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Universidade de Lisboa, 1049-001 Lisboa, Portugal
(cvalls@math.tecnico.ulisboa.pt)

(Received 12 November 2018; Accepted 10 October 2019)

We present the complete classification of irreducible invariant algebraic curves of
quadratic Liénard differential equations. We prove that these equations have
irreducible invariant algebraic curves of unbounded degrees, in contrast with what is
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differential equations that admit a Liouvillian first integral.
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1. Introduction

Planar quadratic dynamical systems are used to describe different phenomena in
various fields of physics, economics, biology, chemistry, etc. Quadratic systems seem
to be the most studied ones. Dynamical properties, phase portraits, existence of
invariant algebraic curves, limit cycles and first integrals have attracted much atten-
tion in recent years. Despite the fact that quadratic systems are the most simple
non-linear systems, the classification of integrable quadratic systems is far from
being complete. In this paper, we focus on quadratic Liénard differential equations,
that is, equations of the form

x′ = y, y′ = −f(x)y − g(x) (1.1)

where the prime means the derivative with respect to the independent variable t
and f(x), g(x) ∈ C[x]. The degree of the system is two. More concretely we consider
the system

x′ = y, y′ = α + βx + γy + mxy + nx2, (1.2)

where α, β, γ,m, n ∈ C.
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Our first aim is to solve completely the hard problem of characterizing all systems
(1.2) that admit a Liouvillian first integral. We recall that Liouvillian functions are
functions built up from rational functions using exponentiation, integration and
algebraic functions. To do that, we begin by characterizing all irreducible invariant
algebraic curves of system (1.2), since the existence of invariant algebraic curves is
a central object in the theory of integrability. It turns out that when the degree
of f(x) is one and the degree of g(x) is two, that is, mn �= 0 (known as Liénard
dynamical systems of type (1, 2)) these systems have invariant algebraic curves of
unbounded degrees provided that we impose no restrictions on the coefficients of
the systems (see theorem 1.3 (a.3)). Hence, in particular, a uniform upper bound
that depends entirely on the degree of the dynamical system under consideration
does not exist for the Liénard dynamical systems of type (1, 2).

We recall that the problem of finding a bound on the degree of irreducible
invariant algebraic curves of a single polynomial differential system goes back to
Poincaré [9] and, if the bound exists, such a problem is known as the Poincaré
problem. More precisely, the Poincaré problem can be simply stated as the problem
of recognizing when a single polynomial differential system admits a first integral
which is rational. If such a system admits a rational first integral then Poincaré says
that the system is algebraically integrable. The earliest publication of Poincaré in
which he refers to this problem appeared in April 1891 in Comptes Rendus de
l’Académie des Sciences t.112, pp. 761–764 where Poincaré began the paper with
the following phrase: ‘The question of algebraic integrability of differential equa-
tions of the first order and of the first degree did not attract the attention of the
geometers as much as it deserved. . .’. The next paper in which Poincaré discusses
this problem is in [9] in which he begins by saying: ‘To recognize if a differential
equation of the first order and the first degree is algebraically integrable, it evi-
dently suffices to find a superior limit of the degree of the integral; it only remains
afterwards to perform purely algebraic calculations’. Assuming we know what the
maximum degree of an algebraic invariant curve of a system is, then in principle
we can perform the calculations and find the curves and determine a first integral
in case it exists. However in practice, even with our most powerful computers these
calculations are not easy. So that reducing the problem to finding the bound for
the degrees of these curves is not exactly solving the problem of Poincaré but is a
very good beginning especially if such a bound is low.

As a somewhat extension of the Poincaré problem to a family of differential equa-
tions (and not a single one) one can also asks whether there exists a uniform upper
bound that depends entirely on the degree of a family of differential equations and
not on the coefficients of such a family. This is precisely one of the main issues that
is studied in this paper for the family of Liénard dynamical systems of type (1, 2).
Being more precise, we shall prove in theorem 1.1 that such an upper bound does
not exist for the family of differential equations given by (1.2). Although there are
available some examples of families of dynamical systems with irreducible invariant
algebraic curves of unbounded degrees assuming that no restrictions are imposed
on the coefficients of such families, the case of Liénard dynamical systems of type
(1, 2) seems to be the first example of a natural (i.e. not artificially constructed)
family of models with this property. Liénard differential systems (1.2) were previ-
ously considered by Chavarriga, Garćıa, and Sorolla [3]. The authors claimed that
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in fact the extension of the Poincaré problem to a family of dynamical systems
was solved for the Liénard dynamical systems of type (1, 2) by stating that any
irreducible invariant algebraic curve of such systems has at most degree 3. The
results in [3] are not on solid ground because they are based on results of Z̆ola̧dek
[12], which turned out to be wrong for the case of Liénard dynamical systems (and
in particular for Liénard dynamical systems of type (1, 2)).

To state our first main result we introduce some auxiliary notation:

σ0 = −m(βm − 2γn)
4n2

, δ0 =
m2(βγm − αm2 − γ2n)

16n3
,

b0 =
m2

4n
, b1 =

γ

n
, b2 = − m3

8n2
, b3 = − m

2n
,

s = b0(x + b1), z = b2y + b2
0(x + b1)2 + b0(x + b1),

σ1 = −
√

β2 − 4αn, X =
n

6

(
x +

β + σ1

2n

)
, Y =

n

6
y.

(1.3)

Theorem 1.1. The following holds for systems (1.2) satisfying |m|2 + |n|2 �= 0.

