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Abstract

We considered a pension fund that needs to hedge uncertain long-term liabilities. We
modeled the pension fund as a robust investor facing an incomplete market and fearing
model uncertainty for the evolution of its liabilities. The robust agent is assumed to
minimize the shortfall between the assets and liabilities under an endogenous worst-case
scenario by means of solving a min–max robust optimization problem. When the funding
ratio is low, robustness reduces the demand for risky assets. However, cherishing the hope of
covering the liabilities, a substantial risk exposure is still optimal. A longer investment
horizon or a higher funding ratio weakens the investor’s fear of model misspecification. If
the expected equity return is overestimated, the initial capital requirement for hedging can be
decreased by following the robust strategy.

JEL CODES: G11, G13

Keywords: Model uncertainty, robust optimization, incomplete market, dynamic hedging,
expected shortfall.

1 Introduction

After the 2008 global financial crisis, the performance of US pension funds has
remained depressed. The poor solvency situation has been driven by a declining
discount rate and also a fall in equity prices. Since 2012, funding ratios (asset values
divided by projected benefit obligations) of the top 100 largest US corporate defined-
benefit pension plans have not rebounded. More importantly, projected future funding
ratios show a wide range of uncertainty for the next 2 years.1 This raises the question of
how to price and hedge downside risks when confronted with fragile beliefs about the
likelihood of different funding ratio scenarios.

1 Based on the data obtained from Milliman Pension Fund Index http://us.milliman.com/pfi/us.milliman.
com for the Milliman 100 funding index ratio from the beginning of 2012 to July 2017 and projections
from August 2017 to 2018.
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Pricing and hedging pension or insurance liabilities faces two problems. First, the
market is incomplete. Liability risks are typically not – or not actively – traded in
the financial market. According to EIOPA (2011)2, the two largest components of
liability risks are market risk and life risk, which account for 67.4% and 23.7% of
the diversified Basic Solvency Capital Requirement (SCR), respectively. However,
these risks are not fully traded. Interest rate risk, one of the dominant market risks,
is only partially traded in the financial market. Pension funds and insurance compan-
ies are often confronted with ultra-long-term commitments with maturities of more
than 50 years. However, the longest dated government bonds even in developed mar-
kets such as the US, UK, and Canada are up to 30 years. In developing markets (such
as Asia, Eastern Europe, and South America), long-term government bonds with
maturities more than 10 years barely exist.
Life risk faces more serious market incompleteness problem, because mortality-

linked securities in general have very low liquidity. For instance, longevity risk, the
risk that insurers might live longer than anticipated, is the most important component
of life risk. Turner (2006) shows that, in 2005, 2460 billion liabilities are associated
with longevity risk in the UK. However, longevity risk had never been securitized
until early 2000s. In the past decade, a limited number of mortality-linked products
such as the longevity bond (see Blake and Burrows (2001)) have been proposed,
while only a very small amount (<1%3) of longevity risk can be hedged.
The second problem concerns model parameter uncertainty in hedging liability

risks. On the liability side of the balance sheet, longevity has been improving unpre-
cedentedly in the past few decades in an unpredictable way (see, e.g. Benjamin and
Soliman, 1993; McDonald et al., 2006). An inaccurate mortality estimation makes
pricing and hedging liability risks much more difficult and less reliable. Early work
by Lee and Carter (1992) has been considered as the nucleus of modeling the dynam-
ics of the mortality rate. Several plausible extensions of the Lee–Carter model, such as
an incorporation of heterogeneous cell level (Li et al., 2009), age-dependent factors
(Cairns et al., 2006), and structural changes (Coelho and Nunes, 2011; Van
Berkum et al., 2016), introduce substantial uncertainty on the trend in longevity
and hence in the growth in liabilities.
On the other side of the balance sheet, the expected asset return is notoriously diffi-

cult to estimate from historical data. Merton (1980) argues that it is difficult to esti-
mate expected returns from time series of realized stock return data. The standard
deviation of the historical average return is σ/

���
T

√
where σ is the standard deviation

of annual returns and T is the number of years. For example, if T = 100 and
σ = 16%, then the standard error of the equity premium is 1.6%, which leads to an
approximate 95% confidence interval span of 6.3%(+1.96× 1.6%). Although the
interval shrinks with the square root of the sample size for estimation, it is difficult
to maintain the same data generating process throughout the entire period. The
investor is therefore exposed to estimation error in the expected asset returns.

2 EIOPA (2011) is short for European Insurance and Occupational Pension Authority (2011). See https://
eiopa.europa.eu/Publications/Reports/QIS5_Report_Final.pdfReport on the fifth quantitative impact
study (QIS5) for Solvency II.

3 See Blake and Burrows (2001).
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Doubts about the accuracy of the model makes an agent treat it as an approxima-
tion of an unknown true model. She wants her decision rules to work well over a set of
models in the neighborhood of the approximating model. Our aim is to develop a
hedging strategy for an agent who faces uncertainty about the expected return on
the assets as well as uncertainty about the expected growth in liabilities. We adopted
the robust control theory to deal with the fear of model uncertainty. The agent who
worries about model misspecification looks for a prudent policy that is resilient to fra-
gile beliefs about the likelihood of the state variables. Such decision rules are called
robust policies. We introduced a robust hedging strategy along the lines of Hansen
and Sargent (2007) to hedge undiversifiable downside risks.
The robust optimal hedging strategy that we propose takes both downside risks as

