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Longitudinal profile of channels cut by springs

O. DEVAUCHELLE†, A. P. PETROFF, A. E. LOBKOVSKY
AND D. H. ROTHMAN

Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA

(Received 4 February 2010; revised 29 September 2010; accepted 29 September 2010;

first published online 13 December 2010)

We propose a simple theory for the longitudinal profile of channels incised by
groundwater flow. The aquifer surrounding the stream is represented in two
dimensions through Darcy’s law and the Dupuit approximation. The model is based
on the assumption that, everywhere in the stream, the shear stress exerted on the
sediment by the flow is close to the minimal intensity required to displace a sand grain.
Because of the coupling of the stream discharge with the water table elevation in the
neighbourhood of the channel head, the stream elevation decreases as the distance
from the stream’s tip with an exponent of 2/3. Field measurements of steephead
ravines in the Florida Panhandle conform well to this prediction.
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1. Introduction
In his study of the badlands of the Henry Mountains, Gilbert (1877) noted that

‘if we draw the profile of the river on paper, we produce a curve concave upward
and with the greatest curvature at the upper end’ (p. 116). In fact, the concavity of
the longitudinal profile of rivers is a general feature of landscapes despite the wide
range of the processes involved in shaping rivers (Sinha & Parker 1996). The local
slope of a river is set primarily by its discharge, width and sediment size distribution
and by the rate at which it transports sediment. Its profile thus results from its
interaction with the surrounding topography which supplies water and sediment to the
stream (Snow & Slingerland 1987). As a landscape responds to climatic and tectonic
perturbations, the profiles of streams can bear the geomorphological signature of
ancient forcing (Whipple 2001). More generally, the profile of a river reflects the way
it incises a landscape. A quantitative theory of longitudinal profiles could improve
our understanding of how a drainage network grows and organizes itself.

Various mechanisms have been proposed to explain the concavity of river profiles,
ranging from the accumulation of water and sediment discharges from tributaries
(Snow & Slingerland 1987; Rice & Church 2001) to the equilibrium between basin
subsidence and sediment deposition by the river (Paola, Heller & Angevine 1992). In
addition to these mechanisms, most models also involve the downstream fining of the
bed sediment, the role of which is broadly acknowledged (Sklar & Dietrich 2008).
To better understand these, if any of these mechanisms are quantitatively important,
we focus on a simpler geological system: ravines formed by groundwater sapping in
uniform sand (Dunne 1980; Howard 1988; Schumm et al. 1995; Lamb et al. 2008).
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Figure 1. Steepheads in the Apalachicola Bluffs and Ravines Preserve. (a) Picture of the
amphitheatre head. The spring is located approximately in the middle of the picture.
(b) Curvature of the elevation contours. A strong curvature (light grey) reveals the presence of
a stream. Mapping data were collected by the National Center for Airborne Laser Mapping
(Abrams et al. 2009).

Sapping occurs when groundwater seeps from porous ground with enough strength
to detach sediment grains and to transport them further downstream (Howard &
McLane 1988; Fox, Chu-Agor & Wilson 2007). This process causes the soil above
the seepage face to collapse, thus forming a receding erosion front as the valley head
advances, often used to identify sapping as the incision mechanism (Higgins 1982;
Laity & Malin 1985; Kochel & Piper 1986), but not without controversy (Lamb et al.
2006, 2008; Petroff et al. 2010).

The advance of the valley head through the porous ground creates a ravine, at the
bottom of which flows a stream fed by the surrounding aquifer. Here we present a
simple analytical model of the interaction between sediment transport in the stream
and the aquifer. We use the marginal stability hypothesis for sediment transport and
the assumption of fully turbulent flow to derive a relationship between the flux of
water carried by the stream and its longitudinal slope. This relationship serves as
the boundary condition for the water table elevation which allows us to compute
the water flux and the stream profile near the head. This theory concerns first-order
streams, that is the stream segments between a tip and the first confluence. Finally,
the model is tested against 13 streams from a single field site, described in § 2. The
shape of the mean longitudinal profile of the streams is well predicted by our theory.