(a) If mn �= 0, the unique invariant algebraic curves are
(a.1) z − δ0 = 0 with cofactor K = b3 whenever σ0 = −1;

(a.2) s2 + 3s/2 − z − 2δ0 = 0 with cofactor K = b3(−2s − 1/2) whenever
σ0 = 4δ0 − 1/4;

(a.3) g2(z)s2 + g1(z)s + g0(z) = 0 with cofactor K = b3(−2s + M − 3/2)
whenever σ0 = −1, δ0 = (2M − 3)(2M + 1)/16, and M ∈ N \ {1},

where g0(z), g1(z), and g0(z) are polynomials given by the relations

g0(z) =
1
2
Z2g2,z,z −

(
M − 1

2

)
Zg2,z +

( 1
16

(2M + 1)2 − Z
)
g2,

g1(z) = −Zg2,z +
(
M +

1
2

)
g2,

g2(z) =
M−1∑
m=0

(−1)m(M + m − 1)!(2m − 1)!!ZM−m−1

8mm!(M − m − 1)!
,

(1.4)

the variable Z reads as

Z = z − (2M − 3)(2M + 1)
16

and (−1)!! = 1. (1.5)

(b) If n �= 0 and m = 0, the unique invariant algebraic curves are
(b.1) y2/2 − αx − βx2/2 − nx3/3 = 0 with zero cofactor whenever γ = 0;

(b.2) Y 2 − 4γ/5(X + γ2/25)Y − 4X3 − (8γ2/25)X2 − (4γ4/625)X = 0 with
cofactor K = 6γ/5 whenever σ1 = −6γ2/25;

(b.3) Y 2 − (4γ/5)XY − 4X3 + (4γ2/25)X2 = 0 with cofactor K = 6γ/5
whenever σ1 = 6γ2/25.
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(c) If n = 0 and m �= 0, the unique invariant algebraic curves are
(c.1) y + β/m = 0 with cofactor K = mx + γ whenever α = βγ/m and β �=

0;

(c.2) y − mx2/2 − γx − c0 = 0, c0 ∈ C with zero cofactor whenever α = 0 and
β = 0.

The proof of statement (a) of theorem 1.1 is given in § 3 while the proof of
statements (b) and (c) are given in §§ 4 and 5, respectively. This problem was also
considered in [11] with an extra assumption on the coefficients that in this paper is
removed. However, in the current paper we provide a different proof for the cases
already proved in [11] and a new one for the cases not proved in [11].

Finally, we provide the complete characterization of systems (1.1), which admit
a Liouvillian first integral.

Theorem 1.2. The following holds for systems (1.2) satisfying |m|2 + |n|2 �= 0.

(a) If mn �= 0, it has a Liouvillian first integral if and only if σ0 = −1 and δ0 =
(2M − 3)(2M + 1)/16. A Liouvillian first integral is

H =
2(z − δ0)M−1/2√−g1(z)2 + 4g0(z)g2(z)

arctan
(

g1(z) + 2g2(z)s√−g1(z)2 + 4g0(z)g2(z)

)
, (1.6)

where gi(z), z and δ0 are given in the statement of theorem 1.1 and in (1.3),
respectively;

(b) If n �= 0 and m = 0 it has a Liouvillian first integral if and only if
(b.1) γ = 0 and a Liouvillian first integral is H = y2/2 − αx − βx2/2 −

nx3/3;

(b.2) σ1 = −6γ2/25 and a Liouvillian first integral is

H = 125
(−4γ4X − 20γ3Y − 200γ2X2 − 500γXY + 625(Y 2 − 4X3)

)1/6

− 5 3√2γ(γ2 + 25X)−1/4(−2γ3 + 2(γ2 + 25X)3/2 − 50γX + 125Y )5/6h2h3

(−4γ4X − 20γ3Y − 200γ2X2 − 500γXY + 625(Y 2 − 4X3))5/6
,

(1.7)

where h2 and h3 are given by

h2 = 2γ3 + 2
√

(γ2 + 25X)3 + 50γX − 125Y

h3 = 2F1

(
1
6
,
5
6
;
7
6
;

h2

4 (γ2 + 25x)3/2

)
,

and 2F1 stands for the hypergeometric function;
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(b.3) σ1 = 6γ2/25 and a Liouvillian first integral is

H =
(−2γX + 5Y − 10X3/2)(−2γX + 5Y + 10X3/2)5/6h1

(4X2 (γ2 − 25X) − 20γXY + 25Y 2)5/6
(1.8)

where h1 is given by

h1 = 21/351/6X−1/4
2F1

(
1
6
,
5
6
;
7
6
;
2γX − 5Y + 10X3/2

20X3/2

)

− 5(−2γX + 5Y + 10X3/2)1/6;

(c) If n = 0 and m �= 0, it has a Liouvillian first integral if and only if
(c.1) α = βγ/m with β �= 0 and a Liouvillian first integral is

(β + my)β/m exp
(mx2

2
+ γx − y

)
; (1.9)

(c.2) α = β = 0 and a Liouvillian first integral is H = y − mx2/2 − γx.

The proof of theorem 1.2(a) is given in § 6, the proof of statement (b) is presented
in § 7, while the proof of statement (c) can be found in § 8. We have included § 2
where we give some definitions and present a piece of theory that we shall use in
order to establish our results.

2. Preliminary definitions and results

Consider a two-dimensional polynomial differential system of degree d ∈ N

ẋ = P1(x, y), ẏ = P2(x, y) (2.1)

where (x, y) ∈ C
2, P1, P2 ∈ C[x, y], d = max{deg P1,deg P2} and the dot denotes

derivative with respect to the independent variable t.
A function H(x, y) is a first integral of system (2.1) if it is continuous on a full

Lebesgue measure subset Ω ⊆ C
2, is not locally constant on any positive Lebesgue

measure subset of Ω and moreover is constant along each orbit in Ω of system (2.1).
If X is the vector field associated with the system (2.1), i.e. X = (P1(x, y), P2(x, y)),
and H is C1, then we have

X (H) = P1
∂H

∂x
+ P2

∂H

∂y
= 0.

