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Abstract

We solve non-Markovian optimal switching problems in discrete time on an infinite
horizon, when the decision-maker is risk-aware and the filtration is general, and establish
existence and uniqueness of solutions for the associated reflected backward stochastic
difference equations. An example application to hydropower planning is provided.
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1. Introduction

1.1. Optimal switching problems

Optimal switching problems involve an agent controlling a system by successively switch-
ing an operational mode between a discrete set of choices. Time may be either continuous
or discrete, and in all cases the latter is useful for numerical work (see for example [3]). In
related contexts, risk sensitivity with respect to uncertain costs has been modelled using non-
linear expectations; see [1] for example. This feature is particularly appropriate in data-driven
settings where models themselves may be uncertain. Examples include when the probability
model is derived from numerical weather predictions depending on unknown physical param-
eters, or, alternatively, in model-free reinforcement learning. In the latter context, recent work
has applied a general analytic framework for risk sensitivity [10].

Taking a probabilistic approach, in this paper we consider a general filtration, which inter-
acts with the nonlinear expectation. More precisely, let T be a subset of N0 := {0, 1, . . .}, and
let
{
g̃ξt−1,ξt (t)

}
t∈T be a sequence of random costs dependent on a switching strategy ξ , i.e. a

random sequence (ξt)t∈{−1}∪T taking values in a finite set I := {1, . . . , m}, representing the
set of operating modes. We do not require that every cost be observable, which, for example,
enables study of the interaction between delayed or missing observations and risk sensitivity.
The time horizon is either infinite (T=N0) or finite (T= {0, 1, . . . , T} for some finite T ≥ 0),
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and the value of the switching problem is defined under a nonlinear expectation (cf. Equations
(2.1) and (3.2) below). Optimal stopping problems (see, for example, [1]) are recovered in the
special case of two modes (i.e. m = 2), when optimisation is performed over strategies ξ with
a single jump.

1.2. Setup and related work

We have a probability space (�,F , P) and a filtration G= {Gt}t∈T of sub-σ -algebras
of F . Given operating modes I := {1, . . . , m} and essentially bounded random variables
g = {gi(t) : i ∈ I}t∈T and c = {ci,j(t) : i, j ∈ I}t∈T on (�,F , P), we are interested in solving an
optimal switching problem with running costs g and switching costs c when the information
available to the decision-maker is given progressively according to G, and where a dynamic
measure of risk sensitivity is used which generalises the usual sequence {E[ · |Gt], t ∈T} of
conditional expectations with respect to G. For the following discussion we set

g̃ξt−1,ξt (t) := gξt (t) + cξt−1,ξt (t). (1.1)

Note that we are considering a setting where each of the costs
{
g̃i,j(t) : i, j ∈ I}t∈T is measur-

able with respect to the σ -algebra F and G is any filtration with Gt ⊂F for all t ∈T. We thus
may have, but do not limit ourselves to, the situation where G is the natural filtration generated
by {g̃i,j(t) : i, j ∈ I}t∈T. To our knowledge, the necessary and sufficient conditions we provide
for an optimal switching strategy in this infinite-horizon setting under general filtration are
novel and extend results in, for example, [1, 4, 8, 11, 15].

The rest of the paper is structured as follows. Section 2 presents our main results in the
finite-horizon setting, and these are extended to infinite horizon in Section 3. In both cases,
the solution to the optimal switching problem is used to establish the existence of solutions to
the associated reflected backward stochastic difference equations, and we also prove unique-
ness of the solution. We close the paper with two examples. Section 4 briefly confirms that
the approach taken to missing or delayed observations is capable of changing both the value
process and the optimal strategy. In Section 5 we apply neural networks to obtain numeri-
cal solutions to a non-Markovian hydropower planning problem with non-adapted costs and
examine the risk sensitivity of the solutions.

2. Finite-horizon risk-aware optimal switching under general filtration

For the rest of the paper, we establish the following notation:

• Let mF denote the space of random variables on (�,F , P).

• Let L∞
F be the subspace of essentially bounded random variables on (�,F , P).

• Let G= {Gt}t∈T be a filtration, with G =∨t∈T Gt the σ -algebra generated by all Gt and
G ⊂F .

• Let T < ∞ be a finite time horizon, and for 0 ≤ t ≤ T , let T[t,T] (resp. Tt) denote the set
of G-stopping times with values in t, . . . , T (resp. t, t + 1, . . .).

• Let ρ be a G-conditional risk mapping: a family of mappings {ρt}t∈T, ρt : L∞
F →

L∞
Gt

, satisfying normalisation, conditional translation invariance, and monotonicity (see
Appendix A.1).
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• For s, t ∈T with s ≤ t, let ρs,t be the finite-horizon aggregated (or nested) risk mapping
generated by ρ ([5, 14, 15, 20, 21]; see also [2]): that is, ρt,t(Wt) = ρt(Wt) and

ρs,t(Ws, . . . , Wt) = ρs
(
Ws + ρs+1

(
Ws+1 + · · · + ρt−1

(
Wt−1 + ρt(Wt)

) · · · )), s < t.

• All inequalities are interpreted in the P-almost-sure sense.

For the finite-time-horizon setting of Section 2 we also set T= {0, 1, . . . , T}.
The value process for the finite-horizon optimal switching problem is

Vi
t := ess inf

ξ∈U i
t

ρt,T
(
g̃ξt−1,ξt (t), . . . , g̃ξT−1,ξT (T)

)
, (2.1)

where g̃i,j(t) := gj(t) + ci,j(t), U i
t is the set of G-adapted strategies ξ with ξt−1 = i, and the

infimum of the empty set is taken to be ∞. Since for each t the costs ci,i(t) depend only on i
and may therefore be accounted for in the term gi(t), without loss of generality we may make
the following assumption.

Assumption 2.1. For all i ∈ I we have ci,i(t) = 0 for all t ∈T.

2.1. Dynamic programming equations

The use of aggregated risk mappings provides sufficient structure for dynamic program-
ming. In our non-Markovian setting, appropriate equations are⎧⎨

⎩
V̂i

T = minj∈I ρT
(
g̃i,j(T)

)
,

V̂i
t = minj∈I ρt

(
g̃i,j(t) + V̂j

t+1

)
, for 0 ≤ t < T .

(2.2)

(The random fields
{
V̂i

t :i ∈ I, t ∈T
}

coincide with Snell envelopes; see Remark 2.3.) We note
by induction that V̂i

t ∈ L∞
Gt

for each i ∈ I and t ∈T.

Remark 2.1. For comparison, in a Markovian framework with full observation and the linear
expectation, randomness stems from an R

k-valued Markov chain Xs,x := {
Xs,x

t
}

s≤t≤T , where

(s, x) ∈T×R
k is fixed and Xs,x

r = x for 0 ≤ r ≤ s almost surely under P(s,x), and G is the natural
filtration of Xs,x. In the Markovian case, by virtue of each strategy ξ being adapted to G,
for every t ≥ 0 there exists a function �t :

(
R

k
)t+1 → I such that ξt = �t(X0, . . . , Xt). The

Bellman equation is then the appropriate formulation for dynamic programming: for any i ∈ I
and (s, x) ∈T×R

k,⎧⎨
⎩

vi(T, x) = minj∈I g̃i,j(T, x),

vi(s, x) = minj∈I
(

g̃i,j(s, x) +E
(s,x)
[
vj
(
s + 1, Xs+1

)])
, s < T,

(2.3)

where the vi and g̃i,j are deterministic functions on T×R
k.

Theorem 2.1. The random field
{
V̂i

t : i ∈ I, t ∈T
}

consists of value processes for the optimal
switching problem, in the sense that

V̂i
t = Vi

t ∀ i ∈ I, t ∈T.
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Moreover, starting from any 0 ≤ t ≤ T and i ∈ I, an optimal strategy ξ∗ ∈ U i
t can be defined as

follows: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ∗
t−1 = i,

ξ∗
s ∈ arg minj∈Iρs

(
g̃ξ∗

s−1,j
(s) + V̂j

s+1

)
, t ≤ s < T,

ξ∗
T ∈ arg minj∈IρT

(
g̃ξ∗

T−1,j
(T)
)

.

(2.4)

Proof. Note that the result holds trivially for t = T . We will apply a backward induc-
tion argument and assume that for s = t + 1, t + 2, . . . , T and all i ∈ I we have V̂i

s = Vi
s =

ρs,T
(
g̃i,ξs (s), . . . , g̃ξT−1,ξT (T)

)
, where ξt−1 = i and

ξs ∈ arg minj∈Iρs

(
g̃ξs−1,j(s) + Vj

s+1

)
,

with Vj
T+1 := 0 for all j ∈ I.

The induction hypothesis implies that

V̂i
t = min

j∈I
ρt

(
g̃i,j(t) + Vj

t+1

)
= min

j∈I
ρt

(
g̃i,j(t) + ess inf

ξ∈U j
t+1

ρt+1,T

(
g̃j,ξt+1 (t + 1), . . . , g̃ξT−1,ξT (T)

))
.

For any ξ ′ ∈ U i
t we note that by monotonicity and conditional translation invariance we have

V̂i
t ≤ min

j∈I
ρt

(
g̃i,j(t) + ρt+1,T

(
g̃j,ξ ′

t+1
(t + 1), . . . , g̃ξ ′

T−1,ξ
′
T
(T)
))

≤
m∑

j=1

1{ξ ′
t =j}ρt

(
g̃i,j(t) + ρt+1,T

(
g̃j,ξ ′

t+1
(t + 1), . . . , g̃ξ ′

T−1,ξ
′
T
(T)
))

= ρt

⎛
⎝ m∑

j=1

1{ξ ′
t =j}
{

g̃i,j(t) + ρt+1,T

(
g̃j,ξ ′

t+1
(t + 1), . . . , g̃ξ ′

T−1,ξ
′
T
(T)
)}⎞⎠

= ρt,T

(
g̃i,ξ ′

t
(t), . . . , g̃ξ ′

T−1,ξ
′
T
(T)
)

.

