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In this paper, we introduce a new class of set-valued risk measures which satisfies cash sub-
additivity. Dual representation for them is provided. Moreover, we also investigate dynamic
set-valued cash sub-additive risk measures and discuss the corresponding multi-portfolio
time consistency. The equivalent characterization of the multi-portfolio time consistency
is given. Finally, an example is also given to illustrate the introduction of set-valued cash
sub-additive risk measures. The present paper can be considered as a set-valued extension
of scalar cash sub-additive risk measures introduced by El Karouii and Ravanelli [8].
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1. INTRODUCTION

In their seminal paper, Artzner et al. [2,3] firstly introduced the class of coherent risk
measures, by proposing four basic properties to be satisfied by every sound financial risk
measure. Further, Föllmer and Schied [13], and independently, Frittelli and Rosazza Gianin
[14] introduced the broader class, named convex risk measures, by dropping one of the
coherency axioms.

In the past decade, to evaluate the risk of a portfolio consisting of several financial
positions, Jouini et al. [19] firstly introduced the class of set-valued coherent risk mea-
sures by proposing some axioms. Hamel [15] introduced set-valued convex risk measures
by an axiomatic approach. For more studies on set-valued risk measures, see Cascos and
Molchanov [4], Hamel and Heyde [16], Hamel et al. [17], Hamel et al. [18], Labuschagne
and Offwood-Le Roux [20], Ararat et al. [1], Tahar and Lépinette [26], Farkas et al. [9],
Molchanov and Cascos [23], Lepinette and Molchanov [21] and the references therein.

In all the above-mentioned works on set-valued risk measures, an axiom of translation
invariance, which is also called cash additivity, is employed. However, as pointed out by
El Karouii and Ravanelli [8], the cash additive axiom may fail once there is any form of
uncertainty about interest rates because the money is of time value. For example, when m
dollars are added to a future position XT , the capital requirement at time t = 0 is reduced
by less than m dollars because the value of the money may grow as the time goes by.
Therefore, it is more appropriate to use cash sub-additivity to replace cash additivity. This
observation motivated us to study the set-valued cash sub-additive risk measures.
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In this paper, first, we will introduce a new class of set-valued risk measures, which is
called set-valued cash sub-additive risk measures. Dual representation for them is provided.
Second, we will also introduce the dynamic set-valued cash sub-additive risk measures, and
discuss the issue of the so-called multi-portfolio time consistency. The equivalent character-
ization of the multi-portfolio time consistency is given. These newly introduced set-valued
cash sub-additive risk measures can be considered as a set-valued extension of scalar cash
sub-additive risk measures introduced by El Karoui and Ravanelli [8].

The rest of the paper is organized as follows. In Section 2, we will briefly introduce
preliminaries, including notations. In Section 3, we will state the definition of set-valued
cash sub-additive risk measures, and provide the dual representation. An example will also
be given in this section. Section 4 is devoted to dynamic set-valued cash sub-additive risk
measures, where the corresponding dual representation is given. Finally, in Section 5, the
multi-portfolio time consistency is discussed.

2. PRELIMINARIES

In this section, we will briefly introduce the preliminaries. Let (Ω, F , P) be a fixed probabil-
ity space and Rd be the d-dimensional Euclidean space, d ≥ 1. Denote by Lp

d := Lp
d(Ω, F , P)

with p ∈ [1, ∞] the linear space of F-measurable functions X : Ω → Rd such that ‖X‖p :=∫
Ω
|X|pdP < ∞ for p ∈ [1, ∞) and ‖X‖p := esssup|X| < ∞ for p = ∞, where | · | is an arbi-

trary fixed norm on Rd. Then (Lp
d, ‖ · ‖p) is a Banach space. For X, Y ∈ Lp

d, we will identify
X with Y if P(X = Y ) = 1. The space Lp

d represents the set of financial positions. Posi-
tive values of X ∈ Lp

d correspond to gains, while negative values correspond to losses. From
now on, we consider a filtered probability space (Ω, F , (Ft)T

t=0, P) with F0 := {∅, Ω} and
FT := F . Denote Lp

d(Ft) := Lp
d(Ω, Ft, P). Note that Lp

d = Lp
d(FT ).

The d-dimensional financial positions in Lp
d(Ft) have a strong realistic interpretation.

This is indeed the case if we consider the situations where the investors have accesses
to different markets and form multi-asset portfolios in the presence of frictions such as
transaction costs, liquidity problems, irreversible transfers, etc.

Let K be a closed convex polyhedral cone of Rd with K ⊇ Rd
+ := {(x1, . . . , xd) ∈

Rd;xi ≥ 0, 1 ≤ i ≤ d}. For any X = (X1, . . . , Xd), Y = (Y 1, . . . , Y d) ∈ Lp
d, X + Y stands

for (X1 + Y 1, . . . , Xd + Y d) and aX stands for (aX1, . . . , aXd) for a ∈ R. The partial
order with respect to K is denoted by X ≤K Y , which means Y − X ∈ K. Let Lp

d(K) :=
{X ∈ Lp

d : X ∈ K} be a closed convex cone in Lp
d and M := Rm × {0}d−m be the linear

subspace of Rd for 1 ≤ m ≤ d. The introduction of M was considered by Jouini et al. [19]
and Hamel [15], which means that a regulator could only accept security deposits in the
first m reference instruments. We denote by KM := K ∩ M the closed convex polyhedral
cone in M , M⊥ := {0}m × Rd−m, K∗

M := {u ∈ M : utrz ≥ 0for anyz ∈ KM} the positive
dual cone of KM in M , where utr means the transpose of u, and by riKM the rela-
tive interior of KM . Given a set Υ, we denote Qt

Υ := {A ⊂ Rd : A = clco(A + Υ)} and
Qt

M := Qt
KM

= {A ⊂ M : A = clco(A + KM )}, where clco(A) represents the closed convex
hull of A. Given a set Z ⊂ R, IZ stands for the indicator function.

