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ABSTRACT
This paper presents a framework to support decision-making in aircraft conceptual design
optimisation under uncertainty. Emphasis is given to graphical visualisation methods capa-
ble of providing holistic yet intuitive relationships between design, objectives, feasibility
and uncertainty spaces. Two concepts are introduced to allow interactive exploration of the
effects of (1) target probability of constraint satisfaction (price of feasibility robustness)
and (2) uncertainty reduction through increased state-of-knowledge (cost of uncertainty)
on design and objective spaces. These processes are tailored to handle multi-objective
optimisation problems and leverage visualisation techniques for dynamic inter-space map-
ping. An information reuse strategy is presented to enable obtaining multiple robust Pareto
sets at an affordable computational cost. A case study demonstrates how the presented
framework addresses some of the challenges and opportunities regarding the adoption of
Uncertainty-based Multidisciplinary Design Optimisation (UMDO) in the aerospace indus-
try, such as design margins policy, systematic and conscious definition of target robustness
and uncertainty reduction experiments selection and prioritisation.
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NOMENCLATURE

CD0 Zero-lift drag coefficient

CDi Induced drag coefficient

CDw Wave drag coefficient

CLmax Maximum lift coefficient

DOE Design of Experiments

f Vector of objective functions

g Vector of inequality constraints

ICA Initial Cruise Altitude

L/DTO Take-off lift-to-drag ratio

LFL Landing Field Length

MDF Multidisciplinary Design Feasible

MTOW Maximum Takeoff Weight

OEW Operational Empty Weight

OUU Optimisation Under Uncertainty

P[·] Probability operator

P0 Target probability of feasibility

pu Joint probability density function of u
QoI Quantity of Interest

RBDO Reliability-Based Design Optimisation

RDO Robust Design Optimisation

SME Subject Matter Expert

TOFL Take-Off Field Length

TSFC Thrust-Specific Fuel Consumption

u Vector of model uncertainties

UMDO Uncertainty-based MDO

UP Uncertainty Propagation

UQ Uncertainty Quantification

Wfuel Fuel weight

x Vector of design variables

Greek symbols

μ, E Mean or expected value

σ Standard deviation

σ 2 Variance

� Cumulative distribution function (normal)

� Cumulative distribution function (non-normal)
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1.0 INTRODUCTION

1.1 Context
The growing competition in the aerospace industry demands increased performance and
reduced cost. This has led to extensive use of Multidisciplinary Design Optimisation (MDO)
methods to take into account the interactions between fundamental disciplines such as
aerodynamics, structures, propulsion, performance and cost in early design phases.

Decisions taken during conceptual and preliminary phases commit over 75% of the pro-
gram total life cycle cost(1), and by the end the decision-maker must decide whether to
undertake the new program or not. Therefore, a certain confidence is required(2). However,
uncertainty, due to either lack of knowledge (epistemic) or aleatory sources, permeates the
design process.

The use of empirical safety margin factors is a common practice for guarding against design
failure(3). Safety factors result in overly conservative designs, increasing the probability that
business may lose their competitive edge in terms of cost and performance(4). Margin alloca-
tion based on previous programs may be inappropriate due to several factors. Better prediction
methods and tools may be available along with more experimental data (e.g. wind tunnel,
flight test), meaning that the company’s state-of-knowledge has evolved, leading to reduced
uncertainty in certain disciplines. On the other hand, new materials, manufacturing processes
and technologies introduce new uncertainties. Even if the company’s state-of-knowledge and
processes remain the same, differences in the design requirements between the new concept
and a legacy product may result in completely different needs for margin allocation.

Optimisation Under Uncertainty (OUU) techniques employ non-deterministic methods to
evaluate the effect of uncertain variable distributions on response functions. Statistics of
these response functions are then included in the optimisation process as objectives and con-
straints. OUU provides a systematic and quantitative way to deal with uncertainty instead of
solely relying on previous experience, and its importance is increasingly recognised in both
academia and industry.

1.2 Motivation
Introducing Uncertainty Quantification (UQ) into the design and optimisation of complex
systems is extremely challenging as it comes with technical, organisational and cultural
barriers. Uncertainty-based optimisation can be traced back to the 1950s(5,6). These tech-
niques have been applied in aerospace engineering in disciplines such as structures(7–10),
aerodynamics(11–14) and control(15,16). A white paper by NASA Langley Research Center pro-
vided a comprehensive survey on the existing methods and challenges on Uncertainty-based
Multidisciplinary Design Optimisation (UMDO)(17). Some barriers to the adoption of UMDO
in aerospace engineering identified by NASA are:

• Industry feels comfortable with traditional design methods;

• Few demonstrations of the benefits of uncertainty-based design methods are available;

• Current uncertainty-based design methods are more complex and much more computa-
tionally expensive than deterministic methods;

• Extending uncertainty analysis and optimisation to applications involving multiple
disciplines increases the complexity and cost of these studies.
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There is an obvious interplay between these barriers, as the lack of demonstrations on
the benefits of non-deterministic design is caused by the complexity and computational cost
challenges. In the absence of demonstrated benefits, the aerospace industry tends to continue
with its traditional design procedures that have been working for decades, even though it
is acknowledged that margin-setting procedures may be inappropriate or obsolete for new
products, leading to less competitive, oversized designs which have no guarantee of feasibility
under uncertainty.

The increased computational cost and complexity is often attributed to integrating UQ into
the multidisciplinary design framework. An often-overlooked challenge is graphical visuali-
sation and its role in decision-making. A review article on the state of the art and common
practices in MDO of aerial vehicles(18) identifies an increasingly important demand for frame-
works with capabilities related to post-processing of optimisation results and design space
visualisation in an efficient and intuitive way to better assist in the decision-making pro-
cess. This shortage is even more severe in OUU due to the inherent increase in problem
dimensionality.

NASA’s report(17) also outlines a list of potential advantages of UMDO, among which are:

• The robustness and reliability ensured by probabilistic methods and greater performance
potentially obtainable (with respect to traditional margin-setting);

• Upfront knowledge of which uncertainties in the design tools have the greatest impact on
design can lead to more efficient use of risk reduction experiments.

In this paper, we propose two processes aimed at providing intuitive graphical visualisation
to assist decision-making under uncertainty for multi-objective design optimisation of com-
plex systems. The former advantage is demonstrated using the price of feasibility robustness
process, whereas the latter is demonstrated by the cost of uncertainty process.

1.3 Paper outline
Section 2 establishes a basic background on sources of uncertainty, uncertainty characterisa-
tion, uncertainty propagation, formulation of the optimisation under uncertainty problem and
uncertainty-based decision-making. The proposed framework is described in Section 3 where
the price of feasibility robustness and cost of uncertainty processes are introduced, along with
the enabling design space exploration and visualisation techniques utilised. The application of
the proposed framework to a concept design case study is presented in Section 4. Concluding
remarks and envisioned future work are described in Section 5.