Taking the infimum over all ξ ′ ∈ U i
t we conclude that V̂i

t ≤ Vi
t . However, letting ξ ′

t−1 = i and
defining

ξ ′
s ∈ arg minj∈Iρt

(
g̃ξ ′

s−1,j
(s) + V̂j

s+1

)
for s = t, . . . , T , with V̂j

T+1 := 0 for all j ∈ I, we find that

V̂i
t = ρt

(
g̃i,ξ ′

t
(t) + ess inf

ξ∈Ut+1

ρt+1,T

(
g̃ξ ′

t ,ξt+1
(t + 1), . . . , g̃ξT−1,ξT (T)

))

= ρt,T

(
g̃i,ξ ′

t
(t), . . . , g̃ξ ′

T−1,ξ
′
T

)
≥ Vi

t . �
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2.2. Relation to systems of RBS�Es

We now introduce a reflected backward stochastic difference equation (RBS�E), which is
a class of equations relevant to both optimal stopping and switching problems and is studied
systematically in [1] for finite-state processes. Let L∞

G,T := ⊗T
t=0L∞

Gt
. To avoid excessive nota-

tion, some notation for scalar-valued processes will be reused for vector-valued ones, with the
interpretation that all components are in the same space. Similarly, inequalities and martingale
properties will be understood componentwise, and given i ∈ I we write I−i := I \ {i}.
Definition 2.1 (Finite horizon RBS�Es). With T= {0, . . . , T}, where 0 ≤ T < ∞, let Y =
{Yt}t∈T, M = {Mt}t∈T, and A = {At}t∈T be G-adapted R

m-valued processes satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Yi
t = minj∈I ρT

(
g̃i,j(T)

)+∑T−1
s=t ρs

(
gi(s) + �Mi

s+1

)
−(Mi

T − Mi
t

)− (Ai
T − Ai

t

)
, ∀ t ∈T,

Yi
t ≤ minj∈I−i ρt

(
g̃i,j(t) + Yj

t+1

)
, ∀ t ∈T,∑T−1

t=0

(
Yi

t − minj∈I−i ρt

(
g̃i,j(t) + Yj

t+1

))
�Ai

t+1 = 0.

(2.5)

A triple (Y, M, A) ∈ (L∞
G,T

)3 is said to be a solution to the system of RBS�Es (2.5) if M
is a G-adapted ρs,t-martingale (applying the definition in Section A.3 of the appendix), A is
non-decreasing and G-predictable (with M0 = A0 = 0), and (Y, M, A) satisfies (2.5). A solution
(Y, M, A) is called unique if any other solution (Y ′, M′, A′) is indistinguishable as a process
from (Y, M, A).

Remark 2.2. The martingale characterisation of the optimal switching value process (see for
example [16] under the linear expectation) may be derived from the associated RBS�E.
Under a risk mapping ρ, however, the ‘driver’ ρt

(
gi(t) + �Mi

t+1

)
in (2.5) depends on the

{ρs,t}-martingale difference �Mi
t+1, which is natural for general (infinite-state) backward

stochastic difference equations—see [6]. Note also that the driver is a function of the map-
pings ω → �Mi

t+1(ω) and ω → gi(ω, t) and not the realised values of these random variables.
Also, we refer to the last line in Equation (2.5) as the Skorokhod condition.

The optimal switching problem (2.1) is related to this system of RBS�Es through the
following result.

Theorem 2.2. The system of RBS�Es (2.5) has a unique solution (Y, M, A). Furthermore, we
have Y = V.

Proof. We divide the proof into two parts:

Existence: We aim to find a family of ρs,t-martingales M = {Mi}i∈I and non-decreasing
G-predictable processes A = {Ai}i∈I such that (V , M, A) solves (2.5). For every i ∈ I, define
the sequence

{
Ai

t

}T
t=0 by{
Ai

0 = 0,

Ai
t = Ai

t−1 + ρt−1
(
gi(t − 1) + Vi

t

)− Vi
t−1, t = 1, . . . , T .

We note that Ai is G-predictable and non-decreasing since, by Theorem 2.1 and the back-
ward induction formula (2.2), Vi

t ≤ ρt
(
gi(t) + Vi

t+1

)
. Furthermore, for t < T we have �Ai

t+1 =
ρt
(
gi(t) + Vi

t+1

)− Vi
t = 0 on

{
Vi

t = ρt
(
gi(t) + Vi

t+1

)}⊃ {Vi
t < minj∈I−i ρt

(
g̃i,j(t) + Vj

t+1

)}
.

https://doi.org/10.1017/apr.2021.44 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.44


630 R. MARTYR ET AL.

Let Mi be the martingale in the Doob decomposition (see Lemma A.5 in Appendix A.3)
for Vi; that is, Mi

0 = 0 and �Mi
t+1 = Vi

t+1 − ρt
(
Vi

t+1

)
. We have

Vi
t = min

j∈I
ρT
(
g̃i,j(T)

)+ T−1∑
s=t

(
Vi

s − Vi
s+1

)
.

Now, as

�Mi
s+1 + �Ai

s+1 = Vi
s+1 − ρs

(
Vi

s+1

)+ ρs
(
gi(t) + Vi

s+1

)− Vi
s

= Vi
s+1 + ρs

(
gi(t) + Vi

s+1 − ρs
(
Vi

s+1

))− Vi
s

= Vi
s+1 − Vi

s + ρs
(
gi(t) + �Mi

s+1

)
,

we get Vi
s − Vi

s+1 = ρs
(
gi(s) + �Mi

s+1

)− �Mi
s+1 + �Ai

s+1, and thus

Vi
t = min

j∈I
ρT
(
g̃i,j(T)

)+ T−1∑
s=t

ρs
(
gi(s) + �Mi

s+1

)− (Mi
T − Mi

t

)
− (Ai

T − Ai
t

)
.

We conclude that (V , M, A) is a solution to the RBS�E (2.5).

Uniqueness: Suppose that (Y , N, B) is another solution. Then

�Yi
t+1 = −ρt

(
gi(t) + �Ni

t+1

)+ �Ni
t+1 + �Bi

t+1. (2.6)

Applying ρt on both sides gives

ρt
(
�Yi

t+1

)= −ρt
(
gi(t) + �Ni

t+1

)+ ρt
(
�Ni

t+1 + �Bi
t+1

)
= −ρt

(
gi(t) + �Ni

t+1

)+ �Bi
t+1,

since, by our assumption on solutions to the RBS�E, �Bi
t+1 is Gt-measurable and Ni is a

martingale. Inserted into Equation (2.6), this gives

�Ni
t+1 = �Yi

t+1 + ρt
(
gi(t) + �Ni

t+1

)− �Bi
t+1

= �Yi
t+1 − ρt

(
�Yi

t+1

)
= Yi

t+1 − ρt
(
Yi

t+1

)
and

�Bi
t+1 = ρt

(
�Yi

t+1

)+ ρt
(
gi(t) + �Ni

t+1

)
= ρt

(
�Yi

t+1

)+ ρt
(
gi(t) + Yi

t+1 − ρt
(
Yi

t+1

))
= ρt

(
gi(t) + Yi

t+1

)− Yi
t .

We conclude that {
�Ni

t+1 = Yi
t+1 − ρt

(
Yi

t+1

)
,

�Bi
t+1 = ρt

(
gi(t) + Yi

t+1

)− Yi
t ,

(2.7)
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and in particular we have that, given Y ∈L∞
G,T , there is at most (up to indistinguishability of

processes) one pair (N, B) such that (Y , N, B) solves the RBS�E (2.5).
Since (Y , N, B) solves the RBS�E (2.5) we have that

Yi
t ≤ min

j∈I−i
ρt

(
g̃i,j(t) + Yj

t+1

)
,

and

Yi
t = Yi

t+1 + ρt
(
gi(t) + �Ni

t+1

)− (Ni
t+1 − Ni

t

)− (Bi
t+1 − Bi

t

)
≤ Yi

t+1 + ρt
(
gi(t) + �Ni

t+1

)− (Ni
t+1 − Ni

t

)
= Yi

t+1 + ρt
(
gi(t) + Yi

t+1 − ρt
(
Yi

t+1

))− (Yi
t+1 − ρt

(
Yi

t+1

))
= ρt

(
gi(t) + Yi

t+1

)
.

We conclude that Yi
t ≤ minj∈I ρt

(
g̃i,j(t) + Yj

t+1

)
for all t ≤ T and i ∈ I. For t = T this implies

that, for all i ∈ I, Yi
T ≤ minj∈I ρT

(
g̃i,j(t)

)= Vi
T . Assume that t < T and Yi

t+1 ≤ Vi
t+1 for all

i ∈ I; then

Yi
t ≤ min

j∈I
ρt

(
g̃i,j(t) + Yj

t+1

)
≤ min

j∈I
ρt

(
g̃i,j(t) + Vj

t+1

)
≤ Vi

t .

Applying an induction argument, we thus find that if (Y , N, B) solves the RBS�E (2.5), then
Yi

t ≤ Vi
t for all t ≤ T and i ∈ I. To arrive at uniqueness we show that the value Yi

t is attained by
a strategy in which case the reverse inequality follows by optimality of Vi

t .
Define the stopping time τ̄

t,i
1 := inf

{
s ≥ t:�Bi

s+1 > 0
}∧ T and the G

τ̄
t,i
1

-measurable

I-valued random variable β̄
t,i
1 as a measurable selection of⎧⎪⎪⎨

⎪⎪⎩
arg min

j∈I−i
ρ

τ̄
t,i
1

(
g̃i,j

(
τ̄

t,i
1

)
+ Yj

τ̄
t,i
1 +1

)
, τ̄

t,i
1 < T,

arg min
j∈I

ρT
(
g̃i,j(T)

)
, τ̄

t,i
1 = T .

Now, as Bi
τ̄

t,i
1

− Bi
t = 0, we have for t ≤ s < τ̄

t,i
1 the recursion

Yi
s = Yi

s+1 + ρs
(
gi(s) + �Ni

s+1

)− (�Ni
s+1

)− (�Bi
s+1

)
= Yi

s+1 + ρs
(
gi(s) + Yi

s+1 − ρs
(
Yi

s+1

))− (Yi
s+1 − ρs

(
Yi

s+1

))
= ρs

(
gi(s) + Yi

s+1

)
.

