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Abstract

The investigation of the glycan repertoire of several organisms has revealed a wide variation in
terms of structures and abundance of glycan moieties. Among the parasites, it is possible to
observe different sets of glycoconjugates across taxa and developmental stages within a spe-
cies. The presence of distinct glycoconjugates throughout the life cycle of a parasite could
relate to the ability of that organism to adapt and survive in different hosts and environments.
Carbohydrates on the surface, and in excretory-secretory products of parasites, play essential
roles in host–parasite interactions. Carbohydrate portions of complex molecules of parasites
stimulate and modulate host immune responses, mainly through interactions with specific
receptors on the surface of dendritic cells, leading to the generation of a pattern of response
that may benefit parasite survival. Available data reviewed here also show the frequent aspect
of parasite immunomodulation of mammalian responses through specific glycan interactions,
which ultimately makes these molecules promising in the fields of diagnostics and
vaccinology.

Introduction

As in many fields of biology, the primary goals of molecular and biochemical investigations of
parasitic helminths have been directed towards characterizing the functional biology of their
proteins and peptides. Studies on the contributions of helminth glycans, or carbohydrates,
to protein structure and function, to parasite biology and to host–parasite interplay has lagged
somewhat, although some pioneering work has called attention to these molecules. Norden
and Strand (1985), for example, observed the relevance of a glycan present in Schistosoma
mansoni extracts, strongly recognized by lectin concanavalin A, to the diagnosis of schistosom-
iasis. Methodological improvements in studies of glycans since the 1980s have allowed
researchers to gain key insights into these molecules among various helminths and protozoans.
Notably, the roles that glycans play in several aspects of parasitism, including contributions to
antigenicity, pathogenicity, signalling, recognition, attachment and evasion of host defences,
are being progressively taken into consideration. In this review we have compiled information
about glycans of a wide range of parasites, including protozoans and helminths, discussing
their involvement in pathogenicity, host–parasite interactions and their potential application
for the development of diagnostic methods.

Glycans: an overview

Carbohydrates are organic molecules consisting of carbon, hydrogen and oxygen. These mole-
cules are commonly called saccharides, glycans or sugars. Besides their central role in metab-
olism, carbohydrates are essential components of a broad range of biological processes that
occur in eukaryotes and prokaryotes, including cell recognition, signalling and interaction, fer-
tilization, virus invasion and replication and host–pathogen interactions (Handel et al., 2005;
van Liempt et al., 2007; Fincher, 2009).

Glycans are often bound to proteins and lipids and the modified molecules are identified
collectively as glycoconjugates. Proteins are glycosylated through complex biochemical path-
ways reliant on sequential action of a variety of enzymes, mainly glycosidases and glycosyl-
transferases. The attachment of oligo- or polysaccharides to the polypeptide structure is the
most frequent post-translational modification observed in all living organisms (Spiro, 2002).
By modifying the form of glycan linkage, and the structure of the glycan itself can directly
influence the properties of a glycoprotein (Cipollo et al., 2005; Varki, 2017).

In eukaryotic cells, the several reactions necessary for protein glycosylation are compart-
mentalized in the endoplasmic reticulum and Golgi apparatus. In these organelles, key glyco-
sylation enzymes may generate a wide diversity of structures. N- and O-glycosylation are the
two major forms of protein glycosylation. During these processes, carbohydrates are attached
to specific glycosylation sites in the protein backbone. For N-glycosylation, the first residue of
N-acetylglucosamine (GlcNAc) of a chitobiose core (Man3GlcNAc2) is attached to an
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asparagine (Asn) residue of a consensus sequence composed of
Asn-X-serine/threonine (Ser/Thr) (where X can be any amino
acid except proline). For O-glycosylation, in most instances, a resi-
due of N-acetylgalactosamine (GalNAc) is attached firstly to Ser/
Thr residues of mucin and mucin-like proteins (Haslam et al.,
2001). However O-glycans with mannose, GlcNAc or fucose resi-
dues occupying the first position are also observed in glycopro-
teins (Thaysen-Andersen and Packer, 2014). Following this step,
a residue of Gal(β1-3) or GlcNAc(β1-6) is added into the first
GalNAc giving rise to the core type 1 [Gal(β1-3)GalNAc] or
type 2 [GlcNAc(β1-6)GalNAc] glycans, respectively. Subsequent
additions of different monosaccharides or other glycan modifica-
tions may happen to the non-reducing termini, in specific config-
urations (Spiro, 2002; Varki, 2017). The availability of enzymes,
carbohydrates and the characteristics of the protein undergoing
glycosylation will define the repertoire of glycans that a specific
protein, cell or organism will express. An individual protein can
contain either N- or O-glycans, or a combination of both
(Haslam et al., 2001; Thaysen-Andersen and Packer, 2014).

Parasite glycans and the host–parasite relationship

The mechanisms of protein glycosylation are highly conserved
among eukaryotes, despite the genetic diversity of member taxa.
Nonetheless, structural variation within the glycan cores and ter-
mini of glycoproteins and glycolipids of parasites have been
observed (Fig. 1) (Haslam et al., 2001; Hokke et al., 2007).
Therefore, is not surprising that diverse eukaryotic parasites
were observed to express a wide diversity of glycans or glycocon-
jugates containing distinctive and unusual monosaccharides resi-
dues or terminal modifications (caps), or even oligosaccharides
linked in rare configurations (Table 1). The generation of such
specific molecules will depend on the cellular glycosylation
machinery, which comprises enzymes such as nucleotide sugar
synthases, glycosidases and glycosyltransferases, which perform
the necessary glycosylation reactions (Haslam et al., 2001;
Nyame et al., 2004). On the other hand, protozoan parasites
often display oligosaccharides attached to phosphatidylinositol,
forming what is known as glycosylphosphatidylinositol (GPI)
anchors at their surface. These anchors are the most important
and common post-translational modifications in proteins across
the vast diversity of protozoan parasites (Mendonça-Previato
et al., 2003).

The diverse glycan repertoire of parasites often include moi-
eties that also form the so-called ‘host-like’ glycans (van Die
and Cummings, 2010). Motifs such as Lewis X [Gal1,4
(Fucα1-3)GlcNAc; LeX], LacdiNAc (GalNAcβ1,4GlcNAc; LDN),
fucosylated LDN [GalNAcβ1,4(Fucα1-3)GlcNAc; LDNF], trun-
cated O-glycans, known as T antigen (Galβ1-3GalNAcα1-
O-Thr/Ser), as well as Tn antigen (GalNAc-O-Ser/Thr), and
GPI anchors modified by different glycans are examples of struc-
tures found both in parasites and humans. Nevertheless, helminth
parasites in general present Tn antigen in greater abundance than
do human cells, whereas no sialic acid termini, other than the
trans-sialidase-mediated sialylation in trypanosomatids (Schauer
et al., 1983), are observed in glycans isolated from parasites
(Cummings, 2009; Hokke and van Diepen, 2017).

The glycan repertoire that a parasite presents throughout its
life cycle is thought to be of fundamental importance to avoid
detection and clearing from the host, ultimately enabling the
establishment of a chronic infection. Many helminth-glycans
can subvert host immune responses by suppressing it or by indu-
cing T-helper 2 (Th2) type response, activate T regulatory cells
(Tregs) and alternatively activate macrophages (Sher et al., 2003;
Maizels et al., 2004; Tundup et al., 2012). To mimic host glycan
is, therefore, a parasite strategy for survival. The mimicked

antigens modulate immune responses through direct interaction
with receptors on the surface of antigen-presenting cells
(APCs), such as dendritic cells (DCs) and macrophages, present-
ing themselves as ‘self-like’ molecules and not as foreign antigens,
consequently preventing the host from attacking the parasite (van
Die and Cummings, 2010).

