimum value on the right-hand side
occurs within Δv of a zero. Accurate results typically require Δv/VE � 1.

The convergence with Δs of longitudinal dispersion for Poiseuille flow is illustrated in
figure 7. The order of convergence is found to be approximately 1/3, corresponding to
the dependence of velocity class sizes on Δs1/3 at small velocities, see appendix B. Here,
fine discretizations are needed for accurate results. However, when velocity transitions
along streamlines are included, the discretization requirements become less strict at high
Péclet number. Although we do not consider this point further here, we expect it may be
possible to develop faster-converging Lagrangian discretizations of the continuous DVRW
description. An alternative is to directly solve the Eulerian continuum equations for the
PDFs of quantities of interest, where the discretization may be imposed directly at the
level of velocity magnitudes.
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FIGURE 7. Convergence of the DVRW with discretization for longitudinal dispersion under
Poiseuille flow in two dimensions. The convergence properties are quantified through the L2
relative error norm, computed for the solutions with different Δs at 1000 equally spaced times
between t = 0 and t = 10τD. The baseline solution used for comparison is computed using a
PTRW simulation with Δt = 10−5. All solutions use 105 particles. Linear fitting to the logarithm
of the error versus the logarithm of Δs indicates an order of convergence of 0.31, with 95 %
confidence bounds of 0.30 and 0.33.
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