The cone K models proportional frictions between the markets and contains those
reference vectors which can be transferred (with paying transaction costs) into positions in
Rd

+, see Hamel [15]. The cone K is also introduced to play the role of the solvency set of
all positions that can be liquidated without any debt, or equivalently, it allows to define a
liquidation value function as we need it to take into account the interdependencies between
currencies, for example with respect to transaction costs.
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We denote by MP
1,d := MP

1,d(FT ) the set of all vector-valued probability measures whose
components are absolutely continuous with respect to P, that is Q ∈ MP

1,d with component
Qi : F → [0, 1] being a probability measure such that dQi/dP ∈ Lq, where 1

p + 1
q = 1 and

1 ≤ i ≤ d. Denote by EQ[X] := (EQ1 [X1], . . . , EQd [Xd])tr the vectorial expectation of X :=
(X1, . . . , Xd) with respect to vector-valued probability measure Q, where EQi [Xi] means
the expectation of Xi with respect to the probability measure Qi. EQ[X|Ft] denotes the Rd-
valued Q-conditional expectation of X under component-wise sense. Let Md

s,f denote the set
of all finite additive vector sub-probability measures, that is Md

s,f := {u = (u1, . . . , ud)tr|ui :
F → [0, 1] is finite additive and 0 ≤ ui(Ω) ≤ 1, 1 ≤ i ≤ d}. We will also denote by diag(υ)
the diagonal matrix with the elements of a vector υ as the main diagonal.

Let 1t denote one unit cash available at time t with 0 ≤ t ≤ T . Denote DT :=
(D1

T , . . . , Dd
T ), where Di

T is the stochastic discount factor for certain currency, for ref-
erence see Ng et al. [24]. Throughout this paper, we assume that Di

T ∈ [0, 1] for 1 ≤ i ≤ d.
Without loss of generality, we assume that the ith component of DT corresponds to the
same currency as that of the ith component of XT .

3. SET-VALUED CASH SUB-ADDITIVE RISK MEASURES

In this section, we will introduce the definition of set-valued cash sub-additive risk measures
and discuss the relation between set-valued cash additive risk measures and set-valued cash
sub-additive risk measures. Using this relation, we will provide the dual representation for
set-valued cash sub-additive risk measures.

3.1. Definition

We begin with recalling some properties related to the set-valued mapping R : Lp
d(FT ) →

Qt
M .

A0 Normalization: KM ⊆ R(0) and R(0) ∩ −riKM = φ;
A1 Cash additivity (or cash invariance at first m currencies): for any X ∈ Lp

d(FT ) and
b ∈ M , R(X + b) = R(X) − b;

A2 Monotonicity: for any X,Y ∈ Lp
d(FT ), X − Y ∈ Lp

d(K) implies that R(X) ⊇ R(Y );
A3 Convexity: for any λ ∈ [0, 1] and X,Y ∈ Lp

d(FT ), R(λX + (1 − λ)Y ) ⊇ λR(X) +
(1 − λ)R(Y );

A4 Proper: for any X ∈ Lp
d(FT ), domR := {X ∈ Lp

d(FT ) : R(X) = ∅} = ∅ and R(X) =
M ;

A5 Closed: for any X ∈ Lp
d(FT ), graphR := {(X, u) ∈ Lp

d(FT ) × M : u ∈ R(X)} is
closed.

Remark 3.1: As introduced by Hamel [15], a set-valued cash additive risk measure is a
mapping on Lp

d(FT ) which satisfies A0 − A3.

Now we define a set-valued risk measure on the discounted position DT XT :=
(D1

T X1
T , . . . , Dd

T Xd
T ) for DT = (D1

T , . . . , Dd
T ) and XT = (X1

T , . . . , Xd
T ).

Definition 3.1: Let DT be a FT -measurable discount factor. A set-valued spot risk mea-
sure, say �0, is a cash additive risk measure defined on the discounted factor DT XT with
XT ∈ Lp

d(FT ).
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Given a (stochastic) discount factor DT ∈ [0, 1] and a set-valued spot risk measure �0,
we can define a convex set-valued function on Lp

d(FT ) by R(XT ) := �0(DT XT ). As shown
by El Karoui and Ravanelli (2009), for any z ∈ KM , we have

R(XT + z1T ) = �0(DT XT + DT z) ⊆ �0(DT XT + z) = �0(DT XT ) − z = R(XT ) − z.

This property of R is called cash sub-additivity. The fact DT z ≤K z can also be understood
as the time value of the money. That is to say that R is expressed in terms of the current
numéraire but defined on the future financial positions with the future numéraire.

It is worth mentioning that cash sub-additivity does have a great meaning for quasi-
convex risk measures. As pointed out by Cerreia-Vioglio et al. [5], when there is uncertainty
about interest rates, the cash additivity assumption on risk measures becomes problem-
atic. Hence, under the cash sub-additivity assumption, the equivalence between convexity
and the diversification principle no longer holds. In fact, this diversification principle only
implies quasiconvexity.

Next, we will introduce the definition of set-valued cash sub-additive risk measures.

Definition 3.2: A set-valued cash sub-additive risk measure R : Lp
d(FT ) → Qt

M is a set-
valued mapping which satisfies A0, A2, A3 and the following property:

A6 Cash sub-additivity: for any XT ∈ Lp
d(FT ), z1, z2 ∈ M and z1 ≤K z2,

R(XT + z11T ) + z1 ⊇ R(XT + z21T ) + z2.

Remark 3.2: Cash sub-additivity A6 can also be expressed as follows. For any XT ∈
Lp

d(FT ), z ∈ KM ,

R(XT + z1T ) ⊆ R(XT ) − z or R(XT − z1T ) ⊇ R(XT ) + z.

