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Integrating the visual navigation mechanism of flying insects with a nonlinear Kalman
filter, this paper proposes a novel navigation algorithm. New concepts of entropic map and

entropy flow are presented, which can characterize topographic features and measure
changes of the image respectively. Meanwhile, an auto-selecting algorithm of assessment
threshold is proposed to improve computational accuracy and efficiency of global motion

estimation. The simulation results suggest that the navigation algorithm can perform real-
time rectification of the missile’s trajectory well, and can reduce the cost of the missile’s
hardware.
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1. INTRODUCTION. There are some flaws in the existing navigationmethods.
An inertial navigation system (INS) is a fully autonomous navigation system, but it
is inappropriate for long-distance navigation [1]. In order to improve the accuracy
of INS, some assistant navigation techniques including Doppler-aided, stellar-
aided, radio-aided and terrain-aided techniques have been developed over the years
though they do not generally perform well for low-velocity and highly manoeuvr-
able aircraft such as helicopters [2]. At present, GPS has been recognized as the
ideal airborne navigation system, however, it also has some defects [3]. Therefore,
developing other new navigation techniques is the focus of the research on future
navigation technology. Recently, scholars have begun to explore new navigation
methods learned from the visual navigation mechanisms of biology since certain in-
sects, despite possessing relatively small brains and simple nervous systems, provide
a clear demonstration that the living organism can display surprisingly competent
mechanisms for guidance and navigation. Their quick, accurate and reliable visual
navigation systems have an amazing capability to navigate accurately in complex
natural environments, going without the influence of weather, climate, light or other
environmental conditions. They are much better than any other current develop-
ments of human navigation systems [4,5]. If the visual navigation mechanisms of
insects are studied in depth, and then applied to the navigation system of aircraft,
robots or other equipment, some new bionic machines may be developed which
could avoid obstacles and reach the target accurately in complex situations, just like
some insects.
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Many scholars have researched the visual biological mechanisms and proposed a
number of corresponding navigation methods. Collett [6] has studied the behaviour of
bees and ants, and proposed a landmark-matching model for robot navigation.
Wehner [7] has mainly studied the navigation mode of desert ants and developed a
wireless robot of the bionic desert ant. Srinivasan [8] has studied the visual navigation
mechanism offlying insects, especially on bees for more than 20 years, and proposed
a bionic calculation model of optical flow. Carroll [9] has studied the imaging
mechanism of honeybees’ compound eyes in depth and developed a bionic heuristic
camera and a bionic motion detector.

Flying insects such as honeybees can perceive various patterns of movements that
are generated by their own motion. And research suggests that insects rely on ‘visual
flow’ to avoid lateral obstacles [10], to control their speed [8] and height [11,12], to
cruise and land [8,12]. In this paper, in order to measure the changes of ‘visual flow’
accurately, we will propose new concepts of entropic map and entropy flow, which
characterize topographic features and measure changes of images respectively. A six-
parameter affine motion model to estimate motion parameters of the camera is also
presented, according to the above two concepts. Meanwhile, a novel auto-selecting
algorithm of assessment threshold is proposed to improve computational accuracy
and efficiency of global motion estimation. Based on the above fundamental work, we
will establish a new navigation algorithm based on the entropy flow and a Kalman
filter. Compared with the traditional terrain-aided navigation, the proposed algorithm
requires neither INS to provide location information nor an altimeter to provide height
information. It will provide a feasible study for the navigation system of a missile.

The remainder of the paper is organized as follows: Two new concepts of entropic
map and entropy flow are introduced in section 2, followed by the global motion
estimation algorithm in section 3. The new navigation algorithm based on the en-
tropy flow and Kalman filter is proposed in section 4. Some simulation experiment
results are obtained in section 5 and finally the conclusions are given in section 6.

2. THE CONCEPTS OF ENTROPIC MAP AND ENTROPY FLOW.
Flying insects such as honeybees are well known to have high visual acuity and to
use cues of image flow induced by their own motion to navigate, mate and identify
food sources. The image flow can be explained as a kind of information flow since
the image can be characterized by a set of information. As the information entropy
is an effective means to depict image information, then the image flow can be inter-
preted as a kind of entropy flow.