Indeed, during the development and differentiation of the
parasites within their mammal hosts, DCs are exposed to various
parasite-derived antigens that modulate their functions and mat-
uration (Linehan et al., 2003; Van Liempt et al., 2007; Terrazas
et al., 2010). Such modulation occurs through DC receptors,
including the classes of Toll-like (TLR), the C-type Lectin recep-
tor (CLRs) and other lectin receptors, that recognize specific gly-
can motifs (Akira et al., 2006; Diebold, 2009; Terrazas et al.,
2010). It has been proposed that CLRs induce an intracellular sig-
nalling pathway upon the recognition of carbohydrates that might
lead to impairment of TLR-mediated signalling (Geijtenbeek and
Gringhuis, 2009).

Each different class of lectin receptors, including DC-SIGN
(dendritic cell-specific ICAM3-grabbing non-integrin), MGL
(macrophages galactose-type lectin) and MBL (mannose-binding
lectin) have been demonstrated to recognize specific host-like or
parasite-specific glycan moieties. DC-SIGN receptors, for
example, interact with Lewis-X (Lex), LDNF and high mannose
N-glycans that are commonly found in extracts of various para-
sites (Table 1), but which are also expressed by human cells
(Okano et al., 2001; Geijtenbeek et al., 2003; Gomez-Garcia
et al., 2006). Therefore, upon their recognition by DC receptors,
TLR-mediated signalling and immune response against the para-
site presenting these motifs will be dampened. Even though the
mechanism of immune modulation through glycan receptors is
not fully understood, it is known that DCs bind and internalize
glycans derived from S. mansoni eggs through MGL, mannose
receptor and DC-SIGN receptors, ultimately driving a T-helper
2 (Th2) response fundamental for the establishment of infection
(Van Liempt et al., 2007).

Alternatively, at the parasite surface, carbohydrates may pre-
sent as a rigid and resilient layer that aid the parasite in evading
cellular immune responses (Taratuto and Venturello, 1997; Kusel
et al., 2007). A classic example of this mechanism is observed dur-
ing infection with the Trypanosoma brucei species complex in
Africa. Trypanosoma encodes many genes belonging to the vari-
ant surface glycoprotein (VSG) family of proteins (discussed fur-
ther below), each of them giving origin to a distinct glycoprotein
that will present a unique immune signature to the host
(Ferguson, 1999). Thereby, this parasite can constantly stall
immune mediated killing of newly members of the blood-resident
population. In the same context, changes of the glycan surface of
schistosome cercariae, which completely replace their surface
membrane of the tegumentary syncytium after host invasion, is
thought to allow Schistosoma to survive and complete its life
cycle within its definitive host after skin penetration (Jones
et al., 2004).

Glycoconjugates of protozoan parasites

Trypanosoma
Trypanosoma (Euglenozoa: Kinetoplastida: Trypanosomatidae) is
a widespread genus of flagellated parasites of vertebrates and
invertebrates. Two species of Trypanosoma primarily cause dis-
ease in humans, T. cruzi in the Americas causing Chagas disease
and members of the T. brucei species complex in Africa. Two sub-
species of the latter, T. brucei gambiense and T. brucei rhodesiense,
cause blood infection that eventually reaches the central nervous
system causing sleeping sickness in humans and nagana in cattle.
Trypanosoma brucei survives freely in the bloodstream of its hosts
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and, as previously mentioned, is covered by GPI-linked variant
surface glycoprotein (VSG). This molecule contains a glycan por-
tion that is immunogenic, and through an intriguing molecular
switch, the VSG present in the parasite surface can be replaced
randomly and repeatedly by another VSG that will contain a dis-
tinct glycan profile. The new VSG will also be expressed in the
progeny of the original parasite, produced through asexual repro-
duction, and the new clonal population will be initially resistant to
the host immune response. More than a thousand VSG variants
have already been identified (Bangs, 2018).

Remarkably, T. brucei can also vary its glycan profile through-
out the multiple morphological forms that constitute its life cycle.
Complex N-glycans are absent or expressed at a very low level in
procyclic forms found in the vector mid-gut, while trypomastigote
forms present in the bloodstream of its mammal host express
these glycans in substantial amount (Hwa and Khoo, 2000).
Additionally, T. brucei has been demonstrated to express moieties
containing oligomannose, paucimannose and complex N-linked
glycans that contain large poly-N-acetyllactosamine structures.

Poly-N-acetyllactosamine is produced by
N-acetylglucosaminyltransferases. A search of the T. brucei gen-
ome did not identify any orthologues of conventional
N-acetylglucosaminyltransferases, a perplexing result given the
abundance of this glycan within the parasite. Damerow et al.
(2014, 2016) resolved this conundrum when they characterized
two highly divergent genes encoding members of the
β3-glycosyltransferase family in T. brucei, namely
N-acetylglucosaminyltransferases I and II (TbGnTI and II)
(Damerow et al., 2014; 2016). Surprisingly, TbGnTI and
TbGnTII are not essential for parasite survival in vitro and trypa-
nosomes adapted their β3-glycosyltransferases members to cata-
lyse specific glycosidic linkages (Damerow et al., 2014; 2016).
These data show essential aspects of Trypanosoma protein

glycosylation that may assist in identifying druggable targets.
Other glycoconjugates of trypanosomatid parasites include vari-
ous glycoinositolphospholipids (GIPLs), and an unusual GPI
anchored mucin. Trypanosoma cruzi O-glycans contain a quite
unique mix of GlcNAc, galactose, galactopyranose, galactofura-
nose and other linked carbohydrates residues (Todeschini et al.,
2001). In addition, T. cruzi, present an unusual glycan with phos-
phate attached to Galp terminal residues is found in the gp72
glycoprotein of the epimastigote form possibly having a role in
inhibiting parasite to differentiate into metacyclic trypomastigote
stage (Allen et al., 2013).

Although trypanosomatids do not synthesize sialic acid, they
do express trans-sialidase (TS) enzymes that catalyse the transfer
of sialic acid from host glycoconjugates onto the parasite surface
(Costa et al., 1998), an unique ability that is thought to be critical
for the success of the infection and virulence of the parasite
(San Francisco et al., 2017). Indeed, the activity of TS seems to
guarantee the survival of T. cruzi by suppression of host
responses, as the sialylated glycans on the parasite surface interact
with DC receptors to suppress response, mainly via the lectin
receptor sialic acid-binding protein (Siglec-E) (Erdmann et al.,
2009). This interaction leads to lower production of IL-12 and
IFN-γ. Vaccines against T. cruzi based on recombinant TS have
demonstrated 60% efficacy in experimental infections in A/As
rats (Pereira-Chioccola et al., 1999). Similarly, Hoft et al. (2007)
used only the enzymatic domain of TS to formulate another vac-
cine that showed what the author considered a good protection
against the acute T. cruzi infection, a response also maintained
during the chronic phase. In addition, Hoft and colleagues
demonstrated that intranasal delivery of a soluble recombinant
TS induced both TS-specific CD4(+) and CD8(+) T cells asso-
ciated with protective immunity, results further confirmed by
Giddings et al. (2010). Even though these results are promising,

Fig. 1. Main glycan moieties found in helminth and protozoan parasites.
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Table 1. Main glycan structures described in helminths and protozoa