Proof: We first show that A6 is equivalent to R(XT + z1T ) ⊆ R(XT ) − z. Suppose that
A6 holds. Let z1 = z ∈ KM and z2 = 0. The implication that A6 implies

R(XT + z1T ) ⊆ R(XT ) − z (3.1)

is straightforward. Now we show the reverse implication. For any XT ∈ Lp
d(FT ) and z1, z2 ∈

M with z1 ≤K z2, we know that XT + z11T ∈ Lp
d(FT ). From (3.1) it follows that

R(XT + z11T + (z2 − z1)1T ) ⊆ R(XT + z11T ) − (z2 − z1),

which is equivalent to

R(XT + z21T ) ⊆ R(XT + z11T ) − (z2 − z1),

which is nothing else but

R(XT + z11T ) + z1 ⊇ R(XT + z21T ) + z2,

which is exactly A6. The equivalence between A6 and R(XT − z1T ) ⊇ R(XT ) + z can be
shown similarly. The proof is completed. �

We will end this subsection with a special class of set-valued cash sub-additive
risk measures. This special class consists of set-valued convex loss-based risk measures,
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see Sun et al. [25]. Note that the scalar case of convex loss-based risk measures was studied
by Cont et al. [7].

Definition 3.3: A set-valued convex loss-based risk measure is a proper closed (σ(L∞
d , L1

d)-
closed if p = ∞) mapping � : Lp

d(FT ) → Qt
M+ := {A ⊂ KM : A = clco(A + KM )} which

satisfies the following properties:

R0 Normalization: KM ⊆ �(0) and �(0) ∩ −riKM = φ;
R1 Cash losses: for any z ∈ KM , z ∈ �(−z);
R2 Monotonicity: for any X,Y ∈ Lp

d(FT ), X − Y ∈ Lp
d(K) implies �(X) ⊇ �(Y );

R3 Loss-dependence: for any X ∈ Lp
d(FT ), �(X) = �(X ∧ 0), where X ∧ 0 := (X1 ∧

0, . . . , Xd ∧ 0);
R4 Convexity: for any λ ∈ [0, 1] and X,Y ∈ Lp

d(FT ), �(λX +
(1 − λ)Y ) ⊇ λ�(X) + (1 − λ)�(Y ).

We claim that the set-valued convex loss-based risk measures are the special cases
of set-valued cash sub-additive risk measures. Indeed, for any X ∈ Lp

d(FT ), z ∈ KM and
ε ∈ (0, 1), we have

� ((1 − ε)X − z) = �
(
(1 − ε)X + ε

(
−z

ε

))
⊇ (1 − ε)�(X) + ε�

(
−z

ε

)
⊇ (1 − ε)�(X) + z,

where the last inclusion is due to the property of cash losses. Since � is a proper closed
mapping, it is lower semi-continuous, that is, if {Xk; k ≥ 1} ⊆ Lp

d(FT ) is a sequence with
Xk → X P-almost surely, then

�(X) ⊇ lim inf
k→∞

�(Xk) =
{
u ∈ M : ∀k ≥ 1,∃uk ∈ �(Xk) such that lim

k→∞
uk = u

}
.

[Note that, in the terminology of Theorem 6.2 of Hamel and Heyde [16], the lower semi-
continuity of � is called the Fatou property when p = ∞.] Thus, by the arbitrariness of ε,
we conclude that

�(X − z) ⊇ �(X) + z,

which means � is cash sub-additive.
Next, we will give an example of set-valued convex loss-based risk measure called

AV @Rloss.

Example 3.1: (Loss-based average value at risk)
For any X := (X1, · · · , Xd) ∈ Lp

d(FT ) and α = (α1, . . . , αd) with 0 < αi < 1, i =
1, . . . , d,

AV @Rloss
α (X) :=

(
inf

z1∈R

{ 1
α1

E[(−(X1 ∧ 0) + z1)+] − z1

}
, . . . ,

inf
zm∈R

{ 1
αm

E[(−(Xm ∧ 0) + zm)+] − zm

})
+ Rm

+ .

It is not hard to check that AV @Rloss satisfies all the properties of Definition 3.3.
So AV @Rloss is a set-valued convex loss-based risk measure, and hence it is also cash
sub-additive.
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3.2. Dual representation

In order to get the dual representation, we enlarge the space of financial positions. Denote
Ω∗ := {0, 1}. Any pair (XT , a), where XT ∈ Lp

d(FT ) and a ∈ Rd, can be viewed as the
coordinates of a function X̂T defined on the enlarged space Ω̂ := Ω × Ω∗ with the element
(ω, θ),

X̂T (ω, θ) := XT (ω)I{1}(θ) + aI{0}(θ). (3.2)

We endow Ω̂ with the σ-algebra F̂T , generated by all the random variables X̂T defined
above. We denote by X the linear space of all random variables X̂T defined as in (3.2). The
constant random variable in X is denoted by b := bI{1} + bI{0} = b. Note that the event
{θ = 0} is atomic and all F̂T -measurable random variables are constant on this event.

Let F∗ := {∅, Ω∗, {0}, {1}} and P∗ be a probability measure on the measurable space
(Ω∗, F∗). Denote by (Ω̂, F̃T , P̃) the product probability space, where F̃T := FT ×F∗, the
product σ-algebra of FT and F∗, P̃ := P × P∗, the product probability of P and P∗. It is not
hard to check that F̂T ⊆ F̃T . Thus, we denote by P̂ the restriction of P̃ to F̂T . Note that
(Ω̂, F̂T , P̂) is a probability space and we denote by Lp

d(F̂T ) := Lp
d(Ω̂, F̂T , P̂) the linear space

of F̂T -measurable functions X̃ : Ω̂ → Rd such that ‖X̃‖p :=
∫
Ω
|X̃|pdP < ∞ for p ∈ [1, ∞)

and ‖X̃‖p := esssup|X̃| < ∞ for p = ∞. It is not hard to check that X is a linear subspace of
Lp

d(F̂T ). We endow X with the weak topology σ(X , Lq
d(F̂T )), which is the coarsest topology

on X such that for all v ∈ Lq
d(F̂T ), u → 〈u, v〉 := E[utrv] is a continuous linear function on

X . Hence, the topological dual space of (X , σ(X , Lq
d(F̂T ))) is Lq

d(F̂T ), that is(
X , σ

(
X , Lq

d(F̂T )
))∗ ∼= Lq

d(F̂T ). (3.3)

Moreover, (X , σ(X , Lq
d(F̂T ))) is a separated, locally convex topological linear space.

