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Abstract

We consider the random polytope Kn, defined as the convex hull of n points chosen
independently and uniformly at random on the boundary of a smooth convex body in R

d .
We present both lower and upper variance bounds, a strong law of large numbers, and
a central limit theorem for the intrinsic volumes of Kn. A normal approximation bound
from Stein’s method and estimates for surface bodies are among the tools involved.
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1. Introduction and main results

For fixed d ≥ 2, let K2+ be the set of convex bodies in R
d which have a twice differentiable

boundary with everywhere positive Gaussian curvature. Given some K ∈ K2+, we denote by
Hd−1 the (d−1)-dimensional Hausdorff measure on ∂K , normalized such thatHd−1(∂K) = 1.
For n ≥ d + 1, we choose independently random points X1, . . . , Xn from ∂K , according
to Hd−1. We denote by Kn the convex hull of X1, . . . , Xn. This means that Kn is a random
polytope having its vertices on the boundary of K . The interest of this paper is in the intrinsic
volumes V�(Kn) of Kn, � ∈ {1, . . . , d}, which are related to familiar quantities like the volume,
surface area, and mean width of Kn. The importance of these functionals is well known and
arises from convex and integral geometry. Indeed, as Hadwiger’s theorem states, they form
(together with the Euler characteristic) a basis of the vector space of all motion invariant and
continuous valuations on convex bodies. In this paper we provide lower and upper variance
bounds, a strong law of large numbers, and a central limit theorem for V�(Kn), � ∈ {1, . . . , d},
closing some gaps that remain in the study of these objects.

Intrinsic volumes have been investigated extensively in the alternative setting of random
polytopes that arise as convex hulls of points chosen uniformly at random inside a fixed convex
body. Results concerning the expectations of V�(Kn), � ∈ {1, . . . , d}, have been studied, for
example, in [14], variance bounds can be found in [2] and [4], and central limit theorems were
treated in [11], [15], [22], and [24]. More details can be found in the references therein.

On the other hand, the approximation of a convex body K by means of a sequence of random
polytopes Kn is improved whenever the vertices of Kn are restricted to lie on the boundary of K ,
therefore making it a model of particular interest. Indeed, in this framework the expectations of
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V�(Kn), � ∈ {1, . . . , d}, have been studied, for example, in [3], [5], [12], and [19]. However,
more detailed information is only known about the distribution of the volume Vd(Kn). In
particular, an upper variance bound was found in [13] and a lower variance bound together with
concentration inequalities in [16]. Only recently, Thäle [21] obtained a quantitative central
limit theorem for Vd(Kn) based on Stein’s method.

Our first aim is to generalize the results obtained in [13] and [16] to the full regime of
intrinsic volumes V�(Kn), � ∈ {1, . . . , d}. In fact, we prove a lower variance bound following
the ideas of [2], [15], and [16], and an upper variance bound in the manner of [2], making
use of a version of the Efron–Stein jackknife inequality formulated in [13]. In particular, the
upper variance bound implies a strong law of large numbers as in [2]. Secondly, we prove a
quantitative central limit theorem for V�(Kn), � ∈ {1, . . . , d}, using a normal approximation
bound obtained in [10], extending the result of [21].

We now introduce some notation in order to present our results. Let (an)n∈N and (bn)n∈N

be two sequences of positive real numbers. We write an � bn (or an � bn) if there exist a
constant c ∈ (0, ∞) and a positive number n0 such that an ≤ c bn (or an ≥ c bn) for all n ≥ n0.
Furthermore, an = �(bn) means that bn � an � bn.

Our first result concerns the asymptotic lower and upper bounds for the variances of the
intrinsic volumes.

Theorem 1. Let K ∈ K2+. Choose n independent random points on ∂K according to the
probability distribution Hd−1, and let Kn be their convex hull. Then, for all � ∈ {1, . . . , d},

var[V�(Kn)] = �(n−(d+3)/(d−1)).

Based on a result stated in [12, Theorem 1] concerning the behaviour of V�(K)−E[V�(Kn)],
the upper variance bound of Theorem 1 implies a strong law of large numbers.

Theorem 2. In the setup of Theorem 1 and, for all � ∈ {1, . . . , d}, it holds that

P

(
lim

n→∞(V�(K) − V�(Kn))n
2/(d−1) = cK,�

)
= 1

for some constants cK,� ∈ (0, ∞) that depend on K and �.

The constants cK,� appear in an explicit form in [12, Theorem 1] and can be expressed in
the form of integrals of the principal curvatures of K .

Next we introduce the standardized intrinsic volume functionals, defined by

W�(Kn) := V�(Kn) − E[V�(Kn)]√
var[V�(Kn)] , � ∈ {1, . . . , d}.

We prove the following central limit theorem for such functionals.

Theorem 3. In the setup of Theorem 1 and, for all � ∈ {1, . . . , d}, it holds that

sup
u∈R

|P(W�(Kn) ≤ u) − P(N ≤ u)| � n−1/2(log n)3+6/(d−1),

where N is a standard Gaussian random variable. In particular, W�(Kn) converges in distri-
bution to N as n → ∞.

Note that the rate of convergence in Theorem 3 does not depend on �. Moreover, the same
rate of convergence was already obtained in [21] for the case in which � = d.
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Remark. In the literature there exist results concerning central limit theorems and variance
asymptotics for geometric functionals of random polytopes in multiple settings, which make
use of stabilization techniques. This has been done in the Poisson framework (see [6]–[9] and
[20]), and in [11] for a fixed number of random points in the interior of K . When possible, the
use of stabilization techniques results in optimal rates of convergence. However, none of the
aforementioned papers deal at the same time with nonaffine-invariant geometric functionals (as
the intrinsic volumes V�, � ∈ {1, . . . , d − 1}, are) of random polytopes with vertices on the
boundary of a convex body in K2+. Extending the existing techniques to include our setting
would allow an improvement on the rate of convergence in Theorem 3 by a logarithmic factor.
Although this may be possible, it could result in a very long and technical process, and it is
ultimately beyond the scope of this paper. Indeed, our focus is giving a short argument, specific
to our problem. Moreover, every approach needs the strict positivity of the constant in the lower
variance bound and this has always been proved separately using other methods.

The paper is organised as follows. In Section 2 we introduce the notation and recall some
background material from convex geometry, results concerning the surface and floating bodies
and the normal bound from [10] that will be used in the proof of Theorem 3. In Section 3
we present the geometric construction needed for the proof of the lower bound of Theorem 1
and the proof itself. In Section 4 we prove the upper bound of Theorem 1 by means of the
Efron–Stein jackknife inequality and we also prove Theorem 2, which directly follows from
the former. Finally, in Section 5 we give the proof of Theorem 3.