Parasite Glycan name Reference

Helminths

Trematodes

Schistosoma sp • Lewis X (Lex)
• Pseudo Ley

• LacdiNAc (LDN)
• LDNF
• FLDN
• F-LDN-F
• LDN-DF
• DF-LDNF-DF
• Truncated O-glycans T e Tn,
• High mannose glycans (Man5–9GlcNAc)
• N-linked glycan containing β1−2 xylose
• N-linked glycan containing α3 fucose
• Circulating Cathodic Antigen (CCA)
• Circulating Anodic Antigen (CCA)

Wisnewski et al. (1993)
Bergwerff et al. (1994) Haslam et al. (1996, 1998 van Die et al. (1999)
Cummings and Nyame (1999) Hokke et al. (2007)
Nyame et al. (2002)
Wuhrer et al. (2006)
van Die and Cummings (2006)
Peterson et al. (2009)

Fasciola hepatica • LDN
• LDNF
• Truncated O-glicídios T e Tn
• Glycosphingolipid

Vervelde et al. (2003)
Freire et al. (2003)
Wuhrer et al. (2004)

Opisthorchis viverrini • Mono-fucosylated N-linked glycans
• Truncated, hybrid and complex glycans with 1–4
antennas

• O-glycan mucin type, containing 1–5 antennas,
(Galβ1−3GalNAc)

Talabnin et al. (2013)

Nematodes

Ascaris suum • Man5−9GlcNAc
• N-linked glycan containing phosphorylcholine
terminals

• O-glycans
• Glycosphingolipid with phosphorylcholine
terminals

• Glycosphingolipid containing
3-sulfogalactosylcerebroside

Lochnit et al. (1998)
Dell et al. (1999)
Poltl et al. (2007)

Toxocara canis • Truncated O-glycans T e Tn
• O-Methylated glycans

Khoo et al. (1991)
Casaravilla et al. (2003)

Dictyocaulus viviparous • Man5−9GlcNAc
• Lex

Haslam et al. (2000)

Trichinella spiralis • LDN e LDNF (with or without phosphorylcholine
terminals)

• Tyvelose β3-linked
• Man5−9GlcNAc
• N-linked glycans containing α3-fucose

Wisnewski et al. (1993)
Haslam et al. (1996, 1998)
van Die et al. (1999) Morelle et al. (2000)
van Die and Cummings (2006)

Haemonchus contortus • LDN
• LDNF
• Man5−9GlcNAc
• N-linked glycans containing α3-fucose

Wisnewski et al. (1993)
Haslam et al. (1996, 1998)
van Die et al. (1999)
Geldholf et al. (2005)
van Die and Cummings (2006)

Dirofilaria immitis • LDN
• LDNF

Nyame et al. (1998)

Wuchereria bracofiti • N-linked glycans containing phosphorylcholine
terminals

Dell et al. (1999)

Onchocerca volvulus • Man5−9GlcNAc Haslam et al. (1999)
Wuhrer et al. (2000)

(Continued )
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Table 1. (Continued.)

Parasite Glycan name Reference

• N-linked glycans containing phosphorylcholine
terminals

• Glycolipids containing phosphorylcholine
terminals

Onchocerca gibsoni • Man5−9GlcNAc
• N-linked glycans containing phosphorylcholine
terminals

Haslam et al. (1999)

Acanthocheilonema
viteae

• Man5−9GlcNAc
• N-linked glycans containing phosphorylcholine
terminals

Haslam et al. (1999)

Nippostrongylus
brasiliensis

• Truncated O-glycans T e Tn Casaravilla et al. (2003)

Cestodes

Echinococcus
multilocularis

• Truncated O-glycans T e Tn
• Mucin

Ingold et al. (2000)
Hülsmeier et al. (2002)

Echinococcus
granulosus

• Truncated O-glycans T e Tn
• Man5−9GlcNAc
• Truncated glycans
• N-linked glycans containing phosphorylcholine
terminals

• Glycosphingolipid

Khoo et al. (1997)
Alvarez Errico et al. (2001)
Paschinger et al. (2012)
Wuhrer et al. (2004)

Mesocestoides vogae • Truncated O-glycans T e Tn, sialyl-Tna Medeiros et al. (2008)
Van Die and Cummings (2010)

Metacestoides corti • Truncated O-glycans T e Tn Freire et al. (2003)

Taenia hydatigena • Truncated O-glycans T e Tn Freire et al. (2003)

Taenia crassiceps • N-linked glycans containing α3-fucose
• Man5−9GlcNAc
• Glycolipids
• Glycosphingolipid

Nyame et al. (2004)
Lee et al. (2005)

Taenia solium • Man5−9GlcNAc
• Complex and truncated N-linked glycans, with or
without fucose

• Glycolipids

Restrepo et al. (2000)
Haslam et al. (2003)
Nyame et al. (2004)

Taenia saginata • Glycolipids Nyame et al. (2004)

Protozoa

Trypanosoma sp • Glycosylphosphatidylinositol Anchors (VSG)
• Procyclin (PARP)
• High galactose O-glycans – Mucin
• Lipopeptideophosphoglycan (LPPG)
• Phospholipids-linked GPI (GIPL)
• Trans-sialidase

Previato et al. (1990)
Ferguson et al. (1993)
Costa et al. (1998)
Ferguson (1999)
Todeschini et al. (2001)

Plasmodium sp • Glycosylphosphatidylinositol Anchors (GPI)
• N- and O-linked glycans

Khan et al. (1997)
Gowda and Davidson (1999)

Leishmania sp • Lipophosphoglycan (LPG)
• Phospholipids-linked GPI (GIPL)
• Phosphoglycan
• Proteophosphoglycan (PPG)
• O-glycan, mucin type

Ilg et al. (1995)
Descoteaux and Turco (1999)
Guha-Niyogi et al. (2001)

(Continued )
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further vaccine trials still necessary to guarantee that TS is a suit-
able vaccine candidate to Chagas disease.

The immune modulation observed during Chagas disease is
dependent on the genetic backgrounds of both host and parasite
(Terrazas et al., 2010). By expressing antigens, among them glyco-
conjugates that target DCs receptors, T. cruzi has developed an
important strategy for immune evasion that unbalances the host–
parasite relationship at various levels depending on the virulence
of the parasite strain. In general, T. cruzi infection is characterized
by reduced levels of pro-inflammatory cytokines, such as IL-12 and
TNF-α and a lack of mature DCs (Alba Soto et al., 2003). This last
effect is one observed on splenic and marrow-derived DCs when
the cells were exposed to parasite-GIPLs, indicating that this glyco-
conjugate plays a primary role in modulating the host cellular
response (Brodskyn et al., 2002; Poncini et al., 2008).
Trypanosoma cruzi GIPLs were also shown to activate DCs through
TLR signalling, which contributed to IFN-β production and clear-
ance of infection (Campos et al., 2001; Koga et al., 2006).

Leishmania

The genus Leishmania (Euglenozoa: Kinetoplastida:
Trypanosomatidae) includes over 20 species able to infect
humans, causing different forms of leishmaniasis endemic in 97
countries. Forms of the disease include the potentially fatal vis-
ceral (kala-azar) leishmaniasis, the disfiguring cutaneous leish-
maniasis and mucocutaneous leishmaniasis (WHO, 2017).