We denote by M̂P
1,d := MP̂

1,d(F̂T ) the set of all vector-valued probability measures whose
components are absolutely continuous with respect to P̂, that is Q̂ ∈ M̂P

1,d with compo-
nent Q̂i : F̂T → [0, 1] being a probability measure such that dQ̂i/dP̂ ∈ Lq(F̂T ). Let K+ :=
{u ∈ Rd : utr(vI{1} + aI{0}) ≥ 0 for any v, a ∈ K}. Then, we denote by X (K) := {X̂T ∈ X :
X̂T ∈ K P̂ − a.s.} and Lq

d(F̂T , K+) := {X̃ ∈ Lq
d(F̂T ) : X̃ ∈ K+ P̃ − a.s.}. It is not hard

to check that Lq
d(F̂T , K+) is the positive dual cone of X (K). For any X̂T , ŶT ∈ X with

X̂T = XT I{1} + a1I{0} and ŶT = YT I{1} + a2I{0}, where XT , YT ∈ Lp
d(FT ), a1, a2 ∈ Rd, we

define the order in X as X̂T − ŶT ∈ X (K) if and only if YT ≤K XT and a2 ≤K a1. For any
a := (a1, . . . , ad) ∈ Rd, a|M denotes the the vector (a1, . . . , am, 0, . . . , 0) ∈ M .

Before we state the main result, we first show a one to one relation between a set-valued
cash additive risk measure and a set-valued cash sub-additive risk measure.

Proposition 3.1: Given a set-valued cash sub-additive risk measure R on Lp
d(FT ) with 0 ∈

R(0), we define a set-valued risk measure �̂ as follows. For any X̂T ∈ X where X̂T (ω, θ) =
XT (ω)I{1}(θ) + aI{0}(θ) with XT ∈ Lp

d(FT ), a ∈ Rd,

�̂(X̂T ) := R(XT − a1T ) − a|M . (3.4)

Then �̂ is a cash additive risk measure with �̂(0) = 0 and �̂(XT I{1}) = R(XT ).
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Proof: It is not hard to check that �̂(0) = 0, �̂(XT I{1}) = R(XT ) and �̂ satisfies the
property of A0. Next, we will show that �̂ satisfies properties of A1, A2 and A3.

A1. Cash additivity: for any b ∈ M and X̂T ∈ X with X̂T = XT I{1} + aI{0} where XT ∈
Lp

d(FT ),

�̂(X̂T + b) = �̂
(
(XT + b)I{1} + (a + b)I{0}

)
= R (XT + b1T − (a + b)1T ) − a|M − b

= R(XT − a1T ) − a|M − b

= �̂(X̂T ) − b,

which shows that �̂ is cash additive.
A2. Monotonicity: for any X̂T , ŶT ∈ X with X̂T = XT I{1} + a1I{0}, ŶT = YT I{1} +

a2I{0}, where XT , YT ∈ Lp
d(FT ), a1, a2 ∈ Rd with X̂T − ŶT ∈ X (K), then

�̂(X̂T ) = R(XT − a11T ) − a1|M ⊇ R(XT − a21T ) − a2|M
⊇ R(YT − a21T ) − a2|M = �̂(ŶT ),

which shows that �̂ is monotone.
A3. Convexity: for any λ ∈ (0, 1), X̂T , ŶT ∈ X with X̂T = XT I{1} + a1I{0}, ŶT =

YT I{1} + a2I{0}, where XT , YT ∈ Lp
d(FT ), a1, a2 ∈ Rd,

�̂(λX̂T + (1 − λ)ŶT )

= �̂
((

λXT + (1 − λ)YT

)
I{1} +

(
λa1 + (1 − λ)a2

)
I{0}

)
= R

((
λXT + (1 − λ)YT

)
−
(
λa1 + (1 − λ)a2

)
1T

)
− λa1|M − (1 − λ)a2|M

= R
(
λ(XT − a11T ) + (1 − λ)(YT − a21T )

)
− λa1|M − (1 − λ)a2|M

⊇ λR(XT − a11T ) + (1 − λ)R(YT − a21T ) − λa1|M − (1 − λ)a2|M
= λ�̂(X̂T ) + (1 − λ)�̂(ŶT ),

which shows that �̂ is convex. The proof is completed.
�

Remark 3.3: Taking (3.3) into account, the topological dual space of (X , σ(X , Lq
d(F̂T ))) is

Lq
d(F̂T ). Then, we can applying the set-valued Fenchel–Moreau theorem, that is Theorem 2

of Hamel [15], to the case where the linear space X is specified to X . If f is a proper closed
convex function on X , for any X̂T ∈ X ,

f(X̂T ) = f∗∗(X̂T ) :=
⋂

(Ŷ ,u)∈Lq
d(F̂T )×K∗

M\{0}

{
− f∗(Ŷ , u) + S(Ŷ ,u)(X̂T )

}
, (3.5)

where
S(Ŷ ,u)(X̂T ) := {z ∈ M : E[X̂tr

T Ŷ ] + utrz ≥ 0}
and

−f∗(Ŷ , u) := cl
⋃

X̂T ∈X

(
f(X̂T ) + S(Ŷ ,u)(−X̂T )

)
.
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The main purpose of this section is to derive the dual representation for set-valued cash
sub-additive risk measures on Lp

d(FT ). To reach the purpose, we will first derive the dual
representation of set-valued cash additive risk measures on X . Then, by applying the one–
one relation between the set-valued cash additive risk measures on X and the set-valued
cash sub-additive risk measures on Lp

d(FT ) established in Proposition 3.1, we will derive
the dual representation of set-valued cash sub-additive risk measures on Lp

d(FT ). To this
end, two propositions are needed. Proposition 3.2 below shows the conjugate function of
set-valued cash additive risk measures. Then, by (3.5), Proposition 3.3 below gives the dual
representation for set-valued cash additive risk measures on X .