2. Background material

2.1. General notation

The closed Euclidean ball of radius r centred at x ∈ R
d is denoted by Bd(x, r), and

Bd = Bd(0, 1) stands for the centred Euclidean unit ball. The boundary of Bd is indicated
with S

d−1. Moreover, the volume of Bd is denoted by κd = πd/2�(1 + d/2)−1. For a finite
set A = {x1, . . . , xn} ⊂ R

d , the convex hull of A is denoted by [x1, . . . , xn]. The vectors
e1, . . . , ed represent the standard orthonormal basis of R

d . We indicate with �(u, v) the
angle between two vectors u, v ∈ R

d . For a linear subspace V of R
d , we define �(u, V ):=

inf{�(u, v) : v ∈ V }. Given a subset U ⊆ R
d , its projection onto R

d−1 is denoted by
projRd−1 U = {x ∈ R

d−1 : (x, y) ∈ U for some y ∈ R}. For a function f : R
d → R, we

say that f ∈ C2 if it is twice differentiable with continuous second-order partial derivatives.
Let u ∈ R

d and h ∈ R. We denote by H(u, h) the hyperplane {x ∈ R
d : 〈x, u〉 = h}. The

corresponding half-space {x ∈ R
d : 〈x, u〉 ≥ h} is denoted by H+(u, h). Often one describes

a convex body by its support function. The support function of K is defined by

hK(u) = sup{〈x, u〉 : x ∈ K}, u ∈ S
d−1.

Since K ∈ K2+, there exists a unique unit outward normal ux for each x ∈ ∂K . The intersection
of K with H+(ux, hK(ux) − h) is denoted by CK(x, h). We call CK(x, h) a cap of K at x of
height h. A cap CK is called an ε-cap if Vd(CK) = ε, where Vd(·) denotes the d-dimensional
volume. Analogously, a cap CK with Hd−1(CK ∩ ∂K) = ε is called an ε-boundary cap. For
the cap CBd

(x, h), the central angle is defined as

α(h) := max{�(x, y) : y ∈ CBd

(x, h)}.
Let � ∈ {0, . . . , d}. We denote by G(d, �) the Grassmannian of all �-dimensional linear

subspaces of R
d , which is supplied with the unique Haar probability measure ν�; see [17].
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For L ∈ G(d, �), we write vol�(K | L) to indicate the �-dimensional Lebesgue measure of the
orthogonal projection of K onto L. Then the �th intrinsic volume of a convex body K can be
defined as

V�(K) :=
(

d

�

)
κd

κ�κd−�

∫
G(d,�)

vol�(K | L)ν�(dL); (1)

see [18, Equations (5.5) and (6.11)]. In particular, Vd(K) is the ordinary volume (Lebesgue
measure), Vd−1(K) is half of the surface area, V1(K) is a constant multiple of the mean width,
and V0(K) is the Euler characteristic of K .

We define the function v : K → R by

v(x) := min{Vd(K ∩ H) : H is a half-space in R
d containing x}.

Then the set
K(v ≥ t) := {x ∈ K : v(x) ≥ t}

is called the floating body of K with parameter t > 0. The wet part of K is defined by

K(t) = K(v ≤ t) := {x ∈ K : v(x) ≤ t}.
In a similar way, we define the function s : K → R by

s(x) := min{Hd−1(∂K ∩ H) : H is a half-space in R
d containing x}.

The surface body of K with parameter t > 0 is defined by

K(s ≥ t) := {x ∈ K : s(x) ≥ t}.
Analogously, we set

K(s ≤ t) := {x ∈ K : s(x) ≤ t}.
We define the visibility region (with respect to s) of a point z ∈ ∂K with parameter t > 0 as

Visz(t) := {x ∈ K(s ≤ t) : [x, z] ∩ K(s ≥ t) = ∅},
where [x, z] denotes the closed line segment which connects x and z.

We use the convention that constants with the same subscript may differ from section to
section.

2.2. Geometric tools

The concept of the surface body is convenient in view of Lemma 1, which clarifies its
connection with the random polytope Kn.

Lemma 1. ([16, Lemma 4.2].) For all α ∈ (0, ∞), there exists a constant cα ∈ (0, ∞)

depending only on α such that

P(K(s ≥ τn) �⊆ Kn) ≤ n−α,

where

τn := cα

log n

n
.

In the following, we present some well-known geometric results in order to keep our
presentation reasonably self-contained. For every point x ∈ ∂K , there exists a paraboloid
Qx , given by a quadratic form bQx , osculating at x. The following precise description of the
local behaviour of the boundary of a convex body K ∈ K2+ is due to Reitzner [12].
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Lemma 2. ([12, Lemma 6].) Let K ∈ K2+, and choose δ > 0 sufficiently small. Then there
exists a λ > 0, depending only on δ and K , such that, for each x ∈ ∂K , the following
holds. Identify the hyperplane tangent to K at x with R

d−1 and x with the origin. The
λ-neighbourhood Uλ of x in ∂K defined by projRd−1 Uλ = λBd−1 can be represented by a
convex function f (x)(y) ∈ C2, i.e. (y, f (x)(y)) ∈ ∂K for y ∈ λBd−1. Denote by f

(x)
ij (0) the

second-order partial derivatives of f (x) at the origin. Then

bQx (y) = 1

2

∑
i,j

f
(x)
ij (0)yiyj ,

and it holds that

(1 + δ)−1bQx (y) ≤ f (x)(y) ≤ (1 + δ)bQx (y) for y ∈ λBd−1.

In the next lemma we state two well-known relations regarding ε-caps and ε-boundary caps.

Lemma 3. ([16, Lemma 6.2].) For a given K ∈ K2+, there exist constants ε0, c1, c2 > 0 such
that, for all 0 < ε < ε0, we have, for any ε-cap CK of K ,

c−1
1 ε(d−1)/(d+1) ≤ Hd−1(CK ∩ ∂K) ≤ c1ε

(d−1)/(d+1),

and, for any ε-boundary cap C̃K of K,

c−1
2 ε(d+1)/(d−1) ≤ Vd(C̃K) ≤ c2ε

(d+1)/(d−1).

This result will be used to relate Lemma 1 in terms of the classic floating body.
For the next geometrical lemma, we assume that ε is sufficiently small.

Lemma 4. ([23, Lemma 6.2].) Let x be a point on the boundary of K , and let D(x, ε) be the
set of all points on the boundary which are of distance at most ε to x. Then the convex hull of
D(x, ε) has volume at most c3ε

d+1, where c3 > 0 is a constant.

The following result is known as the economic cap covering theorem; see [1] and [2].

Proposition 1. ([2, Theorem 4].) Assume that K is a convex body with unit volume, and let
0 < t < t0 = (2d)−2d . Then there are caps C1, . . . , Cm and pairwise disjoint convex sets
C′

1, . . . , C
′
m such that C′

i ⊂ Ci for each i, and

1.
⋃m

i=1 C′
i ⊂ K(t) ⊂ ⋃m

i=1 Ci ,

2. Vd(C′
i ) � t and Vd(Ci) � t for each i,

3. for each cap C with C ∩ K(v > t) = ∅, there is a Ci containing C.

We conclude this section with a statement about the measure of the set of linear subspaces
of R

d that form a small angle with a fixed vector, which will be useful later.

