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All previous experiments in open turbulent flows (e.g. downstream of grids, jets and
the atmospheric boundary layer) have produced quantitatively consistent values for
the scaling exponents of velocity structure functions (Anselmet et al., J. Fluid Mech.,
vol. 140, 1984, pp. 63–89; Stolovitzky et al., Phys. Rev. E, vol. 48 (5), 1993, R3217;
Arneodo et al., Europhys. Lett., vol. 34 (6), 1996, p. 411). The only measurement of
scaling exponents at high order (>6) in closed turbulent flow (von Kármán swirling
flow) using Taylor’s frozen flow hypothesis, however, produced scaling exponents
that are significantly smaller, suggesting that the universality of these exponents is
broken with respect to change of large scale geometry of the flow. Here, we report
measurements of longitudinal structure functions of velocity in a von Kármán set-up
without the use of the Taylor hypothesis. The measurements are made using stereo
particle image velocimetry at four different ranges of spatial scales, in order to
observe a combined inertial subrange spanning approximately one and a half orders
of magnitude. We found scaling exponents (up to ninth order) that are consistent with
values from open turbulent flows, suggesting that they might be in fact universal.
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1. Introduction
In the classical Kolmogorov–Richardson picture of turbulence, a turbulent flow is

characterized by a hierarchy of self-similar scales. This picture becomes increasingly
inaccurate at smaller and smaller scales, where intermittent burst of energy dissipation
and transfer take place (Kolmogorov 1962). A classical quantification of such
intermittency is via the anomalous deviation of the scaling properties of the
velocity structure functions from the simplistic Kolmogorov (1941a) scaling. The
velocity structure functions are defined as successive moments Sn(r) = 〈|δuL|

n
〉 of

δuL = r · (u(x + r) − u(x))/r the longitudinal velocity increments over a distance r.
In numerical simulations, the longitudinal increments are easily accessible over the
whole range of scales of the simulations, but the scaling ranges and the maximal
order n are limited by numerical resources. In experiments, large Reynolds numbers

† Email address for correspondence: berengere.dubrulle@cea.fr
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and large statistics are easily accessible, but the computation of Sn(r) faces practical
challenges. One-point velocity measurements based e.g. on hot-wire or laser Doppler
velocimetry (LDV) techniques provide time-resolved measurements over three or four
decades, that can be used to compute the structure functions only via the so-called
Taylor’s frozen flow hypothesis r = U1t, where U is the mean flow velocity at
the probe location. This rules out the use of this method in ideal homogeneous
isotropic turbulence, where U = 0. Most of the experimental reports on structure
function scalings relied on this method and not surprisingly, most of these results are
from turbulent flows with an open geometry (e.g. turbulence downstream of grids,
jets and the atmospheric boundary layer) where there is a strong mean flow. The
common practice is to keep the ratio u′/U small, preferably less than 10 % (u′ being
the standard deviation of the velocity). A summary of these results could be found
in e.g. Arneodo et al. (1996). For closed turbulent flows such as the von Kármán
swirling flows, the best attempts (Maurer, Tabeling & Zocchi 1994; Belin, Tabeling
& Willaime 1996) were to place the point measurement probes at locations where U
is strongest, specifically where U has a substantial azimuthal component. Even then,
one had to resort to measurements with a ratio of u′/U of up to 38 %. At the same
time, it is not understood how the curve geometry of the mean flow profile affects
the validity of the Taylor hypothesis (this concern does not appear in open flows
where U is predominantly rectilinear). Nevertheless, these experiments discerned a
power-law regime of the velocity structure functions of comparable quality with the
results from open turbulence. When the various results on the scaling exponents were
compared by Arneodo et al. (1996), the result from von Kármán flows gave values
distinctly lower values than those of open turbulence (which are among themselves
consistent). This difference, among other reasons, had prompted the suggestion that
different classes of flows possess different sets of exponents (Sreenivasan & Antonia
1997). Besides von Kármán flow, another branch of results on closed turbulent flow of
the Couette–Taylor type was carried out, also utilizing Taylor’s hypothesis, by Lewis
& Swinney (1999) and Huisman, Lohse & Sun (2013). Remarkably, Lewis et al.’s
results on the exponents beyond order six were also consistently lower than the open
flow results, and their highest Reynolds number measurements were remarkably close
to those of Belin et al. (1996). Huisman et al. reported results up to order six that
suggested universality of the exponents with respect to changing of the large scale
symmetry (by changing the ratio of rotation of the cylinders) and to Reynolds number.
Here, using a technique that does not rely on the Taylor hypothesis, we report scaling
exponents from von Kármán flows that are consistent with the results from open flows
(Anselmet et al. 1984; Stolovitzky, Sreenivasan & Juneja 1993; Arneodo et al. 1996),
as well as the results from numerical simulations (Ishihara, Gotoh & Kaneda 2000;
Gotoh, Fukayama & Nakano 2002) and theory of (She & Leveque 1994). We close
this section by noting that Pinton & Labbé (1994) had attempted to apply their
original ‘local Taylor hypothesis’ to a von Kármán experiment but only reported
scaling exponents of up to sixth order which they concluded to be consistent with
other results of open flows and thus also with our results.

