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SUMMARY
The inverse dynamics model of a novel (3-UPU)+(3-UPS+S) serial–parallel manipulator (S-PM)
formed by a 3-UPU PM and a 3-UPS+S PM connected in serial is studied in this paper. First, the
inverse position, velocity, and acceleration of this S-PM are studied systematically. Second, the
velocity mapping relations between each component and the terminal platform of (3-UPU)+(3-
UPS+S) S-PM are derived. Third, the dynamics model of the whole (3-UPU)+(3-UPS+S) S-PM
is established by means of the principle of virtual work. The process for establishing the dynamics
model of this S-PM is fit for other S-PMs.

KEYWORDS: Dynamics; Kinematics; Serial-parallel manipulators.

1. Introduction
In recent years, some serial–parallel manipulators (S-PMs) have attracted much attention in the
field of robotics.1–13 This class of manipulators is composed of several parallel manipulators (PMs)
connected in serial. Thus, the S-PMs have higher stiffness than serial manipulators (SMs) and a larger
workspace than PMs. In this aspect, Tanio2 presented an S-PM composed of two serially connected
PMs and gave its closed-form solution for the position problem using a vector approach. Romdhane3

designed and analyzed a hybrid S-PM formed by a pure translational PM which has a PPP-type
passive leg and a pure rotational PM which has an S-type passive leg, and used Euler angles to
analyze the direct position problem. Zheng et al.4 studied the kinematics of a hybrid S-PM formed by
a pure translational 3-UPU PM and a pure rotational 3-UPU PM by using quaternions. Lu and Hu5–7

studied the kinematics, statics, and stiffness for several S-PMs formed by two PMs and extended their
research to the S-PMs formed by an optional number of PMs connected in serial. Gallardo-Alvarado
et al.8,9 studied the kinematics and dynamics of this class of manipulators via screw theory and the
principle of virtual work. Liang and Ceccarelli10,11 designed and analyzed this class of S-PMs used
as a waist–trunk system for a humanoid robot.

Dynamics is an important topic in mechanism theory. For the dynamics modeling, the most
commonly used approaches are the Newton–Euler method,12,13 the Lagrange formulation,14,15 and
the principle of virtual work.16,17 The Newton–Euler method uses the free body diagrams of the rigid
bodies. This method is comprehensive in that a complete solution for all the forces and kinematic
variables can be obtained. However, since this method needs to solve all the internal reactions of
the manipulators, it leads to large computations. In this aspect, Dasgupta12 derived a closed-form
dynamics model for the Stewart platform manipulator considering all dynamic and gravity effects.
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Ji13 studied the influence of the leg inertia on the dynamics model of the Stewart platform. The
Lagrangian formulation is a very useful method for solving the inverse dynamics of manipulators.
This method describes the dynamics of a mechanical system from the concept of work and energy with
the adoption of a generalized coordinate framework. The dynamics formula has well analytical and
orderly structure and thus has advantages for control. In this aspect, Lee et al.14 derived the equations
of dynamics formulated in joint-space using the Lagrangian formulation. Abdellatif et al.15 presented
a computational highly efficient method to derive explicit equations of dynamics of a 6-degree of
freedom (DOF) PM using the Lagrangian formulation. The principle of virtual work is considered as
a simple approach for mechanism dynamics. Based on the principle of virtual work, the constraint
wrenches of the manipulators have been eliminated from the formulation. This allows us to reduce the
complexity of the inverse dynamics. In this aspect, Gosselin,16 Tsai17 studied the inverse dynamics
of the Stewart–Gough PM using the principle of virtual work, respectively. In addition, some other
methods have also been suggested in dynamics analysis of manipulators including the screw theory,18

the recursive matrix method,19 Kane equation,20 and the influence coefficient method.21

Although some efforts have been spent on S-PMs,2–11 the architectures of this class of manipulators
are very limited. For this reason, this paper presents a novel (3-UPU)+(3-UPS+S) S-PM. The lower
PM of this S-PM adopts a 3-DOF 3-UPU PM with three translations, which has some potential
advantages in pure translational PM family.22 The upper PM of this S-PM adopts a 3-DOF 3-UPS+S
PM with three rotations, which has a passive leg and thus can greatly enhance the stiffness. As the
pure translational and pure rotational motions are completely determined by the lower and upper PMs
respectively, the S-PM can be controlled easily to achieve its translations and rotations compared with
the general 6-DOF S-PMs. This manipulator has some potential applications for the robot arms, the
machine tools, the surgical manipulators, the tunnel borers, and the satellite surveillance platform.

Due to the complicated couplings and various constraints in structure for S-PMs, solving the inverse
kinematics and dynamics is a challenging work. The previous research for such manipulators mainly
focused on the forward kinematics based on the principle of motional superposition of the lower and
upper PMs. However, there are few efforts made towards the inverse kinematics and dynamics of S-
PMs.2–11 Because of their highly nonlinear relations between joint variables and position/orientation
of the end effectors for the S-PMs, solving the inverse dynamics based on Newton–Euler method
or Lagrange formulation involves large computations. Inversely, the principle of virtual work can
eliminate the constraint wrenches and reduce the complexity effectively. For this reason, this paper
focuses on establishing the dynamics of the novel (3-UPU)+(3-UPS+S) S-PM using the principle
of virtual work. The method used in this paper can be used to guide the dynamics modeling for other
S-PMs.

2. Inverse Kinematics of the (3-UPU)+(3-UPS+S) S-PM

2.1. Description of the (3-UPU)+(3-UPS+S) S-PM
The architecture of (3-UPU)+(3-UPS+S) S-PM is shown in Fig. 1, which is composed of a lower
3-UPU PM and an upper 3-UPS+S PM. Let the PMs from the bottom to top be the ith (i = 1, 2) PM.
Let rij be the jth leg of ith PM. Let Rijk (i = 1, 2; j = 1, 2, 3) be the kth R joint of the jth leg for the
ith PM. Let ⊥ be a perpendicular constraint and ‖ be a parallel constraint, respectively.