Furthermore, by the Skorokhod condition, on
{
τ̄

t,i
1 < T

}
we have that

Yi
τ̄

t,i
1

= min
j∈I−i

ρ
τ̄

t,i
1

(
g̃i,j
(
τ̄

t,i
1

)+ Yj

τ̄
t,i
1 +1

)

= ρ
τ̄

t,i
1

(
g̃i,β̄ t,i

1

(
τ̄

t,i
1

)+ Y
β̄

t,i
1

τ̄
t,i
1 +1

)
,
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and since Yi
T = arg min

j∈I
ρT
(
g̃i,j(T)

)
, we conclude that

Yi
t = ρt,τ t,i

1

(
gi(t), . . . , gi

(
τ̄

t,i
1 − 1

)
, g̃i,β̄ t,i

1

(
τ̄

t,i
1

)
+ Y

β̄
t,i
1

τ̄
t,i
1 +1

)
,

with Yj
T+1 = 0 for all j ∈ I.

This process can be repeated to define

τ̄
t,i
k+1 := inf

{
s > τ̄

t,i
k : �B

β
t,i
k

s+1 > 0
}

∧ T

and the G
τ̄

t,i
k+1

-measurable I-valued random variable β̄
t,i
k+1 as a measurable selection of⎧⎪⎪⎪⎨

⎪⎪⎪⎩
arg min

j∈I−β
t,i
k

ρ
τ̄

t,i
k+1

(
g̃
β

t,i
k ,j

(
τ̄

t,i
k+1

)+ Yj

τ̄
t,i
k+1+1

)
, τ

t,i
k+1 < T,

arg min
j∈I

ρT

(
g̃
β

t,i
k ,j(T)

)
, τ

t,i
k+1 = T .

Letting N := min
{

k ≥ 1: τ̄
t,i
k ≥ T

}
,

ξ̄ t,i
s := i1[−1,τ

t,i
1

)(s) +
N∑
j=1

βj1[τ̄ t,i
j ,τ̄

t,i
j+1

)(s) + βN 1{s=T},

and arguing as above, we get that

Yi
t = ρt,T

(
g̃i,ξ̄ t,i

t
(t), . . . , g̃

ξ̄
t,i
T−1,ξ̄

t,i
T

(T)

)
≥ Vi

t . �

Given a strategy ξ ∈ U i
t , we can define its pairs of jump times τj ≥ t and positions βj ∈ I as

follows:

τ1 = inf
{
s ≥ t : ξs �= i

}∧ T,

β1 = ξτ1 ,

...

τj+1 = inf
{
s > τj : ξs �= βj

}∧ T,

βj+1 = ξτj+1 .

(2.8)

(Note that constant strategies ξt ≡ i satisfy τj = T and βj = i for all j.)
We have the following characterisation of an optimal strategy.

Corollary 2.1. A strategy ξ ∈ U i
t is optimal for (2.1) if⎧⎨

⎩
A

βj−1
τj − A

βj−1
τj−1 = 0,

Y
βj−1
τj = ρτj

(
g̃βj−1,βj + Y

βj
τj+1

)
,

(2.9)

where
{(

τj, βj
)}

are the pairs of jump times and positions of ξ . If ρ has the strong sensitivity
property (cf. Appendix A.1), then the condition (2.9) is also necessary for optimality.
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Proof. Sufficiency: From the proof of Theorem 2.2 we have that

Yi
t = ρt,T

(
g̃i,ξt (t), . . . , g̃ξT−1,ξT

)
, (2.10)

and optimality follows by the fact that Yi
t = Vi

t .

Necessity: Suppose ξ ∈ U i
t is optimal for (2.1) and ρ is strongly sensitive. Let

{(
τj, βj

)}
be the pairs of jump times and positions of ξ as defined in (2.8). Then, using (2.10) above,
Lemma A.6, the RBS�Es (2.5), and monotonicity of ρ, we have

Yi
t = ρt,T

(
g̃i,ξt (t), . . . , g̃ξT−1,ξT

)
= ρt,τ1

(
gi(t), . . . , gi(τ1 − 1), ρτ1,T

(
g̃i,β1 (τ1), . . . , g̃ξT−1,ξT

))
≥ ρt,τ1

(
gi(t), . . . , gi(τ1 − 1), ρτ1

(
g̃i,β1 (τ1) + Yβ1

τ1+1

))
≥ ρt,τ1

(
gi(t), . . . , gi(τ1 − 1), Yi

τ1

)
...

≥ Yi
t ,

where we set Yj
T+1 := 0 for all j ∈ I. We therefore have

ρt,τ1

(
gi(t), . . . , gi(τ1 − 1), ρτ1

(
g̃i,β1 (τ1) + Yβ1

τ1+1

))
= ρt,τ1

(
gi(t), . . . , gi(τ1 − 1), Yi

τ1

)
,

and by strong sensitivity of ρ and the definition of Ai from Theorem 2.2, (2.9) is true for j = 1.
The general case is proved by induction in a similar manner. �

2.3. The special case of optimal stopping

We now consider the problem of finding

Ft := ess inf
τ∈T[t,T]

ρt,τ
(
f (t), . . . , f (τ − 1), h(τ )

)
, (2.11)

for given sequences {f (t)}T
t=0 and {h(t)}T

t=0 in
(

L∞
F
)T+1

. This problem can be related to optimal

switching with two modes I := {1, 2}. The optimal stopping problem (2.11) is equivalent to
(2.1) if we do the following:

• Set g1(t) = f (t) for 0 ≤ t ≤ T − 1, g1(T) = h(T), c1,2 ≡ h, and g2 ≡ c2,1 ≡ 0.

• Mutatis mutandis let I depend on the present mode. We then set I(1) := {1, 2} when we
are in mode 1 and I(2) := {2} when we are in mode 2. In particular this gives I(2)−2 = ∅
in (2.5). We additionally use the conventions min ∅ = ∞ and −∞ · 0 = ∞ · 0 = 0.

• Optimise over strategies satisfying ξt−1 = 1.

We note that in this setting the recursion (2.2) gives V2 ≡ 0. The following result is then a
direct consequence of Theorem 2.2:

Theorem 2.3. The value process F for the optimal stopping problem satisfies{
FT = ρT (h(T)),

Ft = ρt(f (t) + Ft+1) ∧ ρt(h(t)), 0 ≤ t < T,
(2.12)
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and the stopping time τt ∈ T[t,T] defined by

τt = inf {t ≤ s ≤ T : Fs = ρs(h(s))} (2.13)

is optimal for (2.11). Furthermore, there exist a ρs,t-martingale M and a non-decreasing
G-predictable process A such that (F, M, A) is the unique solution to the following RBS�E:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ft = ρT (h(T)) +∑T−1
s=t ρs(f (s) + �Ms+1) − (MT − Mt)

−(AT − At), ∀ t ∈T,

Ft ≤ ρt(h(t)), ∀ t ∈T,∑T−1
t=0 (Ft − ρt(h(t)))�At+1 = 0.

(2.14)

Remark 2.3. As is done in [8], Theorem 2.3 can be used to identify the optimal switching
problem with a family of optimal stopping problems. If we set

hi(t) =
⎧⎨
⎩

minj∈I ρT
(
g̃i,j(T)

)
, t = T,

minj∈I−i ρt

(
g̃i,j(t) + V̂j

t+1

)
, t < T,

and then substitute hi for h in (2.12) and recall (2.2), it follows by Theorem 3 that for each
i ∈ I and t ∈T we have

V̂i
t = ess inf

τ∈T[t,T]

ρt,τ
(
g̃i,i(t), . . . , g̃i,i(τ − 1), hi(τ )

)
.

3. Infinite-horizon risk-aware optimal switching under general filtration

In many problems the horizon T is so long that it can be considered infinite, and this moti-
vates us to extend the results obtained in Section 2 to the infinite horizon. We thus let T := N0

and define the infinite-horizon aggregated risk mapping �s :
(

L∞
F
)T → mGs (with mGs the set

of Gs-measurable random variables) by

�s
(
Ws, Ws+1, . . .

)= lim sup
t→∞

ρs,t
(
Ws, Ws+1, . . . , Wt

)
. (3.1)

We define the value process for the switching problem on an infinite horizon as

Vi
t := ess inf

ξ∈U i
t

�t
(
g̃ξt−1,ξt (t), g̃ξt,ξt+1 (t + 1), . . .

)
. (3.2)

Definition 3.1. Let L∞
G

:= ⊗t∈TL∞
Gt

and

L∞,d
G

:=
{

W ∈L∞
G

: lim
s→∞ ess sup

ω
|Ws(ω)| = 0

}
.

Also, let K+
d denote the set of all non-negative deterministic sequences {kt}t∈T such that the

series
∑

t∈T kt converges, and define

HF :=
{

W ∈ (L∞
F
)T : ∃{kt}t∈T ∈K+

d such that |Wt| ≤ kt ∀t ∈T

}
.

https://doi.org/10.1017/apr.2021.44 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.44


Risk-aware optimal switching under general filtration 635

Remark 3.1. If W ∈ HF then for every s ∈T the limit

�s
(
Ws, Ws+1, . . .

)= lim
t→∞ ρs,t

(
Ws, . . . , Wt

)
exists almost surely and belongs to L∞

Gs
(see Lemma A.2 in the appendix). An example W ∈ HF

is a discounted sequence Wt = αtZt for some α ∈ (0, 1) and {Zt}t∈T ⊂ L∞
F with supt |Zt| < C for

some C ∈ (0, ∞).

Assumption 3.1. There exists a sequence {ḡ(t)}t∈T ∈ HF such that |g̃i,j(t)| ≤ ḡ(t) for all
(t, i, j) ∈T× I2.

3.1. Dynamic programming equations

For (t, r) ∈T
2 we set V̂i

t,r := �t
(
gi(t), gi(t + 1), . . .

)
whenever t > r and define

V̂i
t,r = min

j∈I
ρt

(
g̃i,j(t) + V̂j

t+1,r

)
(3.3)

recursively for t ≤ r. By a simple induction argument we note that for each i ∈ I and r ∈T the
sequence

{
V̂i

t,r

}
t∈T exists as a member of L∞,d

G
. We have the following lemma.