Lemma 5. ([2, Lemma 1].) For fixed z ∈ S
d−1 and small a > 0,

ν�({L ∈ G(d, �) : �(z, L) ≤ a}) = �(ad−�), � ∈ {1, . . . , d}.
2.3. Bound for the normal approximation

Let X and Y be two random variables with cumulative distribution functions FX(u) =
P(X ≤ u) and FY (u) = P(Y ≤ u), respectively. Note that X and Y need not be defined
on a common probability space. Thus, we interpret P on the appropriate probability space in
each case. The Kolmogorov distance between the random variables X and Y is defined by

dK(X, Y ) = sup
u∈R

|FX(u) − FY (u)|.
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It is important to recall that the Kolmogorov distance is a metrization of the convergence in
distribution, i.e. given a sequence of random variables (Xn)n∈N and another random variable
Y such that limn→∞ dK(Xn, Y ) = 0, then (Xn)n∈N converges in distribution to Y .

Let S be a Polish space. Consider a function f : ⋃n
k=1 Sk → R that acts on the point

configurations of at most n ∈ N points of S. Let f be measurable and symmetric, i.e. invariant
under permutations of the arguments. In the setting of this paper, S is the boundary of a
smooth convex body, while f is an intrinsic volume of the convex hull of its arguments.
Given a point x = (x1, . . . , xh) ∈ ⋃n

k=1 Sk , we indicate with xi the vector obtained from x

by removing its ith coordinate, namely, xi := (x1, . . . , xi−1, xi+1, . . . , xh). Analogously, we
define xij := (x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xh).

We now define the first- and second-order difference operators, applied to f , as

Dif (x) := f (x) − f (xi) and Di,jf (x) := f (x) − f (xi) − f (xj ) + f (xij ),

respectively. We indicate with X = (X1, . . . , Xn) a random vector of elements of S. Let X′
and X̃ be independent copies of X. A vector Z = (Z1, . . . , Zn) is called a recombination of
{X, X′, X̃}, whenever Zi ∈ {Xi, X

′
i , X̃i} for every i ∈ {1, . . . , n}. For a subset A ⊆ {1, . . . , n}

of the index set, we write XA = (XA
1 , . . . , XA

n ) with

XA
i :=

{
Xi, i /∈ A,

X′
i , i ∈ A.

In order to rephrase the normal approximation bound from [10], it is convenient to define the
following quantities:

γ1 := sup
(Y,Y ′,Z,Z′)

E[1{D1,2f (Y ) �= 0} 1{D1,3f (Y ′) �= 0}D2f (Z)2D3f (Z′)2],

γ2 := sup
(Y,Z,Z′)

E[1{D1,2f (Y ) �= 0}D1f (Z)2D2f (Z′)2],

γ3 := E[|D1f (X)|4],
γ4 := E[|D1f (X)|3],
γ5 := sup

A⊆{1,...,n}
E[|f (X)D1f (XA)3|].

The suprema in the definitions of γ1 and γ2 run over all combinations of vectors (Y, Y ′, Z, Z′)
or (Y, Z, Z′) that are recombinations of {X, X′, X̃}.
Proposition 2. ([10, Theorem 5.1].) Let W := f (X1, . . . , Xn), and assume that E[W ] = 0
and 0 < E[W 2] < ∞. Moreover, let N be a standard Gaussian random variable. Then the
following bound for the normal approximation holds:

dK

(
W√

var[W ] , N

)
�

√
n

var[W ] (
√

n2γ1 + √
nγ2 + √

γ3) + n

(var[W ])3/2 γ4 + n

(var[W ])2 γ5.

3. Lower variance bound

In order to prove a lower variance bound, we first introduce in Section 3.1 a geometrical
construction taken from [16, Section 3.1]. More precisely, for x ∈ ∂K and sufficiently small h,
we define d + 1 disjoint subsets of CK(x, h) ∩ ∂K which are denoted by D′

i (x), i = 0, . . . , d.
In Section 3.2 we fix some particular points y1, . . . , yn ∈ ∂K and hn. The event that exactly
one random point is contained in each D′

i (yj ), i ∈ {0, . . . , d}, and every other point is outside
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of CK(yj , hn) ∩ ∂K is indicated by Aj , j ∈ {1, . . . , n}. Then our strategy is as follows. By
conditioning on the σ -field F generated by the positions of all X1, . . . , Xn except those which
are contained in D′

0(yj ) with 1Aj
= 1, it will turn out that

var[V�(Kn)] ≥ E[var[V�(Kn) | F ]] = E

[ n∑
j=1

varj [V�(Kn)] 1Aj

]
,

where the variances varj [·] are taken over Xj ∈ D′
0(yj ). Finally, it remains to determine the

behaviour of varj [·] and P(Aj ), j ∈ {1, . . . , n}. This way we bound the variance from below
by a quantity that is asymptotically of the desired order.

3.1. Auxiliary geometric construction

Let E be the standard paraboloid given by

E = {z ∈ R
d : zd ≥ z2

1 + · · · + z2
d−1}.

We construct a simplex S in CE(0, 1) in the following way. The base is a regular simplex
whose vertices v1, . . . , vd lie on ∂E ∩ H(ed, 1/(3(d − 1)2)), while v0 = (0, . . . , 0) is the
apex of S. Note that 2E ∩ H(ed, 1) has radius

√
2, while the inradius of the base of the

simplex is 1/(
√

3(d − 1)2) and, therefore, {λz ∈ R
d : λ ≥ 0, z ∈ S} ∩ H(ed, 1) has inradius

3(d − 1)2/(
√

3(d − 1)2) = √
3. In particular, this implies that

{λz ∈ R
d : λ ≥ 0, z ∈ S} ⊇ 2E ∩ H(ed, 1);

see Figure 1 for the construction of S. For i ∈ {0, 1, . . . , d}, let v′
i be the orthogonal projection

of vi onto span{e1, . . . , ed−1}. Consider B0 := Bd−1(v′
0, r) ⊆ R

d−1 and Bi := Bd−1(v′
i , r

′) ⊆
R

d−1, i ∈ {1, . . . , d}, for some radii r and r ′ to be chosen later. Let bE be the quadratic form
associated with E, i.e. bE(y) = ‖y‖2 for y ∈ R

d−1. For i ∈ {0, . . . , d}, we define the lift
B ′

i
:= b̃(Bi) on ∂E of the sets Bi , where b̃ indicates the mapping

b̃ : R
d−1 → ∂E, y �→ (y, bE(y)).

Note that, if r and r ′ are small enough, then, by continuity, for any (d + 1)-tuple of points
xi ∈ B ′

i , the following still holds:

{λz ∈ R
d : λ ≥ 0, z ∈ [x0, . . . , xd ]} ⊇ 2E ∩ H(ed, 1). (2)

Then we extend the aforementioned argument to arbitrary caps of ∂K . For each point x ∈ ∂K ,
we consider the approximating paraboloid Qx of K at x. Let Tx(K) be the tangent space
of K at the point x. The space Tx(K) can be identified with R

d−1 having x as its origin.

1

E

S

2E

1
3(d–1)2

v0

v1vd

H(ed ,1)

Figure 1: Construction of the simplex S.
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Figure 2: Example of a simplex [x0, . . . , xd ].