2.0 BACKGROUND
The general process to solve OUU problems involves a nested double loop involving the
uncertainty analysis (propagation) and the optimisation process itself, as depicted in Fig. 1.
This causes the computational burden of the UMDO process to be much greater than its
deterministic counterpart. Computational time savings can be sought by using surrogates of
the disciplinary models(19,20), using more efficient uncertainty propagation schemes(21,22) or
utilising decomposition-based uncertainty analysis(23).

2.1 Sources of uncertainty
Uncertainties are usually classified into two groups: aleatory and epistemic. Aleatory uncer-
tainty refers to the inherent variability that exists in physical processes, and it is essentially
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Figure 1. UMDO flowchart (adapted from Ref. (24)).

irreducible(4,25–30). Typical examples of aleatory variability are manufacturing tolerances and
operating conditions. Epistemic uncertainty arises due to lack of knowledge, insufficient data
and simplification of coupled physical phenomena(4,25–30) and can be reduced by developing
a better understanding of the system or phenomena (e.g. by conducting more experiments).

In the context of computational modelling and simulation, uncertainty is regarded as a
potential deficiency in any phase or activity of the modelling process that is due to a lack of
knowledge(31). In some aerospace engineering literature, uncertainty is defined as the incom-
pleteness in knowledge that causes model-based predictions to differ from reality in a manner
described by some distribution function(32).

2.2 Uncertainty characterisation
Characterisation refers to the mathematical representation of uncertainty. Two different math-
ematical representations of uncertainty can be found in the literature: a probability distribution
or an interval. Probability Density Functions (PDF) can be fitted whenever sufficient data are
available. In case of insufficient data, which is usually the case during conceptual design,
PDFs can be obtained by Subject Matter Expert (SME) elicitation(33). Alternatively, non-
probabilistic methods based on evidence theory and possibility theory have been proposed to
model uncertainty when sufficient data are not available(4,28,34).

In the scientific community, there is a common sense that aleatory uncertainty should be
modelled by probability. However, it is noteworthy that, for purely epistemic uncertainty, there
is no consensus whether the best representation is through intervals with no likelihood asso-
ciated with any value or through probability distribution where the PDF represents the degree
of belief (Bayesian interpretation of probability). In this research, it will be assumed that both
aleatory and epistemic sources of uncertainty are represented by probability distributions.

2.3 Uncertainty propagation
The input uncertainties must be forward propagated through the computational models to map
their effects on response functions for statistical or interval assessments on the Quantities
of Interest (QoIs). A wide variety of Uncertainty Propagation (UP) methods can be found
in the literature, and the selection of a suitable method depends on the uncertainty char-
acterisation (types and properties), analysis goals, ease of use and computational burden.
UP methods can be classified into probabilistic sampling methods (e.g. Monte Carlo and
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Latin hypercube sampling), local and global reliability methods (e.g. MPP, FORM/SORM,
EGRA), stochastic expansion (e.g. polynomial chaos expansions and stochastic collocation)
and non-probabilistic methods (e.g. interval and Dempster–Shafer theory of evidence)(35).

There are several Uncertainty Quantification (UQ) codes and toolboxes available, includ-
ing open-source tools such as the DAKOTA toolkit by Sandia National Laboratories
(https://dakota.sandia.gov/) and MUQ by MIT (http://muq.mit.edu), free-of-charge software
packages such as UQTools by NASA (https://uqtools.larc.nasa.gov/) and commercial off-the-
shelf (COTS) software such as SmartUQ (https://www.smartuq.com/). A survey including
other tools can be found in Ref. (36). The Scalable Environment for Quantification of
Uncertainty and Optimization in Industrial Applications (SEQUOIA) project(37) pursues
large-scale high-fidelity UQ.

The application of OUU to aircraft conceptual/preliminary design is already affordable
from a computational cost standpoint (since the concern is not with extremely rare events).

2.4 Optimisation under uncertainty
Let us consider that the design analyses are performed by objective functions fm(x, u), m =
1, 2, ...M and constraint functions gi(x, u), i = 1, 2, ...I , where x ∈R

n is the vector of design
variables and u ∈ U is the vector of input uncertainty parameters with joint PDF given by
pu(u). Given that u is a vector of random variables, the response vectors f and g are func-
tions of multiple random variables and therefore become random variables themselves. The
problem of optimisation under uncertainty can then be formulated as

minimize
x

�[f(x, u)]

subject to P[gi(x, u) ≤ 0] ≥ P0i i ∈ {1, ..., I}
xLB ≤ x ≤ xUB,

· · · (1)

where P0i is the desired probability of satisfying the ith constraint and � is a suitable statistical
measure of the random response vector f(x, u) – typically defined using the first two moments
of each fm (e.g. E[fm(x, u)] + kσ [fm(x, u)], where E denotes the expected value, σ the standard
deviation and k is an arbitrary constant).

The probability of feasibility in Problem (1) is given by the following integral:

P[gi(x, u) ≤ 0] =
∫

...
∫

gi(x,u)≤0
pu(u)du, · · · (2)

where pu is the joint probability density function of u and the integral is carried out over the
entire feasible domain. Figure 2 depicts the relationship between a given response function
g(x, u) in terms of its PDF, its Cumulative Distribution Function (CDF) and a given threshold
upper value c for a target probability of constraint satisfaction P0, that is, P[g(x, u) ≤ c] ≥ P0.

In general, both the joint probability density function pu(u) and the feasibility domain are
seldom explicitly defined, and the evaluation of the multiple integral in Equation (2) can
be computationally expensive(4,29), hence several methods have been proposed to enable an
approximate calculation of the integral(4,27). The method selected affects both the accuracy
and computational burden of the OUU process.

The problem formulation (1) is fairly general and capable of describing the two most com-
monly employed classes of OUU: Robust Design Optimisation (RDO) and Reliability-Based
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Figure 2. Relationship between response function’s PDF and CDF for OUU problem formulations.

Design Optimisation (RBDO). The key differences between RDO and RBDO lie in how the
objectives and constraints are handled under uncertainty. At first glance, RDO is concerned
with the optimisation of mean performance and minimisation of its sensitivity to input uncer-
tainties whereas RBDO focuses on achieving a target probability of constraint satisfaction
under uncertainty (i.e. reliability)(4,28,34). However, feasibility under uncertainty is also often
treated within RDO formulations(38–40), making the distinction between RDO and RBDO less
obvious as both cases solve Equation (2) to assess feasibility under uncertainty. Despite P0 in
Problem (1) being a measure of reliability, for historical reasons, ‘reliability’ is often traced to
system safety engineering problems such as in structural design(41,42), nuclear stockpile(43) and
missile flight simulation(44), which are concerned about very low probabilities of failure. The
intended application of the proposed framework is focused on design feasibility with respect
to market requirements, whereas safety is not at stake as the probability of feasibility only
refers to how likely the design is to meet the market-driven performance requirements while
still complying with regulations and certification requirements. Hereinafter, we use Parkinson
et al.’s(45) definition of ‘feasibility robustness’ to avoid misinterpretations.