Lemma 3.1. For 0 ≤ t ≤ r and i ∈ I, let U i
t,r := {

ξ ∈ U i
t : ξs = ξr, ∀s > r

}
. Then

V̂i
t,r = ess inf

ξ∈U i
t,r

�t
(
g̃ξt−1,ξt (t), g̃ξt,ξt+1 (t + 1), . . .

)
.

Proof. This follows immediately from Lemma A.3 by applying Theorem 2.1 with cost
sequence(

g̃i,j(t), g̃i,j(t + 1), . . . , g̃i,j(r − 1), g̃i,j(r) + �r+1
(
gj(r + 1), gj(r + 2), . . .

))
i,j∈I , (3.4)

noting that �r+1
(
gj(r + 1), gj(r + 2), . . .

) ∈ L∞
Gr+1

. �

We arrive at the following verification theorem.

Theorem 3.1. The pointwise limits
{
Ṽi

t

}
t∈T,i∈I := limr→∞

{
V̂i

t,r

}
t∈T,i∈I exist and satisfy

Ṽi
t = Vi

t , ∀ t ∈T.

Furthermore, starting from any t ∈T and i ∈ I, the limit family defines an optimal strategy
ξ∗ ∈ U i

t as follows: ⎧⎨
⎩

ξ∗
r = i, r < t,

ξ∗
r ∈ arg minj∈Iρr

(
g̃ξ∗

r−1,j
(r) + Ṽj

r+1

)
, r ≥ t.

Proof. From Lemma 3.1 and as U i
t,r ⊂ U i

t,r+1 ⊂ U i
t for all 0 ≤ t ≤ r, the sequence

{
V̂i

t,r

}
r≥0

is non-increasing and V̂i
t,r ≥ Vi

t for all r ≥ 0. Furthermore, as it is bounded from below by the
sequence

{
�t
(−ḡ(t), −ḡ(t + 1), . . .

)}
t∈T (owing to monotonicity) and

{−ḡ(t)
}

t∈T ∈ HF , we

conclude that the sequence
{{

V̂i
t,r

}
t∈T,i∈I

}
r≥0

converges pointwise.
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Now, by Assumption 3.1 there is a non-negative decreasing deterministic sequence {Ks}s∈T,
with lims→∞ Ks = 0, such that, for all ξ ∈ U i

t,r,∣∣�r+1
(
g̃ξr,ξr+1 (r + 1), g̃ξr+1,ξr+2 (r + 2), . . .

)∣∣
=
∑
j∈I

1{ξr=j}
∣∣�r+1

(
gj(r + 1), gj(r + 2), . . .

)∣∣≤ Kr+1, (3.5)

and

|�r+1
(−ḡ(r + 1), −ḡ(r + 2), . . .

)∣∣≤ Kr+1. (3.6)

Then, by Lemma A.3, (3.5) gives

V̂i
t,r = ess inf

ξ∈U i
t,r

�t
(
g̃ξt−1,ξt (t), g̃ξt,ξt+1 (t + 1), . . .

)
≤ ess inf

ξ∈U i
t,r

ρt,r+1
(
g̃ξt−1,ξt (t), . . . , g̃ξr−1,ξr (r), Kr+1

)
= ess inf

ξ∈U i
t,r

ρt,r
(
g̃ξt−1,ξt (t), . . . , g̃ξr−1,ξr (r)

)+ Kr+1,

and (3.6) implies that

Vi
t = ess inf

ξ∈U i
t

�t
(
g̃ξt−1,ξt (t), g̃ξt,ξt+1 (t + 1), . . .

)
≥ ess inf

ξ∈U i
t

ρt,r+1
(
g̃ξt−1,ξt (t), . . . , g̃ξr−1,ξr (r), −Kr+1

)
= ess inf

ξ∈U i
t,r

ρt,r
(
g̃ξt−1,ξt (t), . . . , g̃ξr−1,ξr (r)

)− Kr+1.

We conclude that V̂i
t,r − Vi

t ≤ 2Kr+1. Letting r → ∞ gives the first statement.
For the second part, first note that the following inequality holds:

Vi
t ≥ ess inf

ξ∈U i
t,r

ρt,r

(
g̃ξt−1,ξt (t), . . . , g̃ξr−1,ξr (r) + Vξr

r+1

)
, 0 ≤ t ≤ r. (3.7)

Indeed, for every 0 ≤ t ≤ r and ξ ∈ U i
t we can use Lemma A.3 to argue that

�t

(
g̃ξt−1,ξt (t), g̃ξt,ξt+1 (t + 1), . . .

)
= ρt,r

(
g̃ξt−1,ξt (t), . . . , g̃ξr−1,ξr (r) + V̂ξr

r+1,r

)
≥ ρt,r

(
g̃ξt−1,ξt (t), . . . , g̃ξr−1,ξr (r) + Vξr

r+1

)
≥ ess inf

ξ ′∈U i
t,r

ρt,r

(
g̃ξ ′

t−1,ξ
′
t
(t), . . . , g̃ξ ′

r−1,ξ
′
r
(r) + V

ξ ′
r

r+1

)
,

and since this is true for every ξ ∈ U i
t we get (3.7). Next, momentarily fix 0 ≤ t ≤ r and replace

gj(r) with gj(r) + Vj
r+1. Then, using Theorem 2.1 with T = r, we have

Vi
t ≥ ess inf

ξ∈U i
t,r

ρt,r

(
g̃ξt−1,ξt (t), . . . , g̃ξr−1,ξr (r) + Vξr

r+1

)

= ρt,r

(
g̃i,ξ∗

t
(t), g̃ξ∗

t ,ξ∗
t+1

(t + 1), . . . , g̃ξ∗
r−1,ξ

∗
r
(r) + V

ξ∗
r

r+1

)
≥ ρt,r

(
g̃i,ξ∗

t
(t), g̃ξ∗

t ,ξ∗
t+1

(t + 1), . . . , g̃ξ∗
r−1,ξ

∗
r
(r)
)

− Kr+1.
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Letting r → ∞ we conclude that

Vi
t ≥ �t

(
g̃i,ξ∗

t
(t), g̃ξ∗

t ,ξ∗
t+1

(t + 1), . . .
)
,

from which it follows that ξ∗ is an optimal strategy. �
We also record the following corollary, which will be used in the proof of Theorem 3.2.

Corollary 3.1. The value process for the infinite-horizon optimal switching problem (3.2)
satisfies the following dynamic programming principle:

Vi
t = ess inf

ξ∈U i
t,r

ρt,r

(
g̃ξt−1,ξt (t), . . . , g̃ξr−1,ξr (r) + Vξr

r+1

)
, 0 ≤ t ≤ r.

Proof. We only need to prove that the following recursion holds:

Vi
t = min

j∈I
ρt

(
g̃i,j(t) + Vj

t+1

)
. (3.8)

The general result then follows from Theorem 2.1 with T = r and replacing gj(r) with gj(r) +
Vj

r+1. Taking limits on both sides in (3.3) gives

Vi
t = lim

r→∞ min
j∈I

ρt

(
g̃i,j(t) + V̂j

t+1,r

)
≤ lim

r→∞ min
j∈I

ρt

(
g̃i,j(t) + Vj

t+1 + 2Kr+1

)

= lim
r→∞

{
min
j∈I

ρt

(
g̃i,j(t) + Vj

t+1

)
+ 2Kr+1

}

= min
j∈I

ρt

(
g̃i,j(t) + Vj

t+1

)
.

Since the reverse inequality follows as special case of (3.7), the proof is complete. �

3.2. Relation to systems of RBS�Es

Definition 3.2 (Infinite-horizon RBS�Es). The infinite-horizon extension of Definition 2.1
(with T=N0) is given by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Yi
t = Yi

T +∑T−1
s=t ρs

(
gi(s) + �Mi

s+1

)− (Mi
T − Mi

t

)
−(Ai

T − Ai
t

)
, ∀ t, T ∈T with t ≤ T,

Yi
t ≤ minj∈I−i ρt

(
g̃i,j(t) + Yj

t+1

)
, ∀ t ∈T,∑

t∈T
(

Yi
t − minj∈I−i ρt

(
g̃i,j(t) + Yj

t+1

))
�Ai

t+1 = 0.

(3.9)

A solution to the system of RBS�Es (3.9) is a triple (Y, M, A) ∈L∞,d
G

× (L∞
G

)2 with M a
ρs,t-martingale and A a G-predictable non-decreasing process.
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Remark 3.2. In the special case when the limits M∞ = limt→∞ Mt and A∞ = limt→∞ At exist
P-almost surely as members of L∞

G , the infinite-horizon RBS�E (3.9) can be written

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Yi
t =∑∞

s=t ρs

(
gi(s) + �Mi

s+1

)
− (Mi∞ − Mi

t

)
−(Ai∞ − Ai

t

)
, ∀ t ∈T,

Yi
t ≤ minj∈ I−i ρt

(
g̃i,j(t) + Yj

t+1

)
, ∀ t ∈T,∑

t∈T
(

Yi
t − minj∈ I−i ρt

(
g̃i,j(t) + Yj

t+1

))
�Ai

t+1 = 0.

(3.10)

We also emphasise that Y ∈L∞,d
G

implies the boundary condition limT→∞ Yi
T = 0 for all i ∈ I.

We have the following extension of Theorem 2.2.

Theorem 3.2. The system of RBS�Es (3.9) has a unique solution. Furthermore, the solution
satisfies Y = V.

Proof. Existence: By Corollary 3.1, the value process V satisfies the following dynamic
programming relation for any T ∈T:

Vi
t = ess inf

ξ∈U i
t,T

ρt,T

(
g̃ξt−1,ξt (t), . . . , g̃ξT−1,ξT (T) + VξT

T+1

)
, 0 ≤ t ≤ T .