2.1. The visual mechanism of flying insects. Honeybees are species of compound-
eye insects. These compound eyes are composed of tens of thousands of ommatidia
and the most obvious advantage of the ommatidium is that flying insects can effec-
tively calculate the relative positions and distances from themselves to the observed
objects, and then make their own judgments and response quickly. The observed
range of each ommatidium is very narrow and the observed scenes overlap with each
other between the adjacent ommatidia. The entire scene observed by all the ommatidia
forms a panoramic image. Unlike vertebrates, flying insects cannot infer the distances
to objects or surfaces due to their immobile eyes with fixed-focus optics. Thus they
fall back on image motion, induced by their own motion, to deduce the distances to
obstacles and to control various manoeuvres [7,10].
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Research on the orientation performances of honeybees has agreed that honeybees
determine the direction of the food source by using the sun compass, but there still
exists controversy with respect to the possible cues used to measure the distance to the
food source. Karl von Frich [13] proposed a theory of ‘‘energy hypothesis ’’ that the
honeybees infer the distance to the food source by measuring the amount of energy
spent on the foraging trip. However, recent studies have discovered a number of
different ways in which honeybees use visual cues for navigational purposes [7,10,11].
At the same time, some evidence has confirmed that the flight speeds of flying insects
are regulated by monitoring the velocity of the image through their retinas [14,15].
Some findings [16] have proved that the distance is indeed estimated in terms of
the total extent of image motion that is experienced by the eyes en route to the
destination.

2.2. The concept of entropic map.
2.2.1. Entropy. A theoretical approach to information is based on the concept

of entropy introduced by Shannon in information theory [17]. Suppose that a
source X has L source alphabets and the probability of the i-th source xi is given by pi,
where pko0 (k=1, 2, …, L) and gpk=1. An effective means to describe the infor-
mation for the source X is the mean of self-information over the L source alphabets,
which is called Shannon entropy.

H(X)=
XL
i=1

p(xi)I(xi)=
XL
i=1

p(xi)[xlog(pi)]=x
XL
i=1

p(xi)log pi (1)

As an image is viewed as an information source with a probability vector described
by its histogram L of the image I, the entropy of the histogram can be used to
represent a certain level of information contained in the image. The entropy of an
image is a scalar and it represents the total information content contained in the
image.

2.2.2. Local entropy. Shannon entropy is a global quantity, considering only
global statistical information while discarding the spatial distribution information
of the image. Images with the same entropymay be completely different in vision. And
in natural images, the difference of their entropies is very slight. Therefore, Shannon
entropy is inappropriate to characterize the topographic features and measure
changes of images. In order to overcome that deficiency, the concept of local entropy
is proposed in [18]. For the sake of calculating local entropy, the image is partitioned
into blocks of equal size. The local entropy considers the spatial distribution infor-
mation of an image, and it denotes local information contained in local windows
rather than global information contained in the whole image. So local entropy not
only characterizes topographic features but also measures the changes of the size to
some extent. All local entropies will construct a local entropic map, but its contrast
and size are commonly different from the original image.

2.2.3. The concept of entropic map. The graph of function y=xxlogx is shown
in Figure 1. The function has a maximum point 1/e and it has two monotone inter-
vals. These properties result that the contrast of the local entropic map is often out of
accord with the original image. If the variable x is multiplied by 1/e, the function will
be limited to the interval [0, 1/e] and increase monotonically in the interval [0, 1/e],
which is valid to avoid altering the contrast of the image. At the same time, the grey
value f(i, j) at the point (i, j) can be interpreted as the number of photons arriving at
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that point. If the total number of photons is viewed as 1, the grey value f(i, j) will be
interpreted as the probability distribution of photons, i.e. p(i, j). According to these
opinions, the choice of p(i, j) in our entropic map is described as:

p(i, j)=
f(i, j)

e �
PM
i=1

PN
j=1

f(i, j)

(2)

where f(i, j) expresses the grey value at the point (i, j) andMrNmeans the size of the
whole image.

In constructing the entropic map, the segmented method simulates the principle
of compound eyes of flying insects. For an image of size MrN, the constructing
algorithm of entropic matrix T is described as follows:

(1) Calculate p(i, j) at each point (i, j) according to equation (2) ;

(2) Partition the image into equal-sized rectangular sub-blocks (the number of
blocks is PrQ), and the adjacent sub-blocks will share a certain percentage
of overlapping;

(3) Compute entropy Hij (1fifP, 1fjfQ) of each sub-block according to
equation (1) ;

(4) Use all sub-blocks of entropy to form an entropic matrix T.

The entropic matrix T is shown

T=

H11 H12 . . . H1Q

H21 H22 . . . H2Q

..

. ..
. ..

. ..
.

HP1 HP2 � � � HPQ

2
6664

3
7775 (3)

If the entropic matrix T is normalized via the linear normalization method, the en-
tropic map will be established. The entropic map can characterize topographic fea-
tures of an image and its accuracy is relative to the fine grit of the sub-block.

