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Summary
This paper examines three methods of adaptive output feed-
back control for robotic manipulators. Implementing output
feedback control allows use of only the position information,
which can be measured quite accurately. Velocity and
acceleration measurements can get corrupted by noise. A
method proposed by K. W. Lee and H. K. Khalil [Adaptive
output feedback control of robot manipulators using high-
gain observer, Int. J. Control, 6, 869–886 (1997)] using a
high-gain observer, one proposed by J. J. Craig, P. Hsu and
S. S. Sastry [Adaptive control of mechanical manipulators,
Int. J. Robot. Res., 6(2), 16–27 (1987)] with the addition of
a linear observer that we propose, and a method proposed
by R. Gourdeau and H. M. Schwartz [Adaptive control of
robotic manipulators: Experimental results, Proceedings
of the 1991 IEEE International Conference on Robotics
and Automation (Apr. 1991) pp. 8–15] using an Extended
Kalman Filter are examined. The methods are implemented
in simulation and experimentally on a direct-drive robot.
The performance of each of the algorithms is compared.

KEYWORDS: Adaptive control; System identification;
Nonlinear systems; Robot manipulators.

1. Introduction
The use of adaptive control strategies for robot manipulators
is an area that has received interest from researchers over the
last number of years. When exact knowledge of the robot
parameters is unknown, or the dynamics of a manipulator
may be changing over time due to varying payload masses, an
adaptive strategy is useful in estimating unknown parameters
and modifying the controller to minimize tracking error.

In many such adaptive control algorithms,1,2 position,
velocity, and sometimes acceleration are required for the
control and/or adaptation laws. However, while the position
of a robot link can be measured accurately, measurement of
velocity and acceleration tends to result in noisy signals.3 In
extreme cases, these signals could be so noisy that their use in
the control or adaptation would no longer be feasible. In order
to overcome the problem of noisy velocity and acceleration
measurements, an observer can be used to estimate these
values based on position measurements only. Not only
can such a method help to yield velocity and acceleration
estimates with less noise than their measured values, but
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robot manipulator setups using this sort of approach need
only to be equipped with position sensors. This can help
decrease the cost of production.

Lee and Khalil4 develop one such method of output
feedback adaptive control using a high-gain observer. This
observer is used to estimate position error and velocity error,
and these estimated values are used in the control and adapt-
ation laws. An acceleration signal is not required for either
the control law or adaptation law. The advantage of such a
high-gain observer is that the error in the observed signals
tends toward zero quite rapidly, and the system is quick to
recover performance similar to that achieved under full-state
feedback control. A potential drawback of this method is that,
due to the high gain of the observer, the presence of noise
in the measurements (such as quantization error on digitized
position measurements) may make estimation of the position
and velocity errors inaccurate to the point of not being useful.
The noise on the position measurements would be amplified
many times by the high observer gain.

In order to overcome difficulties with noise in a high-gain
observer, we propose an addition to the adaptive controller
developed by Craig, Hsu and Sastry1 that involves the
use of a linear second-order observer to estimate position,
velocity and acceleration signals. When the Computed
Torque Method (CTM) is used to control a nonlinear robot
manipulator, assuming perfect linearization occurs, each link
of the closed-loop system can be modeled as a double
integrator. We then use a simple second-order linear observer
constructed based on the dynamics of the double integrator
to estimate position, velocity and acceleration from position
measurements. The observer gains are set large enough so
that the observer poles are significantly faster than the error
dynamics of the system. As a a result, the effect of observer
error has a minimal impact on the control of the system.
However, the observer gains must be small enough to ensure
that the algorithm is still effective in the presence of noise.

The adaptive output feedback control method proposed by
Gourdeau and Schwartz5 using an Extended Kalman Filter
(EKF) will also be examined. The noise rejection properties
of the EKF are desirable in the presence of noise due to
quantization error on the measurements. In addition, the
theory behind Kalman filtering is useful in selecting the
tuning parameters of the filter.5 The EKF is used to estimate
both position and velocity, as well as the unknown robot
parameters. This results in a consolidated approach where a
separate adaptation law is not required. However, the use of
the EKF can be computationally quite expensive.

This paper will examine both simulation and experimental
results for each of the three algorithms. Simulations will
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be performed using the dynamics of a two-link robot mani-
pulator operating in the horizontal plane. The experiments
will be conducted using the Carleton University direct-drive
robot, a two-degree-of-freedom robot with a parallelogram
linkage operating in the horizontal plane. The models used
for each of the cases, simulation and experimentation, will
be outlined in Section 2.

In Section 3, the algorithm proposed by Lee and Khalil
will be examined in more detail. Section 4 discusses Craig’s
method of adaptive control with the addition of an observer,
as mentioned earlier. Section 5 will examine Gourdeau and
Schwartz’s adaptive algorithm based on the EKF. In each of
the sections, simulation results are presented and compared,
for the case of no noise as well as in the presence of noise
mimicking position resolver quantization error. Experimental
results based on the Carleton University direct-drive robot are
also presented and compared in each of the sections.

2. Robot dynamic models
The algorithms described in this work will be implemented
in simulation as well as on an experimental robot. In
each of these cases, the dynamic model used is different.
The simulated robot is a two-link manipulator, with two
degrees of freedom, that operates in the horizontal plane. The
experimental platform is a four-link manipulator configured
in a parallelogram linkage. This robot is also a two-degree-
of-freedom robot operating in the horizontal plane.