One important motivation to pursue satisfactory feasibility robustness in conceptual
design is to avoid redesign, which is often viewed negatively due to the associated costs and
delays(46). On the other hand, aiming for high robustness in aircraft performance increases the
likelihood of oversizing. He et al.(47) define redesign and refinement in the context of complex
systems design under uncertainty while employing a Bayesian framework. ‘Redesign’ is
referred to as the procedure of actively changing some portion of the system (i.e. design
variables) using existing knowledge and information, whereas ‘refinement’ is referred to as
the procedure of increasing the level of knowledge about the design as it is. The amount
of redesign or refinement effort required in each design parameter to achieve the desired
probability of constraint satisfaction can be readily compared by relating the probability
of failure to design parameters through sensitivities. However, interactions between design
parameters are not accounted for, and there is no guarantee that the changes required in the
mean or standard deviation of the design parameter are feasible or physically representative.
Moreover, its applicability is restricted to problems where input uncertain parameters and
design variables coincide. Using a similar definition of redesign, Price et al.(46) propose a
margin-based design/redesign method to allow a trade-off between expected performance and
probability of redesign while ensuring reliability with respect to mixed epistemic–aleatory
uncertainties. Nguyen et al.(48) employ an RDO formulation to an unmanned air vehicle
(UAV) design case study.
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2.5 Uncertainty-based decision-making
Decision-making is the cognitive process of identifying and choosing alternatives based on the
values, preferences and beliefs of the decision-maker. Design and decision-making are closely
related, since design can be seen as “the evolution of information punctuated by decision
making”(49). Practical engineering problems typically involve multiple criteria, resulting in
multi-criteria decision-making (MCDM) problems. UQ increases the dimensionality of the
response functions, emphasising the need for tailored procedures to support decisions.

Trade-off studies between robustness and performance are usually depicted as Pareto fron-
tiers in terms of the expectation and standard deviation of the original (deterministic) objective
function, as in the robust aerodynamic aerofoil design reported in Ref. (50). Similarly,
risk–performance trade-off studies are often reported as Pareto frontiers of mean performance
and probability of feasibility(51) or reliability index(30). However, despite the advantage of a
posteriori decision-making based on Pareto frontiers, treating the statistical moments of each
response function causes an N-fold increase in the number of objectives, where N is the num-
ber of statistical moments utilised. Handling multi-objective problems under uncertainty is
still challenging, and research efforts for enhancing the decision-making process via visual-
isation of uncertainty spaces are increasingly important(4). A visualisation method based on
the Generate-First Choose-Later (GFCL) approach is proposed in Ref. (52), in which a Pareto
cloud is plotted in the mean objective space and subsequent filters are used to map the regions
with respect to robustness and feasibility metrics. More recently, as part of the European
Union’s Thermal Overall Integrated Conception of Aircraft project, Guenov et al.(53) proposed
a margin management framework that combines design space exploration and visualisation
techniques to explore the effects of margins on other margins, margins on performance and
margins on probabilities of constraint satisfaction.

Visualisation tools may aid decision-making, so we define procedures using iso-contour
plots, parallel coordinates plots and Pareto frontier bubble plots as means of visualising the
effects of (1) changing the desired probability of constraint satisfaction (feasibility robust-
ness) for a given uncertainty characterisation and (2) the effect of uncertainty reduction (e.g.
through experiments) on robust optimal designs.

3.0 PROPOSED FRAMEWORK
In this section, we introduce the proposed UMDO framework and its main constituents.

Aerospace companies typically have their own proprietary codes for conceptual design.
Publicly available codes include FLOPS(54) and SUAVE(55). The proposed methodology is
code agnostic, but some adaptations in coupling UQ to the MDO framework could be
necessary for different architectures(56,57). The implementation here is based on an MDF
architecture. Let us assume an existing conceptual design tool that receives as inputs geo-
metric, operational and technological characteristics of an aircraft and performs sizing and
multi-disciplinary analysis of the concept (Fig. 3).

The quantities of interest for this tool are performance and cost metrics calculated using
estimates provided by fundamental disciplines such as aerodynamics, weights and propulsion.
The sizing loop is a common step in aircraft synthesis codes, as it determines the required
maximum take-off weight (MTOW) for a given payload/range capability.

3.1 Sources of uncertainty
Identification of the most relevant sources of uncertainty depends on a number of factors,
including (1) the fidelity of the disciplinary models, and (2) how sensitive the responses of
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Figure 3. Conceptual design tool block diagram. Inherent couplings between the disciplines are omitted
for clarity.

interest are to under/over-predicting such characteristics. This task is carried by the con-
ceptual designer with support from subject matter experts. For convenience, consider the
simplified depiction in Fig. 3 where the quantities of interest y are computed by the per-
formance model as a function of aerodynamics, weights and propulsion properties estimated
by the respective models as a function of the design variables, that is, y = y(u(x)) where u =
[uaero, uweight, uprop] is the vector of model uncertainties. Here we select drag polar, maximum
lift coefficients, lift-over-drag at take-off, operating empty weight, maximum fuel capability
and engine thrust-specific fuel consumption as being representative of typical uncertainties at
the conceptual design stage but still simple enough for a methodology demonstration. These
model uncertainties in aerodynamics, weights and propulsion properties ultimately affect the
flight performance, including flight envelope and missions profiles. However, one could be
interested in assessing operational uncertainties in which the prescribed flight profile might
be subjected to changes in flight level or cruise speed due to air traffic control, for instance.
These were not the subject of this study, but such capability is already inherently embedded
in the presented framework, as it is only a matter of considering such parameters as uncer-
tain and performing the uncertainty propagation with them. However, these would have to be
treated differently in the ‘cost of uncertainty’ process as they are aleatory uncertainties and
thus not reducible through changes in the developer’s state-of-knowledge.

3.2 Uncertainty characterisation
Aerodynamic coefficients and engine performance are given in the form of multi-dimensional
tables as functions of altitude, Mach number, temperature, configuration and throttle, among
others(58,59). Since u varies with the design variables vector x, it is not practical to assign PDFs
in the form of absolute figures for each parameter in u. Instead, we propose to characterise
uncertainty in the form of relative factors applied to the deterministic estimates. Furthermore,
relative deviations are convenient descriptors from an expert elicitation standpoint. The pro-
cedure proposed by Greenberg(60) can be used to elicit prior triangular distributions. Bayesian
frameworks(47,61,62) can then be used to update uncertainty descriptors based on other sources
of information (evidence). Here we use triangular distributions as a convenient way of describ-
ing either symmetrical or asymmetrical deviations around a nominal reference (most likely).
It is not in the scope of this paper to advocate for a particular uncertainty characterisation,
nor to discuss what may cause model uncertainties to be asymmetrical. Nevertheless, in our
case study for the price of feasibility robustness process, we employ a conservative asymmet-
rical characterisation – that is, one where pessimist effects are greater than their optimistic
counterparts – to illustrate the effect on the feasible design space.
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Figure 4. Surrogate superposition Monte Carlo validation against full Monte Carlo.