well as market incompleteness into account for an agent who fears parameter uncer-
tainty. The robust agent is assumed to minimize the shortfall between assets and
liabilities under a statistically plausible worst-case scenario by means of solving a
min–max robust optimization problem. The robust model includes three crucial ele-
ments. The first is downside risk, which we define as expected shortfall. In a static
model, the expected shortfall between the assets and the liabilities can be valued as
the payoff of an exchange option, which swaps the optimal value of the asset for
the price of the liabilities. The second element is incomplete markets. We introduced
two uncorrelated risk drivers in our model, one hedgeable and the other not hedge-
able. The unhedgeable risk captures the incompleteness of the market. The asset mar-
ket is exposed to hedgeable risk only, but the liability side is exposed to both types of
risk. The third element is parameter misspecification. Following Anderson et al.
(2003) and Maenhout (2004), we introduced drift distortions on the Brownian
motions to represent parameter misspecification. These drift distortions perturb the
true data generation process of approximate models. Economically, an additional
drift on the Brownian motion can be understood as the unobservable market price
of risk, which relates to Cochrane and Saa-Requejo (2000)’s concept of Good Deal
Bounds (GDB). Technically, drift distortions measure the discrepancies between alter-
native probability distributions. A closely related idea appears in Cvitanic ́ and
Karatzas (1999), but in their model, liabilities only depend on the value of market
instruments.
We solved the robust hedging problem in both a static and a dynamic environment.

In both cases, the robust policy is more conservative than the naive policy. This result
is in line with Brennan (1998). When the funding ratio is low, agents will increase the
risk exposure to the stock market so as to gamble their way out of trouble (see also
Ang et al., 2013). The more the investor invests in the risky asset, the more she
becomes exposed to estimation uncertainty. The robust agent is particularly afraid
of a downside shock with the risky assets and hence she will put less wealth in the
stock market compared with the agent who disregards the estimation uncertainty.
We also found that for both the robust as well as the non-robust policy, the risky por-
tion of the portfolio decreases with the hedging horizon when the funding ratio is low,
and vice versa when the funding ratio is high. The impact of the preference for robust-
ness depends on the hedging horizon as well as the funding ratio.
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More importantly, we evaluated the robust policy by means of comparing its
expected loss with the non-robust policy. The loss function is defined as the difference
between the cost of hedging conditional on the estimated expected return and the true
minimum cost. The benefits of a robust policy are twofold. First, the robust policy is
less sensitive to the estimated parameters. Second, the robust policy has a lower hedg-
ing cost than a naive policy, under a range of alternative parameter values.
One strong assumption in this paper is that the investors only fear a subclass of

model misspecification, namely the drift parameters of the state variables instead of
the general model uncertainty problem. Similar to Maenhout (2004), we reduced
the general model uncertainty problem to a first-moment parameter uncertainty
problem.
Another strong assumption in our work is that the investors do not engage in any

learning. Brennan (1998) incorporates learning with parameter uncertainty and finds
that after learning, high-risk-averse investors are more conservative with their invest-
ment, but low-risk-averse investors allocate more wealth on risky assets. Wang (2009)
incorporates income growth rate uncertainty with Bayesian learning for a
consumption-saving and optimal portfolio choice problem and finds that learning
induces additional precautionary saving.
Numerous studies deal with asset allocation problem for pension plans. Seminal

work by Sharpe and Tint (1990) develops a surplus management approach in
which funds care about assets minus liabilities. Detemple and Rindisbacher (2008)
extend this framework to a dynamic setting. Ang et al. (2013) add an additional pen-
alty function at the mean-variance framework of Sharpe and Tint (1990). The penalty
function, which is the shortfall between the asset and liabilities, is the same as our
objective function, to which we add model uncertainty.
A related study on model uncertainty by Garlappi et al. (2006) considers a mean-

variance portfolio choice of a robust investor who has imperfect information on the
expected return. They use multi-prior approach advocated by Gilboa and
Schmeidler (1989), and they also find that allowing for parameter uncertainty reduces
the portfolio weights on risky assets over time. Luo (2016) considers both model
uncertainty and state uncertainty under decision-making. State uncertainty refers to
incomplete information about the true value of the state due to sluggishness of the
market. In this paper, we do not deal with state uncertainty, but the likelihood
over the state variables.

2 Model

We considered a continuous-time incomplete market with a finite trading horizon
[0, T]. The risk is modeled by a filtered probability space (Ω,F ,P), on which are
defined two uncorrelated risk factors, a hedgeable risk W1t and an unhedgeable
risk W2t. Both W1t and W2t are univariate standard Brownian motions and we con-
sidered {F t : t [ 0,T[ ]} as the completion of the filtration generated by W1t and W2t.
A hedgeable risk means we can replicate the payoff of this kind of risk perfectly. The
payoff for an unhedgeable risk is not replicable because it is not traded.
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2.1 Asset and liability model

On the asset side, we have a risk-free money-market account Bt, which earns a deter-
ministic risk-free rate of interest r, so dBt = rBtdt. We also have a stock market. The
stock price follows a geometric Brownian motion process dSt = μSt dt+ σSt dW1t.
The agent can only invest in the money-market account and the stock market.
Denote the value of the assets at time t by At. The investor puts an amount wtAt in
the stock market at time t. The remaining part of the assets (1−wt)At is put into
the money-market account. The asset diffusion process follows as

dAt = (r+ wt(μ− r))At dt+ wtσAt dW1t, (1)
where wt is the possibly time-varying hedging strategy. We do not set a constraint on
wt, therefore short positions are allowed.
The liability is exposed to both hedgeable risk W1t and unhedgeable risk W2t. We

assumed that the diffusion process of the liability Lt follows an exogenously given
geometric Brownian motion with constant drift term and constant volatility,

dLt = aLt dt+ bLt ρdW1t +
�������
1− ρ2

√
dW2t

( )
, (2)

where a is the drift of the liability and b is its volatility. The non-traded risk driver,
dW2t, represents the incomplete part of the market. We introduced a correlation par-
ameter ρ∈ [−1, 1] between asset risk and liability risk. It controls the risk exposure to
W2t of the liability. If ρ= ±1, then the non-traded risk W2t disappears from the liabil-
ity side. The liability in this case can be perfectly hedged by a replicating portfolio. We
are interested in the case when ρ is strictly between −1 and 1.