2. Overview of methods

Direct measurement of spatial increments of velocity can be obtained via the
particle image velocimetry method (PIV). A detailed description of the set-up has
been previously provided in Saw et al. (2016); here we provide a concise description.
The fluid is seeded with hollow glass particles (Dantec Dynamics) with mass density
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View area
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FIGURE 1. (Colour online) Sketch of the apparatus. Velocity fields are observed in a
two-dimensional area on a laser sheet centred on the centre of the experiment (equal
distance from the impellers and on the axis of the cylindrical tank). Two cameras view
the observation area at angles approximately 45◦ from the laser sheet.

of 1.4 g cm−3 and size 10–30 µm, giving particle Kolmogorov scale Stokes number,
in order of increasing flow Reynolds numbers, of the order of 10−4–10−2, while the
settling parameter, i.e. ratio of Stokes to Froude number, is of the order of 10−3

or smaller. The particles are illuminated by a thin laser sheet (1 mm thick) in the
centre of the cylindrical tank (see figure 1 for a sketch). Two cameras, viewing at
an oblique angle from either side of the laser sheet, take successive snapshots of
the flow. The velocity field is then reconstructed across the quasi-two-dimensional
laser sheet using peak correlation performed over small interrogation windows. This
method provides measurements of three velocity components on a two-dimensional
grid. However, the limited width of the measured velocity field (due to finite camera
sensor size), coarse graining of the reconstruction methods and optical noise, usually
limit the range of accessible scales, making the determination of the power-law
regime ambiguous, thus limiting the accuracy of the measured scaling properties of
the structure functions. As we discuss in the present communication, these limitations
can be overcome by combining multi-scale imaging and a universality hypothesis. In
the original Kolmogorov self-similar theory (K41), for any r in the inertial range,
Sn(r) = Cnε

n/3rn/3, where ε is the (global) average energy dissipation and Cn is
a n-dependent constant. In such a case, the function Sn(r)/(εη)n/3 is a universal
function (a power law) of r/η, where η = (ν3/ε)1/4 is the Kolmogorov scale and ν

is the liquid’s kinematic viscosity. Such a scaling is the only one compatible with
the hypothesis that r and ε are the only characteristic quantities in the inertial range.
Following Kolmogorov (1962), one can take into account possible breaking of the
global self-similarity by assuming that there exists an additional characteristic scale
`0 that matters in the inertial range, so that Sn(r)=Cnε

n/3rn/3Fn(r/`0). If there exists
a range of scales where Fn(x) ∼ xαn , then one can write Sn(r) = Cnε

n/3`
−(ζn−n/3)
0 rζn ,

where ζn = n/3 + αn. In such a case, Gn(r) = Sn(r)/(εη)n/3(`0/η)
ζn−n/3 is a universal

function (a power law) of r/η. Here, we use this to rescale our measurements taken
in the same geometry, but with different ε and η. We may then collapse these in the
inertial range into a single (universal) structure function by considering Gn(r) as a
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function of r/η. The quality of the collapse depends crucially on the intermittency
parameter (αn = ζn − n/3) for large values of n, as αn increases with n: a bad choice
of αn results in a strong mismatch of two measurements taken at the same r/η but
different η. Moreover, the global slope (in a log–log plot) of the collapsed data
representing Gn(r/η) can also be used to compute the effective scaling exponent ζn

