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The objective of this study was to evaluate the effects of the CSN1S1 locus polymorphism on 305-d
records of milk, fat, protein, lactose and total solids yields, fat, protein, lactose and total solids
contents in Mexican dairy goats. A total of 514 lactation records belonging to Alpine (n=60), Saanen
(n=105) and Toggenburg (n=74) goats, born from 2003 to 2006 in three herds were used.
Discrimination between alleles E, F, N, A* (CSN1S1 A, G, H, I, O1 and O2) and B* (CSN1S1 B1, B2,
B3, B4, C and L) were made by amplification of fragments of the gene CSN1S1 and digestion with the
restriction endonuclease XmnI. In order to estimate additive and dominance effects, data sets
including (1) all genotypes, and (2) only homozygote genotypes, were analysed using linear mixed
models. The allele A*, had significant additive effects for protein content (0·21±0·07%; P=0·002)
and total solids content (0·66±0·23%; P=0·005) when compared with allele F. An unfavourable
additive effect of allele A* on milk yield was found in the Alpine breed (�81·4±40·2; P=0·046)
when compared with allele F. Favourable dominance effects were found for some genotypes
(P<0·05) for milk yield (A*N and B*N), fat yield (A*N and B*E), protein yield (A*N and B*E), lactose
yield (A*N) and total solids yield (A*N). Also, unfavourable dominance effects were found (P<0·05)
for protein content (A*B* and A*N) and total solids content (A*B*, A*N, and A*F). Allele A* was the
only one with a positive effect for protein content. Significant allele-year interaction effects were also
observed. The presence of significant dominance effects, estimated between specific pairs of alleles,
challenged the purely additive nature of the genetic effect at the CSN1S1 locus. Implications from use
of CSN1S1 effects in goat breeding programmes are presented.
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The αs1-casein locus (CSN1S1) is highly polymorphic in
goats. According to their individual approximate contri-
bution to the amount of protein in milk observed in previous
studies, alleles for this locus have been grouped in 4 levels:
strong alleles (A, B1, B2, B3, B4, C, H, L, and M), inter-
mediate alleles (E and I), weak alleles (F, D, and G), and null
alleles (O1, O2, and N) with no αs1-casein content
(Grosclaude et al. 1987; Martin et al. 2002; Ramunno
et al. 2005; Sacchi et al. 2005; Sztankóová et al. 2007).

Previous studies have reported that the CSN1S1 can affect
casein, protein, and fat levels, total solids, milk rheology, as
well as cheese yield and quality (Pirisi et al. 1994; Clark &
Sherbon, 2000; Martin et al. 2002; Roncada et al. 2002;
Gómez-Ruiz et al. 2004; Zeng et al. 2007; Pagano et al.
2010).
In addition to additive (individual allelic effects), dom-

inance effects (specific effects for allele combinations), as
well as interactions between CSN1S1 alleles and other genes
of the studied populations (epistatic effects) are possible.
Some evidence of several milk protein genes, acting as
haplotypes on dairy traits has also been found (Hayes et al.
2006). Despite those possibilities, dominance effects, in this
locus, had not been studied until recently in Norwegian
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goats (Dagnachew et al. 2011) but there is no information
published for Alpine and Saanen breeds.

The objective of this study was to evaluate both additive
and dominance effects of CSN1S1 locus polymorphism on
milk yield andmilk composition traits in Alpine, Saanen, and
Toggenburg goats.

Materials and Methods

Populations

Analysed data were obtained from 2003 to 2006 from
Alpine, Saanen and Toggenburg in three herds located in
Apaseo el Grande (at 1780m above mean sea level),
Guanajuato, Mexico. This area has a semi-dry temperate
climatewith an average temperature of 18 °C, rain during the
summer (approx. 70% of the annual rainfall of 605 mm,
occurs from May to September) (CONAGUA, 2011). Goats
were maintained in an intensive production system, fed with
alfalfa hay and commercial concentrate, and were sup-
plemented with vitamins and minerals. The milk produced
in these herds is used for making cheese.