The complex set of glycoconjugates forming the glycocalyx
covering Leishmania cells have been extensively studied because
of their immunomodulatory properties. These molecules may in-
clude different types of mucin glycan, GIPLs, GPI-linked carbo-
hydrate, phosphoglycans (PGs) and the group of molecules
variously identified as lipophosphoglycans (LPG), lipopeptido-
phosphoglycan (LPPG) or proteophosphoglycan (PPG) by dif-
ferent authors. Moreover, phospholipids and glycoproteins are
found attached to the GPI anchors, while Leishmania presents a
LPG-containing mannose residue attached in uncommon posi-
tions, among other structural modifications (Descoteaux and
Turco, 1999; Guha-Niyogi et al., 2001).

Glycan metabolism in Leishmania species is highly complex. It
has been demonstrated that both the terminal oligosaccharide
motifs and the carbohydrate chains that decorate the GPIs vary
among species and various life-stages of the parasites

(Guha-Niyogi et al., 2001). Glycoproteins and LPG also decrease
in abundance in the coated surface of promastigotes as they dif-
ferentiate into amastigotes, so that GIPL is the predominant gly-
coconjugate in the latter stage (Naderer et al., 2004). Intraspecific
variation in LPG has been observed from different field isolates
(Coelho-Finamore et al., 2011). Although still poorly understood,
this variable glycan profile could be responsible for the success of
Leishmania species in evading and modulating host responses
throughout the whole life cycle. An understanding of the variation
may assist in resolving specific attributes of infections among dif-
ferent species. For a complete review of the role of LPG in leish-
maniasis infection, see Forestier et al. (2015).

To maintain infection in mammals, Leishmania must manipu-
late DC activity so as to avoid the mature DC phenotype and,
therefore, the Th1 pattern of immune response (Reiner and
Locksley, 1995; Chakir et al., 2003). The strategies the parasites
adopt to manipulate the host responses vary among species and
strains of Leishmania and are associated with the sets of glycocon-
jugates expressed by different parasites. L. major inhibits DC motil-
ity through the interaction of LPG with cell receptors (Jebbari et al.,
2002), while LPGs from L. mexicana reduce IL-12, thus limiting
DC activation (Bennett et al., 2001; Argueta-Donohue et al.,
2008). Likewise, PGs expressed by this parasite ultimately impaired
the ability of DCs to induce Th1 responses (von Stebut et al., 1998;
Konecny et al., 1999). PG produced by L. donovani affects DCs
maturation and migration (Tejle et al., 2008).

Glycoconjugates of Leishmania have also been shown to inter-
act with TLRs. Even though the effect of this interaction on DC
modulation is yet to be understood, it was demonstrated that
LPG binds to TLR-2 and 4 on macrophages and natural killer
cells, leading to a switch in the profile of pro-inflammatory mole-
cules in these host cells that ultimately allows the intracellular
parasite to survive (De Veer et al., 2003; Rojas-Bernabe et al.,
2014). Accordingly, it was suggested that differences in the
LPGs found on L. braziliensis and L. infantum surfaces may
impact host cell modulation each species is able to stimulate
(Ibraim et al., 2013).

Curiously, in natural infections, LPG does not seem to be
highly immunogenic (Goel et al., 1999), although a different
study showed that it could at least in part prevent complement-
mediated lysis of Leishmania by blocking the binding of the mem-
brane attack complex C5b-9 to the promastigote membrane
(Descoteaux and Turco, 1999). However, when preparations of

Table 1. (Continued.)

Parasite Glycan name Reference

Entamoeba histolytica • Lectin Gal-GalNAc
• LPG
• LPPG
• Sialyl glycoconjugates

Stanley et al. (1995)
Petri (1996)
Moody-Haupt et al. (2000)

Trichomonas vaginalis • LPG
• Adesins
• N-linked glycans with specific modifications

Paschinger et al. (2012)

Giardia duonenalis • Variable surface glycoprotein (VSG)
• O-glycans
• N-glycans

Papanastasiou et al. (1997)
Bulik et al. (2000)

Toxoplasma gondii • O-glycans
• N-glycans
• GPI anchors

Guha-Niyogi et al. (2001)

aPossible sample contamination.
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LPG were used to vaccinate rats, the animals developed a protect-
ive immune response, verified by the presence of specific
anti-LPG serum antibodies (Russell and Alexander, 1988).
Parasites exposed to these antibodies were incapable of infecting
the phlebotomine vectors, suggesting at the time that LPGs
were promising candidates antigens for transmission-blocking
vaccines (Tonui et al., 2001).

Further studies with the same molecule revealed that subcuta-
neous LPG injection failed to induce protection against L. amazo-
nensis in animals, but the intranasal delivery of LPG resulted in
protection (Pinheiro et al., 2005; 2007). Although the mechanisms
of LPG-mediated protection are still unknown other vaccine for-
mulations have been better characterized. A dual stimulation
using a peptidoglycan (PGN) and the soluble leishmanial antigen
(SLA) was able to stimulate DCs during experimental visceral
leishmaniasis (VL). The vaccinated animals showed a significant
decrease in hepatic and splenic parasite burden, and an increased
production of nitric oxide (NO) and pro-inflammatory cytokines
such as IL-12, IFN-γ and IL-17, that ultimately resulted on
increased number of Th17 cells (Jawed et al., 2016).

Plasmodium

Plasmodium, a genus of parasites belonging to the phylum
Apicomplexa within the SAR supergroup of eukaryotes, is the
agent of malaria in humans and animals.

The intracellular apicomplexans, Plasmodium species synthe-
size GPI anchors that contain a highly conserved glycan core
composed of a trimannosylglucosaminyl moiety with an add-
itional mannose attached. These anchors are attached to several
P. falciparum proteins and constitute 90% of the glycoconjugates
identified on this parasite (Gowda and Davidson, 1999). Not sur-
prisingly, this glycoconjugate has been strongly associated with
various symptoms observed during malaria infection (Schofield
et al., 1999; Clark and Schofield, 2000; Jaurigue and Seeberger,
2017). GPI anchors can activate macrophages and cells of the vas-
cular endothelium through several signalling pathways that result
in the production of chemical mediators, such as NO, tumour
necrosis factor (TNFα) and intracellular adhesion molecules I
(ICAM-I). This observation led tp exploration of this molecule
as a vaccine target (Schofield et al., 2002), a concept later rein-
forced by a study that demonstrated that presence of specific anti-
bodies to P. falciparum GPI could neutralize the strong
inflammatory response that GPI stimulates (de Souza et al., 2010).

Indeed, most GPI-vaccines aim to neutralize or decrease the
inflammatory response observed during infection rather than pro-
duce a sterilizing immunity. Rats immunized with a synthetic GPI
based on the P. falciparum anchor displayed high titres of IgG
antibodies that neutralized pro-inflammatory effects caused by
activated macrophages, despite no significant protection being
observed after challenge with P. berghei ANKA. Even though ani-
mals immunized did not present a reduction in parasitaemia, the
results suggest that GPI anchors have a conserved structure
among the different species of Plasmodium (Schofield et al.,
2002). Another GPI formulation used as vaccine induced an
IgG antibody response able to neutralize the parasite pathogenesis
in vitro (Taylor et al., 2012). Currently, the P. falciparum GPI vac-
cine is being tested in phase II clinical trials (see Anchora
Pharmaceutical, MA https://www.sbir.gov/sbirsearch/detail/89678).