(and also αn), therefore providing a strong consistency check for the estimated value
of ζn. The bonus with the computation of the global slope is that by a proper choice
of ε (which gives η via (ν3/ε)1/4) and `0, it can be performed over a wider inertial
range, therefore allowing a more precise estimate of ζn. In the sequel, we examine
the effectiveness of this approach.

3. Experimental flow field

We use an experimental von Kármán set-up that has been especially designed
to allow for long-time (up to hours) measurement of flow velocity to accumulate
enough statistics for reliable data analysis. Turbulence is generated by two counter-
rotating impellers, in a cylindrical vessel of radius R = 10 cm filled with a
water–glycerol mixture (see Saw et al. 2016, for a detailed description). We perform
our measurements in the centre region of the flow, with viewing areas of 4× 4 cm2

(except in one case where it is 20 × 20 cm2, i.e. case D in table 1), located on a
meridian plane, around the symmetry point of the experimental set-up (see figure 1).
At this location, a shear layer induced by the differential rotation produces strong
turbulent motions. Previous study of intermittency in such a set-up has been performed
via one-point velocity measurements (hot-wire method) located above the shear layer
or near the outer cylinder, where the mean velocity is non-zero (Maurer et al.
1994; Belin et al. 1996). The scaling properties of structure functions up to n = 6
were performed by measuring the scaling exponents ζn via Sn(r) ∼ rζn , using the
assumption of Taylor’s frozen turbulence hypothesis and the extended self-similarity
(ESS) technique (Benzi et al. 1993). The resulting ζn values were significantly lower
than those from open turbulent flows (Arneodo et al. 1996). The ζn values from
open turbulence flows summarized in Arneodo et al. (1996) are reproduced here (in
the next section) for comparison. Here, we use stereo PIV (SPIV) measurements of
the velocities to compute the longitudinal structure function up to the ninth order
without using the Taylor hypothesis (only velocity components in the measurement
plane are used). Our multi-scale imaging provides the possibility to access scales of
the order of (or smaller than) the dissipative scale, in a fully developed turbulent
flow. The dissipative scale η is proportional to the experiment size, and decreases
with increasing Reynolds number. Tuning of the dissipative scale is achieved through
viscosity variation, using different fluid mixtures of glycerol and water. Combined
with variable optical magnifications, we may then adjust our resolution, to span a
range of scales between η to almost 104 η, achieving approximately 1.5 decades
of inertial range. Table 1 summarizes the parameters corresponding to the different
cases. All cases are characterized by the same value of non-dimensional global
energy dissipation εg = 0.045 (non-dimensionalized using the radius of tank R and
2πF, where F is the frequency of the impellers), measured through independent
torque acquisitions. However, since the von Kármán flow is globally inhomogeneous,
the local non-dimensional energy dissipation may vary from case to case (Kuzzay,
Faranda & Dubrulle 2015), and has to be estimated using local measurements, as we
detail below.
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Case F (Hz) Glycerol content Re η (mm) 1x (mm) εg εv

A 1.2 59 % 6× 103 0.37 0.24 0.045 0.0275
B 1 0 % (at 5 ◦C) 6× 104 0.0775 0.48 0.045 0.0413
C 5 0 % 3× 105 0.0162 0.24 0.045 0.0502
D 5 0 % 3× 105 0.0193 2.4 0.045 0.0254

TABLE 1. Parameter space describing the cases considered in this paper. 1x is the
spatial resolution of our measurements; εg is the global non-dimensional energy dissipation
(non-dimensionalized using the radius of tank (R) and 2πF, where F is the frequency
of the impellers) measured through torques, while εv is the local non-dimensional energy
dissipation estimated via the second-order structure function (see the text for information
regarding how it is estimated); η is the Kolmogorov scale (estimated using ν and εv).
Liquid temperature is 20 ◦C unless otherwise specified.