Figure 1. The graph of function y=xxlogx.
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In this paper, the original image is divided into blocks of size 3r3 and the over-
lapping ratio between two horizontal and vertical adjacent blocks is 2/3. The diagram
of the intersected method is shown in Figure 2.

Figure 3 (a) is an original airport image, and we have added Gaussian noise with
zero mean and variance var=0.5 to it, as shown in Figure 3 (b). Their corresponding
entropic maps are shown in Figure 3 (c) and (d) respectively (via normalization).
From Figure 3, we can see that entropic maps are insensitive to noise, similar to low-
pass filter.

2.3. Entropy flow.
2.3.1. The concept of entropy flow. Recent research has discovered a number of

different ways in which flying insects such as honeybees utilize self-induced image
motion parameters for navigation purposes [4,8–11,19]. Optical flow is an approxi-
mation to image motion defined as the projection of velocities of 3-D surface points
onto the imaging surface. The movement is reflected by the changes of brightness
patterns of the image.

In information theory, an image can be viewed as an information source, i.e. a set
of information. Then the image motion can be characterized by a kind of information
motion. Entropy is a regular means to describe information. If the observed scene of
each ommatidium is viewed as an element of the information set, i.e. the information
of a small sub-block of the image, which is depicted by the entropy, the grey value
of the image will be translated into an entropy model. Then, an entropic map can be
constructed, imitating the principle of compound eyes. When a grey scale image is
translated into an entropic map, the changes of brightness patterns will become the
changes of entropy patterns. That is to say, the movement of the image is also charac-
terized by the changes of entropy patterns called entropy flow. Not surprisingly,
flying insects may use cues of entropy flow to manage the problems of navigation.

2.3.2. The computation of entropy flow. Optical flow is an approximate de-
scriptor of image motion. Starting with the classical works of Horn and Schunck [20]
as well as Lucas and Kanade [21], there are tremendous computational methods of
optical flow. Barron et al. [22] suggested that the phase-based technique of Fleet and
Jepson [23] and the differential technique of Lucas and Kanade [21] produced the
more accurate results overall. Galvin et al. [24] concluded that the technique devel-
oped by Lucas and Kanade yields the best results.

In order to analyze motion within subsequent frames of an image sequence,
temporal constancy has to be imposed on certain image features. The most frequently

Figure 2. The diagram of intersected method.
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used feature in this context is the image brightness, i.e. the grey values of image objects
in subsequent frames do not change over time. The brightness constancy assumption
is also accepted to compute entropy flow in this paper, which makes the instan-
taneous entropy value in an entropic map sequence stay unchanged over time:

T (x+u, y+v, t+1)=T(x, y, t) (4)

where the displacement field v=(u, v)T(x, y, t) is entropy flow. For small displace-
ments, we may perform a first order Taylor expansion to yield the entropy flow
constraint (EFC):

Tx �u+Ty �v+Tt=0 (5)

where subscripts denote partial derivatives. It is evident that this single equation is
not enough to uniquely compute the two unknowns u and v (aperture problem).

For the solution of equation (5), we add a local constant model to v, similar to
Lucas and Kanade [21]. Assume that in a small neighbourhood space V, the motion
vectors remain constant, then the entropy flow can be estimated through weighted
least-squares method. In a small spatial neighbourhood V, the estimation of entropy
flow is computed by minimizingX

(x, y)2V W(x, y)(Tx �u+Ty �v+Tt) (6)

(a)

(d)(c)

(b)

Figure 3. (a) Top left : Original airport image. (b) Top right : The image degraded by Gaussian

noise with var=0.5. (c) Bottom left : Entropic map corresponds to the original image. (d) Bottom

right : Entropic map corresponds to the noise image.
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where W(x,y) represents a window. Then the solution of u and v is as follows

v=(ATW2A)x1ATW2B (7)

where in the time t, Xi V and

A= rT(X1) rT(X2) � � � rT(Xn)½ �
W=diag W(X1) W(X2) � � � W(Xn)½ �
B=x Tt(X1) Tt(X2) � � � Tt(Xn)½ �

9=
; (8)

2.3.3. The performance evaluation of entropy flow. Entropy flow is also an
approximation of image motion. We compare entropy flow with optical flow in the
estimated performance of image motion for four synthetic image sequences, since
their 2-D image motion fields are known. In computation of optical flow, temporal
smoothing is usually needed to avoid aliasing, but numerical differentiation must
be done carefully [25]. In this paper, a Gaussian smoothing kernel with standard
deviation s=1 is used in the computation of optical flow, while that process is not
necessary in calculation of entropy flow since the entropic map is robust to noise from
section 2.2.