Both robots are represented using equations having the
following form, given for the case of a n-degree-of-freedom
manipulator

T = M(q)q̈ + C(q, q̇)q̇ + G(q) (1)

where T is a n× 1 vector of torques applied to the joints,
M(q) is the n× n mass (or inertia) matrix, q is the n× 1
vector of joint positions, C(q, q̇)q̇ is the n× 1 vector
of centrifugal and Coriolis terms, and G(q) is the n× 1
gravity vector. The effects of friction are neglected here.
The dynamics of Eq. (1) may also be expressed in linear
regression form for p-robot parameters as

T = Y (q, q̇, q̈)θ

where Y (q, q̇, q̈) is an n× p matrix of known functions, and
θ is a p × 1 vector of robot parameters.

2.1. Simulated robot dynamics
For the simulations in this work, the dynamics of a
n= 2 degree of freedom serial link manipulator are used.
The equation of dynamics for this manipulator is given
by Schwartz6 and is repeated here for convenience. The
dynamics take the form of Eq. (1) but the robot operates
in the horizontal plane, and as such G(q) is zero. Note that
a robot operating in the vertical plane could also have been
used without affecting the algorithms. The controllers used
for the robot will linearize and decouple the robot dynamics
including the effects of gravity. There are p = 2 parameters

to be estimated for the robot, they are

θ =
[
θ1

θ2

]
=

[
m1l

2

m2l
2

]

The mass and coriolis matrices are given as

M(q) =
[
θ1 + 2θ2 + 2θ2 cos q2 θ2 + θ2 cos q2

θ2 + θ2 cos q2 θ2

]
(2)

C(q, q̇) =
[
−2θ2q̇2 sin q2 −θ2q̇2 sin q2

θ2q̇1 sin q2 0

]
(3)

To generate the trajectory for the robot to follow, a
command signal consisting of a square wave with a period
of 20 s was used. The square wave has peak values of ±1
rad. This signal was pre-filtered using a critically damped
second-order linear filter with a bandwidth of ωn = 2.0 rad/s.
The transfer function for this filter is given as

G(s) = 4

s2 + 4s + 4
(4)

The simulations were performed using a fourth-order
Runge–Kutta algorithm to numerically integrate the conti-
nuous time dynamics. Cases free of noise were run, as well as
cases having uniformly distributed random noise to simulate
the quantization error of a 12-b position resolver.

In all simulations, the controller dynamics were set to
have a bandwidth ωn of 2.0 rad/s, and a damping ratio ζ of
1, matching the bandwidth of the trajectory pre-filter Eq. (4).
This resulted in controller feedback gains of Kp = 4I2×2 and
Kd = 4I2×2. The sample period for all of the simulations was
set at Ts = 0.001, corresponding to a sampling frequency of
1000 Hz, which is well above the bandwidth of the closed-
loop system and is faster than the observer time constants.
In all cases, the robot parameter estimates were initialized to
θ̂1 = 1.5 and θ̂2 = 3, representing 1.5 times the true parameter
values. The true parameter values used in the simulated
dynamics are θ1 = 1 and θ2 = 2.

2.2. Carleton university direct-drive robot dynamics
All control algorithms in this work have been implemented
experimentally using the Carleton University direct-drive
robot. This robot is a n= 2 degree of freedom robot,
consisting of four links in a parallelogram linkage, which
operates in the horizontal plane. The dynamics of this
robot are derived by Gourdeau and Schwartz7 and are now
presented. These dynamics take the form of Eq. (1), but since
the robot operates in the horizontal plane G(q) is zero. In this
case there are p = 3 robot parameters to be estimated, they are

θ =
⎡
⎣θ1

θ2

θ3

⎤
⎦ =

⎡
⎢⎣

I0 + I2 + m2l
2
4 + m3l

2
2

I1 + I3 + m2l
2
1 + m3l

2
3

m2l1l4 + m3l2l3

⎤
⎥⎦

where I0 through I3 represent inertia terms, l1 through l4
are the lengths of each of the links, and m2 and m3 are the
masses of links 2 and 3, respectively.
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The mass and coriolis matrices are given as

M(q) =
[

θ1 θ3 cos (q1 − q2)
θ3 cos (q1 − q2) θ2

]
(5)

C(q, q̇) =
[

0 θ3q̇2 sin (q1 − q2)
−θ3q̇1 sin (q1 − q2) 0

]
(6)

The links of the robot are driven by two brushless DC
servo motors. Each motor is supplied with current by a
servo amplifier, which is powered by a high-voltage power
supply.8 Each motor has a resolver for measuring position,
and a tachometer for measuring velocity. The resolver signals
are converted by the amplifiers into 12-b digital words.
These 12-b words are then sent to the computer through
digital input/output ports of a digital interface card. The
analog tachometer signals are sent to an analog/digital card
inside the computer, which samples and digitizes the velocity
measurements using 12 bits of resolution.

To drive the motors, the torques computed by the controller
are scaled to a 12-b number, and are then output to the
digital/analog converter where they are converted to a ±5-V
signal that is sent to the amplifiers. The amplifiers take these
signals and convert them to 20-KHz Pulse Width Modulated
(PWM) signals, which drive the motors. The torque constant
for each motor was measured at 1.7 Nm/V, giving a torque
saturation value of 8.5 Nm (based on a ±5-V maximum
control signal).9

The computer used to control the robot has an Intel
Pentium-II CPU running at 300 MHz, with 128 MB of
RAM. All experiments were run using a sample period of
Ts = 0.002, giving a sample frequency of 500 Hz.

When running the experiments, a trajectory consisting of
a combination of sines and cosines at different frequencies is
selected. It is based on a trajectory used by Warshaw8 and is
given as

y1(t) = cos (2ωt) − cos (4ωt) (7)

y2(t) = (π/2) − 1.9 + sin (ωt) + sin (2ωt) (8)

where ω was chosen to be 1.257 rad/s.
This signal was pre-filtered using a critically damped

second-order linear filter with a bandwidth of ωn = 2.0 rad/s.
A filter with this bandwidth was selected to ensure that the
torques required to track the trajectory were kept within the
torque saturation value of 8.5 Nm. The transfer function for
this filter is given by Eq. (4). The filtered trajectories used
for each link can be seen in Fig. 1.