The official milk recording system used is the A4 of the
International Committee for Animal Recording (ICAR, 2011).
Fat, protein, lactose and total solids yields were obtained
from milk yield and percentage measures for each monthly
test day (based on twice daily milking). Fat, protein, lactose,
and total solids contents were monthly obtained using an
infrared milk analyser Bentley 150.

Lactation records with less than 3 test-day milk yield or
milk components measurements information per goat
(or less than 100 d in milk) were discarded. Records with
less than 305 d in milk were projected to 305 d using

methods described by Torres-Vázquez et al. (2009).
The final data set consisted of 514 lactation 305-d records
from 239 goats; 60 Alpine (130 lactations); 105 Saanen
(210 lactations); and 74 Toggenburg (174 lactations).
Analysed traits were milk (MILY), fat (FATY), protein
(PROY), lactose (LACY), and total solids (SOLY) yields, fat
(%FAT), protein (%PRO), lactose (%LAC), and total solids
(%SOL) contents.

Genotyping

The genomic DNAwas extracted from the blood by Phenol-
chloroform extraction. Discrimination procedure between
CSN1S1 alleles E, F, N, A* (A, G, H, I, O1, O2) and B* (B1,
B2, B3, B4, C, L) was developed by amplification of
segments of the CSN1S1 gene by PCR and XmnI endonu-
clease restriction digestion according to Ramunno et al.
(2000) as in Torres-Vázquez et al. (2008).

Statistical procedures

Analyses were performed using linear mixed models and
PROC MIXED of SAS® program (SAS version 9.0, SAS
Institute Inc., Cary NC, USA). Final analyses considered two
models; data analysed with model 1 included information
from all available genotypes, while model 2 included only
information from homozygote genotypes.
Model 1 included the fixed additive covariate effects of

the alleles A*, B*, N and E coded representing the number of
those alleles present in one genotype (2 for homozygotes; 1
for heterozygotes; and 0 for genotypes without that allele).
The effect of the F allele was set to 0 (solution restriction) to
avoid the singularity of the design matrix, which is

Table 1. Genotypic frequencies of the CSN1S1 locus by breed

Genotype†

Alpine Saanen Toggenburg Total

n‡ % n‡ % n‡ % n‡ %
A*A* 2 3·3 0 0·0 0 0·0 2 0·8
A*B* 2 3·3 0 0·0 3 4·1 5 2·1
A*N 4 6·7 0 0·0 6 8·1 10 4·2
A*E 3 5·0 1 1·0 1 1·4 5 2·1
A*F 5 8·3 2 1·9 4 5·4 11 4·6
B*B* 2 3·3 1 1·0 1 1·4 4 1·7
B*N 3 5·0 1 1·0 6 8·1 10 4·2
B*E 6 10·0 17 16·2 2 2·7 25 10·5
B*F 4 6·7 2 1·9 19 25·7 25 10·5
NN 5 8·3 1 1·0 2 2·7 8 3·4
NE 3 5·0 5 4·8 5 6·8 13 5·4
NF 1 1·7 1 1·0 4 5·4 6 2·5
EE§ 10 16·7 41 39·1 7 9·5 58 24·3
EF 5 8·3 27 25·7 5 6·8 37 15·5
FF 5 8·3 6 5·7 9 12·2 20 8·4
Total 60 105 74 239