Three synthetic sequences, i.e. sphere sequence, office sequence and street sequence,
are available from www.cs.otago.ac.nz/research/vision/ while the fourth sequence,
Yosemite without clouds sequence is available from http://www.cs.brown.edu/
people/black/images.html. The qualitative performance of image motion field is
authenticated by the quantitative evaluations, i.e. measuring in terms of the error
measure [23], namely the angular error between the correct image motion (uc, vc) and
the estimated motion (ue, ve) via

’e= arccos
ucue+vcve+1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2c+v2c+1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2e+v2e+1
p

" #
(9)

where Qe is the angular error. The comparisons between entropy flow and optical flow
was by means of average angular error (Av. Err.) and standard deviation of angular
error (St. Dev.). The average angular errors and their standard deviations of four
synthetic image sequences are shown in Table 1. It suggests that the estimation
performance of entropy flow as a whole surpasses that of optical flow from Table 1.
The reason may be that entropy flow possesses a bionic property since it is based on
the visual mechanism of the flying insects, so it yields more precise results.

Table 1. The averages and standard deviations of angular errors for four synthetic image sequences.

Av. Err. St. Dev.

Optical flow Entropy flow Optical flow Entropy flow

Sphere Sequence 8.1369xt0.1215x 8.1056xt0.1196x 15.1103xt0.1616x 14.8862xt0.1324x

Office Sequence 13.1347xt1.1661x 11.7536xt0.8271x 14.2982xt1.0789x 14.2800xt1.0684x

Street Sequence 16.2558xt1.9829x 15.1405xt1.8529x 23.1403xt1.7132x 23.0376xt1.5628x

Yosemite Sequence 14.9189xt1.4517x 14.2207xt0.9686x 19.6631xt1.2507x 18.4050xt0.5471x
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The comparisons for realistic image sequence Ettlinger Tor Traffic sequence are
shown in Figure 4. This sequence is available from http://i21www.ira.uka.de/
image_sequences/, and it consists of 50 frames of size 512r512. The computed
entropy flow and optical flow field, as well as their corresponding magnitudes of flow
field are shown in Figure 4. It suggests that entropy flow is very approximate to image
motion, and perhaps it is better in depicting performance of image motion.

3. GLOBAL MOTION ESTIMATION ALGORITHM. Global motion
is defined as the image motion induced by a camera moving through a static
environment. The global motion estimation technique is simply described as fol-
lows: First choose a motion parameter model and then estimate those parameters
through a robust parameter estimation method, e.g. least squares, M-estimators and
Levenberg-Marquardt iteration algorithm. We can use entropy flow to estimate
those parameters since entropy flow is an approximation to image motion.

3.1. Six-parameter affine motion model. The field generated by the 3-D rigid
object motion is projected onto a 2-D motion field under the orthogonal projection

(a)

(c) (d)

(b)

Figure 4. (a) Top left : Computed entropy flow field between frame 24 and 25. (b) Top right :

Computed optical flow field. (c) Bottom left : The magnitude of entropy flow field. (d) Bottom

right : The magnitude of optical flow field.
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which can be depicted by both affine motion model and non-linear perspective mo-
tion model. With regard to global motion models, we adopt a six-parameter affine
motion model because of its reasonable trade-off between complexity and accuracy.
The basic form of six-parameter affine motion model is described as:

u(x, y)=a1x+a2y+a3
v(x, y)=a4x+a5y+a6

�
(10)

where v=(u(x, y), v(x, y)) represents the motion at the point (x, y). If we assume
au
T=(a1, a2, a3), av

T=(a4, a5, a6), X=[x, y, 1], we will get u(x, y)=X .au and
v(x, y)=X.av. Obviously, when the motion v is known, the parameters au and av will
be estimated through a least-squares estimation algorithm because of its small com-
putational complexity and good estimated accuracy. Then the solution of a1, a2, a3, a4,
a5, a6 is as follows:

[au av]=
X

(x, y)2D XT �X
h ix1 X

(x, y)2D XT � [u(x, y) v(x, y)] (11)

where D is a set of points in the entropic map.
3.2. Auto-selecting algorithm of assessment threshold. However, the estimated

uncertainty and the violation of EFC have a great impact on the estimated accuracy
of those motion parameters. In order to improve computational accuracy and ef-
ficiency of global motion estimation, an auto-selecting algorithm of assessment
threshold is proposed in this paper. From equation (10), three motion vectors v are
enough to solve those motion parameters. But this strategy is not adopted because of
large errors. The method that all motion vectors v contribute to compute the motion
parameters is also inadvisable owing to the volatility of entropy flow and bulky cal-
culated amount. The aim of the auto-selecting algorithm of assessment threshold is
to seek a small quantity of entropy flow with little volatility. Therefore, the entropy
flow field is divided into sub-blocks of equal size, and the motion parameters
are estimated in each sub-block. The estimated parameters in each sub-block are
shown as:

[aui avi]=
X

(x, y)2Di
XT �X

h ix1 X
(x, y)2Di

XT � [ui(x, y)vi(x, y)] i=1, 2, . . . ,M (12)

where aui
T and avi

T denote the estimated parameters in i-th sub-block, Di is a set of
points in i-th sub-block, and M is the number of sub-blocks.