3.3 Uncertainty propagation scheme
The conceptual design tool is deterministic in nature, and thus it is necessary to couple it to
an uncertainty propagation scheme. Analogously to stochastic expansion methods (PCE and
SC), the Surrogate Superposition Monte Carlo (SSMC) method employed herein starts by
placing 2Nu + 1 samples used to capture the functional relationship between a set of output
response metrics and a set of input random variables, except that, instead of using sampling
points to approximate coefficients of an orthogonal polynomial approximation of the response
(which requires an increasing number of collocation points as a function of the degree cho-
sen for the polynomials and the number of random variables), we assume linearity so that
the effect of each random variable on each response can be computed independently of the
other random variables and then the compound effects on response are approximated using
superposition of effects. These points are placed at the upper and lower bounds of each uj.
The relative influences are taken around the nominal (i.e. all uj set at its respective mode, the
same as the deterministic evaluation) for both the lower and upper bounds of each uj (which
are all triangular). This is done to capture asymmetry effects from skewed input distributions.
Figure 4 shows a comparison of the predicted CDF using this method with a full Monte Carlo
simulation for a given skewed QoI.

These relative influences (lower and upper bound) are used to construct triangular PDFs in
the form of relative deltas:

f
�Y

j
i
∼ T

(
�Y j,LB

i , 0, �Y j,UB
i

)
· · · (3)

Note that, for each QoI Yi, there are Nu PDFs. Then, the stochastic responses are computed
using Monte Carlo drawing of samples from these delta PDFs:

Y n
i =

⎛
⎝1 +

Nu∑
j=1

random(�Y j
i )

⎞
⎠ · Y nominal

i , for n = 1, ..., Nsamples · · · (4)

Hence making available the PDF/CDF for each quantity of interest. The method does not
assume normality on the response functions and has good capability to capture asymmetry
in the responses. The computational cost of this method is about 500 times1 lower than full

1For Nu = 8, the computational cost of the uncertainty analysis is about 20 times the deterministic
analysis whereas a MCS requires about 10,000 model runs.
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Monte Carlo sampling. Even though the method relies on first-order approximations of the
limit state functions, it is well suited for mildly non-linear continuous responses as long as
responses are monotonic with respect to all input uncertainties. Additionally, due to the first-
order approximation, the accuracy of this UP method decreases as the input uncertainty levels
increase. For levels of input uncertainty up to ±5%, the error in predicting the CDFs of QoIs
is under 0.2%, which is acceptable since we are not concerned with extreme failure events.

This propagation method was selected for being extremely efficient while providing rea-
sonable results for the problem at hand. However, in its current implementation, the method
is limited to handle triangular input PDFs. Benchmarking studies are under way, and it is
planned to integrate DAKOTA(35) into the present framework in the near future. The proposed
framework is somewhat method agnostic as it does not require a specific UP method to be
used. As argued in Section 2.3, the choice of the method will depend on the QoIs’ charac-
teristics, input uncertainty characterisation and available computational budget, among other
factors.

3.4 Design space exploration and visualisation
In a report for the Swedish Defence Research Agency (FOI), Jändel et al.(63) present a com-
prehensive overview of the important role that visual analytics plays in decision-making. The
report highlights the usefulness of three- and four-dimensional scatter plots (herein referred
to as bubble plots) and Parallel Coordinate Plots (PCPs) for portraying multidimensional data.
These, combined with efficient design exploration strategies, are fundamental building blocks
in the proposed framework and are summarised below.

3.4.1 Design of experiments

The design space is defined as the hypercube confined by the bounds of design variables xLB

and xUB in Problem (1) and can be represented by the Cartesian product of all sets of design
variables. Since an infinite number of possible design solutions exist in a continuous design
space, statistical sampling techniques are used to map efficiently from the parameter space
into the response space. These are used both to obtain responses for constraint analysis and to
generate the initial population for optimisation.

3.4.2 Stochastic constraint analysis

A finite number of design points is evaluated following a DOE, such as full-factorial sampling.
Two design variables are selected as main design parameters, typically wing area and engine
thrust class (or wing loading and thrust-to-weight ratio). The multidimensional design space
(hypercube) is divided into multiple two-dimensional contour plots depicting iso-contour lines
of the performance constraints for the two selected design variables with all other design vari-
ables kept constant. As a visualisation aid, the infeasible region is shaded in the same colour
as the constraint that it violates whereas the feasible design space is kept white. Constraint
analysis provides a visual assessment of the relative importance of performance constraints on
the design space(64). The proposed stochastic variant follows the same steps, with the addition
that, for each design, an UP procedure is run to retrieve the desired statistic metrics on the
constraint functions. Constraint iso-contour lines are plotted for any number of percentiles of
interest. This feature is further explored in both proposed processes to follow, namely price
of feasibility robustness and cost of uncertainty.
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3.4.3 Robust Pareto frontier representation

The Pareto set resulting from solving a multi-objective optimisation problem serves as a
decision-making tool as it enables the designer to understand the trade-offs between the sev-
eral objectives. Scatter plots are often used to depict Pareto frontiers for up to tri-objective
problems, although its effectiveness in providing intuitive insight in three dimensions may be
questionable. A 3D bubble plot is a special type of scatter plot where a colour scale is used to
depict the third dimension. Adding a fourth dimension as the bubble size leads to a 4D bub-
ble plot. Here we propose the use of multiple 3D bubble plots to portray bi-objective Pareto
frontiers in the x- and y-axis while depicting the design variables in the colour dimension. For
tri-objective problems, the colour dimension is still reserved for design variables, while the
bubble size is used for the third objective. For an already multi-objective problem in the deter-
ministic domain, the inclusion of uncertainty and robustness as additional design variables
and objectives can render the interpretation of the results challenging. Instead, we propose
solving the OUU Problem (1) for multiple cases of uncertainty characterisation (u) or the
target probability of feasibility (P0), thus obtaining multiple Pareto frontiers to be compared
against each other and promptly assess the involved trade-offs.

3.4.4 Parallel coordinates plot

Parallel coordinates plots are used in multivariate data analysis, allowing visualisation of high-
dimensional spaces. Interactive filtering and dynamic design tables allow the designer to test
different thresholds on performance parameters. Provided that, for each solution evaluated
during design space exploration, several percentiles of interest are computed for each con-
straint function, the designer can pick and choose different probabilities of feasibility for
each performance constraint during post-processing.