2. The Apalachicola ravines
The so-called steephead ravines of the Florida Panhandle are 20–40 m deep and

about 100 m wide, cut in sand by groundwater sapping (Schumm et al. 1995; Abrams
et al. 2009). Because of their unambiguous origin and the relative simplicity of their
geological substrate, we use them as an inspiration for the present theory. Beautiful
specimens of steepheads are found in the Apalachicola Bluffs and Ravines Preserve,
north of Bristol, Florida. At their head, a spring is surrounded by an amphitheatre-
shaped sand bluff nearly at the angle of repose. Because of this typical structure, the
tip of a first-order stream is well defined, a property crucial to our analysis (figure 1).

The Florida steepheads form in a layer of reasonably homogeneous quartz sand of
about 0.45 mm in diameter. Schmidt (1985) provides a stratigraphic column showing
that a surficial 15 m thick layer of sand is supported by less permeable clay layers,
the uppermost of which lies about 30 m above sea level. As a first approximation,
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we extrapolate this value to the entire network and assume that it is the base of the
aquifer.

The hydraulic conductivity K of the sand is high enough for the soil to absorb the
rainwater before run-off can develop (there are almost no visible erosion rills on the
ground). In addition, the characteristic time scale of the aquifer is long enough to
damp out most of the seasonal variations in the precipitation rate (Petroff et al. 2010),
and the discharge of the stream is rather constant except during extreme rain events.
The theory developed here is based on the assumption that the average discharges
have a stronger impact on the stream morphology than extreme events (Wolman
& Miller 1960), and consequently we consider hereafter a uniform precipitation
rate of about P ≈ 4.6 × 10−8 m s−1. Conversely, since clay is about 104 times less
permeable than sand (Bear 1988), it can be considered an impervious aquitard as a
first approximation. As the slope of the stream is moderate (typically 10−2), we can
use Dupuit’s approximation to relate the groundwater flux to the elevation of the
water table (Dupuit 1863; Bear 1988):

qw = −Kh∇h, (2.1)

where qw , K and h denote the groundwater flux (in the horizontal plane), the sand
conductivity and the aquifer thickness respectively. The water mass balance then
dictates that the squared water table elevation satisfies the Poisson equation (Bear
1988):

∇2h2 = −2P

K
. (2.2)

Petroff et al. (2010) show that the discharge predicted by the above equation compares
well with 85 flow measurements at different locations along the Florida network. The
discharge was deduced from the local geometry of the channel and the surface water
velocity, which was measured using passive tracers. The same data are used in § 3.2
to support intermediate steps of the present theory.

3. Coupling groundwater flow with sediment transport
We first derive a relation between the slope S and the discharge Qw of a stream,

through the simplest possible model for a turbulent flow into the streams. Next, in
§ 3.2, we show that the coupling of this relation to Dupuit’s representation of the
aquifer surrounding the stream imposes the shape of the stream profile.

3.1. Streams

Lane (1955) and Henderson (1961) suggested that the stable width of a channel is
selected mainly by the mechanical equilibrium of sediment grains. In other words,
the sum of the constraints applied to the bed by the flow and by gravity amounts
exactly to the level required to move a grain, an idea which can be extended to
different sediment transport modes (Dade 2000). Strictly speaking, this hypothesis
implies that no sediment is transported by the stream. However, this approximation
can be interpreted in a more flexible way by assuming that the Shields parameter,
defined below, remains close to the threshold value for transport, thus allowing for
some bedload transport (Parker 1978; Savenije 2003), without departing considerably
from the true equilibrium shape. Following this interpretation, we can determine the
shape of an idealized channel exactly at equilibrium and expect the dimensions of
actual channels not to depart strongly from this theoretical cross-section.