In each of the experiments, the controller closed-loop
dynamics were set to be critically damped and given a
bandwidth ωn = 6.0 rad/s. This yielded feedback gains of
Kp = 36I2×2 and Kd = 12I2×2. For all experiments, the robot
parameter estimates were initialized to θ̂1 = 0.2, θ̂2 = 0.2, and
θ̂3 = 0.05.

Filtering the original trajectory provided access to the
desired velocity and desired acceleration signals corres-
ponding to the filtered trajectory. In addition, the range of
the filtered positions matched well with the achievable range
of motion for each link. This resulted in a path that the robot
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Fig. 1. Pre-filtered trajectories used with experiments on the direct-
drive robot for link 1 (solid line) and link 2 (dashed line).

was able to follow without encountering points of singularity
or obstacles such as its own aluminium structure.

In the implementation of all controllers, a Proportional-
Derivative (PD) controller was used initially to move the
robot links close to their origin (0 rad). This was done to
minimize initial position error for the adaptive controllers.

3. Adaptive control using a high-gain observer
In the case of adaptive control using a high-gain observer,
Lee and Khalil4 begin by designing a globally bounded
state feedback controller and then introduce the observer
to estimate position and velocity error. It is noted that
such a high-gain observer may result in peaking in its
transient behaviour.4 This peaking could be transmitted to
the manipulator, and could lead to instabilities. In order to
overcome this, a modification is made which saturates the
control inputs above some pre-defined level.

On the basis of the dynamic model Eq. (1), Lee and Khalil
propose the control law

T = M̂(q)q̈d + Ĉ(q, q̇r)q̇d + Ĝ(q) − Kdė − Kpe (9)

for full-state feedback. The desired trajectory is given by
qd, an n× 1 vector. Here, e = q − qd, q̇r = q̇ − λe, with
λ = λ0/(1 + ||e||), λ0 > 0. The notation ||e|| is defined
as ||e|| = (eTe)1/2. M̂(·), Ĉ(·) and Ĝ(·) represent estimates
(based on robot parameter estimates) of each of the actual
matrices. Kd and Kp are positive definite symmetric constant
matrices. Their values will determine the response of the
error dynamics.

The derivation of the adaptation law is based on Lyapunov
stability and is given by Lee and Khalil.4 This adaptation law
requires a priori bounds on the parameter estimates. These
bounds are represented by the set

� = {θ |ai ≤ θi ≤ bi, 1 ≤ i ≤ p}

Now let

�δ = {θ |ai − δ ≤ θi ≤ bi + δ, 1 ≤ i ≤ p}
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where δ > 0. The adaptation rule then contains a parameter
projection feature to ensure that the parameter estimates
remain in �δ whenever the initial parameter estimates are
in �. The adaptation rule is given as

˙̂θ i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

γiiφi if ai < θ̂i < bi or
if θ̂i ≥ bi and φi ≤ 0 or
if θ̂i ≤ ai and φi ≥ 0

γii

(
1 + bi − θ̂i

δ

)
φi if θ̂i ≥ bi and φi ≥ 0

γii

(
1 + θ̂i − ai

δ

)
φi if θ̂i ≤ ai and φi ≤ 0

(10)

where φi is the ith element of φ = −Y T
r (q, q̇r , q̇d , q̈d )s. Yr

is the same function as Y given in the linear regression form
of the dynamics, but it has different arguments. See Lee and
Khalil4 for a more complete treatment. The vector s is defined
as s = ė + λe. The scalar γii is the ith diagonal of a positive
diagonal matrix 
 which represents the adaptation gain. The
n× 1 vector θ̂ is the estimate of the parameter vector θ .

The high-gain observer used to estimate the error dynamics
will now be given. First, define x1 = e and x2 = ė. The
equations for the observer are given as

˙̂x1 = x̂2 + 1

ε
L1(x1 − x̂1) (11)

˙̂x2 = 1

ε2
L2(x1 − x̂1) − q̈d − M̂−1(x̂1, qd)

× [Ĉ(x̂, qd, q̇d)(x̂2 + q̇d) + Ĝ(x̂1, qd)]

+ M̂−1(x̂1, qd)T s(x̂, qd, q̇d, q̈d, θ̂) (12)

where L1 = diag{α1i} and L2 = diag{α2i}, i = 1, . . . , n. The
high-gain of the observer comes from ε, which is a small
positive parameter. The values for matrices L1 and L2 are
chosen such that,

Ā =
[−L1 I

−L2 0n×n

]

is Hurwitz. T s represents the saturated input torques, which
are saturated at some pre-determined threshold.

In implementation of this algorithm, ê and ˆ̇e are used in the
control and adaptation laws, replacing e and ė, which would
be used for full-state feedback control.

3.1. Simulation results for Lee and Khalil’s method
The observer parameters L1 and L2 were both set equal to
I2×2 to ensure the matrix Ā is Hurwitz. The parameter ε which
is directly related to observer gain was set to ε = 0.001, as
per one of the simulations performed by Lee and Khalil.4

Initial position and velocity error were both set to zero,
meaning that the robot starts at rest in its zero position.
The adaptation gain 
 was set to Ip×p for unity adaptation
gain. Figure 2 illustrates the tracking error of the algorithm
without any noise. It reaches a peak error of 0.2662 rad
on link 1, and 0.1114 rad on link 2. The large peak error
can be attributed to the relatively inaccurate initial estimates
of the robot parameters, and a fairly small adaptation gain,
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Fig. 2. Error between desired trajectory and simulated trajectory for
joint 1 (solid line) and joint 2 (dashed line) using Lee and Khalil’s
method in simulation, with no noise on position measurements.
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Fig. 3. Parameter estimation error using Lee and Khalil’s adaptation
law in simulation with no noise in the system, for θ1 (solid) and θ2
(dashed).

which slows parameter convergence. The error in parameter
estimation over time can be seen in Fig. 3. It is seen here
that the parameters are relatively slow to converge. A small
adaptation gain was chosen in order to compare this algorithm
with the one presented in Section 4, which requires a small
adaptation gain to prevent the simulation from diverging.