Then there exists a unique affine map Ax such that Ax(C
E(0, 1)) = CQx (x, h), while mapping

the coordinate axes onto the coordinate axes of Tx(K) × R. We define Di(x) := Ax(Bi),

i ∈ {0, . . . , d}. Then it is true that vold−1(Di(x)) = c1h
(d−1)/2 for a constant c1 > 0. We

define now D′
i (x) := f̃ (x)(Di(x)), where

f̃ (x) : U → ∂K, y �→ (y, f (x)(y))

for a neighbourhood U ⊆ Tx(K) of x. Since K ∈ K2+, there exist positive lower and upper
bounds for the curvature. Thus, due to the curvature bounds of K , it holds that

cKh(d−1)/2 ≤ Hd−1(D′
i (x)) ≤ CKh(d−1)/2, (3)

where cK and CK are positive constants depending only on K .
By continuity, if every xi belongs to a ball Bd(vi, η), (2) is preserved whenever η > 0

is small enough. Moreover, we can choose r and r ′ to be small enough such that, for every
x ∈ ∂K and every i ∈ {0, . . . , d}, D′

i (x) ⊆ Ax(B
d(vi, η)). Indeed, define, for ε > 0

and every i ∈ {0, . . . , d}, the set Ui = {(x, y) ∈ R
d : x ∈ Bd−1(projRd−1 vi, η/2), y ∈

[(1 + ε)−1bE(x), (1 + ε)bE(x)]}. If ε is small enough then Ui ⊆ Bd(vi, η). Using Lemma 2,
we can take h small enough such that (1 + ε)−1bQx (y) ≤ f (x)(y) ≤ (1 + ε)bQx (y). In
particular, if we choose r, r ′ < η/2 then D′

i (x) ⊆ Ax(Ui) ⊆ Ax(B
d(vi, η)). We can choose

a point xi ∈ D′
i (x) for any i ∈ {0, . . . , d}, as in Figure 2. As a consequence of the previous

inclusion, we have

{λz ∈ R
d : λ ≥ 0, z ∈ [x0, . . . , xd ]} ⊇ 2Qx ∩ H(ux, hK(ux) − h)

⊇ K ∩ H(ux, hK(ux) − h), (4)

where the last inclusion holds whenever h ≤ h0 for sufficiently small h0. Therefore, from now
on, r , r ′, and h0 are chosen such that the previous argument holds.

3.2. Proof of the lower bound

In this section we combine tools from [2], [15], and [16]. Let K ∈ K2+ and X1, . . . , Xn

be independent random points that are chosen from ∂K according to the probability distribu-
tion Hd−1. Due to [15, Lemma 13], we can choose n points y1, . . . , yn ∈ ∂K and corresponding
disjoint caps of K , namely, CK(yj , hn) for j ∈ {1, . . . , n}, with hn = �(n−2/(d−1)). For all
i ∈ {0, . . . , d} and j ∈ {1, . . . , n}, we define the sets {Di(yj )} and {D′

i (yj )} as in Section 3.1.
Let Aj , j ∈ {1, . . . , n}, be the event that exactly one random point is contained in each D′

i (yj ),

i ∈ {0, . . . , d}, and every other point is outside of CK(yj , hn) ∩ ∂K .

Lemma 6. ([16, Section 3.2].) For large enough n, and all j ∈ {1, . . . , n}, there exists a
constant c ∈ (0, 1) such that P(Aj ) ≥ c.
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Proof. The probability of the event Aj is

P(Aj ) = n(n − 1) · · · (n − d)P(Xi+1 ∈ D′
i (yj ), i ∈ {0, . . . , d})

× P(Xi+1 /∈ CK(yj , hn) ∩ ∂K, i ∈ {d + 1, . . . , n − 1})

= n(n − 1) · · · (n − d)

d∏
i=0

Hd−1(D′
i (yj ))

n−1∏
k=d+1

(1 − Hd−1(CK(yj , hn) ∩ ∂K)).

Combining Lemma 3, [15, Lemma 13], and (3), we obtain

P(Aj ) ≥ c2n
d+1n−d−1(1 − c3n

−1)n−d−1 ≥ c > 0,

where all constants are positive. �
Let F be the σ -field generated by the positions of all X1, . . . , Xn except those which are

contained in D′
0(yj ) with 1Aj

= 1. Assume that 1Aj
= 1Ak

= 1 for some j, k ∈ {1, . . . , n}
and, without loss of generality, that Xj and Xk are the points in D′

0(yj ) and D′
0(yk). By (4), it

is not possible that there is an edge between Xj and Xk . Therefore, the change of the intrinsic
volume affected by moving Xj within D′

0(yj ) is independent of the change of the intrinsic
volume of moving Xk within D′

0(yk). As a consequence, we obtain

var[V�(Kn) | F ] =
n∑

j=1

varj [V�(Kn)] 1Aj
,

where the variances varj [·] are taken over Xj ∈ D′
0(yj ); compare with [2].

For j ∈ {1, . . . , n} and i ∈ {0, . . . , d}, let zi
j be an arbitrary point in D′

i (yj ). We indicate
with Nj the normal cone of the simplex [z0

j , . . . , z
d
j ] at vertex z0

j . Let Sj be the cone with base
H(uz0

j
, hK(uz0

j
) − hn) ∩ 2Qx and vertex z0

j . Note that uz0
j

is the unique unit outer normal of
K at z0

j . The corresponding normal cone of Sj at z0
j is denoted by N̄j . Moreover, the angular

aperture of Sj at z0
j is at most c′

K

√
hn, where c′

K > 0 is a constant that depends on K . Because
of this and (4), we can find sets �j such that

S
d−1 ∩ Nj ⊂ S

d−1 ∩ N̄j ⊂ S
d−1 ∩ (uz0

j
+ c′

K

√
hnB

d) =: �j . (5)

We fix j ∈ {1, . . . , n} and zi
j ∈ D′

i (yj ) for all i ∈ {1, . . . , d}. Let Fj := [z1
j , . . . , z

d
j ] and define

Ṽ�(z; Fj ) :=
(

d

�

)
κd

κ�κd−�

∫
G(d,�)

1{L∩�j �=∅} vol�([z, Fj ] | L)ν�(dL)

for z ∈ D′
0(yj ) and � ∈ {1, . . . , d}.

Lemma 7. Let j ∈ {1, . . . , n}, and let Xj be a point chosen with respect to the normalized
Hausdorff measure restricted to D′

0(yj ). Then

varj [Ṽ�(Xj ; Fj )] = �(n−2(d+1)/(d−1)), � ∈ {1, . . . , d}.
Proof. Note that [Xj , Fj ] | L is a simplex in L ∈ G(d, �) with base Fj | L and additional

point Xj | L. As a consequence, the height of [Xj , Fj ] | L is proportional to hn and

vol�−1(Fj | L) = �(h
(�−1)/2
n ),

where L ∈ G(d, �) with L ∩ �j �= ∅. Thus,

vol�([Xj , Fj ] | L) = �(h
(�+1)/2
n ).
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Due to Lemma 5 and (5), it follows that∫
G(d,�)

1{L∩�j �=∅} ν�(dL) = ν�({L ∈ G(d, �) : L ∩ �j �= ∅}) = �(h
(d−�)/2
n ).

Therefore, we obtain
Ṽ�(Xj ; Fj ) = �(h

(d+1)/2
n ).