It is important to highlight here that many studies have shown
that P. falciparum produces a restricted glycan repertoire.
Technical limitations in isolating sufficient quantities of parasite
molecules have rendered it difficult to determine with clarity
whether the parasites produce O-glycans or complex N-glycans
(Kimura et al., 1996; Cova et al., 2015). A recent work using a
mass spectrometry technique by electron transfer dissociation

was able to show different glycoforms of thrombospondin type
1 repeats-containing proteins (TSR) (Swearingen et al., 2019).
TSRs are implicated in the invasion process of Plasmodium and
may be modified with O-linked fucose (O-Fuc) and C-linked
mannose (C-Man).

It seems to be certain, however, that in addition to the GPI
anchors, P. falciparum produces truncated N-glycans, GlcNAc
and GlcNAc2 (Cova et al., 2015). The relevance of these glycans
in the host–parasite interplay, if any, remains to be elucidated.

Entamoeba histolytica

Entamoeba histolytica (Amoebozoa: Endamoebidae) is a patho-
genic amoeba responsible for significant food-borne infections
in humans. The species causes intestinal amoebiasis and may
affect other organs through disseminated infection. Amoebiasis
is among the leading causes of death in the world attributed to
a protozoan parasite (Ralston and Petri, 2011).

The most abundant glycan found in E. histolytica is aggregated
into caps on the surface of the cell by the N-glycan-specific, anti-
retroviral lectin cyanovirin-N. Complex N-glycans contain
α1,2-linked Gal to both arms of small oligomannose glycans,
and Gal residues are capped by one or more Glc (Magnelli
et al., 2008). The motile trophozoite stage of the parasite has a
coat of lipid-linked glycoconjugates including the LPGs. The
Entamoeba LPG has an unusual GPI anchor on its surface,
which uses an ethanolamine phosphate bridge to anchor a residue
of α-Gal onto the C-terminus of the protein. Several other linear
glycans [Glcα1-6(n) Glcβ1-6Gal] are found attached to the
LPG via phosphoserine residues (Moody-Haupt et al., 2000).

The pathogenesis observed during amoebiasis appears to result
from the cytotoxic activity of the parasite, which depends mainly
on the adhesive interactions between the parasite and the glyco-
conjugates present on the surface of host cells, and of the inter-
action of the parasite glycoconjugates with the host immune
system. The LPG has been strongly associated with Entamoeba
virulence, since specific antibodies to this antigen could prevent
trophozoite adhesion to cells and the consequent cytolysis in
vitro, and liver abscess formation in experimental infections in
mice (Marinets et al., 1997). The same LPG also appears to
have a central role in the first steps of infection, when the
adherent E. histolytica trophozoites transfer their LPG to the
apical side of host enterocytes causing dysfunction of the tight
junctions (Lauwaet et al., 2004). LPGs were demonstrated to
interact with TLR receptors and stimulate the production of
IL-10, IL-12 and TNF-α (Maldonado-Bernal et al., 2005) and,
together with parasite surface Gal/GalNAc lectins, are considered
fundamental for regulating host cell adhesion and cytolysis. Both
LPG and Gal/GalNAc lectin were observed to activate and induce
maturation of DCs, leading to a Th1 response during amoebiasis
(Ivory and Chadee, 2007; Vivanco-Cid et al., 2007; Aguirre García
et al., 2015).

Several LPGs have been applied in diagnosis tests and vaccines
of protozoan infections. Species of Entamoeba and Leishmania can
be distinguished by the type of LPG they are expressing
(Coelho-Finamore et al., 2011). Moreover, LPG identification is
suitable for differential diagnosis of the pathogenic E. histolytica
from non-pathogenic E. dispar, as it was demonstrated that those
LPGs expressed by pathogenic strains of E. histolytica are unique
for this species (Moody et al., 1997; Bhattacharya et al., 2000).

Glycoconjugates in helminth parasites: phylum Nematoda

Trichinella spiralis
Trichinella spiralis (Nematoda: Adenophorea: Trichinelloidea) is
the causative agent of trichinellosis in mammals, a disease leading
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to severe debilitation and pain, and sometimes death. Humans
become infected by consuming raw or under-cooked meat of an
infected animal. The life cycle is maintained in the wild through
predation and meat-scavenging behaviours.

Trichinella spiralis produces many glycans, but one of the
most remarkable is a motif containing a tyvelose (Tyv) (3,6-
dideoxy-D-Arabino-hexose) residue that is found attached to
the glycoprotein TSL-1 (T. spiralis larva-1), present at the surface
of the first stage larvae of T. spiralis and its ES products (Reason
et al., 1994). Reason and colleagues claimed that a major propor-
tion of the N-glycans antennae of the TSL-1 are capped with Tyv
and the uniqueness of this monosaccharide encouraged further
studies. This represents an excellent case where a glycan motif
that appears to be restricted to an organism renders the molecule
as a potentially valuable target for immunodiagnostic tests.
Indeed, moved by the previous results, Forbes et al. (2004) used
a synthetic β-Tyv antigen to develop an enzyme-linked immuno-
sorbent assay (ELISA) that presented a sensitivity of 94.3% and a
specificity of 96.7% when applied to the diagnosis of swine
trichinosis.

TSL-1 and Tyv have been proposed to have immunomodulatory
effects. Niborski et al. (2004) demonstrated a Th2 pattern of
response during T. spiralis infections. Complementary in vitro
experiments using rat mast cells exposed to TSL-1, demonstrated
an association of the glycoprotein with increased mRNA levels
for IL-4, IL-5, IL-6 and TNFα. During the intestinal (adult)
phase of the infection, the TSL-1 antigen is thought to stimulate
mast cells in an IgE-independent manner, ultimately leading to
increased levels of histamine that could contribute to worm expul-
sion from the intestine (Yépez-Mulia et al., 2007). A different
study, aiming to understand the role of the glycan portion of
TSL-1, demonstrated that mice immunized with tyvelose-BSA
develop high levels of IL-5 but not IFN-γ, which reinforced the
idea that this glycan motif plays a central role to drive the Th2
response observed during trichinellosis (Goyal et al., 2002).

More recently, however, studies focusing on the Tv antigen
have become sparse, while other Trichinella glycans are being
prospected. A T. spiralis glycoconjugate containing LDNF, for
example, was thought to be a suitable target for immunodiagnosis
of trichinellosis, showing a sensitivity of 96% and a specificity of
67% in diagnostic tests (Aranzamendi et al., 2011). Interestingly,
T. spiralis adult and L1 larvae have multiple antennae decorated
with phosphorylcholine (PC)-modified LDNF that is found
linked to residues of GlcNAc or GalNAc (Morelle et al., 2000).
The presence of this modification could explain the low specificity
observed in tests using T. spiralis LDNF antigen since PC term-
inals have been associated with cross-reactivity observed in sero-
logical diagnostic tests to Wuchereria bancrofti, Brugia malayi,
Onchocerca volvulus and Achanthocheilonema viteae (Dell et al.,
1999; Goodridge et al., 2005).

Haemonchus contortus

Haemonchus contortus (Nematoda: Secernentea: Trichostrongylidae)
is a highly pathogenic parasite of sheep and goats. The parasite is
an avid blood-feeder in the abomasum of its ruminant hosts.
Haemonchus contortus expresses a broad variety of glycans,
including motifs containing LDN, LDNF motifs and N-glycans
with core α1,3-fucose, which were mainly identified in ES pro-
ducts. A more recent and detailed mass spectrometry analysis
of H. contortus N-glycans revealed a dominant trifucosylated
Hex3HexNAc2Fuc3 structure containing α1,6- and α1,3-fucose
on the proximal core GlcNAc, and a galactosylated distal
α1,3-fucose (Table 1). Other motifs displayed galactosylation of
the core α1,6-fucose, antennal fucosylation or PC modification
(Haslam et al., 1996; Paschinger and Wilson, 2015).