A Darboux polynomial of (2.1) is a polynomial f ∈ C[x, y] such that

X (f) = P1
∂f

∂x
+ P1

∂f

∂y
= Kf,

where K ∈ C[x, y]. The polynomial K is called the cofactor of f and has degree at
most d − 1. An invariant algebraic curve is a curve f = 0, where f is a Darboux
polynomial. Note that the curve is invariant by the dynamics in the sense that if a
trajectory starts on the curve it does not leave it.
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An exponential factor of (2.1) is a function F = exp(g/f), with coprime f, g ∈
C[x, y] such that

X (F ) = P1
∂F

∂x
+ P2

∂F

∂y
= LF,

where L ∈ C[x, y] is called the cofactor of F and has degree at most d − 1. It is
widely known that either f is constant or f is a Darboux polynomial of (2.1). In
the latter case the following relation is valid: X (g) = Kg + Lf , where K and L are
as defined above.

An inverse integrating factor of (2.1) is a function V (x, y) such that

X (F ) = P1
∂V

∂x
+ P2

∂V

∂y
=
(

∂P1

∂x
+

∂P2

∂y

)
V.

In other words V (x, y) satisfies

div
(P1

V
,
P2

V

)
= 0,

where div stands for the divergence of the system. Hence, the system

ẋ =
P1

V
, ẏ =

P2

V

is Hamiltonian and a first integral H(x, y) can be obtained solving the system

P1

V
= −∂H

∂y
,

P2

V
=

∂H

∂x
. (2.2)

If V (x, y) is a polynomial, then it is a Darboux polynomial whose cofactor equals
the divergence of the system.

The following results, proved in [7], explain how to find Darboux and Liouvillian
first integrals.

Theorem 2.1. Assume that a polynomial differential system X of degree d defined
in C

2 admits p Darboux polynomials fi with cofactors Ki, i = 1, . . . , p, and q expo-
nential factors Fj = exp(gj/hj) with cofactors Lj , j = 1, . . . , q. Then, the following
statements hold:

(a) There exist λi, μj ∈ C not all zero such that

p∑
i=1

λiKi +
q∑

j=1

μjLj = 0

if and only if the function

fλ1
1 · · · fλp

p Fμ1
1 · · ·Fμq

q , (2.3)

is a first integral of X . Such a function is called a Darboux function.
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(b) There exist λi, μj ∈ C not all zero such that

p∑
i=1

λiKi +
q∑

j=1

μjLj = div (X )

if and only if the Darboux function (2.3) is an inverse integrating factor of
X . Here div (X ) stands for the divergence of the system.

To prove the results related with the Liouvillian first integrals we used the fol-
lowing result proved in [4,10]. We recall that system (2.1) is said to be Liouvillian
integrable if it has a Liouvillian first integral.

Theorem 2.2. The polynomial differential system (2.1) has a Liouvillian first
integral if and only if it has an integrating factor which is a Darboux function.

In what follows we shall use some facts from the theory of Puiseux series. A
Puiseux series in a neighbourhood of the point x0 reads as

y(x) =
+∞∑
l=0

bl(x − x0)(l0+l)/n0 , (2.4)

where l0 ∈ Z, n0 ∈ N. In its turn a Puiseux series in a neighbourhood of the point
x = ∞ is given by

y(x) =
+∞∑
l=0

clx
(l0−l)/n0 , (2.5)

where again l0 ∈ Z, n0 ∈ N.
It is known [8, § 7.8, p. 136] that a Puiseux series of the form (2.4) that satisfy

equation G(x, y) = 0, where G(x, y) is an element of the ring C[x, y], is convergent
in a neighbourhood of the point x0 (the point x0 is excluded from domain of conver-
gence whenever l0 < 0). Analogously, a Puiseux series of the form (2.5) that satisfy
equation G(x, y) = 0 is convergent in a neighbourhood of the point x = ∞ (the
point x = ∞ is excluded from domain of convergence whenever l0 > 0). If n0 > 1
then the convergence of the corresponding series is understood in the sense that a
certain branch of the n0th root is chosen and a cut forbidding going around the
branch point is introduced. The set of all Puiseux series of the form (2.4) or (2.5)
forms an algebraically closed field.

Let us privilege the variable y with respect to the variable x and consider y as
a function of the variable x. It is straightforward to prove [6, Lemma 2.1] that
invariant algebraic curves of the vector field X and related dynamical system (2.1)
capture Puiseux series satisfying the first-order ordinary differential equation

P1(x, y)yx − P2(x, y) = 0, (2.6)

where yx = dy/dx and P1(x, y), P2(x, y) ∈ C[x, y] are the polynomials appearing in
the dynamical system under consideration.

All the Puiseux series that solve equation (2.6) can be obtained with the
help of the Painlevé methods. Let us present a brief description of such a
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method. A first-order algebraic ordinary differential equation can be represented
as W (x, y, yx) = 0, where W (x, y, yx) can be regarded as the sum of differential
monomials given by

M [x, y(x)] = Cxlyj0

{
dy

dx

}j1

, C ∈ C \ {0}, l, j0, j1 ∈ N0. (2.7)

The set of all the differential monomials of the form (2.7) will be denoted as M.
In addition in order to simplify notation the expression E[x, y(x)] will stand for a
polynomial in x, y(x) and yx(x) with coefficients in the field C.

At the first step one needs to find the so-called dominant balances of equation
(2.6), see definitions below. A direct and simple way to find all the dominant
balances is to use the Newton polygon of the algebraic ordinary differential
equation under consideration. This technique now known as the power geometry
was developed by Bruno [1,2].

Define the map q : M → R
2 by the following rules:

Cxq1yq2 �→ q = (q1, q2),
dky

dxk
�→ q = (−k, 1), q(M1M2) = q(M1) + q(M2),

where C ∈ C \ {0} is a constant, M1 and M2 are differential monomials. We denote
the set of all points p ∈ R

2 corresponding to the monomials of equation (2.6) as
S(W ). The convex hull of S(W ) is called the Newton polygon of equation (2.6).