Adding noise to the position measurements to simulate a
12-b resolver resulted in comparable tracking performance,
as seen in Fig. 4. Here the maximum tracking error was
0.2973 radians on link 1, and 0.1352 radians on link 2.
However, due to the high-gain observer, velocity estimates
were quite noisy, and this resulted in a very noisy control
signal that could make implementation on a real platform
difficult.

In order to better gauge the performance of the algorithm
by itself, the adaptation gain was increased to 
 = 50I , and
the results for tracking error are quite good. The much quicker
adaptation of parameters resulted in significantly lower peak
tracking error, at 0.0173 rad for link 1, and 0.0274 rad for
link 2. However, when 12-b resolver noise was added to the
position measurements with this value for 
 the simulation
diverged. This shows excellent theoretical performance, but
performance that may not be achievable in practice.
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Fig. 4. Error between desired trajectory and simulated trajectory for
joint 1 (solid line) and joint 2 (dashed line) using Lee and Khalil’s
method in simulation with position error equivalent to quantization
by a 12-b resolver.
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Fig. 5. Position error for joint 1 (solid line) and joint 2 (dotted line)
after 80 s using Lee and Khalil’s adaptation law with 
 = 0.3 on
the direct-drive robot.

3.2. Experimental results for Lee and Khalil’s method
Several choices were made for the setting of the parameters
of the algorithm when conducting the experiments. Given
that a real platform is used, instead of simulated dynamics,
control is lost over the noise processes in the system. As
a result, some care had to be taken when parameters were
selected.

As in simulation, the observer parameters L1 and L2 were
both set equal to I2×2 to ensure the matrix Ā is Hurwitz. The
parameter ε, related to the observer gain, was set to ε = 0.01.
This value is an order of magnitude larger than the value used
for the simulations, however it is still one of the values used
in Lee and Khalil’s paper.4 Such a value will also result in a
high-gain observer.

Throughout the experiments, a variety of adaptation gains

 were used in order to see the effect of adaptation gain on
controller performance.

Figure 5 illustrates the tracking performance of this
controller for 
 = 0.3 after 80 s. The tracking error here is
quite small. In this experiment, it peaks at 0.1325 rad for
link 1, and −0.0785 rad for link 2. After the parameters have
reached a steady-state, the tracking error is bounded between
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Fig. 6. Parameter estimates over time for θ1 (solid), θ2 (dotted) and
θ3 (dashed) using Lee and Khalil’s adaptation law with 
 = 0.3 on
the direct-drive robot.
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Fig. 7. Computed torques used to drive the robot links for link 1
(dashed) and link 2 (solid). These torques are computed using Lee
and Khalil’s control algorithm on the direct-drive robot for 
 = 0.3.

0.040 and −0.007 rad for link 1. Link 2 error is bounded
between 0.040 and −0.060 rad. Figure 6 shows convergence
of the estimated parameters over time. Convergence happens
rapidly, which helps to reduce tracking error more quickly.
The high gain of the observer allows observer error to
converge to a very small value quite rapidly. The small error
in observed signals leads to small tracking error.

While this performance appears to be quite desirable,
a problem is sometimes encountered in implementation.
It was found that this algorithm excites unmodeled high-
frequency dynamics in the robot. While the robot is running,
significant vibrations are observed in its links. At times,
the whole platform of the robot shakes. This can be seen
graphically by examining the control torques produced by
this algorithm in Fig. 7. At the points in the graph where the
link 2 control torque (solid) saturates, the robot experiences
much shaking. One can observe the high-frequency content
of the link 2 control torque. The high-gain observer of
this algorithm, which works to minimize observer error
thus improving tracking performance, is also responsible for
amplifying the system noise. This contributes to the high-
frequency saturating control signal that excites the robot’s
high-frequency dynamics.
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Fig. 8. Computed torques used to drive the robot links for link
1 (dashed) and link 2 (solid). These torques are computed using
Lee and Khalil’s control algorithm on the direct-drive robot for

 = 0.05.

Experiments were performed with various values of 


to determine if the adaptation gain has an effect on the
high-frequency excitations. Figure 8 shows the torques
computed for an experiment with 
 = 0.05, much smaller
than before. (When compared with the torques computed
in other algorithms, such as Fig. 16 for Craig’s algorithm
with our observer and Fig. 23 for Gourdeau and Schwartz’s
algorithm, it should be noted that the torques computed for
link 2 are much smaller in those cases, and do not approach
the saturation point.) Again, though, the torque for link 2
saturates and contains high-frequency components. During
this experiment the robot shook significantly, although
tracking error remained quite good.

The cause of this high-frequency excitation appears to be
due initially to a difference between measured and estimated
positions. It is this error term that drives the observer, and
is scaled by the high observer gains. Such disturbances as
noise on the position measurements could be responsible for
this behaviour. It is interesting to note that these vibrations
occur primarily with link 2. The position resolver for the
motor attached to link 2 of the direct-drive robot appears to
produce slightly noisier position measurements than that of
link 1. However, the other algorithms tested do not respond
to the increased noise in this fashion. This demonstrates this
algorithm’s intolerance to noise on the measurements.