Let X1
j and X2

j be independent copies of Xj . Then

|Ṽ�(X
1
j ; Fj ) − Ṽ�(X

2
j ; Fj )| = �(h

(d+1)/2
n ),

since the heights of X1
j | L and X2

j | L are different with probability 1. Using the fact that
hn = �(n−2/(d−1)), we obtain

varj [Ṽ�(Xj ; Fj )] = 1
2 E[|Ṽ�(X

1
j ; Fj ) − Ṽ�(X

2
j ; Fj )|2] = �(n−2(d+1)/(d−1)),

as claimed. �
We can now proceed with the proof of the lower variance bound.

Proof of the lower bound of Theorem 1. Let F be the σ -field defined as above. The condi-
tional variance formula implies that

var[V�(Kn)] = E[var[V�(Kn) | F ]] + var[E[V�(Kn) | F ]] ≥ E[var[V�(Kn) | F ]].
As already mentioned, F induces an independence property. Therefore, we obtain

var[V�(Kn) | F ] =
n∑

j=1

varj [V�(Kn)] 1Aj
=

n∑
j=1

varj [Ṽ�(Xj ; Fj )] 1Aj
.

Finally, applying Lemma 6 and Lemma 7, and taking the expectation yields

var[V�(Kn)] � n−2(d+1)/(d−1)
n∑

j=1

P(Aj ) � n−2(d+1)/(d−1)n = n−(d+3)/(d−1),

which concludes the proof. �

4. Upper variance bound

In the following we find an upper bound for var[V�(Kn)], � ∈ {1, . . . , d}. The proof is
based on the Efron–Stein jackknife inequality and follows the ideas of [2]. In contrast to [2],
we use the concept of surface body, in particular, Lemma 1, which states that the surface body
is contained in the random polytope Kn with high probability. Moreover, we make use of
Lemma 3 for our estimates. The proof is given in full details for the case K = Bd . From a
geometric point of view, this case is easier to handle. However, the general case is also related
to this basis case. The corresponding arguments are stated at the end of the proof.

Proof of the upper bound of Theorem 1. First, let K = Bd . We indicate with Tn the event
that the surface body K(s ≥ τn) is contained in Kn. Let � ∈ {1, . . . , d}. Applying the
Efron–Stein jackknife inequality yields

var[V�(Kn)] � nE[(V�(Kn+1) − V�(Kn))
2]

= nE[(V�(Kn+1) − V�(Kn))
2 1Tn ] + nE[(V�(Kn+1) − V�(Kn))

2 1T c
n
]. (6)
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It is obvious that (V�(Kn+1)−V�(Kn))
2 ≤ V�(K)2 and E[1T c

n
] = P(T c

n ). Since the parameter α

can be chosen arbitrarily large in Lemma 1, the second term in (6) is negligible in the asymptotic
analysis. By (1), we obtain

var[V�(Kn)] � nE[(V�(Kn+1) − V�(Kn))
2 1Tn ]

� nE

[∫
G(d,�)

vol�((Kn+1 | A) \ (Kn | A))ν�(dA)

×
∫

G(d,�)

vol�((Kn+1 | B) \ (Kn | B))ν�(dB) 1Tn

]
� nE

[∫
G(d,�)

∫
G(d,�)

vol�((Kn+1 | A) \ (Kn | A)) vol�((Kn+1 | B) \ (Kn | B))

× 1Tn ν�(dA)ν�(dB)

]
. (7)

If Xn+1 | A ∈ Kn | A then the set (Kn+1 | A) \ (Kn | A) is clearly empty. Otherwise,
(Kn+1 | A) \ (Kn | A) consists of several disjoint simplices which are the convex hull of
Xn+1 | A and those facets of Kn | A that can be ‘seen’ from Xn+1 | A. For I = {i1, . . . , i�} ⊂
{1, . . . , n}, we indicate with FI the convex hull of Xi1 , . . . , Xi� . Note that FI and FI | A

are (� − 1)-dimensional simplices with probability 1. The closed half-space in R
d which is

determined by the hyperplane A⊥ + aff FI and contains the origin is denoted by H0(FI , A).
The other half-space is H+(FI , A). The corresponding �-dimensional half-spaces in A are
denoted by H0(FI | A) and H+(FI | A). Let F̃ (A) be the set of (� − 1)-dimensional facets
of Kn | A that can be seen from Xn+1 | A. It is defined by

F̃ (A) = {FI | A : Kn | A ⊂ H0(FI | A), Xn+1 | A ∈ H+(FI | A),

I = {i1, . . . , i�} ⊂ {1, . . . , n}}.
Note that F̃ (A) is random since it depends on the points X1, . . . , Xn. In the following we use
a deterministic version of it for fixed points x1, . . . , xn. The deterministic version is denoted
by F (A). Therefore,

(7) � n

∫
Sd−1

. . .

∫
Sd−1

∫
G(d,�)

∫
G(d,�)

( ∑
F∈F (A)

vol�([xn+1 | A, F ])
)

×
( ∑

F
′ ∈F (B)

vol�([xn+1 | B, F
′ ]) 1Tn

)
ν�(dA)ν�(dB)

× Hd−1(dx1) · · · Hd−1(dxn+1). (8)

Next, the integration is extended over all possible index sets I and J , and the order of integration
is changed. As a consequence, we obtain

(8) � n

∫
G(d,�)

∫
G(d,�)

∫
(Sd−1)n+1

(∑
I

1{FI | A ∈ F (A)} vol�([FI , xn+1] | A)

)
×

(∑
J

1{FJ | B ∈ F (B)} vol�([FJ , xn+1] | B) 1Tn

)
× Hd−1(dx1) · · · Hd−1(dxn+1)ν�(dA)ν�(dB).
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Note that [FI , Xn+1] | A and [FJ , Xn+1] | B are contained in the associated caps C�(I, A) :=
H+(FI , A)∩Bd and C�(J, B). Moreover, we use the abbreviation Cd(I, A) = (H+(FI | A)+
A⊥) ∩ Bd . We indicate with V�(I, A) = vol�(C�(I, A)) and Vd(I, A) = Vd(Cd(I, A)) the
volumes of these caps. Therefore, the variance is bounded by

var[V�(Kn)]
� n

∑
I

∑
J

∫
G(d,�)

∫
G(d,�)

∫
(Sd−1)n+1

1{FI | A ∈ F (A)}V�(I, A)

× 1{FJ | B ∈ F (B)}V�(J, B) 1Tn

× Hd−1(dx1) · · · Hd−1(dxn+1)ν�(dA)ν�(dB),

where the summation extends over all �-tuples I and J . Of course, these tuples may have a
nonempty intersection. However, if the size of I ∩ J is fixed to be k then the corresponding
terms in the sum are independent of the choices of i1, . . . , i� and j1, . . . , j�. For any k ∈
{0, 1, . . . , �}, we indicate with F the convex hull of X1, . . . , X� and by G the convex hull of
X�−k+1, . . . , X2�−k . As in [2], we obtain

var[V�(Kn)]

� n

�∑
k=0

(
n

�

)(
�

k

)(
n − �

� − k

) ∫
G(d,�)