†A*=A, G, H, I, O1 and O2; B*=B1, B2, B3, B4, C and L
‡Number of genotyped goats
§EE=EE and EO1
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associated with the covariates. Hence, the alleles additive
effects are defined as deviations with respect to allele
F. Besides additive effects, model 1 included fixed dom-
inance effects defined by a group of covariates (1 to indicate
the presence of the combination of two alleles in one
observation; 0 to indicate its absence), then covariate values
for all homozygote genotypes were 0.
Other fixed effects included in model 1 were breed-herd

combination, season of kidding (1 from October to March; 2
from April to September), year of kidding, and lactation
number (grouped as 1–2, 2–4, and 5 or more lactations).
Based on differences observed in preliminary analyses, the
interaction effect of additive allele by year of kidding was
also included in this model.
Random effects included in model 1 were goat nested in

breed-herd subclasses (to model repeated lactation infor-
mation), and residual effects.
Equation for model 1 was:

yijklm ¼ μþ breed� herdi þ seasonj þ lactation numberk
þ yearl þ goatim þ b1A� þ b2B� þ b3Nþ b4E

þ b5A�Bþ b6A�Nþ b7A�Eþ b8A�Fþ b9B�N
þ b10B�Eþb11B�Fþb12NEþb13NFþb14EFþeijklm;

where yijklm is one observation of the response variables,
b1, . . ., b4 are multiple regression coefficients associated to
coded additive allelic effects A*, B*, N and E respectively,
b5, . . ., b14 are multiple regression coefficients associated
to coded dominance effects for combinations of alleles A*,
B*, N and E respectively, and eijklm is the random residual
effect.
Model 2 was similar to model 1, but instead of additive

and dominance effects, the genotype effect (considered as a
categorical variable) was used. Tukey multiple range tests
were used for genotype means comparison.
Equation for model 2 was:

yijklmo ¼ μþ breed� herdi þ seasonj þ lactation numberk

þyearlþgoatimþhomozygous genotypeoþeijklmo;

where yijklmo is one observation of the response variables,
genotypeo is the effect of the homozygous genotype and
eijklmo is the random residual effect.

Results

Allelic and genotypic frequencies

In the Alpine breed, the frequencies of the alleles A*, B*, N,
E, and F at the CSN1S1 locus were 0·150, 0·158, 0·175,
0·308 and 0·208, respectively. The same allelic frequencies
for Saanen were 0·014, 0·105, 0·043, 0·629 and 0·210,
respectively. And for Toggenburg they were 0·095, 0·216,
0·169, 0·182 and 0·338, respectively. Genotypes at CSN1S1
locus by breed are shown in Table 1.
In Alpine and Saanen breeds, alleles E (0·31 and 0·63,

respectively) and F (0·21 in both breeds) were the mostTa
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frequent. For Toggenburg breed, the most frequent alleles
were F and B* (0·34 and 0·22. respectively). In general terms,
the most frequent genotypes (Table 1) were EE (24·3%), EF
(15·5%), B*E, and B*F (10·5%). The rest of the genotypic
frequencies were lower than 10%. The frequency of the
alleles A* and B* was low.

Additive allelic effects

Allele additive effects estimated using model 1 are presented
in Table 2, while genotype least-square means obtained
with model 2 are presented in Table 3. As allele F effect was
set to 0 because its frequency was relatively high with
homozygous FF goats present in all breeds (Table 1), and
because it was also expected to be aweak allele. All additive
effects are expressed as deviations from the mean effect of
allele F.

Allele A* had a positive additive effect on %PRO (0·21%;
P=0·002) and %SOL (0·66%; P=0·005), and a negative ad-
ditive effect on %LAC (�0·25%; P=0·023). The allele E had
a negative additive effect on %LAC (�0·08%; P=0·058).
The additive affects for the other alleles were not significant
(P>0·10).

Similar estimates from the model 1 were obtained with
model 2 using only homozygous genotypes (Table 3). The
additive effect of A* on%PRO, compared with F, was 0·23%
(P<0·05) and �0·37% in the case of %LAC (P<0·05).
Regarding %PRO, the additive effect of A* compared with E
was 0·23% (P<0·05), and the difference for %SOL compar-
ing A* and E was 0·65% (P>0·05). No statistically significant
differences were observed between homozygote genotypes
for other traits.