The boundary of the Newton polygon consists of vertices and edges. Selecting
all the differential monomials of the original equation that generate the vertices
and the edges of the Newton polygon, we obtain a number of balances. The
balance for a vertex is defined as the sum of those differential monomials in
W (x, y, yx) that are mapped into the vertex. The balance for an edge is defined
as the sum of differential monomials in W (x, y, yx) whose images belong to the
edge. If solutions of equation (2.6) possess an asymptotic of the form y(x) = c0x

r

with x → 0 or x → ∞, then there exists a balance E[x, y(x)] such that the func-
tion y(x) = c0x

r satisfies the equation E[x, y(x)] = 0. Conversely, the function
y(x) = c0x

r solving equation E[x, y(x)] = 0, where E[x, y(x)] is a balance is an
asymptotics at x → 0 (or x → ∞) for solutions of equation (2.6) whenever for all
the differential monomials M [x, y(x)] of the original equation not involved into
E[x, y(x)] = 0 we have Re κ > Re κ0 (or Re κ < Re κ0), where M [x, c0x

r] = Bxκ

and M0[x, c0x
r] = B0x

κ0 with M0[x, y(x)] being a differential monomial of the
balance E[x, y(x)].

Consequently, having found all the power solutions y(x) = c0x
r for all the

balances, one needs to select those that give asymptotics at x → 0 or x → ∞.
Using power asymptotics it is possible to derive asymptotic series possessing these
asymptotics as leading-order terms.

In what follows we shall need Puiseux series near x = ∞ that satisfy equation
(2.6), therefore we shall focus at the case x → ∞. Let us suppose that a balance
E0[y(x), x] of equation (2.6) has a solution y(x) = c0x

r, which is an asymptotics at
x → ∞.
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In the second step one calculates the formal Gâteaux derivative of the balance
E0[y(x), x] at the solution y(x) = c0x

r:

δE0

δy
[c0x

r] = lim
s→0

E0[c0x
r + sxr−j , x] − E0[c0x

r, x]
s

= V (j)xr̃.

In this expression V (j) is a first-degree polynomial with respect to j. Note that
the coefficients of this polynomial depend on c0 and on the parameters (if any) of
the original equation involved into the balance E0[y(x), x]. The zero j0 of V (j) is
called the Fuchs index (or the resonance) of the balance E0[y(x), x] and its power
solution y(x) = c0x

r. If the Fuchs index j0 is not a positive rational number, then
n0 = r2 where r2 is defined as r = r1/r2, r1 ∈ Z, r2 ∈ N, and (r1, r2) = 1. Otherwise
we obtain n0 = lcm(p2, r2), where r2 was defined previously and p2 is given by
j0 = p1/p2 where p1, p2 ∈ N, (p1, p2) = 1. By lcm we denote the lowest common
multiple.

In the third step one verifies the existence of the Puiseux series of the form (2.5)
with l0 = rn0. If the balance E0[y(x), x] corresponds to a vertex of the Newton
polygon, then the Puiseux series always exists and possess an arbitrary coefficient
c0. Note that in this case the Fuchs index is equal to zero. Now let us suppose that
the balance E0[y(x), x] corresponds to an edge of the Newton polygon. Substituting
series (2.5) into equation (2.6) one can find the recurrence relation for its coefficients.
This relation takes the form

V

(
k

n0

)
ck = Uk(c0, . . . , ck−1), k ∈ N,

where Uk is a polynomial of its arguments. Note that Uk can also depend on the
parameters (if any) of the original equation. The equation Un0j0 = 0 is called the
compatibility condition. If the compatibility condition is not satisfied, then the
Puiseux series under consideration does not exist. Otherwise the corresponding
Puiseux series exists and possesses an arbitrary coefficient cn0j0 .

The Puiseux series under consideration has uniquely determined coefficients
whenever there are no non-negative rational Fuchs indices.

We note that if one wishes to find all the Puiseux series of the form (2.5) that sat-
isfy the original equation, then it is necessary to implement the procedure described
above for all the dominant balances and for all their power solutions.

We also observe that there may exist balances and their power solutions such that
V (j) ≡ 0. If V (j) is identically zero, then one should make the substitution y(x) =
c0x

r + w(x) in equation (2.6) and find all the Puiseux series w(x) = c1x
r1 + · · · of

the latter such that r1 < r and x → ∞.
The following theorem was proved in article [6].

Theorem 2.3. Let F (x, y) ∈ C[x, y] \ C, Fy �≡ 0 be an irreducible invariant alge-
braic curve of polynomial vector field X and related dynamical system (2.1). Then
F (x, y) takes the form

F (x, y) =

⎧⎨
⎩μ(x)

N∏
j=1

{y − yj(x)}
⎫⎬
⎭

+

, N ∈ N,
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where μ(x) ∈ C[x] and y1(x), . . . , yN (x) are pairwise distinct Puiseux series in
a neighbourhood of the point x = ∞ that satisfy equation (2.6). The symbol
{W (x, y)}+ means that we take the polynomial part of the expression W (x, y).
Moreover, the degree of F (x, y) with respect to y does not exceed the number of
distinct Puiseux series of the from (2.5) satisfying equation (2.6) whenever the
latter is finite.

Clearly, if there are no Puiseux series in a neighbourhood of the point x = ∞
that satisfy equation (2.6), then polynomial vector field X and related dynamical
system (2.1) do not have invariant algebraic curves such that Fy �≡ 0.

3. Proof of theorem 1.1(a)

Introducing the change of variables and reparameterization of the independent
variable t given by

x1 = b0(x + b1), y1 = b2y and t = b3τ

where bi are presented in (1.3), the Liénard dynamical systems (1.2) with mn �= 0
can be written as

ẋ1 = y1, ẏ1 = −2x1y1 + x2
1 − σ0x1 − δ0.

Now the dot means the derivative with respect to the new independent variable τ
and the parameters σ0, δ0 are also given in (1.3).