The lower 3-UPU PM is an unsymmetrical PM with 3 translational DOFs. It includes a lower
platform A, an upper platform B and three UPU active leg r1j (j = 1, 2, 3) with linear actuators. Each
UPU-type leg connects A with B by a U joint at Ai , a prismatic joint P along r1j , and a U joint at Bi .
The U joint is comprised of two intercrossed revolute joints R1j1 and R1j2 (j = 1, 3).

For the 3-UPU PM, the first and the third legs are two symmetrical legs. The geometrical constraints
for the two legs can be expressed as following:

R1j1⊥A, R1j1⊥R1j2, R1j2||R1j3, R1j3⊥R1j4, R1j4⊥B (j = 1, 3) (1a)

The geometrical constraints for the unsymmetrical UPU-type leg can be expressed as following:

R121⊥A1A3, R122||R123, R121⊥r12, R123⊥R124, R124⊥B1B3 (1b)
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Fig. 1. CAD model of (3-UPU)+(3-UPS+S) PM.

The upper 3-UPS+S PM is composed of a lower platform C, an upper platform D, three UPS-
type active legs r2j (j = 1, 2, 3) with linear actuators, and one S-type constrained leg ro. Each
UPS-type leg connects C with D by a U joint at Ci , a prismatic joint P along r2j, and an S joint
at Di . The S-type constrained leg ro connects C with D by an S joint on C at oc, a rigid rod
perpendicularly fixed to D at od . For this PM, the geometrical constraints can be expressed as
following:

ro⊥D (1c)

The four platforms A, B, C, and D are regular triangles with three vertices Ai, Bi, Ci, Di (i = 1, 2,
3) and one center point oa, ob, oc, od , respectively. B and C are fixed connected and have an angle of
60 degrees between them.

2.2. Inverse position kinematics of (3-UPU)+(3-UPS+S) S-PM
The inverse position kinematics of (3-UPU)+(3-UPS+S) S-PM solves the actuated variables from a
given position and orientation in a given pose.

Let {A}, {B}, {C}, and {D} be the coordinate systems at the center oa, ob, oc, and
od with xN, yN , and zN (N = A, B, C, D) are three orthogonal coordinate axes and
some constraints (xN ||N1N3, yN⊥N1N3, zN⊥N) are satisfied. Then {A} and {D} are the base
coordinate system and terminal coordinate system for the whole (3-UPU)+(3-UPS+S) S-PM,
respectively.

Let M Q,M vQ,M aQ be the position, velocity, and acceleration vectors of the point Q expressed in
the coordinate systems {M}(M = A, B, C, D), respectively. Let M

N R, M
N ω, and M

N ε be the rotational
matrix, angular velocity, and angular acceleration of {N} (N = A, B, C, D) relative to {M}.

The position vector of Aj (j = 1, 2, 3) in {A} can be expressed as follows:

A A1 = E1

2

⎛
⎝ q

−1
0

⎞
⎠ , A A2 =

⎛
⎝ 0

E1

0

⎞
⎠ , A A3 = −E1

2

⎛
⎝q

1
0

⎞
⎠ , q =

√
3. (2a)
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The position vector of Cj (j = 1, 2, 3) in {C} can be expressed as follows:

CC1 = E2

2

⎛
⎝ q

−1
0

⎞
⎠ , CC2 =

⎛
⎝ 0

E2

0

⎞
⎠ , CC3 = −E2

2

⎛
⎝q

1
0

⎞
⎠ , q =

√
3, (2b)

where E1 denotes the distance from oa to Aj and E2 denotes the distance from oc to Cj .
The position vector of Bj (j = 1, 2, 3) in {B} can be expressed as follows:

B B = e1

2

⎛
⎝ q

−1
0

⎞
⎠ , B B2 =

⎛
⎝ 0

e1

0

⎞
⎠ , B B3 = −e1

2

⎛
⎝q

1
0

⎞
⎠ , q =

√
3. (2c)

The position vector of Dj (j = 1, 2, 3) in {D} can be expressed as follows:

D D1 = e2

2

⎛
⎝ q

−1
0

⎞
⎠ , DD2 =

⎛
⎝ 0

e2

0

⎞
⎠ , DD3 = −e2

2

⎛
⎝q

1
0

⎞
⎠ , q =

√
3, (2d)

where e1 denotes the distance from ob to Bi and e2 denotes the distance from od to Di .
The position vector of Bj (j = 1, 2, 3) in {A} can be expressed as following:

A Bj = A
B RB Bj +A ob. (3a)

The position vector of Dj (j = 1, 2, 3) in {C} can be expressed as following:

C Di = C
D RD Dj +C od . (3b)

The position vector of Cj (j = 1, 2, 3) in {B} can be expressed as following:

B Cj = B
C RB Bj . (4a)

The rotational transformation matrix A
CR can be expressed as following:

A
C R = A

B RB
C R. (4b)

The rotational transformation matrix A
DR can be expressed as following:

A
D R = A

B RB
C RC

D R. (4c)

B and C have an angle of 60 degrees between them, which leads to

B
CR = 1

2

⎡
⎣ 1 −q 0

q 1 0
0 0 1

⎤
⎦ (4d)

As ro⊥D, the position vector of the center of the terminal platform od can be expressed as follows:

Aod = Aoc + ro, ro = rA
o zD, (5a)

Aoc = Aod − rA
o zD. (5b)

Here, ro and ro denote the length and the vector of constrained leg respectively for the 3-UPS+S
PM, AzD is the third column vector of A

D R. When Aod and A
D R are given, Aoc can be solved from Eq.