2.2 Robust asset and liability model

We used the Hansen and Sargent’s (2007) framework to integrate the preference for
robustness to the asset-liability models (1) and (2). With a preference for robustness,
the agent treats (1) and (2) as an approximate model for the unknown true state evo-
lution of At and Lt. We limited the parameter uncertainty to the drift terms μ and a
only, and assumed that the volatilities σ and b are known. The approximate model
only provides an estimated value of the drift terms, but the growth rate of liabilities
and the expected return are imprecisely estimated and subject to estimation error.
However, the constant volatility parameter σ can potentially be estimated using high-
frequency observations, and is therefore not subject to parameter estimation error.
In the Hansen and Sargent’s framework, the robust model contains an unknown

drift term on the Brownian motion. In our case, the Brownian motions dW1t and
dW2t in (1) and (2) are replaced by dW1t+ λ1tdt and dW2t + λ2tdt. The two drift
terms λ1t and λ2t are defined as two perturbation time-series processes that quantify
the misspecification of the underlying model. The values of λ1t and λ2t shift the
mean distribution of the asset and the liability diffusion process by a unit of wtσλ1t
andbρλ1t + b

�������
1− ρ2

√
λ2t, respectively. Hence, they specify a set of alternative measures

referring to different specifications of the stochastic process known as a Girsanov ker-
nel. The misspecified expected return also generates an error in the market price of

Robust hedging in incomplete markets 477

https://doi.org/10.1017/S1474747218000069  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1474747218000069


risk. The perturbed evolution of the state variables is given by:

dAt = (r+ wt(μ− r))At dt+ wtσAt dW1t + λ1tdt( ), (3a)

dLt = aLt dt+ bLt ρ dW1t + λ1tdt( ) +
�������
1− ρ2

√
dW2t + λ2tdt( )

( )
. (3b)

The perturbation of the model is bounded by an uncertainty set S. The larger the
uncertainty set S, the more pessimistic the agent is about the accuracy of the under-
lying model. To describe the uncertainty set, we introduced some additional notation.
Let δ be the vector of the estimated drift terms,

δ = μ
a

( )

and let δ0 be the true drift. Then δ− δ0 is the estimation error,

δ− δ0 = σ 0
bρ b

�������
1− ρ2

√( )
λ1t
λ2t

( )
= Γλt.

The estimation error δ− δ0 is asymptotically normal with mean zero and covariance
matrix (Σ/N), where N is the length of a (hypothetical) sample used for estimation and

Σ = ΓΓ′ = σ2 bρσ
bρσ b2

( )
.

We obtained the uncertainty set based on the property that (δ− δ0)
′(Σ/N)−1(δ− δ0) is

a χ2 distribution with two degrees of freedom, χ2(2). Denoting the critical value at α
significance level as CVα, we then have a probability of 1− α that

δ− δ0( )′Σ−1 δ− δ0( ) ≤ κ2, (4)
where κ2 = (CVα/N). Equation (4) provides a natural boundary of the perturbation
parameters. Simplifying (4) further, we get

Γλt( )′ ΓΓ′( )−1
Γλt( ) = λ′tλt ≤ κ2.

Hence our uncertainty set is as follows,

S = λ1t, λ2t|λ21t + λ22t ≤ κ2
{ }

. (5)
Our uncertainty set has a circular shape in λt space centered by zero. Given the esti-
mates δ a credibility region for the true value, δ0 can be constructed as

δ0 [ δ+ Γλt|S{ }. (6)
The true drift term δ0 is constrained by an ellipsoid uncertainty set centered by δ and it
can be at any point within this set. The size of the uncertainty set depends on the sign-
ificance level α and the hypothetical sample size N. If the agent has infinite observa-
tions, then the uncertainty set shrinks to the point estimate δ.
Our stylized uncertainty set is related to the GDB proposed by Cochrane and

Saa-Requejo (2000). Equation (4) can be understood as the GDB constraint in
which we put a limit on the unobservable part of the market price of risks, λ1t and
λ2t. The uncertainty set we proposed differs from the GDB in the way in which our
uncertainty set is derived from the econometric estimation error. The uncertainty

S. Shen et al.478

https://doi.org/10.1017/S1474747218000069  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1474747218000069


set parameter κ depends only on the statistical quantities, α and N. However, the
GDB method is inspired by an economic belief that the total market price of risk
in an incomplete market has to have limits.

2.3 Robust optimization problem

Utility is defined as a function of the terminal value for AT and LT at the terminal date
T. The optimal hedging strategy maximizes the utility functionE[U(AT , LT )|F t]. As a
benchmark, we defined the naive policy wna as the hedging strategy that does not con-
sider model misspecification.
The uncertainty averse agent looks for a robust hedging policy that works well over

a set of models. The robust hedging policy is defined as

max
wt

min
λ1t,λ2t[S

E U AT , LT( )|F t[ ]. (7)

The max–min optimization problem is a two-player zero-sum game, see Anderson
et al. (2003). This is a sequential game between the decision-maker and a malevolent
nature. Player 1, the robust agent moves first by choosing investment decisions to
maximize the utility function at time t, and then player 2 (the imaginary nature)
picks the worst state of nature for player 1 by making an instantaneous choice of
λ1t and λ2t, given player 1’s choice. In other words, the agent is maximizing while
nature is minimizing.