The immunogenicity of glycan motifs of Haemonchus was
highlighted by glycan array experiments using samples from
lambs vaccinated with parasite ES products. The vaccinated ani-
mals presented high levels of IgG antibodies to Gal(α1-3)
GalNAc motif that was correlated with the protection observed
(van Stijn et al., 2010). Heim et al. (2015) demonstrated that larval
development could be arrested in vitro with the lectin Marasmius
oreades agglutinin (MOA), that specifically binds to Gal(α1-3)
GalNAc. Larvae exposed to the lectin presented severe malforma-
tions in body shape and died quickly, indicating a potential appli-
cation of MOA for novel chemotherapeutic strategies (Heim et al.,
2015). A galactose-containing glycoprotein complex (H-gal-GP),
purified from the gut membrane of Haemonchus, inspired
many studies on vaccination, leading to the first commercial vac-
cine available to protect sheep against the Barber’s pole worm
(Kearney et al., 2016). The success of this vaccine is possibly
related to the fact that they use a native H-gal-GP purified from
worms recovered from naturally infected sheep, rather than a
recombinant protein. Although successful, this native vaccine
emphasizes a major limitation in vaccinology, namely, the diffi-
culties in producing recombinant glycoproteins that preserving
the glycan configuration of the native antigens.

Angiostrongylus cantonensis

Angiostrongylus cantonensis (Nematoda: Secernentea:
Metastrongylidae) is the main causative agent of eosinophilic
meningoencephalitis in humans in many parts of the world
(Morassutti et al., 2012). The glycan repertoire of A. cantonensis
female worms includes complex (Fuc0–1Hex3–5HexNAc3–5),
high mannose (Hex5–7HexNAc2) and truncated structures
(Fuc0–1Hex3HexNAc2) N-glycans, while O-glycans were not iden-
tified in any analyses performed so far (Veríssimo et al., 2016).
Glycans with terminal containing galactose (Gal) and GalNAc
are not commonly observed among nematode parasites and further
investigations of the glycan repertoire of Angiostrongylus parasites
will help to determine if such moieties identified by Veríssimo
et al., are indeed produced by the parasite or a result of cross-
contamination with host molecules.

Behn (1997) proposed that glycans play a central role in
Angiostrongylus biology considering their involvement with
mechanisms of parasite adaptability to different temperatures of
its two hosts, which vary from 36–38 °C in the mammal hosts
and from 20–28 °C in mollusc hosts. Behn further proposed
that a trehalose residue would promote such thermal tolerance,
even though this carbohydrate has never been identified in the
extracts of this parasite. While such role of trehalose is doubtful
in the case of A. cantonensis, it is evident that other nematodes
use trehalose for thermotolerance, among them the sealworm
Pseudoterranova decipiens (Nematoda: Anisakidae), a parasite
infecting animals in cold marine waters (Stormo et al., 2009).

The immunogenicity of A. cantonensis glycans, however, is
better demonstrated. Such molecules boost specific anti-glycan
antibodies, observed when sera of individuals infected to the
Angiostrongylus were tested with the 31 kDa antigen, a complex
antigen containing N-glycosylated glycoproteins (Veríssimo
et al., 2016). Initially, Morassutti et al. (2012) demonstrated the
importance of the glycan portion of the antigen by treating it
with meta-periodate, which resulted in an abrogated immune rec-
ognition of the 31 kDa spots by sera from infected patients.
Further, Veríssimo et al. (2016) confirmed that N-glycans asso-
ciated with the 31 kDa antigen were the protagonists of this
immune response by treating the antigen with the N-glycosidase
PNGase F, which removed the carbohydrate moieties.
Additionally, heterologous expression of the 31 kDa antigen in
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different prokaryotic or eukaryotic systems failed to produce an
immunogenic recombinant protein (Morassutti et al., 2012).

Glycoconjugates in helminth parasites: phylum
Platyhelminthes

Echinococcus
Echinococcus (Platyhelminthes: Cestoda: Taeniidae) is a genus of
taeniid tapeworm. Two species (or species complex) are primarily
responsible for human echinococcosis, E. granulosus and E. multi-
locularis. The species cause unilocular and alveolar echinococcosis
which are characterized by the presence of cystic lesions contain-
ing the infectious protoscoleces. Infection of the intermediate
host, a mammal, occurs by the ingestion of eggs that were released
with the feces of the canid definitive host.

The hydatid cyst wall of E. granulosus is formed of three layers,
the outer pericyst, the middle-laminated layer and the inner ger-
minal layer. The last layer produces the abundant brood capsules
which in turn produce multiple protoscoleces. The crude antigen
of the hydatid cyst administered at different stages prevents DCs
from maturing. The inhibitory effect of the antigen operates
through inhibition of CD1a and enhancement of CD86 expres-
sion. Furthermore, crude antigen stimulates IL-4 production dur-
ing antigen presentation by mature DCs, which suggests that E.
granulosus stimulates Th2 pattern responses (Rigano et al., 2007).

The laminated layer of E. granulosus is a mucin-rich extracellu-
lar matrix composed primarily of O-glycan core 1
(Galβ1-3GalNAc), also known as T antigen, and core 2 [Galβ1-3
(GlcNAcβ1-6) GalNAc] the Tn antigen (Díaz et al., 2009). The
Galβ1-3 residue of core 1 can be decorated with additional
Galβ1-3 residues, generating a linear chain (Galβ1-3Galβ1-
3GalNAc), and the elongation of mucin glycans with Galβ1-3 dis-
tinguishes E. multilocularis from E. granulosus (del Puerto et al.,
2016). Other structures extended with Galβ1-4 are also present,
although complex glycans are much less abundant than those con-
taining a non-decorated core (Díaz et al., 2009).

Khoo et al. (1997) analysed the glycan composition of E. gran-
ulosus antigen 5 (Ag5) and found small amounts of high mannose
and truncated glycan structures. Subsequent analysis of the same
antigen by Paschinger et al. (2012), identified a range of other
N-glycans, among them a moiety containing two antennae with
a core of α1,6-fucose and capped by PC. The identification of
these additional glycans demonstrated that the permethylation
step used by Khoo et al. (1997) impairs the detection of PC
temini. Other important glycoconjugates have been identified in
extracts of Echinococcus. Among these molecules, the
O-glycosylated Tn antigen from E. granulosus protoscoleces has
been proposed as a biomarker of hydatidoses, since high levels
of this antigen are detected in sera from infected patients
(Alvarez-Errico et al., 2001). A synthetic form of Em2(11), the
main glycan antigen isolated from the laminated layer of E. multi-
locularis hydatid cysts, showed high sensitivity and specificity
when applied on diagnostic tests (Koizumi et al., 2011).
Together these results reinforce the view that the characterization
of glycan produced by different organisms is necessary to improve
diagnostic specificity. The benefits of glycan analysis include, for
example, our current comprehension of the cross-reactivity com-
monly observed in diagnostic tests using sera from E. multilocu-
laris, E. granulosus or F. hepatica infected patients, which is
now attributed to the glycan moiety, Galβ1-6Gal, attached to
molecules produced by all these parasites (Yamano et al., 2009).

Taenia
Taenia (Platyhelminthes: Cestoda: Taeniidae) is a genus of tape-
worms infecting humans and some carnivores. Humans serve as
definitive host of two species, T. solium and T. saginata, where

intestinal infection by the adult parasite results in taeniasis.
Additionally, humans can become infected by ingesting the
eggs, commonly of T. solium and rarely of T. crassiceps. In this
case, the host will develop cysticercosis in the tissues, specifically
in the central nervous system (Hawk et al., 2005).