4. Results
4.1. Velocity increments and structure functions

Local velocity measurements are performed using SPIV, providing the radial, axial
and azimuthal velocity components on a meridional plane of the flow through a time
series of 30 000 independent time samples. In the sequel, we work with dimensionless
quantities, using R as the unit of length, and (2πF)−1 as the unit of time, F being
the rotational frequency of the impellers. Formally, since we use a 50 % overlapping
interrogation box, the spatial resolution of our measurement is twice the grid spacing
δx, which depends on the cameras’ resolution, the field of view and the size of
the windows used for velocity reconstruction. We use 2M-pixels cameras at two
different optical magnifications, to obtain one set of measurements with a field of
view covering the whole space between the impellers with an area of approximately
20 × 20 cm2 (δx = 2.4 mm, 32 × 32 pixel interrogation windows), and three sets
with a field of view of 4 × 4 cm2 centred at the centre of the experiment (cases A
and C with 16 × 16 pixel windows, δx = 0.24 mm, and case B with 32 × 32 pixel
windows, δx = 0.48 mm). The velocities measured using PIV have uncertainties due
to random fluctuations (fluctuating number of particles in each interrogation window,
optical noise etc.) and averaging error (velocities are smoothed over the interrogation
window, thickness of laser sheet). These may result in unreliable calculation of
velocity differences at the smallest distances. Thus velocity differences at the smallest
distances are removed from further analysis (more on this below). Since we are
interested only in statistics of the velocity field in the inertial subrange of turbulence,
we remove the large scale inhomogeneous artefact of the swirling flow by subtracting
the long-time average from each instantaneous velocity field. Using the in-plane
components of the velocities and spatial separations, we then compute the velocity
increments as δu(r) = u(x + r) − u(x), x and r being the position and spatial
increment vectors in our measurement plane. From this, we obtain the longitudinal
structure functions via the longitudinal velocity increment δuL(r)= δu(r) · r/r:

Sn(r)= 〈(δuL)
n
〉, (4.1)

where 〈〉 means average over time, all directions and the whole view area. Our
statistics therefore include approximately 109–1010 samples (depending on the
increment length), allowing convergence of the structure functions up to n = 9 in
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FIGURE 2. Longitudinal structure functions (up to ninth order) rescaled using the
intermittent scaling relation. (a) Plots showing all data points from all cases (A though D).
(b) Cropped structure functions where in each case, the segments of the data affected by
measurement noise (small r) and by finite measurement volume (large r) are removed.
(c) Same as (b) but only showing SL

6 to SL
9 (from bottom to top) and each curve is

compensated using the global ζn given in table 2. (d) Local slopes, 1log10(Sn)/1log10(r)
versus r for case B. Solid lines from top to bottom are for n= 9, 6, 4 respectively and
they are smoothed by a running average method. The dashed line shows the respective
un-smoothed data. The curve fitting range is selected as the intermediate part by removing
the strongly varying or fluctuating parts at small and large S3.

the inertial ranges (more details below). The structure functions (Sn) are shown in
figure 2, where we have conjoined the four cases (A–D) by rescaling the structure
function in each case as Sn × `0

ζn−n/3/(εv
n/3 ηζn) and the abscissa as r/η where

ζn is the corresponding scaling exponent of the structure function in the manner
Sn(r) = Cn(εr)n/3(r/`0)