3 Static robust optimization

In the following two sections, we will show how to solve the robust optimization prob-
lem and how the robust solution differs from the naive one, and also how we can
benefit from the robust decision. We started with the relatively simple static case,
where both agent and nature only make decisions now at t= 0 without rebalancing
until the terminal date T. The static case is technically easy to solve, but still provides
us with some intuition about the robust policy. However, the static solution may not
be optimal. With a dynamic solution both wt and λ1t, λ2t are time-series processes.
Given the information at time T, our hedging strategy is defined over the hedging

error LT−AT at a predetermined time T. Our utility function takes the form of the
shortfall risk U AT , LT( ) = − LT − AT[ ]+, which specifies the downside risk on the
liability shortfall. The lower the shortfall risk, the higher the agent’s utility will be.
The naive optimization problem is given by

min
wt

E[(LT − AT )+] (8)

and the robust optimization is

min
wt

max
λ1t,λ2t[S

E[(LT − AT )+]. (9)

In the static case, the order of the two players is interchangeable. According to the
saddle-point existence Theorem mentioned in Delbaen (2002) and Rockafellar
(1976), the optimal solution of (9) is a saddle point, since both control variables
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are constrained by a convex set and the value function is bilinear. Hence (9) and its
dual problem max

λ1t,λ2t
min
wt

E[(LT − AT )+] have the same optimal solution.

3.1 Static solution

To facilitate calculation, let

μS = μ+ σλ1, (10a)
μA = r+ w(μS − r), (10b)
μL = a+ bρλ1 + b

�������
1− ρ2

√
λ2 , (10c)

represent the drift terms of the stock market, the asset and the liability, respectively.
Note that μS depends on λ1; μA depends on both w and λ1; and μL depends on λ1 and λ2.
In the static case, our criterion function E[(LT−AT)

+] is very similar to the value of
an ‘exchange option’, which exchanges one asset for another at time T. This type of
option has been valued in Margrabe (1978). The problem in our case is more compli-
cated, because we are in an incomplete market, which means the equivalent martin-
gale is not unique, or in other words, the so-called risk-neutral ℚ measure is not
unique, but depending on λ1 and λ2.
There are many ways to solve this static criterion function. We used the change of

probability measure technique. The analytical solution of our objective function
under the static case is given by

E LT − AT( )+[ ] = �LΦ −d2( ) − �AΦ −d1( ) = �L Φ −d2( ) − �CΦ −d1( )( )
, (11)

where

�L = L0 exp μLT
( )

,

�A = A0 exp(μAT),
�C = C0 exp μA − μL

( )
T

[ ]
,

and

d1 =
ln �C + σ2C

2
T

σC
���
T

√ ,

d2 = d1 − σC
���
T

√
,

where C0 = (A0/L0) is the current funding ratio. The function Φ is the standard normal
distribution function. If the funding ratio is less than one, the fund is facing a solvency
risk. For given λ1 and λ2, the optional hedge disregarding the preference for robustness
is the solution of the first-order condition for maximizing EL[(1−CT)

+] with respect
to w,

∂ Φ(−d2) − �CΦ(−d1)
[ ]

∂w
= −Φ −d1( )�C μ− r

( )
T + �Cϕ d1( )

���
T

√ wσ2 − bρσ
σC

= 0, (12)

where function ϕ denotes the standard normal density function. Note that −Φ(− d1)
is the δ of the Black–Scholes (BS) put-option that is always less than zero, and
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�Cϕ d1( ) ���
T

√
denotes the ν of the BS option that is always positive. Therefore, we see

from (12) that the optimal w strikes a balance between the ‘δ effect’ that reduces
the value of the option and the ‘ν effect’ that increases the value of the option.
There is a special case when μ = r where the ‘δ effect’ disappears and the optimal w
is then given by the minimum variance solution w = (bρ/σ).

3.2 Static robust portfolio choice

Based on the analytical solution (11), we solved the static robust optimization prob-
lem numerically. As a benchmark scenario, we assumed μ= 0.04, σ = 0.16, r= 0, a= 0,
b= 0.1, ρ= 0.5. We assumed that the stock return μ is higher than the liability return
a. As we discussed in Section 2.2, the uncertainty set parameter κ depends on the sign-
ificance level α and the sample size N. Hence, it is fixed and state variable independ-
ent. For a significance level α = 0.05, the corresponding χ2 value with 2 degrees of
freedom is 5.99. The choice of κ is also based on an implicit assumption that the
risk premium (μS− r/σ) is always positive, which means (μ− r/σ) + λ1 > 0. Given the
uncertainty set S, the absolute value of λ1 is bounded with |λ1|∈ [− κ, κ], hence κ
has to satisfy the condition that κ≤ ((μ− r)/σ) = 0.25 in order to guarantee a positive
risk premium. Therefore, we set κ = 0.25 for the benchmark scenario. Alternatively,
using the significance level, the sample size N has to be larger than 96 years so as
to satisfy this implicit assumption.
In Figure 1, we show the static optimal portfolio choice at time t= 0 as the function

of the current funding ratio, C0. When there is underfunding, the robust and naive
policies differ. Both take substantial risk betting on the chance to meet the liability,
but the robust portfolio is more conservative than the naive one. For example, if
the current funding ratio equals 80%, then the robust policy will reduce the risky
asset exposure by approximately 6% relative to the naive policy. The robustness effect
diminishes if C0 goes up. The two curves converge to the minimum-variance hedging
ratio ((bρ)/σ) = 0.3125 if C0 is sufficiently large. The resulting volatility becomes b(1− ρ2),
which is the unhedgeable part of the liability risk. Also, this position neutralizes the λ1
effect such that the misspecification of asset return does not influence the performance
of hedges. Therefore, the robust hedges are not always more conservative than naive
hedges. If the fund is already balanced – or even overfunded with C0≥ 1 – the two
policies are almost identical.
The decision of nature is displayed in Figure 2. We showed λ1 and λ2 as a function