3.4.5 Information reuse strategy

Even with the use of efficient UQ methods, a non-deterministic evaluation is much more
expensive than its deterministic counterpart. To ensure its viability, the presented framework
utilises an information reuse strategy that allows multiple Pareto sets to be obtained at a cost
not much greater than obtaining a single set. The concept is simple, but quite effective if
heuristic optimisers are used to obtain the Pareto set. It leverages the following principles:

Pareto search: After performing a broad exploration over the design space, heuristic multi-
objective optimisation algorithms tend to focus the search on designs that are mapped to the
vicinity of the non-inferior solutions.

Robust Pareto shift: It is well known that changes in robustness/feasibility criteria cause
the Pareto frontier to move. More specifically, increasing the required robustness will always
worsen the objective functions.

Design space discretisation: Discretisation of the design space is done by selecting suitable
step sizes for each continuous design variable. This prevents running designs that are virtually
the same as previously run designs, provided that design evaluations are stored in a ‘design
table’ that is made available to the optimiser during runtime.

Suppose that the designer is tasked with solving Problem (1) for different probabilities
of constraint satisfaction P0, say 80% and 90%. Rigorously, the problem must be solved
twice as the Pareto set for P0 = 80% is infeasible with respect to P0 = 90% and the Pareto
set for P0 = 90% is composed by dominated solutions with respect to P0 = 80%. However,
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(a) (b)

Figure 5. Information-reuse strategy. (a) Objective Space mapped for P0 = 90%. (b) Objective Space
mapped for P0 = 80%.

Figure 6. Price of feasibility robustness process flow diagram.

leveraging the aforementioned principles, the proposed framework first solves for the most
demanding feasibility and then reuses all the information available to solve for the least
demanding feasibility. For this process to work, it is imperative that at least both percentiles,
80% and 90%, are computed for the constraint functions throughout the optimisation process.
Solving first for the most demanding feasibility assumes that the optimiser will populate the
anticipated vicinity of the least demanding feasibility problem when trying to advance the
Pareto front, as notionally depicted in Fig. 5.

This strategy is particularly interesting to enable the price of feasibility robustness, which
makes successive use of it, as follows:

3.5 Price of feasibility robustness
The word ‘price’ refers to the amount a customer is willing to pay for a product or service.
Here we define the price of feasibility robustness as the amount the decision-maker is willing
to pay for a lower risk of underperformance (i.e. not meeting market requirements). Figure 6
depicts a flow diagram of the proposed process.

For this process, the data collection phase encompasses the elicitation of experts to charac-
terise uncertainty according to the current company’s state-of-knowledge in each discipline
involved. In the ‘Design, objectives, uncertainty, and feasibility space exploration’ phase,
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Figure 7. Cost of uncertainty process flow diagram.

designers and decision-makers define what targets of feasibility robustness should be evalu-
ated as trade-off. Design of experiments is then used to perform stochastic constraint analysis
and generate an initial population for the multi-objective optimiser. The information reuse
strategy is applied to reduce the overall computational time, as the multi-objective opti-
misation problem is solved several times, one for each P0 of interest. The aforementioned
visualisation techniques are used in the ‘Post-processing’ phase to aid in an intuitively clear
understanding of the underlying complex relationships.

3.6 Cost of uncertainty
The word ‘cost’ refers to the expense incurred for a product or service to exist. The price
of feasibility robustness defined above is actually proportional to the level of uncertainty. In
the limit, if all uncertainty vanishes, then there would be no price to be paid for robustness.
Based on the fact that uncertainty will always exist in design engineering, we define the cost
of uncertainty as the inherent cost associated with the improvement of the current state-of-
knowledge to achieve an acceptable feasibility robustness. The hourly cost of a production
machine can be decreased by improving the machine somehow, which usually requires some
level of investment in it. Similarly, the cost of uncertainty can be improved by changing the
state-of-knowledge through experiments (numerical or physical). Figure 7 depicts a flow dia-
gram of the proposed process. The process presented herein aims to improve the selection and
prioritisation of uncertainty reduction experiments.

In the data collection phase, concept designers and SMEs discuss which experiments could
be used to reduce the prediction of each identified uncertainty. During expert elicitation,
‘what-if’ scenarios are used to characterise uncertainty distributions for the enhanced state-
of-knowledge that would be obtained after the realisation of such experiments. In the ‘Design,
objectives, uncertainty, and feasibility space exploration’ phase, designers and decision-
makers define a fixed target of feasibility robustness to be used in this assessment. Design
of experiments is then used to perform stochastic constraint analysis and generate an initial
population for the multi-objective optimiser.

The information reuse strategy is not applicable in this process as the input PDFs are chang-
ing across optimisation cases. This renders this process more computationally expensive than
the price of feasibility robustness process. However, the task of this process is to help prioriti-
sation of knowledge-augmenting experiments within the organisation to support a potentially
new development program. As such, it is expected to take place once or twice per concept
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Table 1
Constraints for optimisation under uncertainty

Probability
Constraint gi(x) Signal Value Units of feasibility

P(Range LRC ≥ 4,500 [nm]) ≥ P0

P(Take-off field length (MTOW, SL, ISA) ≤ 1600 [m]) ≥ P0

P(Time to climb to 37kft from MTOW ≤ 16 [min]) ≥ P0

P(Time to climb to 43kft from MTOW ≤ 24 [min]) ≥ P0

P(Landing field length (LW, SL, ISA) ≤ 1,270 [m]) ≥ P0

P(Fuel margin ≥ 0 [kg]) ≥ P0

P(Initial cruise altitude from MTOW, ISA ≥ 43,000 [ft]) ≥ P0

P(OEI ceiling MTOW, ISA ≥ 23,000 [ft]) ≥ P0

P(Maximum level cruise Mach number ≥ 0.90 [-]) ≥ P0

study, as opposed to the price of feasibility robustness, which may iterate throughout the
concept design phase until a final decision on the requirements targets is issued.

The aforementioned visualisation techniques are used in the ‘Post-processing’ phase to
aid in an intuitively clear understanding of the underlying complex relationships. Additional
sources of information, such as the cost of the experiments and the company’s strategic
roadmap, can be aggregated, rendering uncertainty-informed decision-making2.

4.0 CASE STUDY
A case study of a generic large business jet adapted from Ref. (65) is used herein to demon-
strate the capabilities of the proposed framework. Table 1 presents the set of constraints used
in the test case, where x = {Sw, TSLS, ARw, �w, t/cw, RDES} is the vector of design variables.
The set of design variables was chosen to be somewhat representative of a typical conceptual
design phase yet simple enough for a methodology exercise. Wing area and engine thrust are
related to the aircraft sizing, whereas wing aspect ratio, sweep angle and thickness-to-chord
ratio are shape-related variables. Additionally, the mission design range related to MTOW siz-
ing, RDES, is selected as design variable for the deterministic sizing loop to enable pursuing
the long-range constraint in the stochastic domain, that is P[Range ≥ 4,500nm] ≥ P0, whereas
the fuel margin constraint guarantees that the volume of the available fuel tanks is greater than
the fuel required for the sizing mission. Two fairly common figures of merit were chosen as
objective functions for the optimisation problem: Maximum Take-Off Weight (MTOW) and
block fuel for a given mission.