Proposition 3.2: Let �̂ : X → Qt
M be a proper closed cash additive risk measure with

Ŷ ∈ Lq
d(F̂T ) and u ∈ K∗

M\{0}. Then

− �̂∗(Ŷ , u) =

⎧⎨⎩cl
⋃

X̂T ∈A�̂

S(Ŷ ,u)(−X̂T ), Ŷ ∈ Lq
d(F̂T , K+), u ∈ (E[Ŷ ] + M⊥) ∩ K∗

M\{0},

M, elsewhere,
(3.6)

where

A�̂ := {X̂T ∈ X : 0 ∈ �̂(X̂T )}.

Proof: For any X̂T ∈ X and v ∈ M , we have

S(Ŷ ,u)(−X̂T − v) = {z ∈ M : E[−X̂tr
T Ŷ ] ≥ −utrz + E[Ŷ ]trv}

= {z − v ∈ M : E[−X̂tr
T Ŷ ] ≥ −utr(z − v) + (E[Ŷ ] − u)trv} + v

= {z ∈ M : E[−X̂tr
T Ŷ ] ≥ −utrz + (E[Ŷ ] − u)trv} + v.

When E[Ŷ ] − u ∈ M⊥, we have S(Ŷ , u)(−X̂T − v) = S(Ŷ , u)(−X̂T ) + v. However, when u /∈
(E[Ŷ ] + M⊥) that is E[Ŷ ] − u /∈ M⊥, we can find a v ∈ M , such that for any z ∈ M ,

E[−X̂tr
T Ŷ ] ≥ −utrz + (E[Ŷ ] − u)trv.

Thus, we have

z + v ∈ S(Ŷ ,u)(−X̂T − v).

Therefore, ⋃
z,v∈M

(z + v) ⊆
⋃

v∈M

S(Ŷ ,u)(−X̂T − v),

which yields

M ⊆
⋃

v∈M

S(Ŷ ,u)(−X̂T − v).

By the definition of S(Ŷ , u), the inverse inclusion is always true. So we conclude that

M =
⋃

v∈M

S(Ŷ ,u)(−X̂T − v).
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It is not hard to check that

−�̂∗(Ŷ , u) = cl
⋃

X̂T ∈X ,v∈M

(
�̂(X̂T + v) + S(Ŷ ,u)(−X̂T − v)

)
= cl

⋃
X̂T ∈X ,v∈M

(
�̂(X̂T + v) + M

)
= M,

where the last equality is because that the M is a linear space and �̂(X̂T ) ⊆ M . If Ŷ /∈
Lq

d(F̂T , K+), then there is an X̄ ∈ X (K) such that E[X̄trŶ ] < 0. Since X (K) ⊆ A�̂, then
by the definition of S(Ŷ , u), we have S(Ŷ , u)(−tX̄) = {z ∈ M : E[−tX̄trŶ ] + utrz ≥ 0} for
t > 0. Thus,

cl
⋃

X̂T ∈A�̂

S(Ŷ ,u)(−X̂T ) ⊇ cl
⋃

X̂T ∈X (K)

S(Ŷ ,u)(−X̂T ) ⊇
⋃
t>0

S(Ŷ ,u)(−tX̄) = M.

The last equality is due to E[−tX̄trŶ ] → +∞ when t → +∞. By the definition of S(Ŷ , u),

we conclude that cl
⋃

X̂T ∈A�̂

S(Ŷ , u)(−X̂T ) ⊆ M . Hence,

cl
⋃

X̂T ∈A�̂

S(Ŷ ,u)(−X̂T ) = M whenever Ŷ /∈ Lq
d(F̂T ,K+).

Since −�̂∗(Ŷ , u) := cl
⋃

X̂T ∈X
(�̂(X̂T ) + S(Ŷ , u)(−X̂T )), we know that

−�̂∗(Ŷ , u) ⊇ cl
⋃

X̂T ∈A�̂

(
�̂(X̂T ) + S(Ŷ ,u)(−X̂T )

)
⊇ cl

⋃
X̂T ∈A�̂

S(Ŷ ,u)(−X̂T ).

Hence,

−�̂∗(Ŷ , u) ⊇ cl
⋃

X̂T ∈A�̂

S(Ŷ ,u)(−X̂T ).

Now, we only need to show −�̂∗(Ŷ , u) ⊆ cl
⋃

X̂T ∈A�̂

S(Ŷ , u)(−X̂T ). In fact, for any z ∈ �̂(X̂T )

and X̂T ∈ X , we have X̂T + z ∈ A�̂. Thus

cl
⋃

X̂T ∈A�̂

S(Ŷ ,u)(−X̂T ) ⊇ S(Ŷ ,u)(−X̂T − z) = S(Ŷ ,u)(−X̂T ) + z.

By the arbitrariness of z, we have

�̂(X̂T ) + S(Ŷ ,u)(−X̂T ) ⊆ cl
⋃

X̂T ∈A�̂

S(Ŷ ,u)(−X̂T ),

which yields

−�̂∗(Ŷ , u) ⊆ cl
⋃

X̂T ∈A�̂

S(Ŷ ,u)(−X̂T ).

The proof is completed. �
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Now, with the conjugate function −�̂∗ of �̂ in Proposition 3.2, we can derive the dual
representation for the set-valued cash additive risk measures �̂ on X .