Different species of Taenia express a species-specific glycan
profile. N-glycans containing high mannose and truncated struc-
tures were found attached to glycoproteins secreted by T. solium
(Haslam et al., 2003), whereas T. crassiceps, produces N-glycans
with fucose terminals (Lee et al., 2005). Taenia crassiceps carbohy-
drates play key roles in host immune evasion, either by stimulat-
ing Th2 polarization (Gomez-Garcia et al., 2006) or by inducing
myeloid-suppressor innate cells (Gomez-Garcia et al., 2005).
Several experiments using metaperiodate helped to show that
only intact glycosylated antigens can induce Th2 responses and
other immunomodulatory effects such as higher expression of
MHC-II. DC exposure to Taenia glycans resulted in abrogated
response to TLR ligands, inhibition of IL-15, IL-12 and TNF-α
secretion, and downregulation of a chemokine receptor (CCR7)
that impairs DC migration (Montero-Barrera et al., 2015).

MGL1, a lectin receptor expressed on the surface of APCs,
such as mature DC and macrophages, recognizes antigens such
as Lex and other motifs containing galactose residues. MGL1 is
directly involved with activation of innate immunity, antigen rec-
ognition and resistance to T. crassiceps infection. Animals with
deficiency of MGL1 receptors are more susceptible to cysticercosis
(Montero-Barrera et al., 2015), indicating that glycans recognized
by MGL1 are important for parasite survival in the host.

Schistosoma
Species of Schistosoma (Platyhelminthes: Trematoda:
Schistosomatidae) are blood flukes that cause hepato-intestinal
and genitourinary diseases. Glycans from schistosomes are widely
studied. In every stage of their life cycles, schistosomes synthesize
various glycan motifs containing LDN or its fucosylated form,
LDNF (Hokke et al., 2007). LDN/LDNF containing glycans are
commonly attached to glycoproteins and glycolipids and are con-
sidered elementary molecules, since they form a base for further
modification into more complex glycans (Khoo et al., 1995;
Wuhrer et al., 2006; Jang-Lee et al., 2007). Truncated mannose
moieties also often occur, but with uncommon modifications,
mainly those containing core α(1-3)-fucose and β(1-2)-xylose,
similar to those found in plants and insects (van Die et al.,
1999; van Die and Cummings, 2006). Several glycan moieties
were identified in schistosome extracts, among them the Lex,
poly-Lex, LacdiNAc (LDN), LDN fucosylated (LDNF, LDN-diF
and FLDN), lacto-N-fucopentaose-III (LNFP-III), N-glycans con-
taining β(1-2)-xylose, N-glycans containing core α(1-3)-fucose,
circulatory antigens (CCA and CAA) and the T and Tn types
(Cummings and Nyame, 1999; Kantelhardt et al., 2002).

Schistosome glycans are differentially expressed throughout
the various life cycle stages. The Lex motif is identified throughout
all schistosome developmental stages. N-glycans containing LeX

and xylose, as well as complex O-glycans, rapidly disappear
after cercarial transformation to schistosomula, the migratory
larva, whereas LDN-motifs are predominant in adult worms
(Smit et al., 2015).

Schistosome females lay hundreds of eggs per day in their
mammal hosts. The eggs, which embryonate within the host,
are largely responsible for the pathogenicity and are central
with respect to diagnosis. Therefore, a full understanding of the
molecular composition of eggs through development, including
their glycan profile, is key to creating efficient alternatives of diag-
nosis and perhaps of disease amelioration. Immature eggs only
present short O-glycan cores, while fully developed eggs express
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several complex N- and O-glycans containing LeX and multi-
fucosylated LDN motifs.

Mature eggs secrete a complex set of proteins that may interact
with the host immune system in order to help them to reach the
intestine (Chuah et al., 2013). The importance of the immune
response generated by eggs was confirmed by evaluating HIV
positive patients co-infected with either S. mansoni or S. haema-
tobium. In these patients, the egg excretion from the host, number
of eggs per gram of feces, is significantly impaired due to the
depleted immune response (N’Zoukoudi-N’Doundou et al.,
1995; Karanja et al., 1997; Mwanakasale et al., 2003).

Soluble egg antigen (SEA), a crude extract of eggs used as a
proxy for excreted/secreted components, is widely used for studies
exploring diagnosis, immunomodulation and pathogenesis of
schistosomiasis (Caldas et al., 2008). SEA contains, among
other proteins the glycoproteins, IL-4-inducing principle (IPSE/
α-1) and the T2 ribonuclease Omega-1 glycoproteins. Both glyco-
proteins contain N- and O-glycan able to stimulate and modulate
the host immune system (Abdulla et al., 2011; Ferguson et al.,
2015). Glycoproteins from SEA often present terminals that are
multi-fucosylated with α(1-3) and α(1-6)-linked fucose,
N-glycans containing xylose, LDN, LDNF and Lex (Khoo et al.,
1997; Jacobs et al., 1999; Nyame et al., 2002). When SEA compo-
nents interact with DCs, different effects are observed: (1) a Th2
type response, caused by increased the expression of co-stimulatory
molecules and cytokines; (2) a Th1 response, caused by upregulated
IL-12 production; or (3) a suppression of immune inflammatory
events through TRL ligand-induction that stimulates DC matur-
ation or activation (Kane et al., 2004; 2008; Kariuki et al., 2008;
Everts et al., 2009). In addition, glycoconjugates containing
LNFP, a component of SEA, alone can drive a Th2 response, by
inducing DCs in a TLR4-dependent manner (Thomas et al.,
2003). Interestingly, experimental immunization of mice with
Schistosoma eggs (Kariuki et al., 2008) or derived glycoconjugates
generated a non-protective immune response, making some
argue that the eggs-derived glycans are actually diverting the host
immune response and therefore would not be useful for vaccine
formulation (Eberl et al., 2001).

The glycan motif DF-LDN-DF so far has been found only in S.
mansoni and S. japonicum and, therefore, became a promising
diagnostic target (Khoo et al., 1997; Peterson et al., 2009). This
motif is recognized by the monoclonal antibody 114-4D12,
which was then used to identify DF-LDN-DF in eggs extract,
and also used in a sandwich ELISA to capture the glycan in
blood and urine samples (Robijn et al., 2007). Other fucosylated
antigens isolated from cercariae were shown to elicit specific
IgM and IgG antibodies that recognize structures such as LDN,
LDNF, Lex, F-LDN and LDN-diF, which are fucosylated antigens
considered potential diagnostic targets (Nyame et al., 2003;
Vermeer et al., 2003).