∫
G(d,�)

∫
(Sd−1)n+1

1{FI | A ∈ F (A)}V�(I, A)

× 1{FJ | B ∈ F (B)}V�(J, B) 1Tn

× Hd−1(dx1) · · · Hd−1(dxn+1)

× ν�(dA)ν�(dB). (9)

We indicate with �k the kth term in the previous sum. By symmetry, we can restrict the
summation to those tuples where Vd(I, A) ≥ Vd(J, B). In addition, we multiply the integrand
by 1{Cd(I, A) ∩ Cd(J, B) �= ∅}. This is indeed possible because the caps have at least the
point Xn+1 in common. It follows immediately that

�k � n2�−k+1
∫

G(d,�)

∫
G(d,�)

∫
(Sd−1)n+1

1{F | A ∈ F (A)}V�(I, A)

× 1{Cd(I, A) ∩ Cd(J, B) �= ∅}
× 1{G | B ∈ F (B)}V�(J, B)

× 1{Vd(I, A) ≥ Vd(J, B)}
× 1Tn Hd−1(dx1) · · · Hd−1(dxn+1)ν�(dA)ν�(dB).

Next we integrate with respect to x2�−k+1, . . . , xn, xn+1. Due to the condition F | A ∈ F (A),
the points X2�−k+1, . . . , Xn are contained in H0(F, A) and Xn+1 is in H+(F, A). Therefore,

�k � n2�−k+1
∫

G(d,�)

∫
G(d,�)

∫
(Sd−1)2�−k

(1 − Hd−1(Cd(I, A) ∩ S
d−1))n−2�+k

× Hd−1(Cd(I, A) ∩ S
d−1)V�(I, A)

× 1{Cd(I, A) ∩ Cd(J, B) �= ∅}V�(J, B)

× 1{Vd(I, A) ≥ Vd(J, B)} 1Tn

× Hd−1(dx1) · · · Hd−1(dx2�−k)ν�(dA)ν�(dB).
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The assumption that Vd(I, A) ≥ Vd(J, B) implies that the height of the cap Cd(I, A) is at
least the height of Cd(J, B). Due to Cd(I, A) ∩ Cd(J, B) �= ∅, we find a constant β such
that Cd(J, B) is contained in βCd(I, A). More precisely, βCd(I, A) is an enlarged homothetic
copy of Cd(I, A), where the center of homothety z ∈ S

d−1 coincides with the center of the cap
Cd(I, A). It follows from the homogeneity that the Hausdorff measure (restricted to βS

d−1)
of βCd(I, A) is up to a constant Hd−1(Cd(I, A) ∩ S

d−1). Therefore,∫
(Sd−1)�−k

1{Cd(I, A) ∩ Cd(J, B) �= ∅} 1{Vd(I, A) ≥ Vd(J, B)}

× V�(J, B)Hd−1(dx�+1) · · · Hd−1(dx2�−k)

� Hd−1(Cd(I, A) ∩ S
d−1)�−kV�(I, A).

As in [2], the conditions Cd(I, A)∩Cd(J, B) �= ∅ and Vd(I, A) ≥ Vd(J, B) are satisfied only
if the angle between z and the subspace B is not larger than twice the central angle δ of the cap
Cd(I, A). Moreover, δ is bounded by

δ � Vd(I, A)1/(d+1). (10)

Thus,

�k � n2�−k+1
∫

G(d,�)

∫
G(d,�)

∫
(Sd−1)�

(1 − Hd−1(Cd(I, A) ∩ S
d−1))n−2�+k

× Hd−1(Cd(I, A) ∩ S
d−1)�−k+1V�(I, A)2

× 1{�(z, B) � Vd(I, A)1/(d+1)}
× 1Tn Hd−1(dx1) · · · Hd−1(dx�)ν�(dA)ν�(dB).

Due to Lemma 3, the condition Tn can be replaced by the condition

Vd(I, A) ≤ c1

(
log n

n

)(d+1)/(d−1)

for some constant c1 > 0. In the following, the economic cap covering theorem is used; recall
Proposition 1. Let h be a positive integer such that 2−h ≤ log n/n. Note that the smallest
possible value of h is h0 = −�log2(log n/n)�. According to the economic cap covering
theorem, we find, for each h, a collection of caps {C1, . . . , Cm(h)} which cover the wet part of
Bd | A with parameter (2−h)(�+1)/(d−1). This collection of caps is denoted by Mh. Each cap
Ci can be viewed as a projection of a d-dimensional cap Ci(A) from Bd to A. Now we consider
an arbitrary tuple (X1, . . . , X�) which has a corresponding cap Cd(I, A) having volume at most
c1(log n/n)(d+1)/(d−1). We relate to (X1, . . . , X�) the maximal h such that C�(I, A) ⊂ Ci for
some Ci ∈ Mh. This is indeed possible since at least 2−h0 is roughly log n/n and the volume
of the caps in Mh tends to 0 as h → ∞. As a consequence, we obtain

V�(I, A) ≤ vol�(Ci) � 2−h(�+1)/(d−1)

and
Vd(I, A) ≤ Vd(Ci(A)) � 2−h(d+1)/(d−1).

According to Lemma 3, Hd−1(Cd(I, A) ∩ S
d−1) ≤ Hd−1(Ci(A) ∩ S

d−1) � 2−h. Due to
the maximality of h, it holds that Vd(I, A) ≥ 2−(h+1)(d+1)/(d−1). In addition, it follows from
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Lemma 3 that Hd−1(Cd(I, A) ∩ S
d−1) ≥ c22−(h+1) for some constant c2 > 0. Therefore, we

obtain

(1 − Hd−1(Cd(I, A) ∩ S
d−1))n−2�+kHd−1(Cd(I, A) ∩ S

d−1)�−k+1V�(I, A)2

� (1 − c22−(h+1))n−2�+k2−h(�−k+1)2−2h(�+1)/(d−1).

Then we integrate each (X1, . . . , X�) on (Ci(A))� and we use the fact that 1 − x ≤ exp(−x)

to obtain

exp(−c2(n − 2� + k)2−h−1)2−h(�−k+1)2−2h(�+1)/(d−1)Hd−1(Ci(A) ∩ S
d−1)�

� exp(−c2(n − 2� + k)2−h−1)2−h(�−k+1)2−2h(�+1)/(d−1)2−h�.

Since the volume of the wet part of B� with parameter 2−h(�+1)/(d−1) is �(2−2h/(d−1)) (note
that h → ∞ as n → ∞), we obtain

|Mh| � 2−2h/(d−1)

2−h(�+1)/(d−1)
= 2h(�−1)/(d−1). (11)

Finally, this results in∫
G(d,�)

∫
(Sd−1)�

(1 − Hd−1(Cd(I, A) ∩ S
d−1))n−2�+kHd−1(Cd(I, A) ∩ S

d−1)�−k+1V�(I, A)2

× 1{�(z, B) � Vd(I, A)1/(d+1)} 1Tn Hd−1(dx1) · · · Hd−1(dx�)ν�(dB)

�
∞∑

h=h0

exp(−c2(n − 2� + k)2−h−1)2−h(�−k+1)2−2h(�+1)/(d−1)2−h�

× |Mh|ν�({�(z, B) � Vd(I, A)1/(d+1)})
�

∞∑
h=h0

exp(−c2(n − 2� + k)2−h−1)2−h[(2�−k+1)+(d+3)/(d−1)].