In order to evaluate the estimated performances of these sub-blocks, the estimated
error is introduced in this paper. The estimated error of each sub-block is defined as:

s2
i=

1

Ni

X
(x, y)2Di

vi(x, y)xvai(x, y)k k2, i=1, 2, . . . ,M (13)

where Ni is the number of points in i-th sub-block, vi is the original entropy flow in
i-th sub-block, vai is the estimated entropy flow through estimated motion parameters,
and M is the number of sub-blocks. Then, some sub-blocks whose estimated errors
are small via a threshold are chosen to re-estimate the motion parameters, which may
result in more accurate motion parameters and smaller calculated amount.

The selection of threshold is very important. In our simulation experiments, we
found that the proportion of block selection has a great effect on the threshold. The
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auto-selecting algorithm of assessment threshold is based on the proportion of block
selection, and described in detail as follows:

(1) Partition the entropy flow field into sub-blocks of equal size (the size usually
is 8r8 or 16r16);

(2) Calculate estimated errors of each sub-block, si
2, i=1, 2, …, M, and M is the

number of sub-blocks;

(3) Set up an initial threshold V=V0 and the step length DV ;

(4) Choose the sub-blocks whose estimated error satisfy si
2fV, i=1, 2, …, N,

where N means the number of selected sub-blocks;

(5) Put up the proportion of block selection b, if N/M ob, then V is the final
threshold. Otherwise, V=V+DV, return to Step 2 and continue to search.

The respective mean of estimated errors of the translation in X, Y and Z co-
ordinates are shown in Figure 5 (the block size is 16r16). The horizontal axis
represents different proportion of block selection b and the vertical axis denotes the
mean estimation error (the errors are described in percent). The total number of
experiments is 288 and b is finally chosen as 0.15 in the following work.

4. THE NAVIGATION ALGORITHM BASED ON ENTROPY
FLOW AND KALMAN FILTER. If a camera is fixed on the body of the
missile, the motion parameters of the camera will be the same as those of the
missile. It is possible to estimate motion state of the missile from section 3,
so the control system of the missile can deal with some problems of navigation.

4.1. Kalman filter. The least-squares estimation algorithm is adopted to estimate
the parameters of global motion. However, the least-squares algorithm is usually
more sensitive to data noise. It is a linear minimum deviation estimation and its
process needs to know the first-order and the second-order moments of the estimator
exactly, which is very harsh, usually impossible for a non-stationary process. There-
fore, the estimated results have a certain extent of error and need to be amended.

In the 1960s, the Kalman filter method [26] was proposed, which aroused world-
wide application. The advantage is that it has transitivity, so it does not store large
amounts of historical information and can reduce the amount of storage in the
computer, directly combining the system state equation with observation equation,

Figure 5. The respective mean errors under different proportions of block selection.
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and estimating parameters of the system state while directly giving estimated accuracy.
So it is widely used in process control, telecommunications and biomedical fields, etc.

4.2. The framework of the navigation algorithm. The novel navigation algorithm
is modelled on the basis of the navigation mechanism of particular flying in-
sects – honeybees. From section 2.1, the flight direction of honeybees to the food
source is definite since they determine the direction by using the sun compass, which
rouses us to plan the flight path of the missile beforehand (called reference trajectory).
Meanwhile, honeybees use cues of image flow induced by their own motion to avoid
lateral obstacles, to control their speed and height, to cruise and land, which inspires
us to fix a high-performance camera on the abdomen of the missile. The aim of the
camera is to snap the real-time image sequence and then expect to regulate the flight
trajectory of the missile in real time (called real-time trajectory). Furthermore, the
motion parameters of the camera, i.e. the real-time flight regime of the missile, are
estimated through entropy flow, and then a series of aerial photographs from an
original point (location) to the target point (location) are stored in the missiles be-
forehand (called reference image sequence). Under the above initial assumptions, the
control system of the missile may continuously modulate its control signal to regulate
the flight trajectory of the missile through the navigation algorithm based on the
entropy flow and a Kalman filter, to reach the goal.