(5b) directly.
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As B and C are fixed connected with their centers kept coincidence, it leads to

Aob = Aoc. (6a)

As the lower PM has no rotations, it leads to

A
BR = A

CR = E3×3 =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ . (6b)

The position vectors of the vertices for each platform in {A} can be expressed as follows:

A Bj = Aob + A
B RB Bj ,

ACj = Aob + A
C RCCj ,

A Dj = Aod + A
D RDDj . (7)

The length of rij (i = 1, 2; j = 1, 2, 3) can be solved as follows:

r1j = ∣∣A Bj −A Aj

∣∣ . (8a)

r2j = ∣∣A Dj −A Cj

∣∣ . (8b)

When the position and orientation of the terminal platform are given, the position vector of the
vertices for each platform can be solved from Eqs. (5)–(7), and the inverse kinematics of (3-UPU)+(3-
UPS+S) S-PM can be solved from Eqs. (8a) and (8b), subsequently.

2.3. Inverse velocity of (3-UPU)+(3-UPS+S) S-PM
The inverse velocity analysis of the (3-UPU)+(3-UPS+S) S-PM is to determine the required velocities
of actuators from a given velocity of the terminal platform in a given pose.

Let t = [tx tytz]T , s = [sxsysz]T be two arbitrary vectors, t̂ be a skew-symmetric matrix. There
must be

t̂ =
⎡
⎣ 0 −tz ty

tz 0 −tx
−ty tx 0

⎤
⎦ , t̂ = − t̂T , t × s = t̂ s. (9)

Let vrij
, arij

be the velocity and acceleration along rij , ωrij
be the angular vector of rij .

By differentiating both sides of Eq. (5a) with respect to time, it leads to

Avod
= Avoc

+A
D ω × Aro. (10a)

The velocity of oc can be expressed as following:

Avoc
= Avod

−A
D ω × Aro. (10b)

As B and C are fixed connected with their centers kept coincidence, it leads to

Avob
= Avoc

. (11a)

As the lower PM has no rotations, it leads to

A
Bω = 03×1, (11b)

AvBj
= AvCj = Avob

= Avoc
. (11c)
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From Eqs. (10b) and (11c), the velocity of r1j (j = 1, 2, 3) for the 3-UPU PM can be derived as
following:

vr1j
= AvBj

· Aδ1j = (Avod
−A

D ω × Aro) · Aδ1j = [
AδT

1j (Aδ1j × Aro)T
] [

Avod
A
Dω

]
,

Aδ1j =
A Bj −A Aj∣∣A Bj −A Aj

∣∣ . (12)

The velocity of vertices Dj can be expressed as following:

AvDj
= Avod

+A
D ω × Ae2j ,

Ae2j =A Dj −A od . (13)

From Eqs. (10b), (11c), and (13), the velocity of r2j (j = 1, 2, 3) can be derived as
following:

vr2j
= (AvDj

− AvCj ) · Aδ2j = [
OT

3×1 (Ae2j + Aro)T × AδT
2j

] [
Avod
A
Dω

]
, Aδ2j =

A Dj −A Cj∣∣A Dj −A Cj

∣∣ .
(14)

From Eqs. (12) and (14), it leads to

V r = J
[

Avod
A
Dω

]
, J =

⎡
⎢⎢⎢⎢⎢⎢⎣

AδT
11 (Aδ11 × Aro)T

AδT
12 (Aδ12 × Aro)T

AδT
13 (Aδ13 × Aro)T

OT
3×1 (Ae21 + Aro)T × AδT

21
OT

3×1 (Ae22 + Aro)T × AδT
22

OT
3×1 (Ae23 + Aro)T × AδT

23

⎤
⎥⎥⎥⎥⎥⎥⎦

, V r =

⎡
⎢⎢⎢⎢⎢⎣

vr11

vr12

vr13

vr21

vr22

vr23

⎤
⎥⎥⎥⎥⎥⎦ , (15)

where J is the Jacobian for (3-UPU)+(3-UPS+S) S-PM.

2.4. Inverse acceleration of (3-UPU)+(3-UPS+S) S-PM
The inverse acceleration analysis of the (3-UPU)+(3-UPS+S) S-PM is to determine the required
accelerations of actuators from a given velocity/acceleration of the terminal platform in a given
pose.

By differentiating both sides of Eq. (12) with respect to time, it leads to

ar1j
= AaBj

· Aδ1j + AvBj
· Aδ̇1j = AaBj

· Aδ1j + AvBj
· (Aωr1j

× Aδ1j ), (16a)

where AaBj
= Aaod

−A
D ε × Aro −A

D ω × (ADω × Aro).
By differentiating both sides of Eq. (14) with respect to time, it leads to

ar2j
= (AvDj

− AvCj ) · Aδ̇2j + (AaDj
− AaCj ) · Aδ2j

= (AvDj
− AvCj ) · (Aωr2j

× Aδ2j ) + (AaDj
− AaCj ) · Aδ2j , (16b)

where AaDj
= Aaod

+A
D ε × e2j +A

D ω × (ADω × e2j ),AaCj = AaBj
.