Introducing the invertible change of variables x1 = s, y1 = z − s2 − s (or s = x1,
z = y1 + x2

1 + x1, see (1.3)) yields the following dynamical system

ṡ = z − s2 − s, ż = z − (1 + σ0)s − δ0. (3.1)

There exists the one-to-one correspondence between irreducible invariant algebraic
curves f(x, y) = 0 of Liénard dynamical system (1.2) and irreducible invariant
algebraic curves G(s, z) of system (3.1). The following theorem was proved in
article [5].

Theorem 3.1. Let G(s, z) ∈ C[s, z] \ C be an irreducible invariant algebraic curve
of dynamical system (3.1). Then the degree of G(s, z) with respect to s is either
0 or 2.

It is also clear that the cofactor K of the invariant algebraic curve must be of
the form K = A0 + A1s with A0, A1 ∈ C.

The proof of theorem 1.1(a) will be an immediate consequence of the proof of
the following theorem.

Theorem 3.2. The unique irreducible invariant algebraic curves G(s, z) = 0 of
dynamical systems (3.1) have cofactor K = A0 + A1s and take the form

(i) G(s, z) = z − δ0 with A1 = 0 and A0 = 1 whenever σ0 = −1;

(ii) G(s, z) = s2 + 3s/2 − z − 2δ0 with A1 = −2, A0 = −1/2 whenever σ0 =
4δ0 − 1/4;
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(iii) G(s, z) = g2(z)s2 + g1(z)s + g0(z) with A1 = −2 and A0 = M − 3/2 when-
ever σ0 = −1 and δ0 = (2M − 3)(2M + 1)/16 with M ∈ N \ {1},

where g0(z), g1(z) and g0(z) are the polynomials given by the relations in (1.4)
(see also (1.5)).

We recall that the value M = 1 is excluded in the last sequence of invariant
algebraic curves since the latter is a partial case of the algebraic curve given in (ii).

Proof of theorem 3.2. Invariant algebraic curves of system (3.1) satisfy the
following equation

Gs(z − s2 − s) + Gz(z − (1 + σ0)s − δ0) = (A0 + A1s)G. (3.2)

We begin by classifying irreducible invariant algebraic curves that do not depend
on s.

Case 1. G(s, z) has degree 0 in s. Substituting G(s, z) = z − z0 with z0 ∈ C into
equation (3.2), we obtain the following relation

z − (1 + σ0)s − δ0 = (A0 + A1s)(z − z0).

Setting to zero the coefficients at different powers of s and z, we find z0 = δ0,
A1 = 0, A0 = 1 and σ0 = −1. This result is given in (i).

Case 2. G(s, z) has degree 2 in s. Representing irreducible invariant algebraic
curves G(s, z) as follows:

G(s, z) = g2(z)s2 + g1(z)s + g0(z), (3.3)

where g0(z), g1(z), g2(z) ∈ C[z] and g2(z) �≡ 0, we substitute this representation
into equation (3.2) and set to zero the coefficients at different powers of s. The
equation resulting from the coefficient at s3 reads as

(σ0 + 1)g2,z + (A1 + 2)g2 = 0. (3.4)

If σ0 �= −1, then g2(z) takes the form

g2(z) = C0 exp
[
− (A1 + 2)z

σ0 + 1

]
, C0 ∈ C \ {0}.

Consequently, g2(z) is a polynomial if and only if A1 = −2. In this case we get
g2(z) = C0. Without loss of generality, we take C0 = 1. Further, we substitute rela-
tion (3.3) with g2(z) = 1 into equation (3.2) and set to zero the coefficients at
different powers of s. The coefficient at s2 gives the following ordinary differential
equation

(σ0 + 1)g1,z − g1 + A0 + 2 = 0.

The unique polynomial solution of this equation is g1(z) = A0 + 2. Considering the
coefficient at s1, we obtain the following ordinary differential equation

(σ0 + 1)g0,z − 2g0 − 2z + (A0 + 2)(A0 + 1) = 0
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with the unique polynomial solution given by

g0(z) = −z + 1
2

(
A2

0 + 3A0 − σ0 + 1
)
.

Finally, setting to zero the coefficient at s0, we find

σ0 = 4δ0 − 1
4 , A0 = − 1

2 .

The resulting irreducible invariant algebraic curve is given in (ii).
Now let us consider the case σ0 = −1. From equation (3.4) we obtain A1 = −2.

Considering equations resulting from the coefficient at s2 and s, we can express g1

and g0 via g2 and its derivatives. Thus we get

g1 = −(z − δ0)g2,z + (A0 + 2)g2,

g0 =
1
2
(z − δ0)2g2,zz − (A0 + 1)(z − δ0)g2,z +

(
1 − z +

1
2
A0(A0 + 3)

)
g2.

(3.5)

Substituting these expressions into the equation resulting from the coefficient at s0

yields the following third order linear ordinary differential equation

Z3g2,ZZZ − 3A0Z
2g2,ZZ − (4Z + 4δ0 − 3A0(A0 + 1))Zg2,Z

+ (2(2A0 + 1)Z + (A0 + 1)(4δ0 − A0(A0 + 2))) g2 = 0 (3.6)

Note that for simplicity we introduce the new variable Z = z − δ0. Further, using
relations (3.5) we verify that if z = δ0 is a zero of g2(z), then it is also a zero of
g1(z) and g2(z). If such a situation occurs, then G(s, z) is reducible. In view of this
let us suppose that g2(z) takes the form

g2(z) = ZM−1 + B1Z
M−2 + · · · + BM−1, Z = z − δ0, M ∈ N, (3.7)

where BM−1 �= 0. Note that if g2(z) is of degree M − 1 with respect to z, then g0(z)
is of degree M with respect to z and so does G(s, z). Substituting representation
(3.7) into equation (3.6) and setting to zero the coefficients at ZM and Z0, we find
the following necessary conditions for polynomial solutions to exist:

2A0 − 2M + 3 = 0, (A0 + 1)(A0(A0 + 2) − 4δ0)BM−1 = 0. (3.8)

Recalling the fact that BM−1 �= 0, we solve system (3.8). This gives

A0 = M − 3
2
, δ0 =

(2M − 3)(2M + 1)
16

. (3.9)

Further, we find the recurrence relation for the coefficients of g2(z). The result takes
the form

(M − m − 1)(2m + 1)BM−m−1 + 8(m + 1)BM−m−2 = 0, m ∈ Z, (3.10)

where B0 = 1 and Bm = 0 whenever m � M and m < 0. Analysing this relation,
we conclude that equation (3.6) possesses the unique polynomial solution of degree
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M − 1 provided that conditions (3.9) are satisfied. Finally, relation (3.10) and the
normalization B0 = 1 give the following explicit representation

Bm =
(−1)m(M + m − 1)!(2m − 1)!!