Dominance genotypic effects

Some traits were affected by significant dominance effects
(Table 2). Favourable dominance interaction effects were
found for several genotypes (P<0·05) for MILY (A*N and
B*N), FATY (A*N and B*E), PROY (A*N and B*E), LACY
(A*N) and SOLY (A*N). Also, unfavourable dominance

effects were observed (P<0·05) for %PRO (A*B* and A*N)
and %SOL (A*B*, A*N and A*F).

Within breed additive effects

In order to verify whether the effects found occur across all
breeds, within-breed analyses using model 1, were done.
Results for Saanen and Toggenburg revealed that additive
and dominance effects might be confounded due to the
information structure characterized by the absence of
homozygote individuals for the allele A*. Within-breed
analysis showed that only Alpine breed results agreed, in
general, with those from the complete data analysis
(Table 4). However, Alpine breed analysis allowed us to
detect a significant additive negative effect of the allele A* on
MILY (�81·4; P=0·046) and of the allele E on LACY (�4·2;
P=0·039); additionally, allele N (null for αs1-casein pro-
duction) was found to be significantly related to higher MILY
(114·5; P=0·027) and PROY (3·64; P=0·016) (Table 4).
These results for Alpine were very different with respect to
the results from the general analysis (Table 1), in which N
allele effect was not different from F allele for any trait, and
therefore should be regarded with caution since they might
be the product of some confounded effects. Dominance
effects in Alpine breed agreed with complete data analysis.
However, positive dominance effects were found (P<0·05)
for MILY (A*E), FATY (B*N), PROY (A*E and NE), SOLY (A*E
and B*N) and %SOL (NF); and a negative dominance effect
was found (P<0·05) for MILY (NF).

Additive alleles by year interaction effects

Additive alleles by year interaction effects trends were found
on several yield and composition traits (P<0·10). For milk
yield, significant interaction additive by year effects were
found for alleles A*, N, and E; and for composition traits a
significant interaction of additive by year effects were found
for alleles N and E. This suggests that environmental
circumstances may modify additive allele effects.

Table 3. Least-squares means in homozygote genotypes† for milk yield and milk composition traits in the studied goats

Trait‡ A*A* B*B* NN EE§ FF

MILY, kg 865·6±96·7 819·8±77·2 927·8±51·6 935·6±34·2 969·8±39·2
FATY, kg 28·8±3·0 26·6±2·4 30·2±1·6 29·16±1·0 30·24±1·2
PROY, kg 26·8±2·4 23·1±1·9 25·7±1·3 25·1±0·84 25·91±1·0
LACY, kg 31·7±4·3 34·9±3·4 39·0±2·2 38·12±1·5 41·76±1·7
SOLY, kg 98·8 ±10·3 86·5±8·3 102·6±5·7 98·22±3·7 103·31±4·2
%FAT, % 3·5±0·3 3·4±0·2 3·3±0·1 3·18±0·1 3·19±0·1
%PRO, % 3·2±0·1a¶ 2·9±0·1b 2·8±0·1b 2·72±0·1b 2·72±0·1b

%LAC, % 3·6±0·2c 4·3±0·2abc 4·3±0·1ab 4·11±0·1bc 4·35±0·1a

%SOL, % 12·1±0·4a 10·7±0·4ab 11·33±0·3ab 10·79±0·2b 10·89±0·2ab

†A*=A, G, H, I, O1 and O2; B*=B1, B2, B3, B4, C and L
‡Where MILY is milk yield; FATY is fat yield, PROY is protein yield, LACY is lactose yield; SOLY is total solids yield; %FAT is fat content; %PRO is protein
content; %LAC is lactose content; and %SOL is total solids content
§EE=EE and EO1
¶Genotypes without a common superscript letter are different (P<0·05)
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Discussion