4.1 Price of feasibility robustness
Following the process described in Fig. 6, eight uncertain input parameters were identified
and characterised using triangular PDFs in the form of relative factors applied over the
deterministic estimates, as described in Table 2.

2If decisions rest exclusively on the results of UQ/OUU assessments, it is regarded as uncertainty-
based decision-making, whereas if decision-making accounts for other factors in addition to UQ/OUU
assessments, then the process is regarded as uncertainty-informed decision-making.
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Table 2
Case study uncertain inputs characterisation – price of feasibility

robustness

Description Parameter Lower bound Most likely Upper bound
(uj)

Zero-lift drag coefficient CD0 0.97 1.00 1.05
Induced drag coefficient CDi 0.95 1.00 1.05
Wave drag coefficient CDw 0.95 1.00 1.15
Maximum lift coefficient CLmax 0.95 1.00 1.05
L/D @ Take-off OEI L/DTO 0.90 1.00 1.10
Empty weight OEW 0.97 1.00 1.04
Maximum fuel capability Wfuel 0.97 1.00 1.02
Specific fuel consumption TSFC 0.97 1.00 1.03

As explained in Section 3.2, aerodynamic and propulsion properties are multi-dimensional
tables covering all the flight envelope. Here, we assume that these relative uncertainty fac-
tors are homogeneous throughout the flight envelope. If supporting evidence suggests that
certain conditions present different levels of uncertainty, a more complex schedule can be
defined based on available data. Here, we choose to divide the uncertainty in different drag
components as their relative importance varies across different missions and performance
requirements. We choose to aggregate weight component uncertainties at the OEW level, but
a more detailed uncertainty breakdown could be derived for the different components of the
OEW.

The stochastic constraint analysis process previously described was run with the PDFs
described in Table 2 for varying values of the target probability of feasibility P0: 50%, 80%,
90% and 95%. Three performance constraints are initially studied: take-off field length, time
to climb and landing field length. These were selected due to their different dependences on
wing area and engine thrust.

Figure 8 shows the results for one slice of the complete DOE (i.e. for a fixed set of the
remaining design variables such as wing aspect ratio, sweep angle, thickness-to-chord ratio,
taper ratio, bypass ratio, etc). Inspection of Fig. 8 provides quantitative information to the
decision-maker about the inherent trade-off between risk, cost and performance – how much
the feasible design space shrinks by targeting higher levels of feasibility robustness and which
constraints cause it. For instance, it requires about 3m2 of extra wing area to increase the prob-
ability of landing constraint satisfaction from 50% to 80%, and an extra of 5m2 from 50% to
95%. Similarly, considering a fixed wing area of 75m2, an additional 850lbf per engine (+7%)
is required to go from 50% to 95% probability of feasibility on the take-off requirement. The
displacement between deterministic and 50% iso-contours is largely caused by the conserva-
tive asymmetry embedded in the uncertainty characterisation (Table 2). Moreover, objective
function contours can be included in the charts so that it can automatically provide the price
to be paid for more robust designs.

Figure 9 exemplifies another visualisation aid explored in this work. A parallel coordinates
plot allows the designer to display the relationships between design, feasibility and objective
spaces in a compact manner. Here, we combine the dynamic design table and filtering to assess
the impact of the feasibility robustness related to the TOFL requirement. The dynamic design
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Figure 8. Price of feasibility robustness – constraint analysis chart.

table allows the designer to switch on/off constraints in the post-processing stage and read-
ily get an updated feasibility classification. By enabling the constraint P[TOFL < 1,600m] ≥
80%, all designs that are compliant are painted grey while the non-compliant ones are blue.
We then use the filter to set a threshold for P[TOFL < 1,600m] ≥ 50%, which causes the blue
lines to represent designs with 50% ≤ P[TOFL < 1,600m] ≤ 80%. As can be seen in Fig. 9,
increasing the required feasibility robustness on the TOFL requirement from 50% to 80%
causes a 0.5% penalty in fuel burn and 1.0% penalty in MTOW.

After this initial exploration with DOE, we proceed to solving the optimisation Problem
(1) formulated as the minimisation of �(f1) =E(MTOW) and �(f2) =E(Fuel) subject to the
constraints defined in Table 1 and solved by a multi-objective genetic algorithm (MOGA)
using the information reuse strategy for three target probabilities of constraint satisfaction.

Figure 10 depicts how the MTOW–fuel Pareto front changes as the desired probability of
feasibility P0 changes from 50% to 80% and 90%. This chart provides quantitative assess-
ments regarding the impact of aiming for higher probability of feasibility. It is also evident
that the trade-off between the two objective functions is affected by the input uncertainties
since the slope of the Pareto front changes with P0. Furthermore, the changes in the design
variables required to achieve the selected level of probability of feasibility while taking into
account the input uncertainties are inherently handled by the optimisation process, differently
to deterministic margin allocation approaches, as discussed at the end of this section.

Figure 10 depicts the relationship between each Pareto front and its design variables: (a)
wing area, (b) engine SLS thrust, (c) wing aspect ratio and (d) design range (deterministic),
providing additional information regarding what design changes are required to achieve a
higher probability of meeting all the constraints. For instance, a higher probability of feasi-
bility require greater values of wing area and/or engine thrust, that is, the more robustness is
pursued, more ‘built-in’ capability needs to be inserted into the design to counter a possibly
heavier, draggier and thirstier design while still complying with the requirements.
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Figure 9. Parallel coordinates plot using dynamic filtering.

One optimal design from each Pareto set is selected for further comparisons. Figure 11
shows the histograms for the range and TOFL3 figures of each design.

These three designs were hand-picked from the Pareto fronts, since both range and TOFL
are active constraints4 and thus it can be seen how selecting different P0 values drives the
optimiser to find solutions that have shifted PDF responses such that the requirement is met
with the desired probability of feasibility for each case – that is, the 50th percentile line in
Fig. 11(a), the 80th percentile line in Fig. 11(b) and the 90th percentile line in Fig. 11(c) sit at
the right of 4,500nm for the range QoI and at the left of 1600m for the TOFL QoI. These are
summarised in Fig. 11(d) as the complementary cumulative distribution function (left) for the
range QoI and cumulative distribution function (right) for the TOFL QoI.