Note that we used Lemma 5 and (11) in the last step. As in [2], we divide the previous sum
into two parts in order to see the magnitude of the variance. The integer h1 is defined by

2−h1 ≤ 1

n
< 2−h1+1.

On the one hand, we have
∞∑

h=h1

exp(−c2(n − 2� + k)2−h−1)2−h[(2�−k+1)+(d+3)/(d−1)] ≤
∞∑

h=h1

2−h[(2�−k+1)+(d+3)/(d−1)]

� n−(2�−k+1)n−(d+3)/(d−1).

On the other hand, let i = h1 − h. Then we can perform the following estimate:

h1−1∑
h=h0

exp(−c2(n − 2� + k)2−h−1)2−h[(2�−k+1)+(d+3)/(d−1)]

≤
h1−h0∑
i=1

exp(−c2(n − 2� + k)2−h1+i−1)2−(h1−i)[(2�−k+1)+(d+3)/(d−1)]

�
h1−h0∑
i=1

exp(−c2(n − 2� + k)2−h1+i−1)n−(2�−k+1)n−(d+3)/(d−1)2i[(2�−k+1)+(d+3)/(d−1)]
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� n−(2�−k+1)n−(d+3)/(d−1)
∞∑
i=1

exp(−c22i )2i[(2�−k+1)+(d+3)/(d−1)]

� n−(2�−k+1)n−(d+3)/(d−1)
∞∑

j=1

exp(−c2j)j5d

� n−(2�−k+1)n−(d+3)/(d−1).

As a consequence, it holds that

�k � n2�−k+1
∫

G(d,�)

n−(2�−k+1)n−(d+3)/(d−1)ν�(dA) � n−(d+3)/(d−1).

Finally, the upper bound is proven by summing up all �k, k = 0, . . . , �, in (9).
In order to extend the proof to the case of a convex body K ∈ K2+, we follow the ideas

presented in [2, Section 6]. By the compactness of ∂K , there exist γ > 0 and � > 0, the
global upper and the global lower bounds on the principal curvatures of ∂K , respectively. In
our setting, all projected images of ∂K also have a boundary with the same properties as ∂K;
see, for example, [17, Remark 5, p. 126]. Without loss of generality, we can choose γ and � to
also be bounds on the principal curvatures of the boundaries of all �-dimensional projections
of K . Hence, we can locally approximate ∂K with affine images of balls, and the volume
of an �-dimensional cap with small height h > 0 has order h(�+1)/2. Note that CK(x, h) is
the intersection of K with the hyperplane H̃ (x, h) = {y ∈ R

d : 〈x − y, ux〉 = h}. As in [2,
Equation (27)], it holds that

((x − hux) + γ1
√

hBd) ∩ H̃ (x, h) ⊂ K ∩ H̃ (x, h)

⊂ ((x − hux) + γ2
√

hBd) ∩ H̃ (x, h),

where the constants γ1 and γ2 depend on γ and �. The last equation ensures that (10) still
holds. �

In the fashion of [2, Section 7], we derive a strong law of large numbers from the upper
variance bound together with the following result from [12].

Proposition 3. ([12, Theorem 1].) Let K ∈ K2+, and choose n random points on ∂K indepen-
dently and according to the probability distribution Hd−1. Then there exist positive constants
cK,� depending on � and the principal curvatures of K such that

lim
n→∞(V�(K) − E[V�(Kn)])n2/(d−1) = cK,�, � ∈ {1, . . . , d}. (12)

For the sake of brevity, the explicit expression of cK,� is omitted here. It can be found in
[12, Equation (2)].

Proof of Theorem 2. Let � ∈ {1, . . . , d}. Chebyshev’s inequality and the variance upper
bound yield

P(|V�(K)−V�(Kn)−E[V�(K)−V�(Kn)]|n2/(d−1) ≥ ε) ≤ ε−2n4/(d−1) var[V�(Kn)] � n−1.

Now select the subsequence of indices nk = k2. Then it follows that

∞∑
k=1

P(|V�(K) − V�(Knk
) − E[V�(K) − V�(Knk

)]|n2/(d−1)
k ≥ ε) �

∞∑
k=1

k−2 < ∞.
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Applying the Borel–Cantelli lemma together with (12), it follows that

lim
k→∞(V�(K) − V�(Knk

))n
2/(d−1)
k = cK,�

holds with probability 1. Note that V�(K) − V�(Kn) is a decreasing and positive sequence.
Therefore, this gives

(V�(K) − V�(Knk
))n

2/(d−1)
k−1 ≤ (V�(K) − V�(Kn))n

2/(d−1) ≤ (V�(K) − V�(Knk−1))n
2/(d−1)
k ,

whenever nk−1 ≤ n ≤ nk . Taking the limit as k → ∞, nk−1/nk → 1, which allows us to
conclude that the desired limit is reached by the whole sequence with probability 1. �

5. Central limit theorem

In this last section we prove the central limit theorem. In contrast to [22], where floating
bodies were used, here we work with surface bodies, as was already done in [21] for the case
of the volume. In addition, we make use of the normal approximation bound of Proposition 2.
Since the arguments are naturally easier to follow for K = Bd , the details are given in this
particular setting and the arguments for the general case are stated at the end of the proof.

Proof of Theorem 3. First, we prove the central limit theorem for K = Bd . To this end,
let us introduce the two events B1 and B2. The event that the random polytope [X2, . . . , Xn]
contains the surface body K(s ≥ τn) is denoted by B1. Due to the definition of B1, it follows
by Lemma 1 that

P(Bc
1) ≤ c1n

−α,

where c1 ∈ (0, ∞) is independent of n.
We denote by B2 the event that the random polytope

⋂
W∈{Y,Y ′,Z,Z′}[W4, . . . , Wn] contains

the surface body K(s ≥ τn), where Y , Y ′, Z, and Z′ are recombinations of the random vector
X = (X1, . . . , Xn). By taking the union bound, we obtain

P(Bc
2) ≤ c2n

−α,

where c2 ∈ (0, ∞) is again independent of n. Next, for any � ∈ {1, . . . , d}, we apply the bound
in Proposition 2 to the random variables

W = f (X1, . . . , Xn) := V�([X1, . . . , Xn]) − E[V�(Kn)].
Note that DiW = DiV�(Kn) and Di1,i2W = Di1,i2V�(Kn) for i, i1, i2 ∈ {1, . . . , n}. Condi-
tioned on the event B1, we obtain, from (1),

D1V�(Kn) =
(

d

�

)
κd

κ�κd−�

∫
G(d,�)

vol�((Kn | L) \ ([X2, . . . , Xn] | L))ν�(dL). (13)

We now define a full-dimensional cap C in such a way that Kn \ [X2, . . . , Xn] is contained
in C. Consider now the visibility region VisX1(τn) of X1. By the definition of the surface body
and by Lemma 3, the diameter of this visibility region is at most c3τ

1/(d−1)
n , where c3 > 0.