Our results showed that alleles E and F were the most
frequent in Alpine (E: 0·308 and F: 0·208) and Saanen (E:
0·629 and F: 0·210). In these breeds, the observed fre-
quencies agree with those reported in France (Saanen, E:
0·41 and F: 0·43; Alpine, E: 0·34 and F: 0·41), Italy (Saanen,
E: 0·49 and F: 0·46; Alpine, E: 0·35 and F: 0·59), Mexico
(Saanen, E: 0·42 and F: 0·37; Alpine, E: 0·24 and F: 0·28) and
USA (Saanen, E: 0·71 and F: 0·30; Alpine, E: 0·36 and F:
0·46) (Grosclaude et al. 1987; Martin & Leroux, 2000;
Torres-Vázquez et al. 2008; Maga et al. 2009). In general,
alleles E and F were the most frequent. This may help to
explain the low content of protein in goat milk in high-
yielding breeds, which limits cheese yield.
In this study, some confounding effects are possible since

A* allele may contain O1 and O2 null alleles which are
related to low protein percentages. However, previous
research (Martin & Leroux, 2000; Maga et al. 2009) indicates
that frequencies of these alleles in Alpine, Saanen and
Toggenburg breeds are low, most probably below 0·05.
Soares et al. (2009) found O1 allele frequencies of 0·01 and
0·02 in Alpine and Saanen goats, respectively. Therefore,
probably these null alleles have a small effect in the esti-
mated additive or dominance effects involving allele group
A* in our study. Most previous studies considered that main
allelic groups for this locus, in these breeds, are A, B, E, F and
O (Martin & Leroux, 2000), but with different allele aggre-
gation, andmore recently A, B, E, F andN (Maga et al. 2009).
Low frequencies for several alleles make it impossible to
obtain accurate estimates of their individual effects.
Results showed that %PRO, %LAC and %SOL were

significantly influenced by allele A* when compared with
F. Our findings regarding %PRO (additive effects varying
from 0·21 to 0·26%) (Tables 2 & 4) agree with previous
studies, which ranged from 0·9 to 3·2 g/l, corresponding
approximately to a difference varying from 0·09 to 0·32%
(Remeuf, 1993; Analla et al. 2000; Chilliard et al. 2006) and
are essentially the same to those observed by Manfredi et al.
(1993). In general terms, our results are very similar to most
French studies for Alpine and Saanen breeds (Mahé et al.
1993; Manfredi et al. 1993; Remeuf, 1993; Barbieri et al.
1995).
No significant effects of allele A* on PROY were found.

Alleles N and E on this trait had similar effects to allele F,
contrary to other studies where allele E effect was shown to
be intermediate. However, superiority of allele A over alleles
E and F for PROY had been observed also in some studies
(Mahé et al. 1993; Remeuf, 1993). It is important to mention
that the contrast of the effects of allele E and F on %PROwas
not significant, while it was smaller for %LAC, similar to the
case of allele A* (Table 2).
We found no evidence that allele B* effect was larger for

%PRO (Tables 2 & 4), because allele B* behaved as a weak
allele. This may be caused by the existence of several
subtypes of alleles B (B1, B2, B3 and B4) whose effects on
milk protein have been shown to be different in a PoitevineTa
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goat population (Ricordeau et al. 2000). It is worth
mentioning that inconsistencies regarding the allelic effects
on milk traits have been already observed by other authors
(Hayes et al. 2006).

Although there was not a significant effect of the allele A*
on%FAT, the estimated effect was positive and similar to that
found for %PRO. Also, the effect of the allele A* on %SOL
was important with an increment ranging from 0·62
(P=0·031) to 0·66% (P=0·005) when compared with allele
F (Tables 3 & 5). While the effect of the allele A* on %LAC
was negative (�0·25; P=0·023), results suggest that there is
a favourable effect of the allele A* on%FAT that could not be
statistically detected due to its higher variability (Table 2).