In Eqs. (16a) and (16b), Aωr1j
and Aωr2j

are two unknowns, which are frequently used in the
dynamics model. In what follows, Aωr1j

and Aωr2j
will be solved in the compact form.
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The angular velocity ωr1j
of r1j for the lower 3-UPU PM can be expressed as following:

Aωr1j
= θ̇A

1j1 R1j1 + θ̇A
1j2 R1j2. (17a)

Here, θ̇1j1 and θ̇1j2 denote the angular velocity of Rj1 and Rj2, respectively.
Cross-multiplying both sides of Eq. (17a) by r1j yields

θ̇A
1j1 R1j1 ×A r1j + θ̇A

1j2 R1j2 ×A r1j =A ωr1j ×A r1j

=A vBj − vA
r1jδ1j = −Aδ̂

2A

1j vob +A δ̂
2A

i êA
1jBω, Ar1j =A Bj −A Aj . (17b)

Dot-multiplying both sides of Eq. (17b) by R2i , it leads to

θ̇1j1(A R1j1 ×A r1j ) ·A R1j2 =A RT
1j2(AvBj − vA

r1jδ1j ) =A RT
1j2(−Aδ̂

2A

1j vob +A δ̂
2A

1j êA
1jBω). (18a)

Dot-multiplying both sides of Eq. (17b) by R1i , it leads to

θ̇1j2(R1j2 ×A r1j ) · R1j1 =A RT
1j1(AvBj − vA

r1jδ1j ) = RT
1j1(−Aδ̂

2A

1j vob +A δ̂
2A

1j êA
1jBω). (18b)

From Eqs. (18a) and (18b), it leads to

θ̇1j1 = (AvBj − vA
r1jδ1j ) ·A R1j2

(A R1j1 ×A R1j2) ·A r1j

= (Aδ̂
2A

1j vob −A δ̂
2A

1j êA
1jBω) ·A R1j2

(A R1j1 ×A R1j2) ·A r1j

,

(19)

θ̇1j2 = − (AvBj − vA
r1jδ1j ) ·A R1j1

(A R1j1 ×A R1j2) ·A r1j

= − (Aδ̂
2A

1j vob −A δ̂
2A

1j êA
1jBω) ·A R1j1

(A R1j1 ×A R1j2) ·A r1j

.

From Eqs. (17a) and (19), it leads to

Aωr1j = θ̇A
1j1 R1j1 + θ̇A

1j2 R1j2 = (A RA
1j1 RT

1j2 −A RA
1j2 RT

1j1)(AvBj − vA
r1jδ1j )

(A R1j1 ×A R1j2) ·A r1j

= (A R1j1 ×A RT
1j2) × (AvBj − vA

r1jδ1j )

(A R1j1 ×A R1j2) ·A r1j

= (A RA
1j1 RT

1j2 −A RA
1j2 RT

1j1)Aδ̂
2
1j (Avbo

−A êA
1jBω)

(A R1j1 ×A R1j2) ·A r1j

(20)

=
[

(A RA
1j1 RT

1j2 −A RA
1j2 RT

1j1)Aδ̂
2
1j

(A R1j1 ×A R1j2) ·A r1j

−(A RA
1j1 RT

1j2 −A RA
1j2 RT

1j1)Aδ̂
2A

1j ê1j

(A R1i ×A R2i) ·A r1j

] [
Avob
A
Bω

]
.

Using the same method, the angular velocity of r2j for the upper PM in {C} can be derived as

Cωr2j = θ̇C
2j1 R2j1 + θ̇C

2j2 R2j2 = (C R2j1 ×C RT
2j2) × (CvDj − vC

r2jδ2j )

(C R2j1 ×C R2j2) ·C r2j

= (C RC
2j1 RT

2j2 −C RC
2j2 RT

2j1)C δ̂
2
2j (CvDj −C êC

2jDω)

(C R2j1 ×A R2j2) ·C r2j

(21)

= (C RC
2j1 RT

2j2 −C RC
2j2 RT

2j1)C δ̂
2
2j (Cê2j +C r̂o)CDω

(C R2j1 ×C R2j2) ·C r2j

.
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As the lower PM has no rotations, the motion of C relative to A is pure translation, which leads to

Aωr2j = θ̇A
2j1 R2j1 + θ̇A

2j2 R2j2 = (A R2j1 ×A RT
2j2) × (AvDj −A vCj − vA

r2jδ2j )

(A R2j1 ×A R2j2) ·A r2j

= − (A RA
2j1 RT

2j2 −A RA
2j2 RT

2j1)Aδ̂
2
2j (Aê2j +A r̂o)ADω

(A R2j1 ×A R2j2) ·A r2j

(22)

=
[

03×3 − (A RA
2j1 RT

2j2 −A RA
2j2 RT

2j1)Aδ̂
2
2j (Aê2j +A r̂o)ADω

(A R2j1 ×A R2j2) ·A r2j

][
Avod
A
Dω

]
,

where CvDj =A vDj −A vCj .
Then, substituting the results to Eqs. (16a) and (16b), the inverse acceleration of the (3-UPU)+(3-

UPS+S) S-PM can be determined.

3. Inverse Dynamics of the (3-UPU)+(3-UPS+S) S-PM

3.1. Velocity mapping between each component and the terminal platform
3.1.1. Velocity mapping between the legs and the terminal platform for 3-UPU PM.. From Eq. (10b),
it leads to

Avob = Avoc
= [

E3×3
A r̂o

] [
Avod
A
Dω

]
. (23a)

From Eqs. (11b) and (23a), the velocity mapping relation between B and D can be derived as
following:

[
Avob
A
Bω

]
=

[
E A r̂o

03×3 03×3

] [
Avod
A
Dω

]
= J cd

[
Avod
A
Dω

]
. (23b)

Let rf1j
be the distance from the mass center of the jth cylinder to point Aj . By means of Eq.