8mm!(M − m − 1)!
.

This completes the proof. �

4. Proof of theorem 1.1(b)

If γ = 0 then system (1.2) becomes

x′ = y, y′ = α + βx + nx2.

This system has the first integral

H(x, y) = y2/2 − αx − βx2/2 − nx3/3

and so y2/2 − αx − βx2/2 − nx3/3 = 0 is an invariant algebraic curve with zero
cofactor. This proves statement (b.1).

Now assume that γ �= 0. Introducing the change of variables

X =
n

6

(
x +

β − σ1

2n

)
, Y =

n

6
y

system (1.2) with m = 0 and n �= 0 becomes

X ′ = Y, Y ′ = γY + 6X2 − σ1X. (4.1)

Our aim is to provide the complete classification of irreducible invariant algebraic
curves of Liénard dynamical systems (4.1). We shall use the method of Puiseux
series introduced in articles [5,6] and briefly described in § 2.

The proof of theorem 1.1(b) will be an immediate consequence of the proof of
the following theorem.

Theorem 4.1. The unique irreducible invariant algebraic curves G(X,Y ) = 0 of
dynamical systems (4.1) with γ �= 0 have cofactor K = 6γ/5 and take the form

(i) G(X,Y ) = Y 2 − (4γ/5)(X + γ2/25)Y − 4X3 − (8γ2/25)X2 − (4γ4/625)X
whenever σ1 = −6γ2/25;

(ii) G(X,Y ) = Y 2 − (4γ/5)XY − 4X3 + (4γ2/25)X2 whenever σ1 = 6γ2/25.

Proof. Invariant algebraic curves of dynamical system (4.1) satisfy the equation

Y GX − (−γY − 6X2 + σ1X)GY = K(X,Y )G. (4.2)

Balancing higher-order terms with respect to y, we see that K(X,Y ) = K(X),
μ(X) = μ0, where K(X) ∈ C[X] and μ0 ∈ C. Without loss of generality, we set
μ0 = 1. Substituting G(X,Y ) = G(X) into equation (4.2), we show that there are
no invariant algebraic curves that do not depend on Y .
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Figure 1. The Newton polygon of equation (4.3) with σ1 �= 0.

Let us find irreducible invariant algebraic curves G(X,Y ) such that GY �≡ 0. Sup-
posing that the variable Y is dependent and the variable X is independent, we see
that the function Y = Y (X) satisfies the following first-order ordinary differential
equation

Y YX − γY − 6X2 + σ1X = 0. (4.3)

Our aim is to find Puiseux series near the point X = ∞ that satisfy equation
(4.3). The Newton polygon of equation (4.3) is presented in figure 1. Analysing the
Newton polygon we find that there exists only one dominant balance related to the
point X = ∞. This balance and the power solutions take the form

Y YX − 6X2 = 0 : y(1,2)(X) = c
(1,2)
0 X3/2, c

(1,2)
0 = ±2.

The Fuchs index is j0 = 3 and the corresponding Puiseux series take the form

y(1,2)(X) =
+∞∑
k=0

c
(1,2)
k X3/2−k/2. (4.4)

The compatibility condition for both series to exist resulting from the presence of
the Fuchs index j0 = 3 reads as

(6γ2 − 25σ1)(6γ2 + 25σ1) = 0. (4.5)

Consequently series (4.4) possess arbitrary coefficients c
(1,2)
6 provided that condition

(4.5) holds. Using the consequence to theorem 2.3 and the fact that there are
no Puiseux series near X = ∞ satisfying equation (4.3) with (6γ2 − 25σ1)(6γ2 +
25σ1) �= 0, we conclude that the corresponding dynamical system does not have
invariant algebraic curves whenever condition (4.5) is not satisfied.

https://doi.org/10.1017/prm.2019.63 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.63
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Further, we represent invariant algebraic curves via the Puiseux series as follows

G(X,Y ) =

⎧⎨
⎩

N1∏
j=1

{Y − Y
(1)
j (X)}

N2∏
j=1

{Y − Y
(2)
j (X)}

⎫⎬
⎭

+

, (4.6)

where N1, N2 ∈ N ∪ {0} and each series Y
(1,2)
j (X) contains an arbitrary coefficient

c
(1,2)
6, j , arbitrary in the sense that it is not provided by equation (4.3). These coef-

ficients with the same upper index should be pairwise distinct. Further, we require
that the non-polynomial part of expression in brackets in (4.6) equals zero. Setting
to zero the coefficient at Y N1+N2−1X3/2 gives the following relation N2 = N1. The
equation resulting from the coefficient at Y N1+N2−1X1/2 is automatically satisfied.
Further, we consider the algebraic system

N1∑
j=1

{
c
(1)
k,j + c

(2)
k,j

}
= 0, k = 4, 5, . . . (4.7)

resulting from the coefficient at Y N1+N2−1X(3−k)/2. For convenience we introduce
the following notation

C(1)
m =

N1∑
j=1

{
c
(1)
6,j

}m

, C(2)
m =

N1∑
j=1

{
c
(2)
6,j

}m

, m ∈ N.

Solving system (4.7) accompanied by equation (4.5) we obtain the following results

σ1 =
6
25

γ2, C(1)
m = 0, C(2)

m = 0, m ∈ N;

σ1 = − 6
25

γ2, C(1)
m =

(−1)m

2m2502m
γ6mN1, C(2)

m =
(−1)m+1

2m2502m
γ6mN1, N1,m ∈ N.