Let us define the depth D of a stream at the average discharge (figure 2). For a
shallow channel, the shear stress exerted by the flow on the bed can be approximated
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Figure 2. Schematics of a stream section. The notations are defined in § 3.1.

by ρwgSD, where ρw and g are the water density and the acceleration of gravity
respectively. As established by Henderson (1961), the equilibrium hypothesis then
reads

θt =

√
(RSD/ds)2 + sin2 ϕ

cosϕ
, (3.1)

where θt is the threshold Shields parameter; R = ρw/(ρs − ρw) ≈ 0.61 compares the
density of the sediment ρs with the density of water; ds ≈ 0.45 mm is the average
grain size; and ϕ is the lateral bed slope. The right-hand side of the above equation
corresponds to the ratio of the forces tangential to the bed to the normal forces. It
can be interpreted as a generalization of the classical Shields parameter (Devauchelle
et al. 2009). If the square of the threshold Shields parameter θ2

t is small, then (3.1)
leads to a shallow channel:

D =
θtds

SR
cos

(
SRy

ds

)
, (3.2)

where y denotes the transverse coordinate. Consequently, the channel aspect ratio
is W/〈D〉 = π2/(2θt ), where W and 〈D〉 are the width and the mean depth of the
channel, respectively.

The field data presented in figure 3(a) indicate a strong correlation between the
width and the depth of a stream, with a Spearman rank correlation coefficient of 0.92.
Each point on the plot represents an average over a few measurements at a given
location. Fitting a power law W ∝ 〈D〉p yields p = 0.97 ± 0.04. These measurements
thus support the mechanical equilibrium theory, which predicts that width and depth
are linearly related. The mean aspect ratio of the streams is found to be 16.7 ± 0.7,
which corresponds to a threshold Shields parameter of about θt ≈ 0.29. Lobkovsky
et al. (2008) showed experimentally that a flume stops eroding its bed when the
Shields parameter reaches a value of about 0.30.

A few meters from the spring, the Reynolds number of the streams is of the order of
104 and increases downstream. The Darcy–Weisbach relation applied to a turbulent,
stationary and spatially invariant flow states that (Chanson 2004)√

gDS = Cf U, (3.3)

where U is the depth-averaged velocity of water and Cf is the friction factor. The
value of the latter is known to depend on the ratio of the bed roughness z0 to the
flow depth D. A common approximation is, for instance (Katul et al. 2002),

Cf ≈ 0.18
(z0

D

)1/7

. (3.4)

The roughness length of a sand bed is set by the grain size (Katul et al. 2002). In
the streams of the Appalachicola Reserve, we expect the bed roughness of about
z0 ∼ 0.45 mm. According to (3.4), we expect the friction factor Cf to vary between
0.10 and 0.18 in the streams, corresponding to the data set presented in figure 3, with
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Figure 3. (a) Stream depth versus stream width for 85 streams of the Apalachicola Bluffs and
Ravines Preserve. The solid line represents the best proportionality relation between the two
quantities, namely W =16.7〈D〉. (b) Velocity of a stream versus its width. The average velocity,
represented by the solid line, is 33.0 cm s−1. The bars indicate the estimated measurement error.
The lowest data point corresponds to a laminar stream.

an average of 0.14. For the sake of simplicity, the friction factor Cf will be treated as
a constant hereafter, but a more elaborate model could include its variation.

Combining (3.2) and (3.3), we find that the mean velocity of a stream is

〈U〉 =
2
√

2Γ 2(3/4)

π3/2Cf

√
gθtds

R
≈ 0.76

Cf

√
gθtds

R
, (3.5)

where Γ denotes the Euler gamma function. At first order, the water velocity depends
only on the grain size and should thus remain constant throughout the network, if the
friction factor is constant. The velocity measurements presented in figure 3(b) have a
mean of 33 ± 1 cm s−1, corresponding to a friction factor Cf ≈ 0.11, which lies within
the expected range. Alternatively, one could attempt to fit a power law to figure 3(b),
but the correlation between W and 〈U〉 is too small (the rank correlation coefficient
is 0.29) to justify a non-constant velocity.

Finally, from (3.2) and (3.3), we can relate the water discharge Qw to the stream
slope S, after averaging over the channel width:

QwS2 =
2
√

2K(1/2)

3Cf

√
θ3
t g

(
ds

R

)5

≈ 1.75

Cf

√
θ3
t g

(
ds

R

)5

≡ Q0, (3.6)

where K is the complete elliptic integral of the first kind. In the Florida network,
Q0 ≈ 1.2 × 10−7 m3 s−1, which is consistent with the typical value of the slope S ∼ 10−2

and of the discharge Qw ∼ 10−3 m3 s−1 observed in the field. The above slope–discharge
relation is reminiscent of the empirical relations of Leopold & Wolman (1957) for
alluvial rivers at equilibrium. Inasmuch as the type of sediment does not vary along
the stream, Q0 remains constant. Since most rivers accumulate water downstream,
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Figure 4. Schematics of a channel tip, (a) from the side and (b) from above.