Using Theorem 2.2, this implies for every T ∈T that (V , M, A) is the unique solution to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Vi
t = Vi

T +∑T−1
s=t ρs

(
gi(s) + �Mi

s+1

)− (Mi
T − Mi

t

)− (Ai
T − Ai

t

)
,

t = 0, . . . , T,

Vi
t ≤ minj∈I−i ρt

(
g̃i,j(t) + Vj

t+1

)
, t = 0, . . . , T,∑T

t=0

(
Vi

t − minj∈I−i ρt

(
g̃i,j(t) + Vj

t+1

))
�Ai

t+1 = 0,

where Mi
0 = Ai

0 = 0 and

{
�Mi

t+1 = Vi
t+1 − ρt

(
Vi

t+1

)
,

�Ai
t+1 = ρt

(
gi(t) + Vi

t+1

)− Vi
t .

Furthermore, since this unique definition for the vector-valued processes M and A is indepen-
dent of T , it follows that (V , M, A) satisfies Equation (3.9).

By the proof of Theorem 3.1, there exists a decreasing deterministic sequence {Kt}t∈T such
that

∣∣Vi
T

∣∣≤ KT and limT→∞ KT = 0. Therefore V ∈L∞,d
G

and we conclude that (V , M, A) is a
solution to (3.9).

Uniqueness: To show uniqueness, we note that if (Y , N, B) is any other solution to (3.9),
then by again truncating at time T ≥ t and applying Theorem 2.2 we have that

Yi
t = ess inf

ξ∈U i
t

ρt,T

(
g̃ξt−1,ξt (t), . . . , g̃ξT−1,ξT (T) + YξT

T+1

)
.
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Since Y, V ∈L∞,d
G

and I is finite, we can define a deterministic sequence {Ks}s∈T with Ks → 0
as s → ∞ such that

∣∣Vi
t − Yi

t

∣∣≤ Kt for all t ∈T and i ∈ I. Appealing once more to the dynamic
programming relation, we obtain

Yi
t ≤ ess inf

ξ∈U i
t

ρt,T

(
g̃ξt−1,ξt (t), . . . , g̃ξT−1,ξT (T) + VξT

T+1 + KT+1

)
= Vi

t + KT+1,

and similarly we have that Vi
t ≤ Yi

t + KT+1. Letting T → ∞ we find that Vi
t = Yi

t for all i ∈ I,
and uniqueness follows. �

3.3. Relation to optimal stopping

As an extension to Section 2.3 above, we specialise to the case of optimal stopping on an
infinite horizon:

Ft := ess inf
τ∈Tt

ρt,τ (f (t), . . . , f (τ − 1), h(τ )). (3.11)

The above result for infinite-horizon optimal switching problems naturally extends the results
in Section 2.3 on optimal stopping in finite horizon to infinite horizon. We have the following.

Corollary 3.2. The value process F satisfies the dynamic programming relation

Ft = ρt(f (t) + Ft+1) ∧ ρt(h(t))

for all t ∈T, and an optimal stopping time τ ∗
t is given by

τ ∗
t := inf{s ≥ t:Fs = ρs(h(s))}.

Furthermore, there exists a ρs,t-martingale M and a non-decreasing G-predictable process A
such that (F, M, A) is the unique solution to the RBS�E⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Ft = FT +∑T−1

s=t ρs
(
f (s) + �Ms+1

)− (MT − Mt
)

−(AT − At), ∀ t ∈T and T ∈T with t ≤ T,

Ft ≤ ρt(h(t)), ∀ t ∈T,∑
t∈T
(
Ft − ρt(h(t))

)
�At+1 = 0.

(3.12)

Proof. This follows immediately from Theorem 3.1 through the analogy between optimal
switching problems and optimal stopping problems described in Section 2.3. �

4. Example: delayed or missing observations

In this section we aim to add some colour to the above results by illustrating the inter-
play between delayed or missing observations and risk awareness. We demonstrate that this
issue should be treated differently than in the case of linear expectation; otherwise suboptimal
actions may result.

Let (�,F , F, P) be a filtered probability space, and consider either the finite- or the infinite-
horizon problem above. Let the process of essentially bounded costs (g̃i,j(t), i, j ∈ I)t∈T be
adapted (and, in the infinite-horizon case, also satisfying Assumption 3.1), and let ρF be an
F-conditional risk mapping. Suppose that the observation at some time s is delayed. To model
this, let G be the filtration given by

Gt =
{
Fs−1, t = s,

Ft, otherwise,
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and let ρ be the conditional risk mapping given by

ρt =
⎧⎨
⎩

ρF

s−1, t = s,

ρF
t , otherwise.

Indeed, since we will examine the decision taken at time s rather than at later times, the
observation at time s may equivalently be missing rather than delayed.

For any time t ∈T with t �= s, the value processes at time t are given by the dynamic
programming equations (2.2) or (3.8) and conditional translation invariance,

V̂i
t = min

j∈I

(
g̃i,j(t) + ρt

(
V̂j

t+1

))
, (4.1)

while the missing observation at time s means that

V̂i
s = min

j∈I
ρs

(
g̃i,j(s) + V̂j

s+1

)
, (4.2)

ξ i
s ∈ arg min

j∈I
ρs

(
g̃i,j(s) + V̂j

s+1

)
. (4.3)

When ρF is the linear (conditional) expectation, this is equivalent to the following value and
choice of mode:

V̌i
s = min

j∈I

(
ρs(g̃i,j(s)) + ρs

(
V̂j

s+1

))
, (4.4)

ξ̌ i
s ∈ arg min

j∈I

(
ρs(g̃i,j(s)) + ρs

(
V̂j

s+1

))
. (4.5)

The intuitively obvious fact that the selections (4.3) and (4.5) may differ can be confirmed by
suitably modifying the costs at time s, as follows. For f ∈ mF define⎧⎨

⎩
Či,j(f ) = ρs

(
g̃i,j(s)

)+ ρs

(
V̂j

s+1

)
− f ,

Ĉi,j(f ) = ρs

(
g̃i,j(s) + V̂j

s+1

)
− f .

(4.6)

We assume that

Či,j(0) > Ĉi,j(0) for each i, j ∈ I (4.7)

(which is true for example if the risk mapping ρF is subadditive), and that for some l ∈ I we
have

P
(
Čl,1(0) − Ĉl,1(0) = Čl,2(0) − Ĉl,2(0)

)
< 1, (4.8)

setting l = 1 without loss of generality.

Remark 4.1. Clearly, these assumptions fail when ρF is linear (and in the finite-horizon case,
they require that s < T). They can be understood as ensuring that ρF is ‘sufficiently nonlinear’
on the problem data. The inequality (4.7) serves to reduce combinatorial complexity.
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We argue as follows:

1. Defining for each n ∈N and i = 1, 2 the events

Ai
n = {ω ∈ � : Č1,3−i(0) − Ĉ1,3−i(0) > Č1,i(0) − Ĉ1,i(0) + 2/n

}
, (4.9)

by the assumption (4.8) at least one of these events (A1
n, say) has positive probability.

2. Setting f1,1 = Č1,1(0) − Č1,2(0) + 1/n, we have

Č1,2(0) = Č1,1(f1,1) + 1/n. (4.10)

3. We now further reduce combinatorial complexity by adjusting costs so that under both
selections (4.3) and (4.5), when started in state i = 1 at time s − 1, at time s only either
remaining in state 1 or switching to mode 2 can be optimal. That is, we would like the
following to hold: ⎧⎨

⎩
arg minj∈I

{
Ĉ1,j

(
f̄1,j
)}⊂ {1, 2},

arg minj∈I
{
Č1,j

(
f̄1,j
)}⊂ {1, 2}.

(4.11)

By straightforward linear algebra and (4.7), this can be achieved by taking

f̄ = 1 + ess sup
{
Č1,1(f1,1), Ĉ1,1(f1,1), Č1,2(0), Ĉ1,2(0)

}− ess inf
k>2

{
Č1,k(0), Ĉ1,k(0)

}
= 1 + ess sup

{
Č1,1(f1,1), Č1,2(0)

}− ess inf
k>2

{
Ĉ1,k(0)

}
. (4.12)

4. Finally, to observe a difference between the selections (4.3) and (4.5), set

f̄1,j =

⎧⎪⎪⎨
⎪⎪⎩

f̄ + f1,1, j = 1,

f̄ , j = 2,

0, j > 2,

(4.13)

since then on A1
n we have

Č1,2
(
f̄1,2
)
> Č1,1

(
f̄1,1
)
> Ĉ1,1

(
f̄1,1
)
> Ĉ1,2

(
f̄1,2
)
, (4.14)

where the first inequality comes from combining (4.6), (4.10), and (4.13), the second
from (4.7), and the third from combining (4.9) with (4.10).

Noting that f̄1,1 and f̄1,2 are Gs-measurable, we see from (4.6) that the two selections differ
if we modify just the two costs g̃1,1(s) and g̃1,2(s) by replacing g̃1,j(s) with g̃1,j(s) − f̄1,j for
j ∈ {1, 2}. In particular, from (4.11) and (4.14), if the system is in mode 1 at time s − 1, then
on A1

n, (4.5) selects mode 2 at time s while (4.3) selects mode 1 at time s.

5. Example: a hydropower planning problem

In this section we first illustrate the above framework for risk-aware optimal switch-
ing under general filtration by formulating a non-Markovian hydropower planning problem
(Sections 5.1–5.4). In Sections 5.5–5.8 we provide practical dynamic programming equations,
an approximate numerical scheme for the problem, a solution algorithm using neural networks,
and a discussion of numerical results.
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5.1. Decision space and market

Consider a hydropower producer whose interventions take the form of bidding into a mar-
ket. The producer sells electricity in a daily spot market at noon on the day before delivery. Let
T = 9, T := {0, . . . , T}, and T

+ := {0, . . . , T + 1}. Here, t ∈T∪ {−1} represents a decision
epoch at hour 12 of day t, where day −1 is the last day of the previous planning period. We
assume one-hour planning periods, so that at decision epoch t ∈T, the producer hands in a list
of bids Bt := (

BE
t+1,1, . . . , BE

t+1,24; BP
t+1,1, . . . , BP

t+1,24

)
, where BE

t+1,l specifies the quantity of

electrical energy offered and BP
t+1,l the acceptable price for hour l of day t + 1. Just after deci-

sion epoch t, the market clears and the prices of electricity are published. If the market price
Rt+1,l of electricity for hour l exceeds the producer’s bid price BP

t+1,l, the producer is obligated

to deliver the bidden volume BE
t+1,l of electrical energy during hour l of day t + 1. For this the

producer receives a payment Rt+1,lBE
t+1,l. The total income arising from the bid vector Bt made

at decision epoch t is thus given by

24∑
l=1

1{
BP

t+1,l≤Rt+1,l

}Rt+1,lB
E
t+1,l. (5.1)

If, on the other hand, a bid is accepted and the reservoir contains insufficient water to deliver
the bidden volume, the producer has to purchase the undelivered energy from the balancing
power market at a price RF , which is usually higher than the spot price. This induces the cost

24∑
l=1

1{
BP

t+1,l≤Rt+1,l

}RF
t+1,l

(
BE

t+1,l − Et+1,l
)+ (5.2)

of undelivered energy, where Et,l is the electrical energy produced during hour l ∈ {1, . . . , 24}
of day t.