Requiring that the resulting invariant algebraic curve is irreducible, we should set
N1 = 1

σ1 =
6
25

γ2, c
(1)
6,1 = 0, c

(2)
6,1 = 0, N1 = 1;

σ1 = − 6
25

γ2, c
(1)
6,1 = − 1

125000
γ6, c

(2)
6,1 =

1
125000

γ6, N1 = 1.

Substituting these expressions into representation (4.6), we obtain the correspond-
ing irreducible invariant algebraic curves. Their cofactors we find by direct sub-
stitution of the polynomials representing the algebraic curves under consideration
into equation (4.2). The results are given in (i) and (ii). �
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Figure 2. The Newton polygon of equation (5.2) with βα �= 0.

5. Proof of theorem 1.1(c)

Proof. Invariant algebraic curves of dynamical system (1.2) with n = 0 and m �= 0
satisfy the following partial differential equation

yFx + (mxy + γy + βx + α)Fy = K(x, y)F. (5.1)

Balancing higher-order terms with respect to y, we find K(x, y) = K(x), μ(x) = μ0,
where K(x) ∈ C[x] and μ0 ∈ C. Without loss of generality, we set μ0 = 1. Substitut-
ing F (x, y) = F (x) into equation (5.1), we see that there are no invariant algebraic
curves that do not depend on y.

Let us find other irreducible invariant algebraic curves. The function y = y(x)
satisfies the first-order ordinary differential equation

yyx − mxy − γy − βx − α = 0 (5.2)

with the Newton polygon given in figure 2.
The dominant balances giving power asymptotics at x = ∞ correspond to the

edges [Q2, Q3] and [Q3, Q4]. These balances and the power solutions take the form

(I) : yyx − mxy = 0 : y(x) =
m

2
x2;

(II) : mxy + βx = 0 : y(x) = − β

m

The Fuchs index of the first series is j0 = 2. This series takes the form

(I) : y(x) =
+∞∑
k=0

ckx2−k, c0 =
m

2

and exists whenever β = 0. This equality results from the compatibility condition
for the Fuchs index j0 = 2. Note that the coefficient c2 is arbitrary. The second
series does not have Fuchs indices and consequently possesses uniquely determined
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coefficients

(II) : y(x) =
+∞∑
k=0

akx−k, a0 = − β

m
.

It follows from theorem 2.3 that if β �= 0, then the unique irreducible invariant
algebraic curve exists whenever series of type (II) terminates at zero term. This
gives mα − γβ = 0. The cofactor we calculate by direct substitution of the relation
F (x, y) = y + β/m into equation (5.2).

Now let us consider the case β = 0. Irreducible invariant algebraic curves can be
represented via the Puiseux series as follows:

G(X,Y ) =

⎧⎨
⎩

N−k∏
j=1

(
y − m

2
x2 − c1x − c0, j − · · ·

)
(y − a0 − · · · )k

⎫⎬
⎭

+

,

where N ∈ N and k = 0 or k = 1. Setting to zero the coefficients at yN−1xl with
l < 0, we see that the unique possibility is k = 0 and α = 0. The resulting algebraic
curve and its cofactor are F (x, y) = y − mx2/2 − γx − c0 and K = 0. Note that c0

is arbitrary and in fact F (x, y) gives the polynomial first integral. �

6. Proof of theorem 1.2(a)

The proof of statement (a) in theorem 1.2 will be a direct consequence of the
following theorem.

Theorem 6.1. The unique dynamical systems (3.1), which admit a Liouvillian first
integral are the ones with the conditions

σ0 = −1, δ0 =
(2M − 3)(2M + 1)

16
, M ∈ N.

Proof. Note that if σ0 = −1 and δ0 = (2M − 3)(2M + 1)/16, in view of theorem 3.2
there exist two distinct irreducible invariant algebraic curves f1 = z − δ0 and f2 =
G(x, y + x2 + x), where the bivariate polynomial G(s, z) is given in the statement
of theorem 1.1 and in (1.4). The cofactors take the form K1 = 1 and K2 = −2s +
M − 3/2 accordingly. Clearly,

V = f
3/2−M
1 f2

is an inverse integrating function and by theorem 2.2 system (3.1) admits a Liou-
villian first integral. The first integral H can be obtained solving (2.2). Doing so,
we get that a Liouvillian first integral reads as (1.6).

Now we shall show that in any other case systems (3.1) do not admit a Liouvillian
first integral.

Case 1. σ0 = −1 and δ0 �= (2M − 3)(2M + 1)/16 for any M ∈ N. In this case
systems (3.1) can have an exponential factor of the form E = exp(f/(z − δ0)n)
with n > 0 and f coprime with z − δ0. We will show that this is not possible.
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Assume that it is the case, then simplifying the exponential term E, we see that f
satisfies the following equation

(z − s2 − s)
∂f

∂s
+ (z − δ0)

∂f

∂z
− nf = (β0 + β1s + β2z)(z − δ0)n. (6.1)

Set now f̄ = f |z=δ0 . Then f̄ �= 0 (otherwise f would not be coprime with z − δ0)
and it satisfies equation (6.1) restricted to z = δ0, i.e.

(δ − s2 − s)
df̄

ds
= nf̄ .

Solving this linear differential equation we conclude that: if δ0 �= −1/4 then

f̄ = α exp
( −2n√−1 − 4δ0

arctan
( 2s + 1√−1 − 4δ0

))
, α ∈ C \ {0}

and if δ0 = −1/4 then

f̄ = αe2n/(1+2s), α ∈ C \ {0}.

Since f̄ must be a polynomial, and nα �= 0 we get a contradiction. So, this case
is not possible. In short, the unique possible exponential factors must be of the
form E = exp(g) with g ∈ C[x, y]. Moreover, by theorems 2.1 and 2.2, if there is a
Liouvillian first integral then the cofactor must be of the form 2s − λ with λ ∈ C.
So,

(z − s2 − s)
∂g

∂s
+ (z − δ0)

∂g

∂z
= 2s − λ.