The effect of the allele A* on PROY and FATY was close to
zero and not significant (P>0·05); this could be related to the
possible negative effect of the allele A* on MILY, which was
detected in Alpine goats (Table 4). Other authors have
previously detected negative effects of the allele A on MILY
(Barbieri et al. 1995; Ricordeau et al. 2000). This agrees with
the negative genetic correlations between milk yields and
milk contents estimated in dairy goat populations (Torres-
Vázquez et al. 2009). In our study, the genetic effects of the
alleles at the CSN1S1 locus on the production of fat and
protein by lactation were not significant, in agreement with
Ricordeau et al. (2000).

Dagnachew et al. (2011) found significant dominance
effects of single SNP within CSN1S1 and CSN3 on contents
of protein, fat, lactose and milk yield in Norwegian goats.
Those findings are in agreement with our results. Dominance
effects may compromise the efficiency of breeding pro-
grammes aimed simply to increase the frequency of strong
alleles and to reduce the frequencies of weak and null
alleles. With dominance, the mean for the %PRO could
depend not only on the allelic frequencies at the CSN1S1
locus but also on the number and proportion of hetero-
zygous genotypes in the population.

The effect of the alleles can be different, not only because
the different level of the allele disaggregation used in a
particular study, but also because the genes of the different
dairy proteins could act as a whole. Studies are needed to
examine the protein haplotypes through several dairy gene
proteins to identify their effects accurately. Hayes et al.
(2006) detected significant effects of haplotypes involving
several casein loci (CSN2, CSN1S2, and CSN3), in addition
to CSN1S1 locus.

Based on our results, we conclude that there are
favourable effects of the allele A* on %FAT, %PRO, PROY
and %SOL compared with the effects of the F allele, but the
rest of the studied alleles behaved rather as weak alleles
regarding these traits. Increasing the frequency of the allele
A* may increase mainly strong allele frequencies and
therefore lead to larger cheese yield per unit of processed
milk (Zeng et al. 2007), but an important increment of the
quantity of total solids, fat and protein per lactation on the
population is not expected. Owing to the negative effects of
the allele A* on %LAC, increasing its frequency may have a
detrimental effect in the yield of products that contain or
require lactose.
Despite the fact that some of the allelic effects are

statistically significant, they do not allow the prioritizing
of Genetic Marker-Assisted Selection (GAS) over conven-
tional genetic evaluation methods. So far, the milk pro-
duction and milk composition traits can be increased in a
profitable way based only on phenotypic and pedigree
information (BLUP evaluations), because they affect all
loci involved on these traits (Montaldo & Manfredi,
2002). Simulations have shown that using this polymorph-
ism in the context of breeding programmes for dairy goats
may increase the rates of genetic gain for %PROT, over
conventional progeny testing programmes based on pheno-
typic information only, but not for PROY (Sánchez et al.
2005).
A simple alternative to exploit the additive effect of the

allele A* is to detect young males with high predicted
breeding value based on best linear unbiased predictors
(BLUP) for an economic index, which have at least one copy
of the allele A*, or that have no weak alleles. These young
males could have priority in breeding programmes with AI
and progeny tests. However, the implications of this
procedure, including the consequences on all the economi-
cally important traits and in the genetic variation of the
population must be considered.
The existence of dominance effects complicates the use of

this polymorphism in the genetic improvement of dairy
goats, because as different genotypes are favourable/un-
favourable for different traits, optimizingmating to obtain the
desired genotypes in the population may be very difficult.
Moreover, in practical goat breeding, the need of mating
planning yield the ideal gene and genotype frequencies for
this locus, may easily interfere with the breeding programme

Table 5. Predicted averages for different genotypes† compared with actual population averages for yields of milk (MILY), fat (FATY), protein
(PROY), and total solids (SOLY); and contents of protein (%PRO), fat (%FAT), and total solids (%SOL)‡

MILY, kg PROY, kg FATY, kg SOLY, kg %PRO %FAT %SOL

Actual population average 984 27·3 32·4 108·9 2·77 3·29 11·07
Average for optimum genotype for MILY (B*F) 1308 33·9 43·3 146·1 2·59 3·31 11·17
Average for optimum genotype for %PRO (A*A*) 779 24·6 28·5 96·8 3·16 3·66 12·43
Average for optimum genotype for %SOL (NF) 747 21·7 26·8 95·9 2·9 3·59 12·84

†A*=A, G, H, I, O1 and O2; B*=B1, B2, B3, B4, C and L
‡Values for PROY, FATY and SOLY, were calculated from MILY and the appropriate content average
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mating plan for other traits depending on polygenic effects
(Montaldo et al. 2010).