(20), the velocity of the mass center of jth cylinder in {A} for the 3-UPU PM can be expressed as
following:

Avf1j
= Aωr1j

×A δ1j rf1j
= −rA

f1j
δ̂

A

1jωr1j

=
[

−rA
f1j

δ̂1j (A RA
1j1 RT

1j2−A RA
1j2 RT

1j1)A δ̂
2
1j

(A R1j1×A R1j2)·Ar1j

rA
f1j

δ̂1j (A RA
1j1 RT

1j2−A RA
1j2 RT

1j1)A δ̂
2A

1j ê1j

(A R1i×A R2i )·Ar1j

] [
Avob
A
Bω

]
. (24a)

From Eqs. (20) and (24a), it leads to

[
Avf1j

Aωr1j

]
= Jf1j

[
Avod
A
Dω

]
,

Jf1j
=

⎡
⎢⎣

−rA
f1j

δ̂1j (A RA
1j1 RT

1j2−A RA
1j2 RT

1j1)A δ̂
2
1j

(A R1j1×A R1j2)· Ar1j

rA
f1j

δ̂1j (A RA
1j1 RT

1j2−A RA
1j2 RT

1j1)A δ̂
2A

1j ê1j

(A R1i×A R2i )· Ar1j

(A RA
1j1 RT

1j2−A RA
1j2 RT

1j1)A δ̂
2
1j

(A R1j1×A R1j2)· Ar1j
− (A RA

1j1 RT
1j2−A RA

1j2 RT
1j1)A δ̂

2A

1j ê1j

(A R1j1×A R1j2)· Ar1j

⎤
⎥⎦ J cd , (24b)

where Jf1j
is a 6 × 6 Jacobian matrix of the jth cylinder of 3-UPU PM, which relates the velocity

mapping relation between the jth cylinder of the 3-UPU PM and the terminal platform D.
Let rm1j be the distance from the mass center of the jth piston to point Bj . By means

of Eq. (20), the velocity of the mass center of the jth piston of lower PM can be
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expressed as

Avm1j =A ωr1j
×A δ1j (r1j − rm1j ) +A δ1j ṙ1j

= −(r1j − rm1j )AδA
1jωr1j +A δ1j

([
AδT

1j

A ê1j ×A δT
1j

] [
Avob
A
Bω

])

=
[

(rm1j −r1j )A δ̂1j (A RA
1j1 RT

1j2−A RA
1j2 RT

1j1)δ̂
2
1j

(A R1j1×A R1j2)· Ar1j
+AδA

1jδ
T

1j

(rm1j −r1j )A δ̂1j (A RA
1j1 RT

1j2−A RA
1j2 RT

1j1)A δ̂
2A

1j ê1j

(A R1j1×A R1j2)· Ar1j
−AδA

1jδ
T A

1j
ê1j

]

×
[

Avob
A
Bω

]
. (25)

From Eqs. (20) and (25), it leads to

[
Avm1j
Aωr1j

]
= Jm1j

[
Avod
A
Dω

]
,

Jm1j =

⎡
⎢⎢⎣

(rm1j −r1j )A δ̂1j (A RA
1j1 RT

1j2−A RA
1j2 RT

1j1)δ̂
2
1j

(A R1j1×A R1j2)· A r1j
+A δA

1jδ
T

1j

(rm1j −r1j )A δ̂1j (A RA
1j1 RT

1j2−A RA
1j2 RT

1j1)A δ̂
2A
1j ê1j

(A R1j1×A R1j2)· A r1j
−A δA

1jδ
T A

1j
ê1j

(A RA
1j1 RT

1j2−A RA
1j2 RT

1j1)A δ̂
2
1j

(A R1j1×A R1j2)· A r1j
− (A RA

1j1 RT
1j2−A RA

1j2 RT
1j1)A δ̂

2A
1j ê1j

(A R1j1×A R1j2)· A r1j

⎤
⎥⎥⎦ J cd ,

(26)

where Jm1j is a 6 × 6 Jacobian matrix of the jth piston of 3-UPU PM, which relates the velocity
mapping relations between jth piston of the 3-UPU PM and the terminal platform D.

3.1.2. Velocity mapping between the legs of 3-UPS+S PM and the terminal platform.. Let of2j
be the

mass center of the jth cylinder in ith PM, rf2j
be the distance from of2j

to the point Cj . The position
and velocity vectors of of2j

in {A} can be expressed as follows:

Aof2j
=A C i + rA

f2j
δ2j , (27a)

Avf2j
= Avoa

+ rA
f2j

ωr2j
×A δ2j =A vod

− A
Dω ×A ro + rA

f2j
ωr2j

×A δ2j

=
[

E3×3

rA
f2j

δ̂2j (A RA
2j1 RT

2j2−A RA
2j2 RT

2j1)A δ̂
2
2j (Aê2j +A r̂o)

(A R2j1×A R2j2)· Ar2j
+A r̂o

] [
Avod
A
Dω

]
. (27b)

From Eqs. (22) and (27b), it leads to

[
Avf2j

Aωr2j

]
= Jf2j

[
Avod
A
Dω

]
, Jf2j

=

⎡
⎢⎢⎣ E3×3

rA
f2j

δ̂2j (A RA
2j1 RT

2j2−A RA
2j2 RT

2j1)A δ̂
2
2j (Aê2j +A r̂o)

(A R2j1×A R2j2)· Ar2j
+A r̂o

03×3 − (A RA
2j1 RT

2j2−A RA
2j2 RT

2j1)A δ̂
2
2j (Aê2j +A r̂o)ADω

(A R2j1×A R2j2)· Ar2j

⎤
⎥⎥⎦ ,

(27c)
where Jf2j

is a 6 × 6 Jacobian matrix of the jth cylinder for 3-UPS+S PM, which relates the velocity
mapping relations between the jth cylinder of the 3-UPS+S PM and the terminal platform D.