of the present funding ratio C0. To facilitate the comparison, we put the two pertur-
bations in one graph. We found that λ1 is negative at any funding ratio level but is
close to zero when C0 is high; λ2 is always positive and converges to κ. We also
found that the optimal choice of λ1 and λ2 is always on the circle λ21 + λ22 = κ2,
which means the worst-case scenario is always at the boundary of the uncertainty set.
Figure 2 shows that a negative λ1 and a positive λ2 lead to the worst-case scenario.

This is because the agent is afraid that the true expected asset return is lower than
the estimated value, and the true liability return is higher than the estimated result.
The resulting negative λ1 represents the fear of an overestimated asset return. Hence,
the absolute value of λ1 is increasing with the exposure to the stock market, w. We
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know from Figure 1 that risk exposure and the funding ratio are negatively related.
The lower the funding ratio, the higher the risk exposure will be and therefore the
more negative the value of λ1 will be. In contrast, if the funding ratio is sufficiently
high, both the λ1 penalty as well as the weight in the risky asset are smaller. The
penalty term λ1 also plays a role in the liability return. A negative λ1 can benefit
the agent by reducing the expected liability return. To capitalize on the fear of
an increase in the liability return, nature chooses a positive λ2 so as to compensate
for the negative effect from λ1 and to increase the liability growth, making the liabil-
ity more costly.
We further examined how the perturbation terms impact the expected returns.

Figure 3 displays both the naive and robust mean rates of the stock return and the
liability return as functions of C0. Without the preference for robustness, both drift
terms are constant. However, if the investor is aware of the model misspecification,
the perturbed expected stock return is dragged down by |σλ1| due to the negative
impact of λ1. Despite the mixed sign of λ1 and λ2, the worst-case liability drift is
pushed up by |bρλ1 + b

�������
1− ρ2

√
λ2| since the positive effect of λ2 dominates the drift

distortion. In general, the robust policy differs from the naive one in the sense that
the robust agent requires an additional guarantee on top of the naive contract in
order to neutralize the estimation error. In other words, the robust policy needs
more capital to hedge downside risks.

Figure 1. Static optimal portfolio choice. This figure
compares the robust and naive static optimal
hedging policies. The investor makes an investment
decision at time t= 0 with given current funding
ratio C0 so as to minimize the expected shortfall at
time period T. The naive policy relies completely on
the estimation parameters. The robust policy takes
the parameter uncertainty into consideration and
insures against the worst-case scenario. The horizontal
axis depicts the present funding ratio. The results are
based on the benchmark estimation parameters μ=
0.04, σ= 0.16, r= 0, a= 0, b= 0.1, ρ= 0.5, κ= 0.25,
and T= 5.
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3.3 Policy evaluation

The robust policy is less sensitive to the parameter misspecification. In this section, we
will show how and when the agent can benefit from the robust policy. Let Q(w, δ) be
the cost of hedging following a particular policy w, where δ is the assumed value of the
drift parameters. In our case, the cost of hedging is defined by

Q w, δ( ) = E LT − AT( )+|w, δ[ ]
. (13)

The optimal hedging policy has a cost q(δ) = min
w

Q w, δ( ) for given δ. Let δ0 be the
true value of δ, and denote q(δ0) as the minimum hedging cost when the investor
implements the associated optimal hedging policy w0 under the true value δ0. Any
other alternative hedging policies wa (wa = w0) have higher expected shortfall.
Define the loss function K(wa|δ0) as the difference between the cost of hedging fol-

lowing a suboptimal policy wa and the true minimum cost. The ‘cost of hedging’ here
is defined as the initial wealth required to obtain a particular level of expected short-
fall, denoted Q(wa, δ0), which gives the loss function

K wa|δ0( ) = Q wa, δ0( ) − q(δ0). (14)

If δ≠ δ0, the agent is facing estimation error, therefore wa ≠w0 and K(wa|δ0) > 0.
The agent does not know the true value of the drift terms δ0. Given the estimated

drift terms δ, she can choose between two alternative hedging policies, a robust policy
wrob and a naive policy wna. At the benchmark scenario when the present funding ratio
C0 = 80%, the solutions are wrob= 0.81 and wna= 0.87. When C0 = 90%, we found
that wrob= 0.67 and wna= 0.69. The robust policy will perform better than the

Figure 2. Static optimal perturbations λ1 and λ2. This
figure depicts the optimal λ1 and λ2 as functions of the
present funding ratio C0 under the benchmark scenario
with μ= 0.04, σ= 0.16, r= 0, a= 0, b= 0.1, ρ= 0.5, κ=
0.25, and T = 5. Nature makes decisions of λ1 and λ2 at
time 0 under the constraint λ21 + λ22 ≤ κ2 so as to maximize
the expected shortfall at period T.
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naive policy, if

K wrob|δ0( ) , K wna|δ0( ). (15)
We displayed the loss indifference curves in Figure 4 when the present funding ratio

is 80% and 90%. The x-axis and y-axis represent the true value of liability return a0
and asset return μ0, respectively. The point [a= 0, μ= 0.04] represents the estimated
expected return δ. We also displayed the ellipsoid uncertainty set of the true drift
term δ0 in the figure.
When K(wrob|δ0) =K(wna|δ0), the two policies require the same amount of wealth to

hedge. In the region below the curve for both scenarios (whenC0 = 80% and90%), the
robust policy requires less initial wealth than the naive policy to hedge a certain
amount of expected shortfall. We call this area the robust policy’s ‘beneficial region’.
Hence, we can conclude that when the true drift term δ0 is overestimated, the robust
policy performs better.
This beneficial region is positively related to the present funding ratio C0. Since the

additional cost of hedging by following a robust policy increases as C0 decreases, a
lower C0 leads to a smaller beneficial region. When liabilities are covered, the differ-
ence between a robust and a naive policy is subtle and the robust investor’s beneficial
region should also be larger.