As argued in Section 1, the deterministic design process does not handle uncertainties, and
hence it is usual to apply safety margin factors based on previous experience. It is not the
purpose of this paper to advocate for any margin-setting philosophy, but rather to show that
OUU is a powerful tool to inform which parameters should be modified to achieve the desired

3These two QoIs were chosen to highlight the difference between constraints of type g(x) ≥ 0 and
g(x) ≤ 0.

4A constraint g(x) ≤ 0 is considered active at x if g(x) = 0.
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(a) (b)

(c) (d)

Figure 10. Price of feasibility robustness – relationship between design variables and objective functions.
(a) Wing area. (b) Engine thrust (normalised). (c) Aspect ratio. (d) Design range (deterministic).

probability of feasibility, preventing oversizing and constraint violation caused by a wrong
selection of variables to put margin on.

Despite the complexity inherent in aircraft design, an increase in engine thrust and/or an
increase in wing area is the simplest manner to address a constraint violation for most perfor-
mance requirements. This is similar in concept to the ‘corner space evaluation’ presented by
Sundaresan et al.(66). Let us thus consider two different margin-setting strategies: (A) a 10%
margin is put in the engine’s thrust and (B) a 5% margin in thrust and a concurrent 5% margin
in wing area are put on the top of the deterministic optimum design (O) as depicted in Fig. 12.
For both strategies, a +50nm design range is considered as well, anticipating the uncertainty
effects on range.

In the design process, it is usual to consider multi-objective optimisation to allow an a
posteriori trade-off between selected figures of merit. Let us consider that the criterion of
choice is minimum fuel burn and the desired probability of feasibility is 80%. Let �det be the
deterministic Pareto set and �P80 be the stochastic Pareto set for P0 = 80%. Hence, we select
O ∈ �det and S ∈ �P80 as the lowest fuel burn designs in each set. We then define designs A
and B using the margin-setting strategies mentioned above.

Table 3 presents a comparison between O, A, B and S in terms of design variables, constraint
functions and objective function responses. Variations related to the margin-setting strategy
are shown in red, whereas the corresponding variations resulting from the OUU process are
shown in blue. Violated constraints are highlighted in purple.

A number of findings can be retrieved from Table 3 as follows: As expected, design O –
which was optimised deterministically – violates two constraints, namely range and take-off
capability at the desired 80% probability of feasibility. On the other hand, the +10% thrust
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Figure 11. Range and TOFL PDF/CDF for designs selected from the Pareto fronts for different P0 values.
(a) Design picked from the Pareto set for P0 = 50%. (b) Design picked from the Pareto set for P0 = 80%.
(c) Design picked from the Pareto set for P0 = 90%. (d) Range CCDF and TOFL CDF for all three designs.
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Figure 12. Traditional margin-setting strategies.

margin applied to design A more than suffices to surpass the required take-off capability.
However, even with the +50nm design range margin and the bigger engines, design A violates
both range and fuel margin constraints, because despite the increased climb capability that
comes with the bigger engines – which can help improve efficiency – bigger engines are
heavier and have more wetted area (drag) and since design O was already marginal in fuel
volume, an increase in wing area becomes necessary. The combined margin in thrust and
wing area embedded in design B is also capable of resolving the take-off capability at 80%
probability of feasibility issue of design O. However, the +50nm margin in design range
does not suffice to guarantee the 4,500nm range at 80% probability. Differently from design
A, which already violates the fuel margin constraint for a 4,550nm design range, design B
presents plenty of fuel margin (535kg) and thus a larger range margin could be pursued,
and through an MTOW increase, the 4,500nm range at 80% probability would be obtainable,
but at the cost of additional worsening of both objective functions. As can be seen in the
design S outcomes, the OUU process precisely seeks designs at the edge of the constraints
(at the desired probability of feasibility P0). As a result, design S not only complies with
all constraints under uncertainty, but it does so with the minimal impacts on the objective
functions, as can be seen in Fig. 13.

The reader could argue that a better choice of margins would certainly yield better results.
However, regardless of how well chosen the margin strategy is, it will at best yield the same
results as the OUU process, which in turn is not driven by previous experience. For instance,
the OUU process not only adjusted the wing area and engine thrust in design S, but also
changed its aspect ratio to a lower value than its deterministic counterpart. Such a change
is explained as follows: In the presence of uncertainty in drag, weight and SFC, the fuel
required to accomplish the design range mission for an 80% probability of feasibility is
greater than in the deterministic domain whilst the wing fuel capability is lower due to the
maximum fuel uncertainty. Therefore, to comply with both range and fuel margin constraints
at the 80% probability of feasibility, it is necessary either to increase the wing area or wing
thickness-to-chord ratio or to reduce the aspect ratio. The OUU process found that the best
compromise, in this case, was to reduce the aspect ratio – which could be a non-intuitive solu-
tion even for experienced designers (considering that no such information would be available
in a traditional deterministic design procedure).

4.2 Cost of uncertainty
Following the process described in Fig. 7, we define a baseline scenario C0 represent-
ing the uncertainty levels for the current company’s state-of-knowledge. The same eight
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Table 3
Traditional margin-setting strategies versus OUU comparison

Design
Parameter Units O A B S Requirement

Wing area, Sw [m2] 77.5 77.5 81.5 77.5
(ref.) (+0.0%) (+5.0%) (+0.0%)

Normalised engine thrust, TSLS [–] 0.98 1.08 1.03 1.02
(ref.) (+10.0%) (+5.0%) (+4.0%)

Aspect ratio, ARw [–] 8.6 8.6 8.6 8.2
Sweep angle, �w [deg] 38.0 38.0 38.0 38.0
Thickness-to-chord ratio, (t/c)w [%] 10.8 10.8 10.8 10.8
Design range (deterministic), RDES [nm] 4500 4550 4550 4550

(ref.) (+50) (+50) (+50)
Range LRC (80%) [nm] 4,387 4,440 4,479 4,500 ≥ 4,500
Take-off field length (MTOW, SL, ISA) (80%) [m] 1,626 1,539 1,570 1,595 ≤ 1,600
Time to climb to 37kft from MTOW (80%) [min] 14.4 12.4 13.9 13.6 ≤ 16
Time to climb to 43kft from MTOW (80%) [min] 21.3 17.5 20.2 19.8 ≤ 24
Landing field length (LW, SL, ISA) (80%) [m] 1,181 1,197 1,166 1,183 ≤ 1,270
Fuel margin (80%) [kg] 13 −164 535 7 ≥ 0
Initial cruise altitude from MTOW, ISA (80%) [kft] 43 45 45 45 ≥ 43
OEI ceiling MTOW, ISA (80%) [kft] 26.3 29.4 28.7 26.7 ≥ 23
Maximum level cruise Mach number (80%) [–] 0.9 0.9 0.9 0.9 ≥ 0.9
Fuel burn [%] –0.8 0.1 1.2 –0.1