5.2. Probability space, inflow and price processes

We take (�,F , {Ft}t∈T+ , P) to be a filtered probability space, with Ft representing the
information available at noon on day t ∈T

+. This space will be rich enough to support a
Markovian price process (R̃t)t∈T+ and a non-Markovian inflow process (Ĩt)t∈T+ , as follows.

As is common in electricity planning problems, we assume that the electricity price vector
(R̃t)t∈T+ := (Rt,1, . . . , Rt,24)t∈T+ is a bounded Markov process adapted to F. Regarding the
inflow process, even under normal conditions, heavy rainfall only leads to increased inflows
to a reservoir after a time delay, as the water is filtered through the catchment area surround-
ing the reservoir. Moreover, the hydropower station may be located in a mountainous area
where river flows depend heavily on the melting of snow masses in a spring flood. To model
the discrete-time process of inflows {It,j}1≤j≤24

t∈T , where It,l is the inflow of water from the sur-
roundings during hour l of day t, let (Hs)s≥0 be a continuous-time Markov process representing
relevant environmental conditions. To account for the dependence of inflows on environmental
conditions, set

It,j =
∫ t+j/24

t+(j−1)/24

∫ δ

0
h(s)H(r−s)+dsdr, (5.3)

where δ is a constant time lag and h a deterministic function. Then (Ĩt)t∈T+ :=
(It−1,13, . . . , It,12)t∈T+ is adapted to F and non-Markovian.
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5.3. Dynamics of the hydropower system

We assume that the hydropower system consists of one reservoir containing the volume Mt,l

at the beginning of hour l of day t and a plant that produces electricity

Et,l := η
(
Mt,l, Ft,l

)
, (5.4)

where Ft,l is the flow of water directed through the turbines and η : R2+ → [0, C] is a deter-
ministic function describing the efficiency of the plant, with C > 0 the installed capacity. We
assume that the function y → η(m, y) is strictly increasing for each fixed m lying between
the reservoir minimum level Mmin and maximum Mmax. The process M = (Mt,l)t,l of reservoir
levels follows the dynamics

Mt,l = min
{
1[l>1]

(
Mt,l−1 − Ft,l−1 + It,l−1

)
+ 1[l=0]

(
Mt−1,24 − Ft−1,24 + It−1,24

)
, Mmax

}
, (5.5)

where M0,13 is the volume in the reservoir at the first decision epoch.
Also, as explained in [12], changing the production level by altering the flow Ft,l may

necessitate the startup or shutdown of turbines, resulting in both wear and tear and temporarily
decreased efficiency. This feature motivates the inclusion of switching costs in the optimisation
problem.

5.4. The optimisation problem

The controllable parameters in the problem are the bid vectors {Bt}t∈T. With the reasonable
assumption that these bids take values in a finite set I ⊂R

48 we have a switching problem. Let
ξ := (ξt)t∈T denote the switching control, so that ξt = Bt for each t ∈T.

By inverting η, from the production plan and the reservoir level we obtain the flow

Ft+1,l = min
(

f
(

BE
t+1,l, Mt+1,l

)
1{

BP
t+1,l≤Rt+1,l

}, Mt+1,l − Mmin

)
. (5.6)

Substituting (5.6) into (5.5) we see that Mt depends both on ω and on the entire history of ξ

up to time t. It follows that the switching costs are also dependent on this history. Therefore,
recalling (5.1)–(5.6) and letting It := (I)t+1, for (i−1, . . . , it−1, it) ∈ It+1 we may define the
rewards for the planning problem as

g̃i−1:t−1,i−1:t (t) := − ci−1:t

(
R̃t+1

)+ 24∑
l=1

1{
it,24+l≤Rt+1,l

}(Rt+1,lit,l

− RF
t+1,l

(
it,l − η

(
Mi−1:t

t+1,l, min
(
f (it,l, Mi−1:t

t+1,l), Mi−1:t
t+1,l − Mmin

)))+)
+ 1{t=T}RMMi−1:T

T+2,1,

(5.7)

where

• i−1:t := (i−1, . . . , it−1, it);

• Mi−1:t
t+1,l is the reservoir level at hour l on day t + 1 corresponding to the bid history i−1:t ∈

It+1;

• it,m is the mth component of it;
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• RM is the value of water stored at the end of the planning period;

• and for each r ∈R
24+ , ci−1:t (r) is the cost rendered by switching from bid it−1 to it when

the price vector is r and the bid history is i−1:t.

If the producer has risk mapping ρ, then for each t ∈T, given a bid history i−1:t−1 ∈ It, the
objective is to find

Vi−1:t−1
t := ess sup

ξ∈U i−1:t−1
t

ρt,T
(
g̃ξ−1:t−1,ξ−1:t (t), g̃ξ−1:t,ξ−1:t+1 (t + 1), . . . , g̃ξ−1:T−1,ξ−1:T (T)

)
, (5.8)

where U i−1:t−1
t is the set of F-adapted, I-valued processes (ξs)s∈T such that ξ−1:t−1 = i−1:t−1.

Note that the reward g̃i−1:t−1,i−1:t (t) is Ft+1-measurable but not Ft-measurable. The producer’s
problem is thus one of non-adapted (in this case, delayed) information.

5.5. Dynamic programming equations

By modifying the proof of Theorem 2.1 accordingly we can show that the value processes
(Vi−1:t−1

t : i−1:t−1 ∈ It)t∈T corresponding to (5.8) satisfy the following analogue of (2.2):⎧⎨
⎩

Vi−1:T−1
T = maxj∈I ρT

(
g̃i−1:T−1,(i−1:T−1,j)(T)

)
,

Vi−1:t−1
t = maxj∈I ρt

(
g̃i−1:t−1,(i−1:t−1,j)(t) + V (i−1:t−1,j)

t+1

)
, for 0 ≤ t < T,

(5.9)

where for i−1:t−1 ∈ It and j ∈ I we define (i−1:t−1, j) = (i−1, . . . , it−1, j). In order to obtain
a practical solution algorithm we observe that the same optimal control can be obtained
by dynamic programming without requiring the entire bid history. Recalling (5.7), given
ω ∈ �, for (i−1, . . . , it−1, it) ∈ It+1 the cost g̃i−1:t−1,i−1:t (t) depends on i−1:t−1 only through

its final bid vector it−1 and the reservoir level Mi−1:t
t+1,1. Moreover, by (5.5) and (5.6), Mi−1:t

t+1,1

depends on i−1:t−1 only through Mi−1:t−1
t,13 and the final bid vector it−1. Thus for i−1:t ∈ It+1 and

m ∈ [Mmin, Mmax] we may define new (random) rewards g̃it−1,it (t, m) such that

g̃it−1,it (t, m) := − ci−1:t (Rt+1) +
24∑

l=1

1{
it,24+l≤Rt+1,l

}(Rt+1,lit,l

− RF
t+1,l

(
it,l − η

(
Mm,it

t+1,l, min
(

f
(

it,l, Mm,it
t+1,l

)
, Mm,it

t+1,l − Mmin

)))+)
+ 1{t=T}RMMi−1:T

T+2,1,

(5.10)

where Mm,it
t+1 is the vector of reservoir levels on day t + 1 given that on day t the reservoir was at

level m at the beginning of hour 13 (i.e. at noon) and the bid vector was it. That is, g̃it−1,it (t, m)

and g̃i−1:t−1,i−1:t (t) coincide when Mi−1:t−1
t,13 = m. Then define auxiliary value processes by

Vi
t (m) =

⎧⎨
⎩

maxj∈I ρT
(
g̃i,j(T, m)

)
,

maxj∈I ρt

(
g̃i,j(t, m) + Vj

t+1

(
Mm,j

t+1,13

))
, for 0 ≤ t < T .

(5.11)

By construction we have Vit−1
t
(
Mi−1:t−1

t,13

)= Vi−1:t−1
t ; this can be confirmed by backward

induction. Therefore, if the auxiliary value function Vj
t+1(m) can be computed for each j ∈ I
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and m ∈ [Mmin, Mmax], then (5.9) and (5.11) provide equivalent dynamic programming equa-
tions over the set of modes I. The benefit of (5.11) is that we do not need to remember the
switching control’s entire history. Note that this reformulation is non-Markovian since (Mt)t∈T
is not a Markov process. In the next section we present a numerical approximation to this
scheme using neural networks.

5.6. Numerical scheme

Let η(M, F) = η0MF with η0 = 0.1 and Rt,l =
(
1 + | sin (lπ/12)|)(0 ∨ R̃t+(l−1)/24 ∧ CR

)
,

where the multiplicative coefficient models the daily trend, CR = 4 is a price ceiling, and R̃
solves the stochastic difference equation

R̃t+1 − R̃t = 0.02
(
1 − R̃t

)+ 0.05Nt,

where (Nt)t∈T are standard normal random variables.
For the processes I and H of (5.3) we take δ = 2/24, h(s) := sin (sπ/δ), and H to be a pure

jump Markov process taking values in {0, 0.5, 1} with transition intensity matrix

QH :=
⎡
⎢⎣

−1 0.5 0.5

1 −2 1

2 0.5 −2.5

⎤
⎥⎦ ,

representing no, medium, and heavy rainfall respectively. For numerical purposes we approx-
imate H by a discrete-time Markov chain updating k times per hour, with transition matrix

exp
(

1
24k QH

)
.