3.4 Sensitivity analysis

The correlation parameter ρ, representing the completeness of the market, plays an
important role in the model. If ρ= ±1, and λ1 = λ2 = 0, then the market becomes com-
plete and the unhedgeable risk driver W2 does not play a role. In this section, we
investigated how sensitive the optimal hedges are with respect to a change of ρ.
In Figure 5, we show an extreme case when ρ= 1. The non-traded risk driver W2

disappears from the liability diffusion process, and the perturbation parameter λ2
does not play a role either. Nature can only control λ1 to maximize the expected

Figure 3. Mean rate of stock and liability return with and without the preference for
robustness. This figure displays the expected stock and liability returns before and after
considering parameter uncertainty as functions of the present funding ratio. Panel 3a
comparing the robust stock drift μS = μ+ σλ1 with the naive drift term μS= μ. Panel 3b
comparing the robust liability drift term μL = a+ bρλ1 + b

�������
1− ρ2

√
λ2 with the naive one

μL= a under the benchmark scenario.
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shortfall at period T. The naive agent considers this as a complete market. However,
the robust agent still faces another source of incompleteness, caused by model
misspecification.
With a low funding ratio, the robust policy deviates from the naive one much more

severely compared with the benchmark case. When the asset risk and the liability risk
are perfectly correlated, nature will choose a more negative λ1 so as to maximize the
expected shortfall. Although a negative λ1 reduces the expected liability return as well,
the liability drift term is less sensitive to the change of λ1 than the expected asset
return, since σ> b. As a result, the robust investor’s fear of an overestimated asset
return is stronger than the benchmark level.
In the case of overfunding, the two policies are identical. The hedging error vola-

tility becomes σ2C = wσ − bρ
( )2

. The investor can fully replicate the liability by follow-
ing a δ-neutral strategy w = ((bρ)/σ) = 62% if she has sufficient assets. In that case,
robustness does not play a role because the δ hedge neutralizes the λ1 effect.
In Figure 6, we show the two hedging policies as a function of correlation param-

eter ρ. We displayed two scenarios, one when C0 = 80% and the other when
C0 = 90%. The relation between the optimal portfolios and ρ is not monotone but
is hump shaped. This is because the volatility of the value function σC is a quadratic
function of ρ.
The optimal portfolio initially increases with ρ for both policies because the liability

is more exposed to the tradable risk driver W1. Therefore, the risky portfolio has to
increase as well, in order to hedge the traded liability risk. The optimal portfolio
reaches the peak where ρ maximizes the total volatility σC. After the peak, the risky

Figure 4. Loss function equivalent curves. The figure plots
the indifference curve of the loss when K(wrob|δ0) =K(wna|δ0).
y-axis is the true value of the expected stock return μ0 and
x-axis is the true value of the liability drift a0. The estimated
value is μ= 0.04 and a= 0. The solid-dot indifference curve
represents the case when C0 = 80% and the open-dot curve
is the when C0 = 90%. In the region below the curve, the
robust policy outperforms the naive policy, and in the
region above, it is the other way around.
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portfolio goes down with ρ, because after the peak, any higher level of correlation will
reduce σC. From Figure 6, we can also see that the difference between the two policies
under the lower funding ratio is wider than under the higher C0.

4 Dynamic robust optimization

In this section, we will extend the problem to a dynamic strategy. The robust investor
still aims to minimize the final-period expected shortfall under the worst-case scen-
ario, but instead of making a static portfolio choice, she is now considering a dynamic
optimal portfolio. Nature also can rebalance her choice of (λ1t, λ2t) instantaneously
given the intertemporal decision of wt. We employed dynamic programming to
solve this robust optimization problem.

4.1 Dynamic programming

Define the indirect utility function V(At, Lt), which follows the min–max expected
utility given by (9). Both the investor and nature have a planing horizon of T. We
omited the time subscript t for notation convenience. Using Feynman–Kaç, we can
derive the Hamilton–Jacobi–Bellman equation (henceforth HJB) or partial differen-
tial equation (pde) for the investor’s min–max problem:

0 =min
w

max
λ1,λ2

Vt + VAA r+ w(μ− r) + wσλ1
( )+ VLL a+ bρλ1 + b

�������
1− ρ2

√
λ2

( )

+ 1
2
VAAw2σ2A2 + 1

2
VLLb2L2 + VALbρwσAL− 1

2
ν λ21 + λ22 − κ2
( )

,

(16)

Figure 5. Sensitivity analysis with ρ= 1. The figure depicts
the optimal portfolio choice when ρ= 1. The remaining
parameters stay at the benchmark level. The solid-dot line
represents the robust policy and the empty-dotted curve is
the naive policy. The naive agent considers such an
economy a complete market, since the non-tradable risk
driver W2 is gone. However, the robust agent still stays in
the incomplete market, because the model misspecification
( λ1 = 0 λ2 = 0) is also considered as another source of
market incompleteness.
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where the partial derivative with respect to x is denoted as Vx. We formed a
Lagrangian function with multiplier ν over the boundary condition: λ21 + λ22 ≤ κ2.4