Genotypes for maximum MILY, %PRO and %SOL
estimated from model 1 analyses are shown in Table 5.
Means for all important milk traits are also displayed. The
best genotype for MILY was BF*, the best for %PRO was
A*A* and the best for %SOL was NF. Potential changes on
the mean by substituting all population alleles by A*, are
shown in Table 5. Changes for %PRO were 14% (from 2·77
to 3·16%), 11% for %FAT (from 3·29 to 3·66%), and 12% for
%SOL (from 11·07 to 12·43%). As the change for MILY was
�21%of themean (from 984 to 779 kg), the results on PROY
and SOLY for substituting all the alleles by A* were negative
(�10 and �11%, respectively).

Consequences of maximizing the average for some traits
by manipulating the genetic make up of the population for
this locus is shown in Table 5. The higher values for PROY
and SOLY were observed for genotype B*F, which gave the
highest average for MILY. Therefore, even if the use of this
polymorphism for breeding might allow for the increase of
%PRO (genotype A*A*) and %SOL (genotype NF), that
might be at the expense of total cheese production by
lactation per goat. The genotype with the highest average for
%SOL has also reduced PROY, and SOLY averages if
compared with the current population averages (Table 5).

Whether increasing %PRO and %SOL is a priority on a
particular population will depend on many factors, particu-
larly the relative economic value of increasing one unit of %
PROT compared with increasing one unit of MILY, partic-
ularly when there is a high economic value for increasing the
cheese-making properties of milk (Montaldo & Manfredi,
2002; Sánchez et al. 2005). Moreover, because allele A* is
in such small frequency in all studied breeds, increasing
its frequency may be impossible without compromising
the effective population size (Table 1), creating potential
problems regarding conservation of genetic diversity and
avoiding an increase of inbreeding rate.

Therefore, using this polymorphism in goat breeding may
be only justified when breeding goals are clearly defined and
when there is a breeding organization able to carry out the
programme and transfer the benefits to farmers (Gama &
Bressan, 2011). Significant interaction effects between ad-
ditive allelic and environment level (year) effects in our study
were also observed by Pagano et al. (2010). These inter-
actions constitute a further complication in the use of this
major gene in breeding programmes addressed to increasing
productivity in dairy goat populations.

Low frequency of A* allele in these high milk yield
populations may be the result of an unfavourable pleiotropic
effect for a selected trait (i.e. milk yield) as found in Alpine
breed in our study. Another possibility is a negative effect of
the A* allele on some important fitness traits (i.e. natural
selection effects) yet to be identified.

Further research on this locus with larger samples and
more precise techniques for allele discrimination are needed
to confirm the estimates of additive and dominance effects
found in this study.

Conclusions

Significant additive effects for allele A* v. allele F were found
on protein and total solids milk contents, by using a model
that included additive and dominance effects. However, no
significant effects of the allele B, compared with allele F,
were observed.
The presence of significant dominance effects at the

CSN1S1 locus, modifies the prediction of GAS results by
using just a model of allelic replacement.
Potential benefits from increasing the frequency of the

allele A* in the goat population to increase cheese yield,
needs to be balanced with its potential disadvantages, such
as a the deterioration of the mean or the reduction of genetic
progress in other economically important traits, such as milk,
protein and total solids yields, and a potential reduction of
genetic variability of the population.
The presence of year by allele interaction effects may

imply complications to accurately predicting the long-term
effects of these alleles across production environments.
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