ζn−n/3, with `0 the characteristic large scale of the flow which
we take as equal to the radius of the impellers (more on the computation of ζn and
the choice of `0 in § 4.3). We note that in doing so, we have used the more general
form of the scaling relation for the structure functions that takes into account turbulent
intermittency (as described earlier), with the K41 theory recovered if ζn = n/3. As
illustrated in figure 2(a), in each segment of the Sn curve represented by a single
colour, the behaviour of Sn at its large scale limit is altered by finite size effects,
while at the small scale end it is polluted by measurement uncertainties or lack of
statistical convergence. We thus remove these limits and keep only the intermediate
power-law-like segments for the analysis of the scaling exponents below; the results
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are displayed in figure 2(b,c) (note: for illustrative purposes we also show the
dissipative scales of case A and the largest scales of case D which would correspond
to the large eddy scale). Specifically, data cropping is done by inspecting the, albeit
noisy, local slope plots i.e. 1log10(Sn)/1log10(r) versus log10(r) as exemplified by
figure 2(d). We remove the strongly varying or fluctuating parts at small and large
r (based on smoothed data). However in cases B and C, further removal of points
at small r was performed in view of unsatisfactory statistical convergence (see the
discussion for details on data convergence). The retained ranges are respectively for
cases A–D, log10(r/η) ∈ (1.5, 1.87), (2.02, 2.63), (2.75, 3.35), (3.2, 3.35).

In the sequel, we discuss the computations of the kinetic energy dissipation rates
and scaling exponents (ζn) used in figure 2.

4.2. Determination of local energy dissipation rate
We use the local average kinetic energy dissipation rate, εv, to rescale the structure
functions. For this, we need accurate measurements of εv. We determine εv for the
four cases in two steps. In step one, we first determine εv in case A, where our data
span both the dissipative and the lower inertial scales of turbulence, by constraining
the value of εv such that both scaling laws of the second-order structure function
in the inertial subrange (K41) i.e. S2(r) = C2(εr)2/3 and in the dissipative scale i.e.
S2(r)= (ε/15ν)r2 are well satisfied. C2 is the universal Kolmogorov constant with a
nominally measured value of C2= 2 (see e.g. Pope 2000). We note that the dissipative
scaling formula implicitly assumes that the average dissipation rate can be replaced by
its one-dimensional surrogate, which is expected to be accurate when at least local
statistical isotropy is satisfied by the turbulent flow as in our case.

A convenient way to achieve this is by tuning the value of εv in order to match
our S2 against the form S2 = α r2/3/[1 + (r/rc)

−2
]

2/3 that contains the correct
asymptotic both in the inertial and dissipative limits (this would be stronger than
e.g. estimating εv using inertial subrange data alone). This form was originally
obtained by Sirovich, Smith & Yakhot (1994) using the Kolmogorov relation for
the third-order structure function (Kolmogorov 1941b) (4/5-law with exact viscous
correction). The constants are further determined by asymptotically matching to
the above scaling laws, giving α = ε2/3C2 and rc = (15C2ν/ε

1/3)3/4 ≡ (15C2)
3/4η.

Figure 3 shows the non-dimensionalized second-order structure function of case
A, S2/(εvν)

1/2 as a function of (r/η) compared with the Sirovich form (similarly
non-dimensionalized, with C2 = 2) for comparison. One can see good agreement
between the two curves in both the dissipative and inertial range as well as in the
transition regime, with discrepancies below 5 %, excluding the far ends where data
are affected by measurement uncertainties and view volume edges. This gives us
confidence in regard to the estimation of εv for case A.

In step two, knowing the value of εv for case A, we determined εv of the other
cases by constraining (assuming) that the conjoined third-order structure function of
all cases, should globally scale (determined by curve fitting) as a power law with
exponent ζ3= 1, as is predicted by K41 and supported by experiments (e.g. Anselmet
et al. 1984) and numerical simulations (e.g. Ishihara et al. 2000). As such, we have
made the same assumption as in the extended self-similarity method of Benzi et al.
(1993). Figure 3(b) shows the conjoined S3 rescaled using the resulting εv.