Another point of interest is that the occurrence of these
high-frequency excitations is not predictable. The same
experiment was run several times over, and in one instance
the robot shook considerably, but in another the robot only
vibrated slightly. The lack of predictability of these vibrations
further complicates the implementation of this algorithm in
practice. In one experiment, 
 was set to 
 = 2 and left to
run for a period of time. Beginning at 50 s, the computed
torque for link 2 started saturating and the robot vibrated
significantly. At 90 s into the experiment, the algorithm
diverged. It is not sufficient for the robot to track the position
well if it vibrates so significantly as to cause divergence of
the experiment.

In another instance, 
 was set to 
 = 2 again, and the
experiment was run for 150 s. Figure 9 shows the tracking
error for this run. At a steady state, the tracking error for
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Fig. 9. Position error for joint 1 (solid line) and joint 2 (dotted line)
after 130 s using Lee and Khalil’s adaptation law with 
 = 2 on the
direct-drive robot.
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Fig. 10. Computed torques used to drive the robot links for link 1
(dashed) and link 2 (solid). These torques are computed using Lee
and Khalil’s control algorithm on the direct-drive robot for 
 = 2.

link 1 was bounded between 0.042 and −0.015 rad. The
tracking error for link 2 was bounded between 0.042 and
−0.030 rad. Examining Fig. 10, it is apparent that, while
the torques contain noise, there is little saturation observed.
This translates to minimal vibration in the robot links as the
experiment is run.

4. Adaptive control using Craig’s algorithm
and a Linear observer
The adaptive control method proposed by Craig, Hsu and
Sastry1 was implemented for comparison. However, instead
of using measured position, velocity and acceleration of the
robot a linear observer was constructed to feed back estimates
of those signals, based on measured position. This observer
has its poles placed so that they are much faster than the error
dynamics, but small enough that the response to noise in the
system will remain reasonable. The control law is given by

T = M̂(q)q̈∗ + Ĉ(q, q̇)q̇ + Ĝ(q) (13)

where M̂(·), Ĉ(·) and Ĝ(·) represent estimates of the mass
matrix, coriolis matrix and vector of gravity terms. The term
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q̈∗ is defined as

q̈∗ = q̈d + KvĖ + KpE (14)

The servo error E is an n× 1 vector that is defined as

E = qd − q

which is negative to the way error is defined in Section 3.
Kv and Kp are constant diagonal gain matrices,1 which
determine the location of the poles of the error dynamics.

For the full derivation of the adaptation law, see Craig, Hsu
and Sastry’s paper1 and the paper by Schwartz, Warshaw and
Janabi10 The adaptation law is given as

˙̂θ = 
Y (q, q̇, q̈)TM̂−1(q)E1 (15)

where E1 is the filtered servo error, and is given by

E1 = Ė + E

Here  is an n× n diagonal matrix, with ψi > 0 as entries
along the diagonal. The ψi are chosen to make the transfer
function

s + ψi

s2 + kvis + kpi

strictly positive real (SPR). See Craig, Hsu and Sastry’s
paper1 for further information about SPR systems.

Additionally, the adaptation law includes reset conditions
on the parameters to ensure they lie within the bounds. This
is similar in concept to the parameter projection principle of
Lee and Khalil’s adaptation law given by Eq. (10). The reset
conditions are given as

θ̂i(t
+) = ai, if θ̂i(t) ≤ ai − δ,

(16)
θ̂i(t

+) = bi, if θ̂i(t) ≥ bi + δ,

After feedback linearization, using a computed torque
method such as the one given, each link of the robot
manipulator can be thought of as a double integrator.6 We
make use of the certainty equivalence principle in assuming
perfect feedback linearization and decoupling based on the
control defined in Eq. (13). On that basis we propose
using a second-order linear observer for each joint. From
this observer, position, velocity and acceleration will be
estimated. In state-space form, the equation of the observer
for the ith link can be expressed as

[ ˆ̇qi

ˆ̈qi

]
=

[
0 1
0 0

] [
q̂i

ˆ̇qi

]
+

[
0
1

]
v +

[
K1

K2

]
(qi − q̂i) (17)

The values K1 and K2 represent the observer gains. For the
input, v, to the observer, we use the same input as we give to
the control law, that is q̈∗. By integrating the left-hand side
of (17), the estimates of position and velocity are obtained.
In order to obtain the acceleration estimate, a copy of the ˆ̈qi

term is kept. The control and adaptation laws can then be
implemented with the estimates obtained.
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Fig. 11. Error between desired trajectory and simulated trajectory
for joint 1 (solid line) and joint 2 (dashed line) using Craig’s
method with our observer in simulation, with no noise on position
measurements.
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Fig. 12. Parameter estimation error using Craig’s method with our
observer in simulation with no noise in the system, for θ1 (solid)
and θ2 (dashed).

One issue that presents itself with this method is the need
to invert the mass matrix for the adaptation law. As the
number of links increases in the robot manipulator, inversion
of the mass matrix becomes increasingly computationally
intensive.

4.1. Simulation results for Craig’s method
with a Linear observer
Figure 11 represents the tracking error for this method when
implemented in simulation without any measurement noise
added. The value for  was set to  = I . The observer gains
were set to K1 = 20 and K2 = 300, placing the poles for
the observer at s = −10 ± 10

√
2j . This is much faster than

the dynamics of the closed-loop system, but the gains are
significantly smaller than those used for Lee and Khalil’s
method in Section 3.

The tracking error for this simulation reached maximum
values of 0.2115 rad for link 1, and 0.1676 rad for link 2, with
no noise in the system. The error on the parameter estimates
can be seen in Fig. 12. The adaptation gain was set to 
 = I ,
values much larger than this resulted in divergence of the
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Fig. 13. Error between desired trajectory and simulated trajectory
for joint 1 (solid line) and joint 2 (dashed line) using Craig’s method
with our observer in simulation, with position error equivalent to
quantization by a 12-b resolver.

simulation. It can be seen that after 50 s of simulation, the
parameter estimates are both quite close to their true values.