We now indicate with D(X1, c3τ
1/(d−1)
n ) the points on ∂K with distance at most c3τ

1/(d−1)
n

from X1. Then C := conv{D(X1, c3τ
1/(d−1)
n )} is a spherical cap and it follows from Lemma 4

that C has volume of order at most τ
(d+1)/(d−1)
n . We call α the central angle of C. For any

subspace L ∈ G(d, �), it holds that (Kn | L) \ ([X2, . . . , Xn] | L) ⊆ (C | L). We obtain
vol�(C | L) � τ

(�+1)/(d−1)
n . Indeed, the height of C | L has the same order as the height of C,
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namely, τ 2/(d−1)
n , while the order of its base changes from ((τn)

1/(d−1))d−1 to ((τn)
1/(d−1))�−1,

since the dimension of L is �. By the construction of C, it now follows that if �(X1, L), the
angle between X1 and L, is too wide compared to α, then C | L ⊆ Kn | L for sufficiently
large n. Whenever this occurs, it also holds in particular that (Kn \ [X2, . . . , Xn]) | L ⊆
Kn | L, i.e. Kn | L = [X2, . . . , Xn] | L. In fact, we can check that the integrand in (13)
can only be nonzero if �(X1, L) � α. Therefore, we can restrict the integration to the set
{L ∈ G(d, �) : �(X1, L) � α}. Moreover, it holds that α � Vd(C)1/(d+1); see, e.g. [2,
Equation (21)]. According to Lemma 5, this gives

ν�({L ∈ G(d, �) : �(X1, L) � Vd(C)1/(d+1)}) � τ
(d−�)/(d−1)
n .

Putting everything together, we see that

D1V�(Kn) � τ
(�+1)/(d−1)
n τ

(d−�)/(d−1)
n �

(
log n

n

)(d+1)/(d−1)

. (14)

On the complement Bc
1 of B1 we use the trivial estimate D1V�(Kn) ≤ V�(K). Since P(Bc

1) �
n−α , we obtain

E[(D1V�(Kn))
p] = E[(D1V�(Kn))

p 1B1 ] + E[(D1V�(Kn))
p 1Bc

1
] �

(
log n

n

)p(d+1)/(d−1)

for all p ≥ 1. As a consequence, we can bound the terms in the normal approximation bound
which involve γ3 and γ4. Thus,

√
n

var[V�(Kn)]
√

γ3 �
√

n

n−(d+3)/(d−1)

(
log n

n

)2(d+1)/(d−1)

= n−1/2(log n)2+4/(d−1),

n

(var[V�(Kn)])3/2 γ4 � n

n−3(d+3)/2(d−1)

(
log n

n

)3(d+1)/(d−1)

= n−1/2(log n)3+6/(d−1).

By using the Cauchy–Schwarz inequality, we can estimate γ5 as well. Namely,

γ5 ≤ √
var[V�(Kn)] sup

A⊆{1,...,n}

√
E[|D1f (XA)|]6 � n−(d+3)/2(d−1)

(
log n

n

)3(d+1)/(d−1)

.

Thus, we obtain

n

(var[V�(Kn)])2 γ5 � n

n−2(d+3)/(d−1)
n−(d+3)/2(d−1)

(
log n

n

)3(d+1)/(d−1)

= n−1/2(log n)3+6/(d−1).

In the next step we consider the terms involving the second-order difference operator. On
the event B2, it may be concluded from (14) that Dif (V )2 � (log n/n)2(d+1)/(d−1) for all
i ∈ {1, 2, 3} and V ∈ {Z, Z′}. Moreover, we note that on B2 the following inclusions hold:

{D1,2f (Y ) �= 0} ⊆ {VisY1(τn) ∩ VisY2(τn) �= ∅} ⊆
{
Y2 ∈

⋃
x∈VisY1 (τn)

Visx(τn)

}
.
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The same applies to D1,3f (Y ′). Thus,

E[1{D1,2f (Y ) �= 0} 1B2 ] ≤ sup
z∈∂K

P

(
Y2 ∈

⋃
x∈Visz(τn)

Visx(τn)

)
.

We note that the diameter of the previous union is at most c4τ
1/(d−1)
n , where c4 > 0. As before,

we define the spherical cap C′ := conv{D(z, c4τ
1/(d−1)
n )}. It follows from Lemma 4 that C′

has volume of order at most τ
(d+1)/(d−1)
n . We obtain

sup
z∈∂K

P

(
Y2 ∈

⋃
x∈Visz(τn)

Visx(τn)

)
= sup

z∈∂K

Hd−1
(( ⋃

x∈Visz(τn)

Visx(τn)

)
∩ ∂K

)
≤ sup

z∈∂K

Hd−1(C′ ∩ ∂K)

� τn,

where, for the last inequality, we used Lemma 3. On the event Bc
2, we use the trivial estimate

V�(K) for all difference operators and estimate all indicators by one. Since P(Bc
2) � n−α , we

obtain

γ2 �
(

log n

n

)1+4(d+1)/(d−1)

.

Analogously, we can bound γ1. Indeed, suppose that Y1 = Y ′
1 (by independence, Y1 �= Y ′

1 gives
a smaller order). Then

{D1,2f (Y ) �= 0} ∩ {D1,3f (Y ′) �= 0} ⊆
{
{Y2, Y

′
3} ⊆

⋃
x∈VisY1 (τn)

Visx(τn)

}
,

and we obtain

E[1{D1,2f (Y ) �= 0} 1{D1,3f (Y ′) �= 0}] �
(

log n

n

)2

.

Thus,

γ1 �
(

log n

n

)2+4(d+1)/(d−1)

.

Finally,

√
n

var[V�(Kn)]
√

n2γ1 �
√

n

n−(d+3)/(d−1)

√
n2

(
log n

n

)2+4(d+1)/(d−1)

= n−1/2(log n)3+4/(d−1),

√
n

var[V�(Kn)]
√

nγ2 �
√

n

n−(d+3)/(d−1)

√
n

(
log n

n

)1+4(d+1)/(d−1)

= n−1/2(log n)5/2+4/(d−1).

Considering all the estimates together, we obtain, by Proposition 2,

dK(W�(Kn), N) � n−1/2((log n)3+4/(d−1) + (log n)5/2+4/(d−1) + (log n)2+4/(d−1)

+ (log n)3+6/(d−1) + (log n)3+6/(d−1))

� n−1/2(log n)3+6/(d−1).

For the case of a generic K ∈ K2+, we argue as at the end of the proof of the upper bound of
Theorem 1. Because of the global bounds on the principal curvatures and the local approxi-
mation of ∂K with affine images of balls, the construction of C and the relations regarding its
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volume, its central angle, and the subspaces L which ensure C | L ⊆ Kn | L are not afflicted. In
particular, the asymptotic bounds vol�(C | L) � τ

(�+1)/(d−1)
n , α � Vd(C)1/(d+1) � τ

1/(d−1)
n ,

and �(X1, L) � α stated above still hold, with the difference that the implicit constants depend
on γ and �, the bounds on the principal curvatures of ∂K . The proof can be completed as in
the case of the ball. �
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