Let om2j
be the mass center of the jth piston for the ith PM, rm2j

be the distance from om2j
to the

point Dj . The position and velocity vectors of om2j
in {A} can be expressed as follows:

Aom2j
=A Di − rA

m2j
δ2j , (28a)
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Avm2j
= AvDi

− rA
m2j

ωr2j
×A δ2j =A vod

+ A
Dω ×A e2j − rA

m2j
ωr2j

×A δ2j

=
[

E3×3 − rA
m2j

δ̂2j (A RA
2j1 RT

2j2−A RA
2j2 RT

2j1)A δ̂
2
2j (Aê2j +A r̂o)

(A R2j1×A R2j2)· Ar2j
−A êi

] [
Avod
A
Dω

]
. (28b)

From Eqs. (22) and (28b), it leads to

[
Avm2j

Aωr2j

]
= Jm2j

[
Avod
A
Dω

]
, Jm2j

=

⎡
⎢⎢⎣ E3×3 − rA

m2j
δ̂2j (A RA

2j1 RT
2j2−A RA

2j2 RT
2j1)A δ̂

2
2j (Aê2j +A r̂o)

(A R2j1×A R2j2)· Ar2j
−A êi

03×3 − (A RA
2j1 RT

2j2−A RA
2j2 RT

2j1)A δ̂
2
2j (Aê2j +A r̂o)ADω

(A R2j1×A R2j2)· Ar2j

⎤
⎥⎥⎦ ,

(28c)
where Jm2j

is a 6 × 6 Jacobian matrix of the jth piston for 3-UPS+S PM, which relates the velocity
mapping relation between the jth piston of the 3-UPS+S PM and the terminal platform D.

Let vro
and aro

be the velocity and acceleration vectors of the mass center of ro. Let ωro
and Aεro

be the angular velocity and angular acceleration vectors of ro. It leads to

Aωro
= A

Dω, Aεro
= A

Dε. (29a)

vro
can be solved by the following formula:

Avro
=A vob +A ωro

×A ro/2 =A vod
−A ωro

×A ro/2 = [
E3×3

A r̂o/2
] [

Avod
A
Dω

]
. (29b)

From (29a) and (29b), it leads to

[
Avro
Aωro

]
= J ro

[
Avod
A
Dω

]
, J ro

=
[

E3×3 −A r̂o/2
03×3 E3×3

]
, (30)

where J ro
is a 6 × 6 Jacobian matrix of the ro, which relates the velocity mapping relations between

ro and the terminal platform D.

3.2. Inverse dynamics modeling
The inverse dynamics analysis of the (3-UPU)+(3-UPS+S) S-PM is to determine the required forces
of actuators from the given kinematics of the terminal platform in a given pose.

3.2.1. The inertia force and torque of each component.. Let mfij
, Ifij

, f fij
,nfij

and Gfij
(i = 1, 2; j

= 1, 2, 3) be the mass, inertia matrix, inertia force, inertia torque, and the gravity of the jth cylinder
in the ith PM, respectively. Let mmij , Imij , f mij ,nmij , and Gmij

be the mass, inertia matrix, inertia
force, inertia torque, and the gravity of the jth piston in the ith PM, respectively. Let moi

, Ioi
, f oi

,noi
,

and Goi
be the mass, inertia matrix, inertia force, inertia torque, and the gravity of the upper platform

for ith PM. Let mro
, I ro

, f ro
,nro

, and Gro
be the mass, inertia matrix, inertia force, inertia torque, and

the gravity of ro. Let Fo2, T o2 be the workloads applied onto D at od .
Differentiating both sides of Eq. (20) with respect to time, the angular acceleration of r1j for the

lower PM can be derived as following:

Aεr1j = −θ̇A
1j1 R1j2 × (AvBj − vA

r1jδ1j ) + (
A R1j1 ×A RT

1j2

) × (AaBj − aA
r1jδ1j − vA

r1jωr1j ×A δ1j )

(A R1j1 ×A R1j2) · Ar1j

− (A R1j1 ×A RT
1j2) × (AvBj − vA

r1jδ1j )[
(A R1j1 ×A R1j2) · Ar1j

]2

[
AaBj · (

A R1j1 ×A RT
1j2

)]
. (31a)
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Differentiating both sides of Eq. (22) with respect to time, the angular acceleration of r2j can be
derived as following:

Aεr2j = −θ̇A
2j1 R2j2 × (AvDj −A vCj − vA

r2jδ2j ) + (
A R2j1 ×A R2j2

) × (AaDi −A aCi − aA
r2jδ2j − vA

r2jωr2j ×A δ2j )

(A R2j1 ×A R2j2) · Ar2j

−
(
A R2j1 ×A R2j2

) × (AvDj −A vCj − vA
r2jδ2j )[

(A R2j1 ×A R2j2) · Ar2j

]2

[
(AvDj −A vCj ) · (A R2j1 ×A R2j2)

]
. (31b)

Differentiating both sides of Eq. (24a) with respect to time, the acceleration of the mass center of
the jth cylinder of the lower PM can be derived as following:

ar1j =A εr1j ×A δ1j r1j +A ωr1j × (Aωr1j ×A δ1j )r1j . (32a)

Differentiating both sides of Eq. (25) with respect to time, the acceleration of the mass center of
the jth piston of the lower PM can be derived as following:

Aam1j = Aεr1j ×A δ1j (r1j − rm1j ) +A ωr1j × (Aωr1j ×A δ1j )(r1j − rm1j )

+ Aδ1j r̈1j + 2(Aωr1j ×A δ1j )ṙ1j (32b)

Differentiating both sides of Eq. (27b) with respect to time, the acceleration of the mass center of
the jth cylinder of the upper PM can be derived as following:

Aaf2j
=A aoa

+ rA
f2j

εf2j
×A δ2j + rA

f2j
ωf2j

× (Aωf2j
×A δ2j ). (33a)

From Eq. (28b), it leads to

Aam2j
=A aDi

− rA
m2j

εr2j
×A δ2j − rA

m2j
ωr2j

× (Aωr2j
×A δ2j ). (33b)