The computation of entropy flow is between real-time images and their corre-
sponding reference images, rather than only in the reference image sequence or the
real-time image sequence. The initial image in the reference image sequence is viewed
as the first-frame image, while the initial image in the real-time image sequence is
regarded as the corresponding second-frame image. Then the entropy flow filed will
be calculated according to section 2, and the motion parameters of the missile are
obtained based on section 3. The control system of the missile regulates the trajec-
tory, and instructs the missile to reach the next target point (location). By repeating
that process, the missile will arrive at the end-point. The navigation algorithm is a
continuously iterative process to ensure arrival at the end-point. The sketch map of
the navigation algorithm is shown in Figure 6.

In Figure 6, 0, 1, 2, …, 6, … represent the respective positions of the reference
trajectory and they move in a unit time to reach the next position according to the
scheduled speed and direction (i.e. T0). The images in the position 0, 1, 2, …, 6, … are

0 54321
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Figure 6. The sketch map of the navigation algorithm.
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viewed as the first frame, the second frame,..., the sixth frame, … in the reference
trajectory, i.e. reference images. These images are converted into the entropic maps,
which are denoted as 0, 1, 2, …, 6, … respectively. 1k, 2k, …, 6k, … represent the
positions of the real-time trajectory and they move in a unit time to arrive at the next
location according to the amendatory speed and direction (i.e. T0+DT1, T0+DT2, …,
T0+DT6, …). The following work is similar to the above, denoted as 1k,
2k, …, 6k, … respectively.

The navigation algorithm based on the entropy flow and Kalman filter is described
in detail as follows:

(1) Compute entropy flow between 1k and 0 according to section 2;

(2) Estimate the motion parameters of the missile in the light of section 3;

(3) Input the estimated parameters to Kalman filter to obtain the optimized
motion parameters DT1 ;

(4) The position of 1k moves to the position of 2k through T0+DT1.

The translation in X and Y coordinates can be viewed as the velocity in X and Y
coordinates since we only consider the displacements in X, Y and Z coordinates in a
unit time interval in this paper. Return to step 1, and compute entropy flow between
2k and 1, the optimized parameters DT2 will be obtained, thus the position of 3k is
available by 2k moving T0+DT2. Repeat the above steps, therefore a series of rectifi-
cation DT3, DT4,…will be obtained respectively until arriving at the goal.

5. EXPERIMENTS. In the simulation experiments, we assume that : 1) the
camera is fixed on the missile and its optical axis is perpendicular to the ground; 2)
the translation is only considered in X, Y and Z coordinates without considering
rotary issues and the changes of the missile’s attitude; 3) the body of the missile is
always parallel to the ground and there is no roll-over phenomenon.

5.1. Simulation process. The reference images were snapped in five different
initial locations at seven different heights, and the central positions of their images
were controlled by the latitude and longitude in Google Earth, i.e. (30x30k35.03a,
114x24k29.04a), (23x09k36.36a,113x14k58.45a), (30x30k20.22a,114x24k44.24a), (39x54k18.16a,
116x24k27.74a), (40x39k10.33a,73x57k34.33a). At each central location, seven images
were snapped respectively, from the height of 1850m to 2150m, with 50m as an in-
terval. The total number of snapped images was 35 and the size was 689r1024. The
snapped images in different view heights were used for simulating the changes of the
height, and forming other images which are in the other height through an interp-
olation algorithm in simulation experiments.

During the practical flight, random error is inevitable. In order to simulate random
error, in the fourth step of the navigation algorithm in section 4.2, we have added
random errors in the interval [x0.5, 0.5] (unit : pixel) on the translations in X and Y
coordinates and random errors in the interval [x5, 5] (unit : metre) on the translation
in Z coordinate in each iteration step. The initial location of the real-time trajectory
is obtained from the initial position of reference trajectory where an initial error is
added.

The simulation experiments at each initial position accompanied by five different
initial errors are repeated 30 times randomly, then the total number of simulation
experiments is 750. Five experimental results randomly singled out from five different
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initial positions are shown in Figure 7. Each image has two sub-images. The real-time
amendatory trajectory in the XOY plane is shown in the first sub-image, where the
red curve with volatility is the real-time trajectory and the grey line in the centre
represents the reference trajectory. The real-time amendatory trajectory in the Z axis
is shown in the second sub-image, where the red curve with volatility is the real-time

(a) 