4.3. Determination of scaling exponents: ESS and global conjoint method
In table 2, we report the scaling exponents (ζn) of the structure functions by two
different methods. Firstly, we apply the extended self-similarity (ESS) method
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FIGURE 3. (Colour online) (a) Non-dimensionalized second-order structure function
(S2/(εvν)

1/2) from case A. Comparison with the Sirovich model. Inset: discrepancy
between the two curves (ratio of S2 to the model). Close agreement between the two
implies an accurate estimate of εv (for case A). The experimental noise in S2 is partially
removed by subtracting a value of 0.2. (b) Third-order structure function compensated by
power 1.

ζ1 ζ2 ζ4 ζ5 ζ6

Arneodo ESS 0.35± 0.03 0.7± 0.03 1.28± 0.03 1.55± 0.05 1.77± 0.05

This paper, ESS 0.36+0.005
−0.005 0.69+0.005

−0.005 1.29+0.005
−0.005 1.55+0.01

−0.01 1.80+0.02
−0.02

This paper, global 0.35+0.03
−0.04 0.68+0.03

−0.03 1.30+0.03
−0.04 1.58+0.03

−0.04 1.83+0.03
−0.04

ζ7 ζ8 ζ9

Arneodo ESS 2.03± 0.05 2.2± 0.08 2.38± 0.05

This paper, ESS 2.02+0.03
−0.03 2.23+0.03

−0.04 2.41+0.05
−0.05

This paper, global 2.05+0.03
−0.03

∗2.35+0.04
−0.05

∗2.57+0.04
−0.05

TABLE 2. Comparison of measured scaling exponents between this paper and previous
experiments. Arneodo ESS: results from various open turbulent flows in Arneodo et al.
(1996). This paper, ESS: results from this paper using ESS. This paper, global: results
from this paper based on conjoined structure functions obtained at different Reynolds
numbers. The values at highest orders marked with ‘∗’ are likely unreliable due to stark
inconsistency with local scalings of the corresponding structure functions (details in text).
The values of ζ3 are not shown since they are, by assumption of the methodologies, equal
to unity in all cases.

(Benzi et al. 1993) to each of the four experimental cases (A–D). This essentially
involves plotting Sn(r) versus S3(r) in logarithmic axes followed by curve fitting.
The uncertainty of each ζn is given as the 95 % confidence interval of the least-
squares fitting algorithm. The fitted ranges are chosen by inspection of the,
albeit noisy, local slopes plots i.e. 1log10(Sn)/1log10(S3) versus log10(S3) as
exemplified by figure 4(b). In general, the range is selected as the intermediate
part by removing the strongly varying or fluctuating parts at small and large S3.
However in cases B and C, further removal of points at small S3 is prompted
by unsatisfactory statistical convergence (see the discussion for details on data
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convergence). Numerically the ranges are, respectively for cases A–D, log10(S3) ∈

(−1.88,−1.5), (−2.0,−1.2), (−1.9,−1.1), (−1.67,−1.21). Since this produces four
independent measurements of ζn for each order (owing to the 4 cases), we report
their averages in table 2.

Secondly, we conjoin the non-dimensionalized structure functions (using εv and η)
from the four cases and apply curve fitting to the combined structure functions
to obtain the global estimates of ζn. As shown in figure 4(a), we found that
structure functions join significantly better when they are rescaled based on the
scaling relation that takes into account intermittency, namely, Sn × `0

ζn−n/3/(εv
n/3 ηζn)

versus r/η (as discussed above). We take `0 = R (equal to the impeller radius) in
the current analysis; any global refinement in the magnitude of `0 will not affect
our estimate of ζn, as it only multiplies all Sn by a constant factor. Specifically, the
combined structure functions, thus rescaled, exhibit significantly better continuity as
compared to their K41 scaled counterparts. The non-dimensional structure functions
Sn(r̂) × `0

ζn−n/3/(εv
n/3 ηζn) as such are dependent on values of ζn, thus in order to

improve accuracy, we iterate between rescaling and curve fitting to arrive at a set
of self-consistent ζn. However, we observe that the self-consistency of this method
gradually deteriorates at higher orders, essentially giving global iterated ζn values that
are highly inconsistent with their piecewise estimates. One plausible cause of this
could be the possibility that the relevant external scale `0 varies between the different
sets of experiments. Unfortunately we do not have a way to independently measure
`0, but we note that allowing `0 to vary up to 20 % could remove such inconsistency.
In view of this, for the eighth and ninth orders, such self-iterative results are less
reliable, hence our best estimates for ζ8 and ζ9 should still be the EES results.