When noise was added to the system to simulate 12-b
quantization error, the maximum error did not change signi-
ficantly, and while the error became much noisier, the results
were comparable. This is illustrated in Fig. 13. In this case,
the maximum tracking error was 0.2040 rad for link 1, and
0.1744 rad for link 2. The computed torque signal resulting
from the controller contained some noise, but it was much
smaller than the torques computed in Section 3 for noisy
position measurements.

4.2. Experimental results for Craig’s method
with a Linear observer
In the experiments with this algorithm on the direct-
drive robot, the parameters were chosen to allow a good
comparison with the other algorithms. The controller feed-
back gains were set as outlined in Section 2. For the
experiments, the observer gains were set to K1 = 20 and
K2 = 500, placing the observer poles at s = −10 ± 20j .
These poles are much faster than the dynamics of the closed-
loop system. It was determined experimentally that using
underdamped observer poles allowed for smaller observer
gains and yielded performance comparable to a set of
critically damped observer poles placed farther into the
negative real portion of the s-plane. An experiment was
performed with observer poles at s =−25, giving observer
gains of K1 = 50 and K2 = 625, and observer error was not
significantly different than with the observer poles placed at
s = −10 ± 20j . For all experiments, the value of  was set
to  = I . Several values were used for the adaptation gain 


to compare performance.
Figure 14 shows the tracking error for this method when

implemented with 
 = 0.1. When run experimentally, values
for 
 any larger than this result in unacceptable performance
of the robot during the experiment. The tracking error in this
case reached maximum values of −0.3810 rad for link 1, and
−0.3583 rad for link 2. After convergence of the parameter
estimates, the error remained bounded between 0 and −0.045
rad for link 1. For link 2, the tracking error remained bounded
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Fig. 14. Position error for joint 1 (solid line) and joint 2 (dotted line)
after 180 s using Craig’s method with our observer, with 
 = 0.1
on the direct-drive robot.
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Fig. 15. Parameter estimates over time for θ1 (solid), θ2 (dotted) and
θ3 (dashed) using Craig’s method with our observer, with 
 = 0.1
on the direct-drive robot.
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Fig. 16. Computed torques used to drive the robot links for link
1 (dashed) and link 2 (solid). These torques are computed using
Craig’s method with our observer on the direct-drive robot.

between 0.080 and −0.066 rad. The parameter estimates
converged to steady-state values as seen in Fig. 15.

It is interesting to note the quality of the torque signals used
to command the robot. From Fig. 16 it is apparent that the
computed torques do not contain large quantities of noise. It
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Fig. 17. Position error for joint 1 (solid line) and joint 2 (dotted line)
after 180 s using Craig’s method with our observer, with 
 = 0.05
on the direct-drive robot.

is this characteristic that allows smooth tracking of the links
of the robot, without causing vibrations as it travels.

While the performance of this experiment is quite good,
the choice of 
 is close to the largest possible value
before unacceptable performance is observed. As a result,
another experiment was performed with an adaptation gain
of 
 = 0.05, half of the previous value. The tracking error for
this experiment is shown in Fig. 17. In this case, the tracking
error reached maximum values of −0.4234 rad for link 1,
and −0.3282 rad for link 2. After 200 s, the tracking error
remained bounded between 0.005 and −0.040 rad for link
1. For link 2, the tracking error remained bounded between
0.080 and −0.060 rad. This is a positive result, since very
similar performance is achieved over time with a lower adapt-
ation gain. Using this lower adaptation gain keeps the system
much further from the point of divergence of the experiment.

5. Adaptive control using an extended Kalman filter
A third method of adaptive output feedback control is to
use an EKF. This method is developed by Gourdeau and
Schwartz.5 A notable difference between this method and
those presented in Section 3 and Section 4 is that here
the EKF is used to estimate unknown robot parameters,
as well as position and velocity. This method effectively
combines the functionality associated with the adaptation
laws and observers of the previous methods into one EKF.
An advantage of this method over the previous methods is
that the theory behind Kalman filtering provides guidelines
for setting the design parameters of the controller.5

The control law used in this algorithm is the same as that
given in Eqs. (13) and (14).

The use of an EKF requires linearizing the nonlinear
system model about the estimate of the states, using a first-
order Taylor series expansion. In order to begin that process,
a nonlinear state vector is defined as x = [qTq̇TθT]T and its
derivative is defined as ẋ = f (x, u) where u(t) = T , the input
torque. This yields

ẋ = f (x, u) =
⎡
⎣q̇

q̈

0

⎤
⎦ (18)

where q̈ is obtained by rearranging the terms of (1) to give

q̈ = M−1(q)(T − C(q, q̇)q̇ − G(q)) (19)

Note that the vector θ is constant so its derivative θ̇ is zero.
In order to account for input disturbances and parameter
variations, the model may be extended as follows

ẋ = f (x(t), t) + G(x(t), t)w(t) (20)

G(x) =
⎡
⎣ 0 0

M−1(q, θ) 0
0 I

⎤
⎦ (21)

w = [
wT

1 wT
2

]T
(22)

where w1 and w2 are random variables. The w1 term is the
noise associated with the input to create a disturbance, and w2

is the noise associated with θ̇ to cause parameter variation.
The system measurements may be described as

z(t) = Hx(t) + v(t) (23)

H = [I 0 0] (24)

for the case of only using position measurements. To
implement the EKF, a perturbation model is needed. The
reader is referred to Gourdeau and Schwartz’s work5 for
derivation of the perturbation model. The equations of
dynamics for the EKF are given as