)c()b(

)e()d(

Figure 7. (a) Top : A result randomly taken out from (30x30k35.03a, 114x24k29.04a) and its initial

error is (x5.8, x2.3, x50). (b) Middle left : From (23x09k36.36a, 113x14k58.45a) and the initial

error is (2.6, 5.8,x50). (c)Middle right : From (30x30k20.22a, 114x24k44.24a) and the initial error is

(2.6, 5.8, x50). (d) Bottom left : From (22x39k06.36a, 113x29k58.45a) and the initial error is (x5.5,

2.6, 50). (e) Bottom right : From (36x39k55.19a, 116x59k41.69a) and the initial error is (6.8, 3.0, 50).
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modified height and the grey line in the centre is the reference height 2000m.
The initial errors in X and Y coordinates were (x5.8, x2.3), (2.6, 5.8), (2.6, 5.8),
(x5.5, 2.6), and (6.8, 3.0) respectively (unit : pixel), while the respective initial errors in
Z axis were 50m, x50m, 50m, 50m and 50m (unit : metre).

5.2. Circular error probability (CEP). In the military science of ballistics, circular
error probable (CEP) or circular error probability is an intuitive measure of testing a
weapon system’s accuracy. In Pitman [27], CEP is defined ‘‘as the radius of a circle
around a target for which there is a 50% probability that the guidance system will guide
the vehicle into it. ’’ The following approximate method [27] has been developed to
estimate the radius of probability distribution R since CEP is very difficult to evalu-
ate. A plot of CEP/sy versus r=sx/sy shows that the CEP/sy is fairly linear over the
range 0.3 <r<1.0 and the CEP can be adequately represented in this region by the
equation, CEP=0.615sx+0.562sy, where sy is the larger of the two errors. The re-
lationship can be expressed as:

CEP=
0�615sx+0�562sy (sx<sy)

1�1774sx (sx=sy)
0�615sy+0�562sx (sx>sy)

8<
: (14)

The respective error distributions in X, Y and Z coordinates from 750 simulation
experiments are shown in Figure 8, where the horizontal axis represents the n-th
simulation experiment, and the vertical axis represents the error (unit : m). From

(b) (c)

(a)

Figure 8. The respective errors in X, Y and Z coordinates from 750 times experiments.
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Figure 8, the majority of translational errors in X, Y and Z coordinates are in the
interval [x3m, 3m], [x5m, 5m] and [x20m, 20m] respectively. The width of each
pixel in the image at the height of 2000m represents the size of 2.2559m in actual
ground width. The majority of translational errors in X and Y coordinates are within
two pixels while they are under 1% in Z coordinate. CEP is 3.9872m according to
equation (14). The same result can also be obtained from Table 2.

The mean and variance of errors in the X-axis, Y-axis and Z-axis from 750 times
experiments are shown in Table 2. The error unit in X and Y coordinates is pixel and
the error unit in Z coordinate is metre. There exist large error points (marked data)
though most of the errors in X, Y and Z coordinates are small from Table 2. Those
marked datas have been removed in calculating the total mean and variance of error.

CEP is an intuitive measure of testing the accuracy of the missile system. Different
initial errors may result in different CEPs, and some initial errors may produce large
CEP which do not satisfy the accuracy requirements of the navigation system. In

Table 2. The mean and variance of errors in the X-axis, Y-axis and Z-axis from 750 times experiments.

Initial position Initial error

X-axis Y-axis Z-axis

mean

(m)

variance

(m)

mean

(m)

variance

(m)

mean

(m)

variance

(m)