4.4. Transversal scaling exponents

While the main focus of the current paper is on the comparison of longitudinal
structure functions, we briefly present the results on transversal structure functions
here. Unlike their longitudinal counterparts, past results on scaling exponents of
the transversal structure functions (ζ T

n ) do not inspire strong consensus. There are
conflicting results on whether they are equivalent to the longitudinal ones and
some works suggest that they might depend significantly on large scale shear (for
details see e.g. the discussion by Iyer, Sreenivasan & Yeung (2017) and references
therein). However, the recent results of Iyer et al. (2017) strongly suggest that, when
large scale inhomogeneities are absent, the two sets of exponents (longitudinal and
transversal) are equivalent and subject to a single similarity hypothesis. Their findings
also imply that previous conflicting results could be explained by the relatively much
slower approach of the higher-order transversal exponents to their ultimate large
Reynolds number limits and possibly by the presence of large scale shear. Further
work is required to substantiate this important finding. In view of this, here we
present only the ESS results on the transversal exponents, as their strong dependence
on Reynolds number precludes any attempts to conjoin them using our global method
described previously. The ESS results are shown in table 3. The values for ζ T

n at
higher orders are lower than their longitudinal counterparts, consistent with some
previous experiments, e.g. Dhruva, Tsuji & Sreenivasan (1993), Shen & Warhaft
(2002). Our results show weak evidence that ζ T

n increases with Reynolds number
for n> 6.
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FIGURE 4. (Colour online) (a) Comparing the consistency of the structure functions
rescaled using K41 and the intermittent scaling relations. From top to bottom: blue circles
show the eighth-order structure function (S8) rescaled using the K41 scaling (ζ8 = 8/3≈
2.667); red circles show S8 rescaled via the intermittent relation with ζ8 = 2.35. Cyan
dashed lines are best fits to each set of data in the range r/η= 2.4− 2.6. The intermittent
case is found to show a higher general level of consistency (continuity) among the
higher-order structure functions (the difference is insignificant at lower orders). (b) Local
slopes, 1log10(Sn)/1log10(S3) versus S3 for case B. Solid lines from top to bottom are
for n = 9, 6, 4 respectively and they are smoothed by the running average method. The
dashed line is the respective un-smoothed data. The ESS curve fitting range is selected as
the intermediate part by removing the strongly varying or fluctuating parts at small and
large S3.

Case A B C D Average

Re 6× 103 6× 104 3× 105 3× 105 —

ζ T
1 0.40 0.38 0.39 0.39 0.39

ζ T
2 0.73 0.71 0.72 0.72 0.72

ζ T
4 1.22 1.25 1.24 1.23–1.24 1.24

ζ T
5 1.40–1.41 1.45 1.43–1.44 1.43 1.43

ζ T
6 1.54–155 1.62 1.59–1.60 1.58–1.60 1.59

ζ T
7 1.64–1.67 1.76 1.73–1.74 1.69–1.73 1.72

ζ T
8 1.72–1.75 1.85–1.86 1.83–1.86 1.77–1.84 1.81

ζ T
9 1.78–1.81 1.90–1.92 1.92–1.95 1.80–1.93 1.88

TABLE 3. Scaling exponents of the transversal structure functions of velocity. ζ T
n values

that are not presented as ranges imply uncertainties of ±0.005, except the last column
(Average) which shows simple averages of the mid-values of each row.