Proposition 3.3: If �̂ : X → Qt
M is a proper closed cash additive risk measure, then there

is a −α̂ : M̂P
1,d × K+\M⊥ → Qt

M , that is not identically M on the set

Ŵ :=
{

(Q̂, v) ∈ M̂P
1,d × K+\M⊥ : diag(v)

dQ̂

dP̂
∈ Lq

d(F̂T ,K+)
}

,

such that for any X̂T ∈ X ,

�̂(X̂T ) =
⋂

(Q̂,v)∈Ŵ

{
− α̂(Q̂, v) +

(
EQ̂[−X̂T ] + G(v)

)
∩ M

}
, (3.7)

where

G(v) := {u ∈ Rd : utrv ≥ 0}.

Moreover, the −α̂(Q̂, v) can be replaced by the minimal penalty function −α̂min(Q̂, v), which
is defined as

−α̂min(Q̂, v) := cl
⋃

ẐT ∈X

(
�̂(ẐT ) + EQ̂[ẐT ] + G(v)

)
∩ M.

Proof: By Remark 3.3, we can apply the set-valued Fenchel-Moreau theorem, that is
Theorem 2 of Hamel [15], to the case where the linear space X is specified to X and the
function f is specified to the proper closed cash additive risk measure �̂. That is

�̂(X̂T ) = �̂∗∗(X̂T ) :=
⋂

(Ŷ ,u)∈Lq
d(F̂T )×K∗

M\{0}

{
− �̂∗(Ŷ , u) + S(Ŷ ,u)(X̂T )

}
.

Then, from Proposition 3.2 it follows that

�̂(X̂T ) :=
⋂

(Ŷ ,u)∈Lq
d(F̂T ,K+)×(E[Ŷ ]+M⊥)∩K∗

M\{0}

{
cl

⋃
X̂T ∈A�̂

S(Ŷ ,u)(−X̂T ) + S(Ŷ ,u)(X̂T )
}

.

Take Ŷ ∈ Lq
d(F̂T , K+) and set v = E[Ŷ ] ∈ K+. Since u ∈ (E[Ŷ ] + M⊥) ∩ K∗

M\{0}, it is
not hard to check that u /∈ M⊥, which makes v ∈ K+\M⊥. Now, we choose Zi = 1

vi
Ŷi

when vi > 0 and E[Zi] = 1 when vi = 0, where i ∈ {1, · · · , d}. We define Q̂ by dQ̂/dP̂ = Z,
which makes Q̂ ∈ M̂P

1,d. Then Ŷ = diag(v)dQ̂/dP̂ ∈ Lq
d(F̂T , K+). So we have E[X̂tr

T Ŷ ] =

E[X̂tr
T diag(v)dQ̂/dP̂] = vtrEQ̂[X̂T ]. Since u ∈ v + M⊥, we have utrz = vtrz for any z ∈ M .
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Hence,

S(Ŷ ,u)(X̂T ) = {z ∈ M : vtrEQ̂[X̂T ] + vtrz ≥ 0}

=
(
EQ̂[−X̂T ] + G(v)

)
∩ M,

where

G(v) = {z ∈ Rd : vtrz ≥ 0}.

Hence,

�̂(X̂T ) =
⋂

(Q̂,v)∈Ŵ

{
− α̂(Q̂, v) +

(
EQ̂[−X̂T ] + G(v)

)
∩ M

}
,

with

Ŵ :=
{

(Q̂, v) ∈ M̂P
1,d × K+\M⊥ : diag(v)

dQ̂

dP̂
∈ Lq

d(F̂T ,K+)
}

,

where the −α̂(Q̂, v) can be replaced by the minimal penalty function −α̂min(Q̂, v), which
is

−α̂min(Q̂, v) := cl
⋃

ẐT ∈X

(
�̂(ẐT ) + EQ̂[ẐT ] + G(v)

)
∩ M.

The proof is completed. �

Now, with the help of Propositions 3.1 and 3.3, we are ready to state the main result
of this section.

Theorem 3.1: Any proper closed (σ(L∞
d , L1

d)-closed if p = ∞) cash sub-additive risk
measure R on Lp

d(FT ) is of the following form. For any XT ∈ Lp
d(FT ),

R(XT ) =
⋂

(μ,v)∈T

{
− α(μ, v) +

(
μ[−XT ] + G(v)

)
∩ M

}
, (3.8)

where

T =
{

(μ, v) ∈ Md
s,f × K+\M⊥ : diag(v)

dμ

dP
∈ Lq

d(K
+)
}

,

and

−αmin(μ, v) = cl
⋃

ZT ∈Lp
d(FT )

(
R(ZT ) + μ[ZT ] + G(v)

)
∩ M.

Proof: From Proposition 3.1, we can define a set-valued cash additive risk measure �̂ on X
by R, such that �̂(XT I{1}) = R(XT ) for any XT ∈ Lp

d(FT ). Indeed, since 0 ∈ Rd, we have
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XT I{1} ∈ X . Thus, by Proposition 3.3,

R(XT ) = �̂(XT I{1}) =
⋂

(Q̂,v)∈Ŵ

{
− α̂(Q̂, v) +

(
EQ̂[XT I{1}] + G(v)

)
∩ M

}
,

where

Ŵ =
{

(Q̂, v) ∈ M̂P
1,d × K+\M⊥ : diag(v)

dQ̂

dP̂
∈ Lq

d(F̂T ,K+)
}

.

Write μ(·) := Q̂(·I{1}). It is not hard to check that μ is a sub-probability measure and
diag(v)dμ

dP
∈ Lq

d(K
+). Because �̂(XT I{1}) = R(XT ), we can express R as

R(XT ) =
⋂

(μ,v)∈T

{
− α(μ, v) +

(
μ[−XT ] + G(v)

)
∩ M

}
,

where α(μ, v) = α̂(Q̂, v) and

T =
{

(μ, v) ∈ Md
s,f × K+\M⊥ : diag(v)

dμ

dP
∈ Lq

d(K
+)
}

.