Moreover, let Ĩ be a discretisation of the set [0, 2]24 × [0, 4]24 (representing the fact that
market bids have limited precision, for example 1 MWh and 0.01 euro), and let the hydropower
producer’s risk aversion be modelled by an entropic risk measure, i.e.

ρt(X) = −1

θ
log

(
E
[
e−θX

∣∣Ft
])

,

with parameter θ > 0. Finally, we assume that changes in production level cost 0.1 Euro per
MW and set RF = 10, RM := 4, Mmin = 10, Mmax = 50, and k = 2.

5.6.1. State-space description. To obtain a state-space description of our problem we introduce
the state (xt)t∈T, where xt is the non-redundant information available at hand at noon on day t;
that is,

xt :=

⎡
⎢⎢⎢⎢⎢⎣

Mt,13

Rt,24

{Pt,j}13≤j≤24{
Hk

t+1/2−l/24k

}
l∈
{

0,...,24δk
}

⎤
⎥⎥⎥⎥⎥⎦ , (5.12)

where {Pt,j}13≤j≤24 is the Ft-measurable production schedule for the hours between noon and
midnight of day t. In particular, the state contains the discretised weather trajectory for the past
two hours (10 a.m. to noon), since, according to (5.3), the impact of precipitation is only fully
revealed after this delay. Recalling the notation ξ∗ of Theorem 2.1 for an optimal strategy, from
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FIGURE 1: Architecture of the bid neural network. Nodes d1 and d2 represent dense layers with sigmoid
activation function.

FIGURE 2: Architecture of the value neural network. To reduce dimension, in the state vector xt the
production schedule {Pt,j}13≤j≤24 is replaced by the sum of its entries. Nodes d3 and d4 represent dense
layers with sigmoid activation function.

Section 5.5 the optimal mode (bid vector) ξ∗
t depends on its previous value ξ∗

t−1 only through
the production schedule {Pt,j}13≤j≤24, so we may write ξ∗

t = ξ∗
t (xt).

It follows from Equations (5.5)–(5.7) and (5.3) that given the system state xt and bid vector
j = Bt at noon on day t, both the reward g̃i,j(t) and the new state xt+1 are measurable with
respect to the noise vector wt, where

wt :=
⎡
⎢⎣

{
Rt+1,j

}
1≤j≤24{

Hk
t+1/2−l/24k

}
l∈
{

0,...,24δk
}
⎤
⎥⎦ ,

which is not Ft-measurable.

5.7. Algorithm

In this section we describe an implementation of the numerical scheme of
Section 5.6. Code implementing this scheme, and also a risk-neutral scheme, is avail-
able at https://github.com/moriartyjm/optimalswitching/tree/main/hydro and is described in
Algorithm 1. For practicality it employs the neural networks shown in Figures 1 and 2.
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Algorithm 1. Hydropower planning over T days

The bid neural network, whose architecture is given in Figure 1, aims to solve the following
optimisation problem:⎧⎪⎪⎨

⎪⎪⎩
ξ∗

T (xT ) ∈ arg maxj∈I
{
− 1

θ
log

(
ExT

T

[
e−θ g̃i,j(T)

])}
,

ξ∗
t (xt) ∈ arg maxj∈I

{
− 1

θ
log

(
Ext

t

[
e−θ
(

g̃i,j(t)+V̂j
t+1(xt+1)

)])}
, for 0 ≤ t < T,

(5.13)

where xt → Ext
t approximates the conditional expectation with respect to Ft using the state

vector, and V̂j
t+1(xt+1) approximates the continuation value using the value neural network,

whose architecture is given in Figure 2. Continuation values V̂j
T+1(xT+1) are set equal to zero.

Note that these equations do not simplify further since the rewards g̃ij(t) are non-adapted.

The optimisation is performed by first training the bid neural network on M independent
noise realisations with target values equal to zero and loss function equal to

−1

θ
log

⎛
⎜⎝ 1

M

M∑
�=1

[
e
−θ

(
g̃

i,ξ∗
t

(
x�t

)(t)+V̂j
t+1

(
x�

t+1

))]⎞⎟⎠ ,

where x�
t denotes the state vector xt under the �th noise realisation. (Note that since the state

x�
t contains the production schedule

{
P�

t,j

}
13≤j≤24, it also depends on the bid vector submit-

ted at time t − 1; we omit this dependency in order to lighten the notation.) After the bid
neural network has been trained, the value neural network is trained on the M independent

noise realisations with target values equal to exp
(
−θ
(

g̃
i,ξ∗

t

(
x�

t

)(t) + V̂j
t+1

(
x�

t+1

)))
and the

mean squared error as the loss function. Initial reservoir levels M0,13 are drawn uniformly
at random between Mmin and Mmax, while initial market prices R0,24 and weather values{

Hk
t+1/2−l/24k

}
l∈
{

0,...,24δk
} are drawn from the corresponding stationary distribution.

https://doi.org/10.1017/apr.2021.44 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.44


648 R. MARTYR ET AL.

FIGURE 3: Average production curves by hour for risk sensitivity θ = 0, 0.01, 0.02 (blue solid, orange
dashed, and green dotted lines, respectively).

FIGURE 4: Plots for risk sensitivity θ = 0, 0.01, 0.02 of the reservoir level Mt by hour: mean (thick blue
solid, orange dashed, and green dotted lines, respectively) and 0.05 percentile (thinner lines).

5.8. Numerical results and discussion

In this section we present and discuss numerical results obtained using Algorithm 1 over an
optimisation horizon of 10 days and with 50,000 independent noise realisations. Identifying
the risk-neutral case with θ = 0, we plot results for θ equal to 0, 0.01, and 0.02 in blue (solid),
orange (dashed), and green (dotted), respectively.

For each hour in the optimisation, Figure 3 shows the production level under the respective
optimal strategies, averaged across all noise realisations. Similarly, Figure 4 plots the mean
water level under the optimal strategies, together with the 0.05 percentiles (dashed lines). In
order to represent the value processes, Figure 5 plots the prediction V̂0(x0) made by the value
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FIGURE 5: Predictions made by the t = 0 value neural network for θ = 0, 0.01, 0.02 (blue solid, orange
dashed, and green dotted lines, respectively) for the input x0 = [m, 0, 0, 0]T, for different initial reservoir
levels m.

neural network when the input is x0 = [m, 0, 0, 0]T, for different values of m (recall (5.12); �
denotes transpose).

The reservoir’s physical constraints Mmin and Mmax create risks for the hydropower pro-
ducer. When the reservoir level is near Mmin the producer risks being unable to fulfil the bid
volume and receiving a penalty for under-production. Conversely, if the reservoir reaches its
maximum level Mmax then she risks spilling the water inflow, which would otherwise be stored
and used profitably later.

From Figure 4, the risk-neutral producer maintains the reservoir at an intermediate water
level on average. Furthermore, in at least 5% of cases she allows the water level to fall rather
close to the minimum level. In contrast, in at least 95% of cases the optimal strategy of the risk-
averse producer first drives the initial water level up by trading less, and production increases
only once the reservoir is at least approximately half filled. Indeed, for θ = 0.02 the average
water level is seen to increase towards Mmax over the time horizon. Thus increases in θ incen-
tivise the producer to avoid the risk of under-production penalties. (The risk of spilling water
at level Mmax appears to have comparatively less influence on the optimal strategies.)

These observations are also borne out in Figure 5. In the risk-neutral case, the marginal
value of water is approximately constant as the water level varies. However, locally around
Mmin, where the risk of penalties has more influence, the marginal value of water becomes
lower as the risk sensitivity parameter θ increases.

Figure 3 confirms that the risk-neutral strategy involves producing every day, and also
involves following the daily price trend within each day. As the risk aversion parameter θ

increases, the number of production days, and also the total produced volume, decrease.

Appendix A. Properties of conditional risk mappings

Here we review definitions and preliminary results on conditional risk mappings that are
used in the main text. References for this material include [9, 7, 13, 19, 18, 5, 17, 8], among
many others. Proofs are provided for results if they are not readily available in these references.
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We are given a probability space (�,F , P) and a filtration G= {Gt}t∈T of sub-σ -algebras
of F . All random variables below are defined with respect to this probability space, and (in-)
equalities between random variables are in the P-almost-sure sense.

A.1. Conditional risk mappings

A G-conditional risk mapping is a family of mappings {ρt}t∈T, ρt : L∞
F → L∞

Gt
, satisfying

the following for all t ∈T:

Normalisation: ρt(0) = 0.

Conditional translation invariance: for all W ∈ L∞
F and Z ∈ L∞

Gt
,

ρt(Z + W) = Z + ρt(W).

Monotonicity: for all W, Z ∈ L∞
F ,

W ≤ Z =⇒ ρt(W) ≤ ρt(Z).

For each t ∈T we refer to ρt as a conditional risk mapping. Note that in contrast to the
one-step conditional risk mappings ρt of [17], whose respective domains would be L∞

Gt+1
in

this context, here the domain of each ρt is L∞
F . Conditional risk mappings and the mone-

tary conditional risk mappings of [8] are interchangeable via the mapping Z → ρt(−Z). Each
G-conditional risk mapping satisfies the following property (cf. [4, Proposition 3.3], [8,
Exercise 11.1.2]):

Conditional locality: for every W and Z in L∞
F , t ∈T, and A ∈ Gt,

ρt(1AW + 1Ac Z) = 1Aρt(W) + 1Acρt(Z).

A G-conditional risk mapping is said to be strongly sensitive if it satisfies the following:

Strong sensitivity: for all W, Z ∈ L∞
F and t ∈T,

W ≤ Z and ρt(W) = ρt(Z) ⇐⇒ W = Z.

The strong sensitivity and monotonicity properties are sometimes jointly called the strict (or
strong) monotonicity property.