Since the 1980s, Schistosoma gut-secreted glycosylated anti-
gens, known as circulating cathodic antigen (CCA) and circulat-
ing anodic antigen (CAA), have been proposed as diagnostic
targets for schistosomiasis (Deelder et al., 1980). Glycan analysis
of CCA revealed an exclusive O-glycosylation moiety formed
by LeX repeating units linked to the protein. Because of the pres-
ence of LeX in human circulating neutrophils, it was suggested
that the antigenic CCA poly-LeX might be involved in immuno-
modulation of granulocytes during schistosome infection (van
Dam et al., 1994). In 2004, Van Dam and collaborators reported
on a Reagent Strip Test they had developed. The strip containing
labelled monoclonal antibody specific for detection of
Schistosoma CCA in the urine. The authors used the strips to
evaluate a group of infected school children in Tanzania and
the results were compared with direct egg counts in feces by
Kato-Katz. Determination of CCA and CAA levels in sera and

CCA in urine by ELISA showed sufficient sensitivity and specifi-
city to be applied in the field as a non-invasive and rapid test (van
Dam et al., 2004). More recent studies have shown that the sen-
sitivity of the CCA assay ranges from 65 to 100%, largely depend-
ing on the intensity of infection of the population evaluated
(Stothard et al., 2006; Colley et al., 2013). The commercially avail-
able point-of-care urine dipstick test POC-CCA is now receiving
great attention for field studies (Corstjens et al., 2014; Casacuberta
et al., 2016; Lindholz et al., 2018) and thought to possibly replace
Kato-Katz in epidemiological studies.

Fasciola species

Fasciola hepatica and F. gigantica (Platyhelminthes: Trematoda;
Fasciolidae), the liver fluke of ruminants and humans, are listed
among the neglected tropical diseases. Fascioliasis has a major
impact on livestock production. With respect to human health,
fascioliasis is now estimated to infect over 1 million people,
with 17 million people are at risk of infection (Ravida et al., 2016).

Initial analyses of the F. hepatica glycan repertoire revealed
structures containing Tn antigen, mannose and glucose residues,
Gal(β1-6)Gal-terminating glycolipids and truncated N-glycans,
followed by N-glycans containing oligomannose and some that
are core-fucosylated (Freire et al., 2003; Wuhrer et al., 2004;
Georgieva et al., 2012; Garcia-Campos et al., 2016). These glycans
were identified mainly in the miracidium, on the tegument of
newly excysted juvenile, and on the surface of the oral and ventral
suckers and the gut of adult flukes. Ravidà et al. (2016) showed
that tegument of Fasciola contains complex N-glycans, some of
which are phosphorylated. F. hepatica is well known for inducing
a strong Th2/Treg response in its hosts. Glycans might contribute
to this bias, since many, including phosphorylated oligosacchar-
ides, associate with proteins in the tegument, and may interact
with lectin receptors in APCs cells. Indeed, it was demonstrated
that oligomannose motifs of Fasciola specifically interact with
C-type lectin receptors resulting in increased IL-4 and IL-10 pro-
duction and suppression of IFN-γ (Rodríguez et al., 2015).

Discussion

The glycan profile expressed by different parasites dictates the way
these organisms interact with their hosts. Several studies have
demonstrated that glycans, as opposed to the protein backbone
to which they attach, are often the main stimulating agent of
the host’s immune system during parasitism. Indeed, glycan
molecules have been implicated in the antibody response during
malaria, amoebiasis, trypanosomiasis, leishmaniasis, schistosom-
iasis, filariasis, angiostrongyliasis, cysticercosis and hydatidosis
(Norden and Strand, 1985; Cummings and Nyame, 1996; 1999;
Eberl et al., 2001; Hokke and Deelder, 2001; Morassutti et al.,
2012; Montero-Barrera et al., 2015; del Puerto et al., 2016;
Veríssimo et al., 2016).

The literature related to glycans derived from parasites so far
reflects the potential application of glycans for the development
of immunological tests or vaccines, and also the necessity to
improve the production of recombinant antigenic glycoproteins.
The expression systems used most often are peptide-based, built
around prokaryotic plasmids cloned into prokaryotes that are
incapable of producing eukaryotic glycan modifications (Dell
et al., 1999). Furthermore, the general similarities among glycans
produced by different parasites, and their hosts, represent an even
bigger challenge for the development and application of such
molecules in specific diagnosis (van Die and Cummings, 2010).
Any immunological reagent based on glycans have to take this
into consideration and must be validated extensively to ensure
that it is not a cross-reactive antigen.
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In past years, deep exploration of glycan molecules has
resulted in advances in the development of diagnosis, vaccines
and drugs. Important diseases, such as neurocysticercosis, now
have an alternative and better diagnosis as a result of glycan
research (Nunes et al., 2013). In this review, we discussed the
involvement of glycans in important processes of recognition
and interactions with hosts, which potentially can allow wider
comprehension of the host–parasite relationship and important
aspects of infection, including the preference for certain hosts.
In this last aspect, there is evidence that glycans can be important
determinants of host-specificity. For example, the pattern of gly-
cosylation of the glycoproteins present in the haemolymph of dif-
ferent strains of Biomphalaria glabrata, the intermediate host of S.
mansoni, revealed that those strains expressing higher amounts of
fucosylated glycan moieties have a higher susceptibility to S. man-
soni infection (Lehr et al., 2010). Further understanding of these
interactions, may result in a successful strategy for control of para-
site through transmission blocking.

In this review, we also highlighted how parasitic glycans are
being considered in the context of vaccine development.
Currently, carbohydrate-based vaccines are thought to be a decisive
strategy to improve vaccination, which is reinforced by the success
of vaccines based on capsular polysaccharides to combat different
bacterial infections (Roggelin et al., 2015; Gala et al., 2016). The
detection and characterization of glycans or glycoconjugates are
becoming more feasible since new tools and resources are con-
stantly emerging, including genomes and transcriptomes of various
parasites as well as array-based techniques. These tools open up the
possibility of predicting not only a specific glycan but the whole
potential glycan metabolism of an organism, from monosacchar-
ides transporters and nucleotide sugar biosynthesis pathways to
probable glycan chain extensions of N- and O-glycans. Although
still limited, since only enzymes with human homologues can be
predicted, such determinations followed by more functional ana-
lyses of enzymes can lead to implementation of new recombinant
systems to produce specific glycans (Prasanphanich et al., 2014),
and to the development of new drugs and vaccines (Mickum
et al., 2014).

In an example of the applicability of genomic prediction,
Peterson et al. (2013) used a genome-wide homology-based bio-
informatics approach to identify α3- and α6-fucosyltransferases
(FucTs) genes that contribute to the production of fucosylated
glycans in S. mansoni revealing information regarding the gen-
omic organization, genetic variation and stage expression of
these enzymes. Moreover, difficulties with the isolation and/or
recombinant production of specific glycans can now be overcome
using strategies of chemical synthesis of these molecules, which
for instance have revolutionized the development of vaccines as
mentioned for T. spiralis, Echinococcus, Schistosoma and P. falcip-
arum. The last of these may result in the first glycan-based vac-
cine to combat a parasitic infection. Altogether, these data
demonstrate the wide application of discoveries in glycobiology
and inspire further research in this field.

Conclusions

Parasites are covered by or secrete distinct glycoconjugates that
have been experimentally shown to help with the parasite’s sur-
vival and propagation. The improvement of methods related to
glycan analysis has opened a completely new field to be exploited.
In recent years, the glycan profiles of several parasites have been
characterized, giving us knowledge of the range of carbohydrates
produced by different organisms. In fact, these molecules were
shown to vary from complex to simple structures, and their
expression might change with parasite genus, species and even
strains and developmental stage, highlighting the numerous

applications these molecules could have in strategies to control
parasitic infections.

However, the general similarities among glycans produced by
different parasites, and their hosts, represent a challenge for the
development of specific diagnoses, as these molecules seem to
haunt immunological tests through cross-reactivity that lead to
false positive reactions. Forthcoming investigations and develop-
ment of more advanced technologies for glycan analyses should
permit us to deal with the cross-reactivity problem and uncover
the machinery behind glycan biosynthesis and allow large scale
production of them to fight against a wide range of diseases
including parasitic infections.
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