(ref.) (+1.0%) (+2.0%) (+0.7%)
MTOW [%] 1.9 3.9 5.1 2.6

(ref.) (+2.0%) (+3.2%) (+0.7%)
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Table 4
Matrix of uncertainty level scenarios

Scenario tag Aerodynamics Weights Propulsion

C0 N N N
C1 R N N
C2 N R N
C3 R R N
C4 N N R
C5 R N R
C6 N R R
C7 R R R

O
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B
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Figure 13. Objective function space: traditional margin-setting strategies compared with OUU.

uncertain model parameters previously described are considered and grouped by discipline.
The reduced uncertainty level scenarios assume a gain of knowledge by some mechanism
(e.g. wind tunnel, flight tests, material properties, higher-fidelity simulations, etc). We con-
sider that the increase in knowledge is discipline-related rather than parameter-related; that
is, by running more simulations and tests the entire set of uncertainties in a discipline group
is reduced simultaneously. For this exercise, symmetrical triangular distributions were con-
sidered as follows: a nominal level of uncertainty of ±5% and a reduced level of uncertainty
of ±3%. In practice, according to the flow process in Fig. 7, these should be defined with
support from SMEs based on foreseen uncertainty reduction experiments. Table 4 presents
the matrix of uncertainty level scenarios evaluated, where ‘N’ stands for nominal and ‘R’ for
reduced.

Figure 14 depicts the stochastic constraint analysis results for the baseline scenario along
with alternative scenarios C1–C3. The deterministic constraint contours are also included
(black dotted) as a reference for what would be obtainable if all uncertainty could be removed.
Stochastic constraint contours C0–C3 are shown for a P0 = 80% feasibility robustness target.

A number of findings can be retrieved from Fig. 14. For instance, for the landing require-
ment, reducing aerodynamic uncertainties (C1) presents a greater benefit than reducing
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Figure 14. Cost of uncertainty – constraint analysis.

Figure 15. Parallel coordinates plot used to map design, uncertainty and objective spaces. Feasibility
robustness set at P0 = 80%.

weight uncertainties (C2), whereas for the take-off requirement, the opposite applies, with
weight uncertainty reductions being slightly more beneficial than aerodynamics uncertainty
reduction. For the climb requirement, both alternatives C1 and C2 present quite similar, but
small, benefits. For all three requirements, a concurrent reduction in aerodynamics and weight
uncertainties (C3) pushes the boundaries of the robust feasible design space further, closer to
the deterministic contours.

The parallel coordinates plot in Fig. 15 shows an example of how to map design variables
to the uncertainty space and to objective functions. Two state-of-knowledge scenarios are
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(a) (b)

(c) (d)

Figure 16. Cost of uncertainty – relationship between design variables and objective functions. (a) Wing
area. (b) Engine thrust normalised. (c) Aspect ratio. (d) Design range (deterministic).

shown: C0 and C7. Only designs that are feasible for P0 = 80% for all constraints in Table 1
are shown.

In Fig. 15, inspection of the left-hand side reveals which combinations of design parameters
are made feasible, without compromising robustness, by changing the state-of-knowledge
from one scenario to another. On the right-hand side, information about the underlying effects
on objective functions can be retrieved. In this case, the minimum MTOW can be improved
by some 1.5% whereas the benefit in fuel burn is almost negligible (this will also be evident
in the Pareto frontiers in Fig. 16).

The OUU problem is formulated using the constraints described in Table 1 with a desired
probability of feasibility P0 of 80%. Figure 16 shows the Pareto frontiers obtained for the
scenarios C0 and C7. The deterministic Pareto frontier is also shown for reference (as it
represents what would be the obtainable Pareto set if uncertainty could be eliminated).

Figure 16 depicts the relationship between each Pareto front and its design variables: (a)
wing area, (b) engine SLS thrust, (c) wing aspect ratio and (d) design range (deterministic),
providing additional information regarding what changes in the design are allowed by the
uncertainty level reduction in order to maintain a given target probability of feasibility.

The behaviour observed in Fig. 16 is analogous to what was observed in the price of fea-
sibility robustness assessment (see Fig. 10), except that now what causes the required wing
area and/or thrust to increase is the input uncertainty level, rather than the desired probability
of feasibility. Despite being completely different mechanisms, both input uncertainty level
and desired probability of feasibility tend to impose changes in the design that are similar
to margins: (a) for a given level of input uncertainty, the greater the desired probability of
feasibility, the greater the required margins (price of feasibility robustness); (b) for a given
desired probability of feasibility, the greater the input uncertainties, the greater the margins
that are required (cost of uncertainty). The processes proposed herein explore these concepts
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in a systematic way to improve overall understanding and assist decision-making under
uncertainty.

5.0 CONCLUSIONS AND FUTURE WORK
This manuscript presents a UMDO framework that is capable of quantifying the required
design margins to ensure feasibility at a given robustness target while taking into account
model uncertainties associated with current and/or predicted state-of-knowledge. Using visu-
alisation techniques such as contour plots, bubble plots and parallel coordinates plots, the
proposed framework allows designers to generate an ‘inter-space’ mapping between design,
objectives, feasibility robustness and uncertainty spaces, providing a better understanding
of the complex relationships that occur in such high-dimensional problems, especially in
practical cases in which the deterministic problem is multi-objective by nature.

Two processes are proposed to aid decision-making in the presence of uncertainty. The price
of feasibility robustness process assumes a fixed state-of-knowledge – herein represented by
a fixed input uncertainty characterisation – and is used to assess the trade-off between risk
(either of redesign or of not meeting market requirements), cost and efficiency. This tool
can be used throughout the requirements definition phase and enables a more systematic and
conscious definition of the target feasibility robustness, representing a significant improve-
ment over traditional deterministic design margin allocation procedures. On the other hand,
the cost of uncertainty process assumes a fixed target feasibility robustness and evaluates a
series of ‘what-if’ uncertainty reduction scenarios corresponding to the foreseen execution of
knowledge-augmenting experiments. The outcome of this process, combined with the costs
of the experiments needed to reduce uncertainty, allows improved selection and prioritisation
of experiments within the organisation.

Future work will focus on expanding the proposed framework capabilities and applications.
The following topics are already under investigation:

1. Integrating the DAKOTA toolkit to increase the library of UQ methods available in the
framework;

2. Conceptual design is often concerned about long-term time frames, which calls for the
use of technology forecasting methodologies. Predicting how technology may evolve is
inherently uncertain, hence there is an opportunity to adapt the developed framework for
selection and prioritisation of future technologies(67,68) and technology portfolio decision-
making(69–71) under uncertainty. A first pilot case study has been published in Ref. (72),
and a follow-on is to be published next(73).

3. The proposed framework is a suitable substitute for margin allocation procedures aimed
at ensuring feasibility in the presence of model uncertainties. However, margins may
also be assigned to ensure product upgradability, which is not covered by the proposed
framework in its current form.
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