˙̂x(t) = f (x̂(t), t) + P (t)H TR−1(t){z(t) − Hx̂(t)} (25)

Ṗ (t) = ∂f

∂x̂
P (t) + P (t)

∂f

∂x̂

T

+ G(x(t), t)Q(t)GT(x(t), t)

−P (t)H TR−1(t)HP (t) (26)

where x̂(t) is the estimated state vector, and P (t) is
the error covariance matrix. The matrix R(t) is a matrix
of measurement variances.11 In the case of an n-link
manipulator, there would be n position measurements, and
R(t) would have dimensions n× n. Q(t) is made up of
two diagonal matrices, Q1(t) and Q2(t). The matrix Q1(t)
represents the confidence in the dynamic model and has
dimensions n × n, while Q2(t) represents the speed at which
the parameter vector is estimated to vary and has dimensions
p × p.11

5.1. Simulation results for adaptive control using
an extended Kalman filter
To simulate the EKF, the filter parameters were set as R(t) =
0.0001I , Q1(t) = 0.01I , Q2(t) = 0.0025I and P (0) =
diag{0.0001, 0.0001, 0.0001, 0.0001, 0.01, 0.01}. These
parameters used for simulation were chosen based on the
values used in Gourdeau and Schwartz’s paper,5 except that
the initial error covariance for the parameter estimates is set
larger in this case. This is due to greater initial error on the
parameter estimates in this simulation, than in their paper.

Overall, the results for the simulation were good, with the
exception of the peak tracking error in the transient period.
Results for the tracking error in a noise-free simulation are
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Fig. 18. Error between desired trajectory and simulated trajectory
for joint 1 (solid line) and joint 2 (dashed line) using Gourdeau
and Schwartz’s method in simulation, with no noise on position
measurements.
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Fig. 19. Parameter estimation error using Gourdeau and Schwartz’s
EKF in simulation with no noise in the system, for θ1 (solid) and
θ2 (dashed).

illustrated in Fig. 18. The maximum tracking error in this
case is 0.4135 rad for link 1, and 0.1372 rad for link 2. The
maximum tracking error on link 1 is much larger than in the
other cases, and is due to large initial error on the observed
velocity signals. However, the error is quick to decrease
and enter the range of error of the other algorithms. Also,
the parameters are quick to converge using this approach.
Figure 19 shows the error in the parameter estimates.

When noise was added to the position measurements to
simulate 12-b quantization error, the results were similar
to the noise-free case. Figure 20 demonstrates the tracking
error of the robot in this case. The maximum tracking error
was 0.4208 rad for link 1, and 0.1436 rad for link 2. An
important note here is that when noise was introduced, the
control signal generated contained much less noise than in
the case of the other two algorithms. This is an important fact
for implementation, since a control signal as free of noise as
possible is desired to drive the motors, so as not to excite
high frequency and unmodeled dynamics.
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Fig. 20. Error between desired trajectory and simulated trajectory
for joint 1 (solid line) and joint 2 (dashed line) using Gourdeau and
Schwartz’s method in simulation with position error equivalent to
quantization by a 12-b resolver.

5.2. Experimental results for adaptive control using
an extended Kalman filter
When running the adaptive controller based on the EKF on
the direct-drive robot, it was found that proper setting of the
filter parameters was crucial to correct operation of the EKF.
Without proper setting of the filter parameters, a divergence
in the error on the estimated values of the state is observed.
Since the dynamic model being used is an assumed model
of reality, it is possible that some discrepancy between the
assumed model and the true dynamics is responsible for this
divergence in error.12

In order to ensure proper operation of the EKF, the matrix
Q1(t) must be set correctly. This matrix represents the
magnitude of disturbances cause by unmodeled dynamics.11

This effectively relates to the confidence in the dynamic
model. A small value of Q1(t) suggests a high confidence
in the model. However, in these experiments such a small
value caused a divergence in estimation error. As the value
of Q1(t) was increased, the EKF achieved increasingly better
performance.

The experiment was run with the filter parameters
set to R(t) = 0.0002I , Q1(t) = 0.8I , Q2(t) = 0.001I and
P (0) = 0.1I . The choice of these variances can be a challenge
and is one of the drawbacks of the method. We base our
design on a trial and error tuning process. These parameters
were chosen experimentally in order to yield satisfactory
results. The tracking error from this experiment can be seen
in Fig. 21. In this case, the maximum tracking error reached
−0.4942 rad for link 1, and −0.4187 rad for link 2. Once
the parameter estimates had converged, the tracking error
remained bounded between 0.018 and −0.130 rad for link
1. The steady-state error bounds for link 2 were 0.140 and
−0.140 rad. The convergence of estimated robot parameters
can be seen in Fig. 22. Note that it was possible to achieve
faster parameter convergence with this algorithm than when
using Craig’s algorithm with our observer, which must use
lower adaptation gain in order to prevent divergence of the
experiment. As such, a steady state with Gourdeau and
Schwartz’s algorithm is reached after a shorter period of
time.
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Fig. 21. Position error for joint 1 (solid line) and joint 2 (dotted line)
after 100 s using Gourdeau and Schwartz’s EKF on the direct-drive
robot.
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Fig. 22. Parameter estimates over time for θ1 (solid), θ2 (dotted) and
θ3 (dashed) using Gourdeau and Schwartz’s EKF on the direct-drive
robot.
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Fig. 23. Computed torques used to drive the robot links for link
1 (dashed) and link 2 (solid). These torques are computed using
Gourdeau and Schwartz’s control algorithm on the direct-drive
robot.