Next, we will show the minimum penalty function −αmin(μ, v) of R. Since −α̂min(Q̂, v) is
the minimum penalty function of �̂,

−α̂min(Q̂, v) = cl
⋃

X̂T ∈X

(
�̂(X̂T ) + EQ̂[X̂T ] + G(v)

)
∩ M

= cl
⋃

X̂T ∈X

(
R(XT − a1T ) − a|M + EQ̂

[
XT I{1} + aI{0}

]
+ G(v)

)
∩ M

= cl
⋃

XT ∈Lp
d(FT )

(
R(XT − a1T ) + EQ̂

[
(XT − a1T )I{1}

]
+ G(v)

)
∩ M

= cl
⋃

ZT ∈Lp
d(FT )

(
R(ZT ) + EQ̂

[
ZT I{1}

]
+ G(v)

)
∩ M

= cl
⋃

ZT ∈Lp
d(FT )

(
R(ZT ) + μ[ZT ] + G(v)

)
∩ M.

Hence,

−αmin(μ, v) := −α̂min(Q̂, v) = cl
⋃

ZT ∈Lp
d(FT )

(
R(ZT ) + μ[ZT ] + G(v)

)
∩ M.

The proof is completed. �
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4. DYNAMIC CASH SUB-ADDITIVITY RISK MEASURES

In this section, we will study the set-valued dynamic cash sub-additive risk measures. First,
we will introduce the definition of set-valued dynamic cash sub-additive risk measures.
Second, we will provide the dual representation for set-valued dynamic cash sub-additive
risk measures.

4.1. Notions and definition

We denote by Lp
d(Ft)+ := {X ∈ Lp

d(Ft) : X ∈ Rd
+ P − a.s.} the convex cone of Rd-valued

Ft-measurable random vectors. For any set D, denote Lp
d(Ft;D) := {Xt ∈ Lp

d(Ft) : Xt ∈
D P − a.s.}. Denote by Mt := Lp

d(Ft;M) the closed (weak∗-closed if p = ∞) linear sub-
space of Lp

d(Ft). We also denote Mt,+ := Mt ∩ Lp
d(Ft)+, Mt,− := −Mt,+, M⊥

t := {u ∈
Lq

d(Ft) : E[utrv] = 0 for any v ∈ Mt}. Denote M+
t,+ := {u ∈ Lq

d(Ft) : E[utr(vI{1} + cI{0})] ≥
0 for any v ∈ Mt,+, c ∈ Rd

+ ∩ M} and G(Mt;Mt,+) := {D ⊆ Mt : D = clco(D + Mt,+)}.

We will begin with recalling some properties related to the set-valued mapping
Rt: Lp

d(FT ) → G(Mt;Mt,+) at time t.

B1 Mt-translation: for any mt ∈ Mt, Rt(X + mt) = Rt(X) − mt;
B2 Lp

d(FT )+-monotonicity: for any Y − X ∈ Lp
d(FT )+, Rt(Y ) ⊇ Rt(X);

B3 Finite at zero: ∅ = Rt(0) = Mt;
B4 Normalization: for any X ∈ Lp

d(Ft), Rt(X) = Rt(X) + Rt(0);
B5 (B5’) (Conditionally) Convexity: for any λ ∈ [0, 1] (λ ∈ L∞

d (Ft; R) such that λ ∈
[0, 1]), Rt(λX + (1 − λ)Y ) ⊇ λRt(X) + (1 − λ)Rt(Y ).

Remark 4.1: As introduced by Feinstein and Rudloff [11,12], a set-valued (conditionally)
cash additive risk measure at time t is a mapping �t : Lp

d(FT ) → G(Mt;Mt,+) which satis-
fies B1 − B5(B1 − B4, B5′). The acceptance set related to �t is defined by At := {X ∈
Lp

d(FT ) : 0 ∈ �t(X)}.

Next, we will introduce the definition of cash sub-additive risk measures at time t.

Definition 4.1: A mapping Rt : Lp
d(FT ) → G(Mt;Mt,+) at time t is called cash sub-

additive if it satisfies

B6 Rt(XT + z1T ) ⊆ Rt(XT ) − z or Rt(XT − z1T ) ⊇ Rt(XT ) + z

for any X ∈ Lp
d(FT ), z ∈ KM .

Definition 4.2: A mapping Rt : Lp
d(FT ) → G(Mt;Mt,+) is called (conditionally) cash sub-

additive risk measure at time t, if it satisfies B2–B6(B2, B3, B4, B5′, B6).

Definition 4.3: We call (Rt)T
t=0 dynamic (conditionally) cash sub-additive risk measures

if Rt is a (conditionally) cash sub-additive risk measure at time t.

4.2. Dual representation

In order to get the dual representation, we still enlarge the space of financial positions. By
the same arguments as in Section 3.2, let X be again the linear space of all random variables
X̂T defined as in (3.2). Then taking Remark 3.3, Proposition 3.2 and Proposition 3.3 into
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account, we can get the dual representations for set-valued (conditionally) cash additive
risk measures at time t on X .

We first show a one–one relation between a (conditionally) cash additive risk measure
and a (conditionally) cash sub-additive risk measure at time t. The definition of (condition-
ally) cash additive risk measure on the enlarged space was also motivated by Cheridito and
Kupper [6].

Proposition 4.1: Given a set-valued (conditionally) cash sub-additive risk measure Rt at
time t on Lp

d(FT ) with 0 ∈ Rt(0), we define a set-valued risk measure �̂t at time t on X as
follows. For any X̂T ∈ X where X̂T (ω, θ) = XT (ω)I{1}(θ) + aI{0}(θ) with XT ∈ Lp

d(FT ),
a ∈ Rd,

�̂t(X̂T ) := Rt(XT − a1T ) − a|M . (4.1)

Then �̂t is a (conditionally) cash additive risk measure at time t with �̂t(0) = 0 and
�̂t(XT I{1}) = Rt(XT ).