Differentiating both sides of Eq. (29b) with respect to time, aro
can be solved as following:

Aaro
=A aod

−A εro
×A ro/2 −A ωro

× (Aωro
×A ro)/2. (34)

From Eqs. (31)–(34), the corresponding inertia force, torque, and the gravity can be derived as
follows:

A f fij
= −mA

fij
afij

,AGfij
= mfij

g,Anfij
= −A IA

fij
εrij

−A ωrij
× (A IA

f ijωrij ),

A f mij = −mA
mij

amij
,AGmij

= mmij
g,Anmij

= −A IA
mijεmij

−A ωrij
× (A IA

mij
ωrij

),

A f oi
= −mA

oi
aoi

,AGoi = moi
g,Anoi

= −A IA
oi
εoi

−A ωoi × (A IA
oiωoi),

A Io1 = A
BRB Io1, (35)

A f ro
= −mA

ro
aro

,AGro
= mro

g,Anro
= −A IA

ro
εro

−A ωro
× (A IA

ro
ωro

),

A Ifij
= A

ijR
ij Ifij

,A Imij
= A

ijR
ij Imij

,A Io1 = A
BRB Io1,

A Io2 = A
DRD Io1,

A
ijR = [ Rij2 δij × Rij2 δij ],

where A
ijR denotes the rotational matrix of {ij} relative to {A}. {ij} is a coordinate frame with Rij2,

δij × Rij2, and δij are the diction vectors corresponding to their three orthogonal coordinate axes,
which is used to express the inertia matrices.
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3.2.2. Dynamics formula derivation.. From the principle of virtual work, it leads to

FT
q V r +

2∑
i=1

3∑
j=1

([
A f T

fij
+ AGT

fij

AnT
f ij

] [
Avf ij
Aωrij

]
+

[
A f T

mij + AGT
mij

AnT
mij

] [
Avmij
Aωrij

])

+ [
A f T

o1
+ AGT

o1

AnT
o1

] [
Avob
A
Bω

]
+ [

A FT
o2

+ A f T
o2

+ AGT
o2

AT T
o2

+ AnT
o2

] [
Avod
A
Dω

]

+ [
A f T

ro
+ AGT

ro

AnT
ro

] [
vro

ωro

]
= 0. (36a)

Substituting Eqs. (15), (23b), (24b), (26), (27c), (28c), and (30) into Eq. (36a), it leads to

FT
q J

[
Avod
A
Dω

]
+

2∑
i=1

3∑
j=1

([
A f T

fij
+AGT

fij

AnT
f ij

]
Jf

ij

[
Avod
A
Dω

]
+

[
A f T

mij +AGT
mij

AnT
mij

]
Jm

ij

[
Avod
A
Dω

])

+ [
A f T

o1
+ AGT

o1

AnT
o1

]
J cd

[
Avod
A
Dω

]
+ [

A FT
o2

+ A f T
o2

+ AGT
o2

AT T
o2

+ AnT
o2

] [
Avod
A
Dω

]

+ [
A f T

ro
+ AGT

ro

AnT
ro

]
J ro

[
Avod
A
Dω

]
= 0. (36b)

From Eq. (36b), the formula for solving dynamics is derived as following:

Fq = −( J−1)T
(

JT
cd

[
f o1

+ Go1

no1

]
+

[
Fo2 + f o2

+ Go2

T o2 + no2

]

+
2∑

i=1

3∑
j=1

(
JT

f ij

[
f fij

+ Gfij

nfij

]
+ JT

mij

[
f mij

+ Gmij

nmij

])
+ JT

ro

[
f ro

+ Gro

nro

]⎞
⎠ . (36c)

4. Workspace
The workspace of (3-UPU)+(3-UPS+S) S-PM can be solved using CAD variation geometry
approach.5 In CAD software, the simulation mechanism of the (3-UPU)+(3-UPS+S) S-PM can be
easily constructed. When given the maximum extension r1max = 1.6 m and the minimum extension
rimin = 1.2 m for r1j (j = 1, 2, 3), the maximum extension r2max = 1.2 m and the minimum
extension r2min = 0.85 m for r2j (j = 1, 2, 3), and the increment δri = 0.05 m (i = 1, 2) for each
active leg, by varying the driving dimensions of rij in the given extent, the simulation mechanism
varies correspondingly and the position components of the center of the terminal platform are solved
automatically. The workspace of the (3-UPU)+(3-UPS+S) S-PM is formed by some sub-workspaces.
When four of rij (i = 1, 2; j = 1, 2, 3) reach their limited values, varying the remaining two of rij

from rimin to rimax, each sub-workspace can be constructed. The construction processes of one sub-
workspace are described as follows:

Step 1: Set r13 = r1max, r21 = r22 = r23 = r2max, r11 = r1min + (j − 1)δri(j = 1, . . . , n1), where
n1 = (r1max − r1min)/δr1.

Step 2: Set j = 1, increasing r12 by δr1 at each increment from r1min to r1max, the position
components (XoYoZo) are solved. By transferring the position solutions into spatial spline curves in
the 3D software, a spatial curve is formed from the solved points.

Step 3: Repeat step 2 – except set j = 2, . . . , n1, other spatial curves can be constructed.
Constructing the n1 spatial curves cj (j = 1, . . . , n1) by the loft command, one sub-workspace surface
can be obtained.