(3.6) imposes a concave longitudinal profile. As pointed out by Savenije (2003) and
Henderson (1961), the above model also relates the river width W to its discharge Qw

through

W = π

(
R

θ3
t ds

)1/4
√

3Cf Qw

2
√

2K(1/2)g
. (3.7)

The proportionality of the width to the square root of the discharge, sometimes
referred to as Lacey’s formula, has been supported both in the field and in laboratory
experiments by Fourrière (2009).

At scales much larger than the river width, (3.6) is a boundary condition for the
Poisson equation controlling the water table elevation around the streams, since it
imposes a relation between the water flux seeping into the river and the longitudinal
slope of the boundary itself. Indeed, if s denotes the arclength along a stream starting
from the tip, then

Qw = K

∫ s

0

h

(
∂hr

∂n
+

∂hl

∂n

)
ds ′ (3.8)

and

S =
∂h

∂s
, (3.9)

where ∂/∂n denotes a derivative with respect to the transversal direction, and the
subscripts r and l represent the right- and left-hand sides of a stream, respectively. We
thus expect the water table to evolve in conjunction with the river, through erosion,
to match this boundary condition. The following section is devoted to determining
the behaviour of the equilibrium solution in the neighbourhood of a river tip.

3.2. Groundwater

Through the Poisson equation (2.2) and the boundary condition (3.6), the longitudinal
profile of a stream depends on the position of all other streams within the network.
Nonetheless, some general conclusions can be drawn from the knowledge of the water
table near the tip. The coordinates are chosen such that the stream corresponds to
the half-axis (−∞, 0] (figure 4). The squared water table elevation can be divided into
a homogeneous and an inhomogeneous part by means of the following definition:

h2 = φ − Py2

K
. (3.10)

The homogeneous solution φ must satisfy both the boundary condition (3.6), to which
the inhomogeneous solution −Py2/K does not contribute, and the Laplace equation
∇2φ = 0. For an absorbing boundary condition, the Laplace equation produces a
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square-root singularity around needles (Churchill & Brown 1984). On the basis of
this classical example, and since φ is an analytic function of ζ = x + iy, we propose
the following expansion near the tip:

φ ∼ h2
0Re

(
1 +

(
ζ

L

)α)
, (3.11)

where h0 is the elevation of the tip; L is a length to be determined; and α is
a dimensionless parameter. If s is the distance from the tip, then along the river
ζ = seiπ. Therefore, at leading order, the profile h, the slope S and the discharge Qw

of the stream read

h ∼ h0

(
1 +

cos(απ)

2

( s

L

)α
)

, (3.12)

S ∼ αh0 cos(απ)sα−1

2Lα
, Qw ∼ Kh2

0 sin(απ)
( s

L

)α

. (3.13)

Finally, the boundary condition (3.6) imposes

α =
2

3
, L =

h2
0

2
√

2
√

33

√
K

Q0

. (3.14)

The river profile thus behaves as a power law near the tip, with an exponent of 2/3:

h = h0 −
√

3

2

(
Q0

Kh0

)1/3

s2/3. (3.15)

The river profile and the water table contours of figure 4 correspond to the real part
of ζ 2/3. It is noticeable that the non-homogeneous term of the solution, defined in
(3.10), is negligible with respect to the expansion (3.15). Both precipitation and the
distant boundary conditions are encoded into the coefficient of the leading-order term
only through Q0.

4. Comparison with field data
Among the approximately 100 valley heads of the Bristol ravine network, we have

selected the 13 streams presented in figure 5(a) by reason of their sufficient length
and the absence of tip splitting or strong planform curvature. The accuracy of our
topographic map, about 1 m horizontally and 5 cm vertically (Abrams et al. 2009),
allows us to follow the flow path and elevation of individual channels. The position
of the tips was manually determined from the contour curvature map (figure 1). The
corresponding profile h(s), including the spring elevation h0, is then calculated by
means of a steepest-descent algorithm. The main uncertainty when evaluating h is
the depth of the aquitard (see § 2).