Evaluating it on z = δ0 yields

(δ − s2 − s)
∂g

∂s

∣∣∣∣
z=δ

= 2s − λ

which is not possible because g is a polynomial. This concludes the proof in this
case.

Case 2. σ0 = 4δ − 1/4 with δ0 �= −3/16. In this case system (3.1) can have an
exponential factor of the form E = exp(f/(s2 + 3s/2 − z − 2δ0)n) with n > 0 and
f coprime with s2 + (3/2)s − z − 2δ0. If it exists, then f satisfies, after simplifying
the exponential term E, the equation

(z − s2 − s)
∂f

∂s
+
(
z −

(
4δ0 +

3
4

)
s − δ0

)∂f

∂z
− n

(
2s +

1
2

)
f

= (β0 + β1s + β2z)
(
s2 +

3
2
s − z − 2δ0

)n

.

Set now f̄ = f |z=s2+(3/2)s−2δ0 . Then f̄ �= 0 and it satisfies

(1
2
s − 2δ0

)df̄

ds
= −n

(
2s +

1
2

)
f̄ .
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Solving this linear differential equation we get

f̄ = α(s − 4δ0)−n(1+16δ0) exp(−4ns), α ∈ C \ {0},
what is not possible because f̄ is a polynomial and nα �= 0. So, the unique possible
exponential factors must be of the form E = exp(g) with g ∈ C[x, y]. Moreover, by
theorems 2.1 and 2.2, if there is a Liouvillian first integral then the cofactor must
be of the form 2s − λ with λ ∈ C. Hence,

(z − s2 − s)
∂g

∂s
+
(
z −

(
4δ0 +

3
4

)
s − δ0

)∂g

∂z
= 2s(1 − λ) − λ

2
.

Evaluating it on z = (4δ0 + 3/4)s − δ0 yields

((
4δ0 − 1

4

)
s − δ0 − s2

)∂g

∂s

∣∣∣∣
z=(4δ0+3/4)s−δ0

= 2s(1 − λ) − λ

2
,

which is not possible because g is a polynomial. This concludes the proof in this
case.

Case 3. σ0 �∈ {−1, 4δ0 − 1/4}. The unique possible exponential factors must be of
the form E = exp(g) with g ∈ C[x, y]. Moreover, by theorems 2.1 and 2.2, if there
is a Liouvillian first integral then the cofactor must be of the form 2s. So,

(z − s2 − s)
∂g

∂s
+ (z − (1 + σ0)s − δ0)

∂g

∂z
= 2s.

Evaluating the above equation on z = (1 + σ)s + δ0, we get

(δ − s2 + σ0s)
∂g

∂s

∣∣∣∣
z=(1+σ0)s+δ0

= 2s,

which is not possible because g is a polynomial. This concludes the proof. �

7. Proof of theorem 1.2(b)

The proof of statement (b.1) is clear. To the complete proof of statement (b) in
theorem 1.2 will be a direct consequence of the following theorem.

Theorem 7.1. The unique dynamical systems (4.1) which admit a Liouvillian first
integral are the ones with the conditions σ1 = ±6γ2/25.

Proof. In view of theorem 1.1(b) if σ1 = 6γ2/5 there exists an irreducible invariant
algebraic curve G1(s, z) with G1 given in statement (b.2) of theorem 1.1. The
cofactor is of the form K = 6γ/5. Clearly,

V = G
−5γ/6
1

is an inverse integrating function and by theorem 2.2 system (3.1) admits a Liou-
villian first integral. The first integral H can be obtained solving (2.2). Doing so,
we get that a Liouvillian first integral is given in (1.7).
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Analogously, in view of theorem 1.1(b) if σ1 = −6γ2/5 there exists an irreducible
invariant algebraic curve G2(s, z) with G2 given in statement (b.3) of theorem 1.1.
The cofactor is of the form K = 6γ/5. Clearly,

V = G
−5γ/6
2

is an inverse integrating function and by theorem 2.2 system (3.1) admits a Liou-
villian first integral. The first integral H can be obtained solving (2.2). Doing so,
we get that a Liouvillian first integral is given in (1.8).

Now we shall show that in any other case there are no Liouvillian first integrals.
In these other cases, the unique possible exponential factors must be of the form
E = exp(g) with g ∈ C[X,Y ]. Moreover, by theorems 2.1 and 2.2, if there is a
Liouvillian first integral then the cofactor must be of the form −γ. So,

Y
∂g

∂X
+ (γY + 6X2 − σ1X)

∂g

∂Y
= −γ.

Evaluating the above equation on Y = X = 0 we get 0 = γ, which is not possible.
This concludes the proof. �

8. Proof of theorem 1.2(c)

In view of theorem 1.1(c) if α = β = 0, the polynomial y − mx2/2 − γx − c0 is a
first integral. This proves statement (c.2).

If α = βγ/m with β �= 0 then there exists the irreducible invariant algebraic curve
y + β/m = 0. It turns out that V = y + β/m is an inverse integrating factor and by
theorem 2.2 system (3.1) admits a Liouvillian first integral. Solving (2.2) we obtain
the first integral in (1.9) proving statement (c.2).

Finally, to conclude the proof of theorem 1.2(c) we shall see that there are no
Liouvillian first integrals in any other case. Note that these other cases, the unique
possible exponential factors must be of the form E = exp(g) with g ∈ C[x, y]. More-
over, by Theorems 2.1 and 2.2, if there is a Liouvillian first integral then the cofactor
must be of the form mx + γ. So,

y
∂g

∂x
+ (α + βx + γy + mxy)

∂g

∂Y
= −mx − γ.

Evaluating the above equation on y = 0, x = −α/β we get 0 = mα/β − γ, which is
not possible because α �= βγ/m. This concludes the proof.
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