Proof: By the same arguments as in the proof of Proposition 3.1, one can steadily show
Proposition 4.1. The proof is completed. �

Next, we will introduce some notions under Proposition 4.1. Denote μ(·) := Q̂(·I{1}),
then μ ∈ Md

s,f . For any XT ∈ Lp
d(FT ), write

μ[XT |Ft] := E[δt,T (μ)XT |Ft],

where
δt,T (μ) = (δt,T (μ1), . . . , δt,T (μd))tr,

with

δt,T (μi)[ω] :=

⎧⎨⎩
E[

dμi
dP

|FT ](ω)

E[
dμi
dP

|Ft](ω)
, E[dμi

dP
|Ft](ω) > 0,

1, else,

for each ω ∈ Ω. Then we denote by Yt the set of dual variables,

Yt :=
{
(μ, τ) ∈ Md

s,f × (M+
t,+\M⊥

t ) : Y T
t (μ, τ) ∈ Lq

d(FT )+, μ = P|Ft

}
where Y T

t (μ, τ) := τδt,T (μ).

Now, we provide the dual representation for the dynamic set-valued (conditionally) cash
sub-additive risk measures.

Theorem 4.1: Any proper closed (σ(L∞
d , L1

d)-closed if p = ∞) cash sub-additive risk
measure Rt at time t on Lp

d(FT ) is of the following form. For any XT ∈ Lp
d(FT ),

Rt(XT ) =
⋂

(μ,τ)∈Yt

{
− βmin

t (μ, τ) +
(
μ[−XT |Ft] + Γt(τ)

)
∩ Mt

}
,

where
Γt(τ) := {u ∈ Lq

d(Ft) : 0 ≤ E[τ tru]}
and

−βmin
t (μ, τ) = cl

⋃
ZT ∈Lp

d(FT )

(
Rt(ZT ) + μ[ZT |Ft] + Γt(τ)

)
∩ Mt.
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Proof: By Proposition 4.1 and the same arguments as in the proof of Theorem 3.1, one
can steadily show Theorem 4.1. The proof is completed. �

Theorem 4.2: Any proper closed (σ(L∞
d , L1

d)-closed if p = ∞) conditionally cash sub-
additive risk measure Rc

t at time t on Lp
d(FT ) is of the following form. For any XT ∈

Lp
d(FT ),

Rc
t(XT ) =

⋂
(μ,τ)∈Yt

{
− αmin

t (μ, τ) +
(
μ[−XT |Ft] + Gt(τ)

)
∩ Mt

}
,

where

Gt(τ) := {u ∈ Lp
d(Ft) : 0 ≤ τ tru P − a.s.}

and

−αmin
t (μ, τ) = cl

⋃
ZT ∈Lp

d(FT )

(
Rc

t(ZT ) + μ[ZT |Ft] + Gt(τ)
)
∩ Mt.

Proof: By Proposition 4.1 and the same arguments as in the proof of Theorem 3.1, one
can steadily show Theorem 4.2. The proof is completed. �

5. MULTI-PORTFOLIO TIME CONSISTENCY

The time consistency for cash sub-additive risk measures was first studied by Mastrogiacomo
and Rosazza Gianin [22] for scalar case. While the multi-portfolio time consistency was
studied in detail by Feinstein and Rudloff [10] for set-valued dynamic risk measures.

In this section, we will study the multi-portfolio time consistency for set-valued dynamic
(conditionally) cash sub-additive risk measures, which were introduced in Section 4.

Firstly, we will state the definition of the multi-portfolio time consistency for set-valued
dynamic cash sub-additive risk measures.

Definition 5.1: A set-valued dynamic (conditionally) cash sub-additive risk measure
(Rt)T

t=0 is called multi-portfolio time consistent if for all time 0 ≤ t < s ≤ T , portfolios
XT ∈ Lp

d(FT ) and sets X , we have

Rs(XT ) ⊆
⋃

Y ∈X
Rs(Y ) ⇒ Rt(XT ) ⊆

⋃
Y ∈X

Rt(Y ).

Remark 5.1: Multi-portfolio time consistency means that if at some time s, any risk com-
pensation portfolio for X could compensate the risk of some portfolio Y in the set X , then
at any prior time t, the same relation should hold true.

Secondly, we will show the equivalent condition for multi-portfolio time consistency of
dynamic (conditionally) cash sub-additive risk measures.

Theorem 5.1: For a normalized dynamic (conditionally) cash sub-additive risk measure
(Rt)T

t=0, the following are equivalent:

(1) (Rt)T
t=0 is multi-portfolio time consistent;
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(2) Rt is recursive, that is, for all times 0 ≤ t < s ≤ T ,

Rt(XT ) =
⋃

Y ∈Rs(XT )

Rt(−Y ) := Rt(−Rs(XT )). (5.1)

Proof: (1) ⇒ (2). Since (Rt)T
t=0 is a normalized dynamic (conditionally) cash sub-additive

risk measure, for every XT ∈ Lp
d(FT ) and t ∈ {0, 1, . . . , T},⋃

Y ∈Rs(XT )

Rs(−Y ) =
⋃

Y ∈Rs(XT )

(Rs(0) + Y ) = Rs(0) + Rs(XT ) = Rs(XT ).

Thus by the multi-portfolio time consistency of (Rt)T
t=0 with X := −Rs(XT ), we have

Rs(XT ) =
⋃

Y ∈Rs(XT )

Rs(−Y ) ⇒ Rt(XT ) =
⋃

Y ∈Rs(XT )

Rt(−Y ).

(2) ⇒ (1). For any X ⊆ Lp
d(FT ) with Rs(XT ) ⊆

⋃
Y ∈X Rs(Y ), by (5.1), we have

Rt(XT ) =
⋃

Z∈Rs(XT )

Rt(−Z) ⊆
⋃

Z∈∪Y ∈X Rs(Y )

Rt(−Z) =
⋃

Y ∈X
Rt(Y ).

The proof is completed. �
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