30x30k35.03a N
114x24k29.04a E

(6, 1, x50) x0.2886 2.3531 x1.0192 2.7701 4.7022 14.1628

(x5.6, 1.8, x50) 0.4646 2.4480 x0.2461 4.3556 5.7493 14.8642

(x4.6, x2.5, 50) 1.1360 2.5777 x0.0045 3.1017 4.4728 15.1368

(2.6, x5.5, 50) 0.8211 2.1572 x0.3898 3.5509 x1.190 17.2161

(x1.7, 6.4, 30) x0.2436 2.2232 x0.6506 2.6645 3.6932 15.4964

23x09k36.36a N
113x14k58.45a E

(6, 1, x50) 1.1406 2.2574 x1.4738 4.0485 8.6414 15.1939

(x5.6, 1.8, x50) 1.0942 2.2301 x1.2930 4.1547 7.8844 14.2527

(x4.6, x2.5, 50) 0.3270 2.0937 x2.1914 3.7444 16.7295 16.6989

(2.6, x5.5, 50) 3.9294 3.4501 x410.273 362.740 105.867 61.8940

(x1.7, 6.4, 30) 0.8449 2.1348 x2.2524 4.0111 16.4336 18.8146

30x30k20.22a N
114x24k44.24a E

(6, 1, x50) 0.9724 2.2762 x1.6659 3.6004 9.3499 14.5423

(x5.6, 1.8,x50) 0.7389 2.5899 x0.6702 3.0956 10.7475 17.8651

(x4.6, x2.5, 50) x0.3264 2.1121 x2.3362 6.1217 24.6246 18.4045

(2.6, x5.5, 50) 2.8213 3.8190 x267.953 355.501 76.6343 64.1384

(x1.7, 6.4, 30) 0.3477 2.1685 x2.0441 4.1214 23.6664 17.5366

39x54k18.16a N
116x24k27.74a E

(6, 1, x50) 0.4975 2.2770 x1.6410 5.1098 17.7443 14.8620

(x5.6, 1.8, x50) x0.2867 1.8134 x1.4610 4.0397 13.0358 13.4231

(x4.6, x2.5, 50) 0.3284 2.6211 x1.2418 3.5002 17.8275 17.7935

(2.6, x5.5, 50) 3.7131 3.6268 x407.822 361.630 103.915 61.2574

(x1.7, 6.4, 30) 0.5193 1.4762 x2.7872 4.4614 15.4556 18.7414

40x39k10.33a N
73x57k34.33a E

(6, 1, x50) 0.6031 1.8384 x2.0247 4.5647 14.1980 13.8775

(x5.6, 1.8, x50) 0.8849 2.0298 x3.4207 4.3209 12.0327 17.0805

(x4.6, x2.5, 50) x0.0705 2.8921 x1.5034 4.9440 19.4714 15.8593

(2.6, x5.5, 50) 3.6926 3.9365 x359.730 362.465 92.9032 65.0534

(x1.7, 6.4, 30) 0.6834 1.4262 x1.9255 4.1115 13.2422 17.7181

The total mean and

variance (m)

(The larger errors

have been removed)

0.9738 2.7580 x1.6069 4.0766 12.8747 17.1830

CEP (m) 3.9872
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order to study the range of initial error, many experiments were done. There were
nine groups of experiments and each group was repeated 750 times. The initial error
inZ coordinate is always in the interval [x50m, 50m]. The initial errors in X, Y and Z
coordinates are chosen randomly. The experimental results are shown in Table 3.
From Table 3, we can see that if the initial errors in both X and Y coordinates are
under 10 pixels, the CEP will be less than 4.2m, which can meet the accuracy re-
quirement. If the initial error in X coordinate or in Y coordinate is larger than 10
pixels, the CEP will become very large, and it cannot be calculated.

6. SUMMARY AND CONCLUSIONS. In this paper, we have analyzed
the visual navigation mechanism of flying insects in depth, and thereupon proposed
a novel navigation algorithm for a missile. The navigation algorithm can perform
real-time adjustments of the missile’s trajectories in the 3D space well only if the
initial errors in both X and Y coordinates are under 10 pixels from simulation
experiments. The navigation algorithm does not need the accelerometers or gyro-
scopes and it has provided a feasible method for the new navigation research.

We have presented two novel and essential concepts of entropic map and entropy
flow, which can depict topographic features and estimate the motion of the image
respectively. The performance of entropy flow is superior to that of optical flow in
comparison.

We have proposed a new global motion estimation algorithm based on the entropy
flow. The auto-selecting algorithm of assessment threshold is proposed to improve
computational accuracy and efficiency of global motion estimation.

We have certainly not reached the end of the road yet since the new navigation
algorithm only considers the translations in X, Y and Z coordinates. The algorithm
does not take into account the rotations in X, Y and Z coordinates and the changes of
attitude of the missile airframe, which are the focus of further studies.
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Table 3. The mean and variance of errors under different initial errors in X and Y coordinates.

The resultant errors

The initial errors in Y axis

1y5(pixels) 5y10(pixels) 10y15(pixels)

mean

(m)

variance

(m)

CEP

(m)

mean

(m)

variance

(m)

CEP

(m)

mean

(m)

variance

(m)

CEP

(m)

The

initial

errors in

X axis

1y5

(pixels)

X 0.0053 2.7644
3.6652

0.0456 2.8312
3.6956

0.0236 3.3154
4.0406

Y x0.8615 3.4966 x0.8689 3.4776 x0.6028 3.5616

5y10

(pixels)

X 0.1046 2.7888
3.6909

x0.3562 3.3191
4.1702

— —
388.0947

Y x0.7080 3.5156 x0.5459 3.7881 — —

10y15

(pixels)

X — —
232.5683

— —
337.9097

— — —

Y — — — — — —

Note: ‘‘—’’ denotes the value can not be computed.
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