Figure 23 shows the control torque produced by this
algorithm. It is apparent that this algorithm produces smooth
control inputs to command the robot, resulting in minimal
robot vibration, and smooth travel of the links. However, it
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Fig. 24. Link 1 position error for each of the three algorithms
studied – Lee and Khalil’s algorithm (solid line), Craig’s algorithm
with our observer (dotted line) and Gourdeau and Schwartz’s
algorithm (dashed line). All results are from the direct-drive robot.

is important to note that this algorithm yields much higher
tracking error than in the other algorithms tested. This is
likely due to the larger estimation error with the EKF than
with the observers of other algorithms. For link 1, the error
on the position estimate at steady state is bounded by 0.030
and −0.006 rad. The error on the position estimate for link
2 at steady state is bounded by 0.020 and −0.025 rad. In
comparison, the observer error when using Craig’s algorithm
with our observer (run with 
 = 1) is bounded by 0.007 and
−0.003 rad for link 1 at steady state. For link 2, Craig’s
algorithm with our observer yields bounds on the observer
error as 0.015 and −0.015 rad.

In Gourdeau and Schwartz’s algorithm, as R(t) is decre-
ased, the performance of the EKF improves – the error on the
position and velocity estimates decreases, as does tracking
error. However, the value of R(t) = 0.0002I used in this
experiment is close to the lower limit of achievable values of
R(t) before the experiment diverges. As a result, the tracking
error presented here is the smallest that has been achieved in
experiments on the direct-drive robot for this algorithm.

6. Conclusion
Three methods of output feedback adaptive control have
been presented in this paper. The systems of equations for
each of the methods have been given. All methods were
demonstrated in simulation using two-degree-of-freedom
serial manipulator dynamics, in both noise-free simulations
and simulations involving 12-b quantization error. Experi-
ments for all of the methods were also performed using
the Carleton University direct-drive robot, a two-degree-of-
freedom manipulator operating in the horizontal plane.

Figure 24 shows the position error on link 1 of the direct-
drive robot over time for each of the three algorithms studied.
Figure 25 shows the position error on link 2 of the direct-
drive robot over time for the same algorithms. From these
graphs it is clear that Lee and Khalil’s algorithm consistently
demonstrates the lowest tracking error. Craig’s algorithm
with our observer follows Lee and Khalil’s algorithm in
tracking performance, with slightly greater tracking error.
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Fig. 25. Link 2 position error for each of the three algorithms
studied – Lee and Khalil’s algorithm (solid line), Craig’s algorithm
with our observer (dotted line) and Gourdeau and Schwartz’s
algorithm (dashed line). All results are from the direct-drive robot.

Gourdeau and Schwartz’s method shows the largest tracking
error in both of the robot links.

Lee and Khalil’s method is an excellent theoretical
approach. The high observer gain allows fast convergence of
the observer error, and it is quick to approach performance of
full-state feedback control.4 With a very large adaptation gain
of 
 = 50I this method yielded the smallest peak trajectory
error in simulation, and quick convergence of parameters
to their true values. However, use of the high-gain observer
makes this system quite sensitive to noise. In the presence
of noise, the simulations diverge for large values of 
,
limiting the achievable performance of the algorithm. Also,
the significant error on the observed signals contributed
to a very noisy control signal that is likely to present
difficulty in practical implementations of the algorithm. The
experimental results confirmed this, as the noisy control
signals contributed to significant vibrations in the robot links.
The high frequencies in the control signal excite unmodeled
system dynamics. While tracking performance is very good
in the experiments, the problem of vibrating links limits the
practical usefulness of this algorithm.

The method of adaptive control proposed by Craig, with
the observer that we propose, yielded results in simulation
comparable to Lee and Khalil’s for the case of small 
.
The performance of this method without noise was not
as desirable as Lee and Khalil’s. The tracking error for
this method took significantly longer to decay, and reached
similar peak values. However, when noise was introduced
in both cases, this method yielded comparable results and,
importantly, a much less noisy control signal. This is of
concern for implementation on a real robot. Also, the
adaptation law caused parameter error to converge towards
zero in a quicker period of time than with Lee and Khalil’s
method using 
 = 1. In experimentation, results were very
positive for this algorithm. It yielded small tracking error and
fairly clean control signals. While the tracking error was not
as small as that of Lee and Khalil’s algorithm, it was much
smaller than that of Gourdeau and Schwartz’s algorithm. The
parameter estimates converged to a steady state. However, it
is important to note that in order to prevent divergence, the
adaptation gain cannot be set arbitrarily large.

Finally, implementation of Gourdeau and Schwartz’s
Extended Kalman Filter for estimation of position, velocity
and robot parameters also yielded promising results in
simulation. While in all cases, the initial tracking error
was much larger than the other methods, the error decayed
faster than in the other approaches. Also, the robot
parameter estimates were quick to approach their true values.
Introduction of noise did not have a significant effect on
tracking error, but it should be noted that the control signal
that resulted in this case was noticeably cleaner than with the
other methods. This is a very desirable result for practical
implementation. However, when implemented in practice,
this method had larger tracking error than either of the others.
This could be due to inaccuracy of the robot model with
respect to the real world, and the sensitivity of the EKF to
that discrepancy.12 However, robot parameter convergence
was quite quick with this method, bringing the tracking error
to its steady-state value fairly quickly.

Having examined each of the algorithms both in simulation
and through experiments on the Carleton University direct-
drive robot, an idea of the relative performance of each
algorithm has been obtained. While Lee and Khalil’s method
yields the lowest tracking error, it is very sensitive to
noise and excites the high-frequency dynamics of the robot.
Gourdeau and Schwartz’s method does not yield low tracking
error, but its ability to estimate the parameters is quite good.
Craig’s method, with the linear observer we propose, yields
low tracking error and good parameter convergence, while
producing a fairly clean control signal.
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