By solving a linear system of equations based on the first-order condition of (16)
with respect to the strategy variables w, λ1, and λ2, we have

w
∗ = − μ− r

( )
VAAν

σ2 VAAA2ν+ V2
AA

2
( )− VALALbρσν+ VLVAALbρσ

σ2 VAAA2ν+U2
AA

2
( ) , (17a)

λ
∗
1 = − μ− r

( )
V2

AA
2σ

σ2 VAAA2ν+ V2
AA

2
( )− bρ VALALVAA− VLLVAAA2

( )
VAAA2ν+ V2

AA
2

( ) , (17b)

λ
∗
2 =

VLLb
�������
1− ρ2

√
ν

. (17c)

This is a partial solution. The Lagrange multiplier ν, as well as VA, VAA, still need to
be solved numerically.
The sign of the optimal λ2 must be positive since it increases the expected liability

return but does not influence the pension asset. The sign of λ1 is ambiguous. A positive
λ1 not only increases the liability but also the asset, but the net effect depends on the
value of other input variables.

Figure 6. Sensitivity analysis with respect to ρ. The figure
plots the optimal naive and robust hedging policies as a
function of correlation parameter ρ. We show two pairs of
comparison: one with the present funding ratio C0 of 80%,
and the other with C0 = 90%. The solid-dot curves
represent the robust policy and the empty-dot curves are
the naive policy.

4 The Lagrangian multiplier ν relates to the time-consistent per-period constraint (6), which is different from
the setup of Anderson et al. (2003). In Anderson et al. (2003), the last term of the HJB equation is
replaced by a relative entropy function, 1/2θ λ21 + λ22

( )
which penalizes drift distortions. Although the

two HJB equations look similar, θ implicitly imposes an aggregate-budget style uncertainty constraint
rather than a per-time step constraint. Hansen and Sargent (2007) employ the detection-error-probability
methods to calibrate θ. The detection error probability method performs likelihood ratio tests under the
two models based on available data. By linking the relative entropy parameter to a Bayesian model selec-
tion function, one can derive the value of the relative entropy.
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The solution (17) has an interesting structure. The dynamic optimal investment
strategy w* is a trade-off between hedging and speculation. We can see this by con-
sidering the extreme case when ν � 0 and ν→∞.
For ν→ 0, the discrepancy parameters λ1 and λ2 have more freedom to choose an

arbitrarily large aversion pair of drift for the Brownian motions, or in other words,
the agent is extremely pessimistic about the approximation model. When ν→ 0, we
have

w
∗
ν�0 = −VLL

VAA
bρ
σ
. (18)

This is a pure hedging portfolio, where the agent invests an amount in risky assets
such that the change in the value function due to L is (as much as possible) offset
by a change in value due to a. It is not possible to completely eliminate the volatility
of L. This is because the liabilities are exposed both to hedgeable risk W1 and
unhedgeable risk W2, but only the hedgeable part W1 can be eliminated.
The optimal value for λ∗1 when ν→ 0 is given by

λ
∗
1,ν�0 = − μ− r

σ
− bρ VALVA − VLVAA( )L

V2
A

, (19)

which contains two terms. The first term is the observable market price of risk, which
we can see from the BS setup. The second term is more interesting. Since

− bρ VALVA − VLVAA( )L
V2

A

= σ
∂(w∗

ν�0A)
∂A

= w
∗
ν�0σ + σA

∂w
∗
ν�0

∂A
,

this reflects to what extent the agent’s best possible hedging strategy is influenced by
the instantaneous wealth level At.
At the other extreme, when ν→∞, both λ1 and λ2 shrink to zero, so κ= 0. This cor-

responds to the case when the agent faces no model misspecification. Hence, we recov-
ered the ‘classical’ Merton’s solution for the optimal portfolio choice:

w
∗
ν�1 = − μ− r

σ2
VA

VAAA
− VALL

VAAA
bρ
σ
. (20)

The first term is a speculative portfolio, where the agent invests in the stock market to
obtain the optimal trade-off between the observable market price of risk ((μ− r)/σ2)
and the local risk aversion − ((VA/VAAA)). The second term is the intertemporal hedg-
ing component, but the optimal amount to hedge is now measured in terms of the
‘CAPM-β’. That is, the optimal hedge is the local covariance term bρσ divided by
local variance term σ2, i.e. the stock market investment that minimizes locally the
(unhedgeable) variance in the portfolio.

4.2 Numerical solution

As we cannot solve the PDE analytically, we will present numerical results for the
dynamic optimization problem.
In Figure 7, we show the dynamic robust investment policy as a function of the

instantaneous funding ratio Ct and hedging horizon T. The optimal weight on the
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risky asset depends both on the solvency condition and the investment horizon. If the
funding ratio is low, a longer term investor takes less risk than a shorter term investor.
In other words, the risk exposure to the stock market decreases with the hedging hori-
zon. When underfunded, an investor would take an aggressive risk position, betting
on the chance of avoiding a shortfall, exactly as we have seen in the static case. A
shorter planning horizon triggers a stronger intention to cover the liabilities, hence
leads to a riskier position. However, when overfunded (Ct> 1), the longer the invest-
ment horizon is, the more risk can be taken. The optimal portfolio converges to the
hedging ratio δ ((bρ)/σ) when the hedging horizon T is close to zero.
Next, we investigated the difference between the robust and the naive dynamic pol-