Step 4: Repeat steps 1–3: except set rij verifying versus Table I, other sub-workspace can be
obtained.
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Table I. The construction processes of sub-workspace.

r11 r12 r13 r21 r22 r23

r1min − r1 max r1min − r1 max r1max r2max r2max r2max

r1min − r1 max r1max r1min − r1 max r2max r2max r2max

r1max r1min − r1 max r1min − r1 max r2max r2max r2max

r1min r1min − r1max r1max r2min − r2 max r2max r2max

r1min r1min r1max r2min − r2 max r2min − r2 max r2max

r1min − r1 max r1min r1max r2max r2min − r2 max r2max

r1max r1min r1min − r1 max r2max r2min − r2 max r2max

r1max r1min r1min r2max r2min − r2 max r2min − r2 max

r1max r1min − r1 max r1min r2max r2max r2min − r2 max

r1min − r1 max r1max r1min r2max r2max r2min − r2 max

r1min r1max r1min r2min − r2 max r2max r2min − r2 max

r1min r1max r1min − r1 max r2min − r2 max r2max r2max

r1min r1min − r1 max r1min r2min − r2 max r2max r2min

r1min − r1 max r1min − r1 max r1min r2max r2max r2min

r1min − r1 max r1min r1min r2max r2min − r2 max r2min

r1min − r1 max r1min r1min r2max r2min r2min − r2 max

r1min − r1 max r1min r1min − r1 max r2max r2min r2max

r1min r1min r1min − r1 max r2min − r2 max r2min r2max

r1min r1min r1min − r1 max r2min r2min − r2 max r2max

r1min r1min − r1 max r1min − r1 max r2min r2max r2max

r1min r1min − r1 max r1min r2min r2max r2min − r2 max

r1min r1min r1min r2min − r2 max r2min r2min − r2 max

r1min r1min r1min r2min − r2 max r2min − r2 max r2min

r1min r1min r1min r2min r2min − r2 max r2min − r2 max

Fig. 2. A reachable workspace of the (3-UPU)+(3-UPS+S) S-PM: (a) the isometric view; (b) the front view.

The workspace of (3-UPU)+(3-UPS+S) S-PM is constructed as follows (see Fig. 2):

5. Analytic Solved Example
Set the dimension parameters of the (3-UPU)+(3-UPS+S) S-PM as: E1 = 120/q m, e1 = E2 = 80/q
m, e2 = 60/qm, ro = 0.90 m. Set the workloads applied onto D at od as: Fo2 = [−20 − 30 − 60]T,
T o2 = [−30 − 30100]T. Set the mass and inertial parameters as: mo1 = 67.84 Kg, mo2= 14.83
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Fig. 3. Solved results of the (3-UPU)+(3-UPS+S) S-PM: (a) length of rij ; (b) velocities of rij ; (c) accelerations
of rij ; (d) active forces of rij .

Kg, mf 11 = mf 12 = mf 13 = 9.43 Kg, mf 21 = mf 22 = mf 23 = 3.90 Kg, mm11 = mm12 = mm13 =
5.54 Kg, mm21 = mm22 = mm23 = 2.80 Kg, mro = 3.55 Kg, BIo1 = diag[2.5725 2.5725 4.9206]
Kg m2, DIo2 = diag[0.3281 0.3281 0.6525] Kg m2,11 If 11 =12 If 12 =13 If 13 = diag[0.6596 0.6596
0.0133] Kg m2,21 If 21 =22 If 22 =23 If 23 = diag[0.2107 0.2092 0.004615] Kg m2,11 Im11 =12 Im12 =
13Im13 = diag[0.4249 0.4249 0.0065] Kg m2,21 Im21 =22 Im22 =23 Im23 = diag[0.1596 0.1596 0.0006]
Kg m2,D Iro = diag[0.3237 0.3237 0.00739] Kg m2.

Support the independent parameters (AXd,
A Yd,

A Zd , α, β, λ) varying according constant
accelerations with (0.03 m/s2 0.02 m/s2 0.03 m/s2 −3◦ /s2 2◦ /s2 3◦ /s2 ) begin at initial pose (0
m 0 m 2.10 m 0◦ 0◦ 0◦) from immobile state. The extension, velocity, acceleration of active legs rij

(i = 1, 2; j = 1, 2, 3) are solved as shown in Figs. 3(a)–3(c), the driving forces are solved as shown
in Fig. 3(d).

Finally, in order to verify the numerical example, the results obtained using the analytical
model are compared with the simulation results generated with a simulation model in Matlab/
SimMechanics.23

Under Matlab/SimMechanics, the dimensional, mass, inertial, kinematics parameters and
the workloads for the (3-UPU)+(3-UPS+S) S-PM are given according to the analytical
model.

The simulation mechanism and the dynamics result generated in Matlab/SimMechanics for (3-
UPU)+(3-UPS+S) S-PM are shown in Figs. 4(a) and 4(b), respectively.

From Figs. 3(d) and 4(b), it is shown that the numerical results of the case study using analytical
model are in excellent agreement with the simulation result generated in Matlab/SimMechanics.
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Fig. 4. Simulation results of the dynamics for (3-UPU)+(3-UPS+S) S-PM: (a) simulation mechanism; (b)
dynamics simulation result.

6. Conclusion
The main contribution of this paper lies in the presentation and the derivation of the dynamics model
of a novel (3-UPU)+(3-UPS+S) S-PM with 6 DOF. The translational and rotational motions of
this S-PM can be easily controlled by the lower and the upper PMs respectively. The workspace
analysis shows that this novel S-PM has large workspace. This S-PM has some potential applications
for the robot arms, the machine tools, the surgical manipulators, the tunnel borers, and the satellite
surveillance platform. The formulae for the inverse position, velocity, and acceleration of this S-PM
are derived in explicit form. The dynamics model is established on the basis of the principle of virtual
work and the kinematics model. The analytic results of the dynamics of this S-PM are verified by its
simulation results. The established dynamics model presented in this paper will be valuable in the
development of this S-PM. In addition, the analytic method for this S-PM is fit for other S-PMs.
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