A.2. Aggregated conditional risk mappings

A.2.1. Finite horizon. Where it simplifies notation we will write Ws:t = (Ws, . . . , Wt) for
tuples of length t − s + 1, with Ws:s = Ws, and use the componentwise partial order Ws:t ≤
W ′

s:t ⇐⇒ Wr ≤ W ′
r, r = s, . . . , t. If α and β are real-valued random variables then we write

αWs:t + βZs:t = (αWs + βZs, . . . , αWt + βZt).

Lemma A.1. The aggregated risk mapping {ρs,t} has the following properties: for all s, t ∈T

with s ≤ t,

Normalisation: ρs,t(0, . . . , 0) = 0.

Conditional translation invariance: for all {Wr}t
r=s ∈ ⊗t−s+1L∞

F with Ws ∈ Gs,

ρs,t(Ws, . . . , Wt) = Ws + ρs,t(0, Ws+1, . . . , Wt).
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Monotonicity: for all {Wr}t
r=s, {Zr}t

r=s ∈ ⊗t−s+1L∞
F ,

Ws:t ≤ Zs:t =⇒ ρs,t(Ws:t) ≤ ρs,t(Zs:t).

Conditional locality: for all {Wr}t
r=s and {Zr}t

r=s in ⊗t−s+1L∞
F ,

ρs,t(1AWs:t + 1Ac Zs:t) = 1Aρs,t(Ws:t) + 1Acρs,t(Zs:t), ∀ A ∈ Gs.

Recursivity: for all s, r, t ∈T with 0 ≤ s < r ≤ t,

ρs,t(Ws:t) = ρs,r(Ws:r−1, ρr,t(Wr:t)).

Proof. The proof follows from expanding the recursive definition of ρs,t and using the
properties of its generator. �

A.2.2. Infinite horizon.
Lemma A.2. Recalling Definition 3.1, for all W ∈ HF we have

�s
(
Ws, Ws+1, . . .

)= lim
t→∞ ρs,t

(
Ws, . . . , Wt

) ∀s ∈T.

Proof. Let W ∈ HF and {kt}t∈T be as in the definition of HF . Set Kt := ∑
n≥0 kt+n. Note

that {Kt}t∈T is a non-negative, non-increasing deterministic sequence such that limt→∞ Kt = 0.
For every 0 ≤ s ≤ t and n ≥ 1,

ρs,t+n
(
Ws, . . . , Wt+n

)= ρs,t+1
(
Ws, . . . , Wt, ρt+1,t+n

(
Wt+1, . . . , Wt+n

))
≤ ρs,t+1

(
Ws, . . . , Wt,

n∑
m=1

kt+m

)

= ρs,t(Ws, . . . , Wt) +
n∑

m=1

kt+m.

Similarly we have

ρs,t+n(Ws, . . . , Wt+n) ≥ ρs,t(Ws, . . . , Wt) −
n∑

m=1

kt+m,

and we conclude that P-almost surely, the sequence {ρs,t(Ws, . . . , Wt)}t∈T is Cauchy. �
Lemma A.3. For all W ∈ HF we have

�s(Ws, Ws+1, . . . ) = ρs,s+1(Ws, �s+1(Ws+1, Ws+2, . . . )).

Proof. Arguing as in the proof of Lemma A.2, there is a deterministic positive sequence
{Kt}t∈T, with limt→∞ Kt = 0, such that for every 0 ≤ s ≤ t we have

|�s+1(Ws+1, Ws+2, . . . ) − ρs+1,t(Ws+1, . . . , Wt)| ≤ Kt almost surely.

The monotonicity and conditional translation invariance of ρs+1,t imply that

ρs,s+1(Ws, �s+1(Ws+1, Ws+2, . . . )) ≤ ρs,s+1(Ws, ρs+1,t(Ws+1, . . . , Wt) + Kt)

= ρs,t(Ws, Ws+1, . . . , Wt) + Kt.
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Taking the limit as t → ∞ we find that

ρs,s+1(Ws, �s+1(Ws+1, Ws+2, . . . )) ≤ �s(Ws, Ws+1, . . . ).

A similar argument can be applied to find the reverse inequality. �
All of the properties in Lemma A.1 for finite sequences extend to infinite sequences in HF

with �s playing the role of ρs,∞.

A.3. Martingales for aggregated conditional risk mappings

We close by presenting elementary martingale theory for aggregated conditional risk
mappings (see also [8, 11]).

Let f = {ft}t∈T be a sequence in L∞
F . We say that W ∈L∞

G
is an f -extended {ρs,t}-

submartingale (-supermartingale) if

Ws ≤ (≥) ρs,t
(
fs, . . . , ft−1, Wt

)
, 0 ≤ s ≤ t,

and an f -extended {ρs,t} martingale if it has both these properties. Note that we use the
convention

ρs,t
(
fs, . . . , ft−1, Wt

)= ρt,t(Wt) if s = t.

If f ≡ 0 then the qualifier ‘f -extended’ is omitted.

Lemma A.4. The definitive property for an f-extended {ρs,t}-submartingale (-super-
martingale) W is equivalent to the one-step property,

Wt ≤ (≥) ρt,t+1(ft, Wt+1), t ∈T.

Proof. If {Wt}t∈T is a one-step f -extended {ρs,t}-submartingale, then for all s, t ∈T such
that s < t we have

ρs,t
(

fs, . . . , ft−1, Wt
)= ρs,t−1

(
fs, . . . , ft−2, ρt−1,t( ft−1, Wt)

)
≥ ρs,t−1

(
fs, . . . , ft−2, Wt−1

)
. . . ≥ Ws.

The case s = t and the converse implication that an f -extended {ρs,t}-submartingale satisfies
the one-step property are both trivial and thus omitted. �
Lemma A.5. (Doob decomposition) Let W ∈L∞

G
. There exists an almost surely unique {ρs,t}-

martingale M and G-predictable process A such that M0 = A0 and

Wt = W0 + Mt + At. (A.1)

The processes A and M are defined recursively as follows:{
A0 = 0,

At+1 = At + (ρt
(
Wt+1

)− Wt
)
, t ∈T,{

M0 = 0,

Mt+1 = Mt + (Wt+1 − ρt
(
Wt+1

))
, t ∈T.

If W is a {ρs,t}-submartingale (-supermartingale) then A is increasing (decreasing).

Proof. This is proved in the same way as Lemma 5.1 of [11]. �
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A.3.1. Optional stopping properties. First let τ ∈ T be a stopping time. For sequences {ft}t∈T
and {Wt}t∈T in HF , define the aggregated cost ρt,τ (ft, . . . , fτ−1, Wτ ) as

ρt,τ (ft, . . . , fτ−1, Wτ ) =

⎧⎪⎨
⎪⎩

0, on {τ < t},
ρt(Wt), on {τ = t},
ρt
(
ft + ρt+1,τ (ft+1), . . . , fτ−1, Wτ )

)
, on {τ > t}.

(A.2)

Given another stopping time ς ∈ T, define the aggregated cost
ρς,τ (fς , . . . , fτ−1, Wτ ) as

ρς,τ (fς , . . . , fτ−1, Wτ ) =
∑
t∈T

1{ς=t}ρt,τ (ft, . . . , fτ−1, Wτ )

=

⎧⎪⎪⎨
⎪⎪⎩

0, on {τ < ς},
ρς (Wς ), on {τ = ς},
ρς

(
fς + ρς+1,τ (fς+1, . . . , fτ−1, Wτ )

)
, on {τ > ς}.

(A.3)

Without loss of generality we can assume τ ≥ t and τ ≥ ς in (A.2) and (A.3) respec-
tively. The following lemma shows that the recursive property of aggregated conditional risk
mappings extends to stopping times.

Lemma A.6. If ς , ς̃ , and τ are bounded stopping times in T such that ς ≤ ς̃ ≤ τ , then for all
sequences {ft}t∈T and {Wt}t∈T in L∞

F we have

ρς,τ

(
fς , . . . , fτ−1, Wτ

)= ρς,ς̃

(
fς , . . . , fς̃−1, ρς̃,τ

(
fς̃ , . . . , fτ−1, Wτ

))
.

Proof. Since τ is bounded it follows that τ ∈ T[0,T] for some integer 0 < T < ∞.
Furthermore, by (A.3) it suffices to prove for all 0 ≤ t ≤ T that

1{ς̃≥t}ρt,ς̃
(
ft, . . . , fς̃−1, ρς̃,τ

(
fς̃ , . . . , fτ−1, Wτ

))= 1{ς̃≥t}ρt,τ
(
ft, . . . , fτ−1, Wτ

)
. (A.4)

By decomposing {ς̃ ≥ t} into the disjoint events {ς̃ = t} and {ς̃ ≥ t + 1} we have

1{ς̃≥t}ρt,ς̃
(
ft, . . . , fς̃−1, ρς̃,τ

(
fς̃ , . . . , fτ−1, Wτ

))= 1{ς̃=t}ρt,τ
(
ft, . . . , fτ−1, Wτ

)
+ 1{ς̃≥t+1}ρt,t+1

(
ft, ρt+1,ς̃

(
ft+1, . . . , fς̃−1, ρς̃,τ

(
fς̃ , . . . , fτ−1, Wτ

))
.

If t < T and if (A.4) holds with t + 1 in place of t, then using conditional translation invariance
we get

1{ς̃≥t}ρt,ς̃
(
ft, . . . , fς̃−1, ρς̃,τ

(
fς̃ , . . . , fτ−1, Wτ

))
= 1{ς̃=t}ρt,τ

(
ft, . . . , fτ−1, Wτ

)
+ 1{ς̃≥t+1}ρt,t+1

(
ft, ρt+1,ς̃

(
ft+1, . . . , fς̃−1, ρς̃,τ

(
fς̃ , . . . , fτ−1, Wτ

))
= 1{ς̃=t}ρt,τ

(
ft, . . . , fτ−1, Wτ

)
+ 1{ς̃≥t+1}ρt,t+1

(
ft, ρt+1,τ

(
ft+1, . . . , fτ−1, Wτ

))
= 1{ς̃≥t}ρt,τ

(
ft, . . . , fτ−1, Wτ

)
,

and we conclude using backward induction. �
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