icies. In Figure 8, we present the two investment policies as a function of the instant-
aneous funding ratio under two hedging horizons, T= 5 and T= 3. We highlight two
findings from the figure. First, the robust policy is less risky than the naive one as long
as the instantaneous funding ratio is lower than 1. Second, the difference between the
two policies decreases with the investment horizon. As the risk exposure decreases
with hedging horizon, so does the fear of uncertainty. Compared with static hedges
(Figure 1), dynamic hedges (Figure 8) take riskier positions under both robust and
naive policies.
Figure 9 shows the dynamic optimal λ1, λ2 as functions of the funding ratio at three

different investment horizons. It is still the case that λ1 is always negative and λ2 is
always positive (see also Figure 2). We now focus on the dynamic effect of the
processes.
When underfunded (Ct < 1), the absolute value of λ1 decreases when the hedging

horizon increases, since the longer term investor is less exposed to the stock market
(see Figure 7b) than the shorter term investor. Therefore, nature becomes less effective
in distorting the asset model when the hedging horizon increases. The optimal value
of λ2 increases with the investment horizon so as to offset the diminished effect of λ1.

Figure 7. Dynamic robust optimal hedging strategy. This figure displays the robust
optimal investment policy as a function of the instantaneous funding ratio Ct with
benchmark input parameters under different hedging horizons. Panel 7a plots the robust
portfolio choice as a function of the instantaneous funding ratio and the investment
horizon T. Panel 7b depicts the solutions when investment horizon is T= 1, 3, 5. Due to
technical limitations, our grid searching interval for the risky portfolio w has to be
smaller than 1.95, otherwise we will confront a negative probability problem in some
trinomial trees.
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We moveed on to analyze the dynamic perturbed drift terms displayed in
Figure 10. Panel 10a plots the perturbed expected stock return process μS as a func-
tion of Ct under three different investment horizons. Since μS= μ+ σλ1 is a linear
function of λ1, it shares common characteristics with λ1 shown in Figure 9. After
all, μS increases with hedging horizon when underfunded and vice versa if Ct > 1.
Panel 10b shows the movement of μL. When Ct is low, the perturbed expected liabil-
ity return μL increases with T to offset the diminishing distortions from the asset
side.

Figure 8. Dynamic robust and naive optimal hedging strategy as a function of
instantaneous funding ratio at selected hedging horizon. In this figure, we display both
robust and naive investment policies as functions of the instantaneous funding ratio.
Panel 8a plots the solution when T= 5. Panel 8b shows the result when T= 3.

Figure 9. Dynamic optimal perturbation processes. In this
figure, we show the optimal perturbation processes λ1 and
λ2 as functions of the instantaneous funding ratio when
hedging horizon equals to T= 1, 3, 5. The solid lines are
the movement of λ1 and λ2 when T= 5, the dashed curves
are for the case T= 3, and the dotted curves are for T= 1.
The upper panel with positive perturbations gives the
optimal results of λ2. The negative portion of the figure
gives the optimal solutions of λ1.
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4.3 Dynamic policy evaluation

From the static case, we know that the robust policy performs better when the drift
terms are overestimated. In this section, we will investigate the effect of the hedging
horizon.
Figure 11 displays the policy indifference curve under different hedging horizons T.

The area beneath the indifference curves represents the scenarios that require less ini-
tial wealth to hedge a given amount of downside risks by following a robust policy.
Different from the static case (Figure 4), the beneficial region of the robust policy
in the dynamic setting is smaller than it is in the static case. This means naive dynamic
hedging is less sensitive to parameter uncertainty. Additionally, we found that the
beneficial region increases with the hedging horizon. Therefore, long-term investors
should be more inclined to follow a robust investment strategy than short-term

Figure 10. Dynamic perturbation effect on drift terms. In this figure, we plot the
dynamic movement of the perturbed drift terms as functions of the instantaneous funding
ratio when hedging horizon is T= 1, 3, 5. Panel 10a depicts the movement of μS= μ+ σλ1
and panel 10b shows μL = a+ bρλ1 + b

�������
1− ρ2

√
λ2.

Figure 11. Dynamic loss function equivalent curve. The figure shows the policy
indifference curve at a function of the true drift terms (μ0, a0) at three different horizons
T= 1, 3, 5. The left panels plots the case when the instantaneous funding ratio equals to
80%, and the right panel is the case when Ct = 90%. The robust policy are better off in
the area beneath the indifference curves. The dynamic policies wrob and wna are
determined based on the estimated drift terms with values μ= 0.04 and a= 0.
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investors. The horizon effect is weaker when the instantaneous funding ratio is rela-
tively high. As a robustness check, we also conducted sensitivity analysis on ρ in
the dynamic hedging environment when the instantaneous funding ratio is low. The
hedging portfolios for both policies are positively related to the correlation factor ρ
and are lower under longer term investment.

5 Conclusion

We analyzed a robust hedging strategy under the condition that the market is incom-
plete and the underlying model can be misspecified. We employed and simplified the
general model uncertainty problem of Hansen and Sargent (2007) to uncertainty
about the drift terms. The robust policy requires an extra cost of capital, or lower
liability discount rate, to guarantee against model uncertainty. That is the price to
pay for coping with the parameter uncertainty. If the model is truly misspecified,
the hedging will be more successful.
From our analysis, we summarize two major characteristics of the robust policy.

We first found that the robustness effect strongly depends on the instantaneous fund-
ing ratio. The preference for robustness only influences the hedging policy when the
funding ratio is low; if the fund’s assets are large enough to cover the liability payoff,
then the robust and the naive policies are identical. Second, the robust policy also
becomes more valuable for longer investment horizons.
The investor can benefit from the robust policy when the expected return is overes-

timated. That means, with a given expected-shortfall hedging target, the robust policy
requires less initial wealth to obtain a successful hedge than the naive policy if the true
expected stock return is lower than the estimated value.
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