5. Discussion

Statistical convergence of data. There exist various ways of characterizing statistical
convergence of structure functions. We follow the method used in Gotoh et al. (2002),
as it reveals directly the possible rate of change of the moments with respect to
increasing statistics. This involves plotting Cn(v)=

∫ v
0 v
′nP(v′) dz′ where v and v′ are
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FIGURE 5. Statistical convergence of the structure functions. (a) Main figure and inset,
we plot C9(v)/C9(v0) versus v/v0, where Cn(v) =

∫ v
0 v
′nP(v′) dz′, v and v′ are moduli

of velocity differences, P the PDF and v0 is the value of v where P(v) first reaches a
value of zero in our data. The curves (blue, gold, red, cyan) represent, from cases A to D
respectively, the least converged points used to calculate ζn (and retained in figure 2b,d).
As the inset shows, C9(v) increase with v before they start to saturate at large v. The
main figure verifies that all data points used in our analysis of the scaling exponents
do not vary more than 1 % even if additional sampling would increase v0 by 10 %. (b)
|δu|9P(δu) versus δu corresponding to case B (gold) in the left panel, where δu is the
velocity difference.

moduli of velocity differences and P the corresponding probability density function
(PDF). Figure 5 represents C9(v)/C9(v0) as a function of v/v0, where v0 is the
first value of v at which P(v) = 0 in our data. The four curves represent the least
converged points in each case (A–D) used in our calculation of ζn and are respectively
at log10(r/η)= 1.51, 2.04, 2.76, 3.23. They are also the points of smallest r retained
in each case, since convergence improves with r. To ease comparison with other
works, we define our criterion for convergence as: Cn(v) should not vary more than
1 % when v0 is extended by 10 %, consistent with what is shown in figure 5.

Flow inhomogeneity. In this work, we attempt to minimize the influence of large
scale inhomogeneity and anisotropy by subtracting the mean flow pattern from our
data and averaging over all directions in the region near the symmetric centre of
the flow where the flow is approximately homogeneous. This, however, could not
guarantee that all influences of inhomogeneity and isotropy have been removed,
especially for case D where the view area is large. A full analysis of this issue will
be the subject of future work.

6. Conclusion
We use SPIV measurements of velocities in a turbulent von Kármán flow to

compute longitudinal structure functions up to order nine without using the Taylor
hypothesis. Our multi-scale imaging provides the possibility to access scales of the
order of (or even smaller than) the dissipative scale, in a fully turbulent flow. Using
magnifying lenses and mixtures of different composition, we adjust our resolution,
to achieve velocity increment measurements spanning a range of scales between
one Kolmogorov scale, to almost 103.5 Kolmogorov scales, with a clear inertial
subrange spanning approximately 1.5 decades. Thanks to our large range of scales,
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we can compute the global scaling exponents by analysing the conjoined data of
different resolution to complement the analysis of extended self-similarity. Our
results on the scaling exponents (ζn), where reliable, are found to match the values
observed in turbulent flow experiments with open geometries (Anselmet et al. 1984;
Stolovitzky et al. 1993; Arneodo et al. 1996), numerical simulations (Ishihara et al.
2000; Gotoh et al. 2002) and the theory of She & Leveque (1994). In contrast,
previous measurements of von Kármán swirling flow using the Taylor hypothesis
reported scaling exponents that are significantly smaller (Maurer et al. 1994; Belin
et al. 1996), which raises the possibility that the universality of the scaling exponents
is broken with respect to a change of the large scale geometry of the flow. Our new
measurements, which do not rely on the Taylor hypothesis, suggest that the previously
observed discrepancy could be due to a pitfall in the application of Taylor hypothesis
to a closed, non-rectilinear geometry and that the scaling exponents might in fact be
universal, regardless of the large scale flow geometry. Such a result would strengthen
and generalize the conclusions of theoretical analyses and numerical simulations of
the Navier–Stokes equation that predict that the scaling properties of the structure
functions are universal in the isotropic sector (Biferale & Procaccia 2005).
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