Each individual stream profile, when plotted in the log–log space (figure 5b),
presents an average slope smaller than 1, indicative of a positive concavity consistent
with (3.15). More precisely, if a power law is fit to each profile, the 13 exponents are
distributed between 0.45 and 0.83, with a mean of 0.660 and a standard deviation
of 0.12. Thus the profiles are distributed around the 2/3 power law of (3.15) with
important dispersion. This scatter is not surprising, as we consider individual streams.
In particular, local variations in the average ground conductivity K or in the elevation
of the aquitard (which influences the data through the evaluation of h0) can explain
this dispersion. We did not find any visible pattern in the spatial distribution of
prefactors throughout the network.
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Figure 5. (a) Topographic map of the Bristol Channel network. The greyscale corresponds
to elevation. The white lines indicate the position of the streams for which the profiles are
compared with theory. (b) Longitudinal profiles of the rivers presented in (a) (grey lines). The
dark grey circles are the geometrical mean of the elevation over the 13 streams. The black line
represents (3.15) with Q0/K = 0.347 m2.

We then calculate the geometric mean of the 13 individual profiles (dark grey circles
in figure 5b). A least-squares fit of the resulting mean profile leads to an exponent of
0.693 ± 0.004, slightly above the theoretical value of 2/3. If we consider the influence
of depth on the friction coefficient through (3.4), then the theoretical exponent α

would be 15/22 ≈ 0.682 instead of 2/3. As expected the average profile compares
much more favourably with theory than does any individual channel, suggesting that
local geological variations cause the dispersion of the data.

Finally, if the prefactor of the theoretical profile (3.15) is adjusted to the data
(black line in figure 5), we find Q0/K = 0.347 ± 0.003 m2, which corresponds to a
conductivity of about 3.6 × 10−7 m s−1, a value corresponding to very fine sand. If
clean and not compacted, one would expect a conductivity of about 10−4 m s−1(Bear
1988) for the sand of the Florida network. The presence of organic materials and clay
lenses in the stratigraphy might explain this result.

5. Discussion and conclusion
We have developed a simple analytical model representing the interaction between

an alluvial stream formed by seepage and the surrounding water table. The coupling
occurs through a slope–discharge relation derived from a simple stream model. This
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theory predicts that the longitudinal stream profile near the spring should decrease
like the distance from the tip, with an exponent of 2/3. This power-law relation has
been successfully tested against data from a well-understood field site.

In addition to the asymptotic expansion presented in § 3.2, this theory can be applied
to more complex systems, such as a complete network of streams cut by seepage.
If the position of the streams is specified, then their profiles can be computed by
solving the Poisson equation with a nonlinear boundary condition. By specifying
a relation between the intensity of the water discharge and the advance rate of a
channel head, one might describe the formation of a seepage channel network in a
way resembling dendrite growth models (Derrida & Hakim 1992). Nonetheless, this
model differs from classical needle growth in Laplacian fields in two ways. First, the
non-vanishing divergence of the water flux due to precipitation allows the stream
heads to collect water (and thus to grow) even when they undergo the screening
effect of other needles. Second, the requirement that the stream is at equilibrium with
respect to sediment transport can restrict its growth even when it collects a large
amount of water from the aquifer. On the basis of these considerations, we expect
that the statistical properties of a seepage network would differ significantly from
classical dendrites.

Finally, even though the present contribution focuses on a very specific geological
system, it is nevertheless related to river networks formed by run-off, a more common
situation (Fowler, Kopteva & Oakley 2007; Perron, Kirchner & Dietrich 2009). Indeed,
if the topography of an eroding landscape undergoes diffusion while tectonic uplift
generates a uniform injection of sediment, the stationary state of the landscape can be
represented by the Poisson equation. Assuming additionally that run-off follows the
main slope of the topography, one recovers a theory that is mathematically equivalent
to the seepage model of this paper.
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et à travers les terrains perméables , 2nd edn. Dunod.
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