
TLP 13 (4–5): Online Supplement, July 2013. C© 2013 [GRAEME GANGE, JORGE A. NAVAS,
PETER SCHACHTE, HARALD SØNDERGAARD and PETER J. STUCKEY]

URL: http://dx.doi.org/10.1017/S1471068413000379

593

Failure tabled constraint logic programming
by interpolation�

GRAEME GANGE, JORGE A. NAVAS, PETER SCHACHTE,

HARALD SØNDERGAARD and PETER J. STUCKEY

Department of Computing and Information Systems, The University of Melbourne, Victoria 3010, Australia

(e-mail: {gkgange,jorge.navas,schachte,harald,pstuckey}@unimelb.edu.au)

submitted 10 April 2013; revised 23 June 2013; accepted 5 July 2013

Abstract

We present a new execution strategy for constraint logic programs called Failure Tabled

CLP. Similarly to Tabled CLP our strategy records certain derivations in order to prune

further derivations. However, our method only learns from failed derivations. This allows us

to compute interpolants rather than constraint projection for generation of reuse conditions.

As a result, our technique can be used where projection is too expensive or does not exist.

Our experiments indicate that Failure Tabling can speed up the execution of programs with

many redundant failed derivations as well as achieve termination in the presence of infinite

executions.

1 Introduction

Constraint Logic Programming (clp) (Jaffar and Lassez 1987) has been successfully

used in many different contexts such as management decision problems, trading,

scheduling, electrical circuit analysis, mapping in genetics, etc. (Marriott and Stuckey

1998). However, its standard execution model based on depth-first search with left-

to-right clause selection suffers from two major drawbacks inherited from Logic

Programming (lp):

1. the derivation tree containing all program executions can be huge even if many

subtrees may be redundant, and

2. it is incomplete in the presence of infinite derivations since the execution may

choose these rather than executing the finite ones.

To tackle these issues, an alternative lp execution strategy called Tabling was

proposed (Tamaki and Sato 1986; Warren 1992). This strategy records calls and

their answers, for reuse in future calls. Tabled Constraint Logic Programming (tclp)

(Codognet 1995) is a natural extension of Tabling to clp programs. tclp makes

� We wish to thank Jose. F. Morales for providing support integrating MathSAT into Ciao and Manuel
Carro and Corneliu Popeea for fruitful discussions about tabling and interpolation, respectively.
We acknowledge support of the Australian Research Council through Discovery Project Grant
DP110102579.

https://doi.org/10.1017/S1471068413000379 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000379

594 G. Gange et al.

?- 0 ≤ X ≤ 5, 0 ≤ Y ≤ 3, R ≥ 15, p1(X, Y, R) .

p1(X1, Y1, R1) :- X1 = X1 + Y1 + 2, p2(X1, Y1, R1) .

p1(X2, Y2, R2) :- X2 = X2 + Y2 + 1, /*?*/ p2(X2, Y2, R2) .

p2(X3, Y3, R3) :- Y3 = Y3 + 1, p3(X3, Y3 , R3) .

p2(X4, Y4, R4) :- Y4 = Y4 + 2, p3(X4, Y4 , R4) .

p3(X5, Y5, R5) :- R5 = X5 + Y5 − 1 .

p3(X6, Y6, R6) :- R6 = X6 + Y6 .

Fig. 1. A recursion-free clp program with redundant derivations.

explicit the requirement of the tabling execution on the constraint domain. For

instance, to detect when a more particular call can consume answers from a more

general one, it uses constraint entailment. And for determining the calling constraint

for a tabled call, it needs to make use of constraint projection. The projection

operation is a particularly onerous requirement. Many constraint domains have no

projection operation (or weak projection only) (Marriott and Stuckey 1998), and for

those that do, the cost is often prohibitive.

We present Failure Tabled Constraint Logic Programming (ftclp), a new execution

strategy that augments the classical top-down clp execution algorithm to benefit

from pruning redundant failed derivations that can avoid non-terminating executions

without the use of constraint projection. Our algorithm executes the clp program

in a top-down manner while labelling nodes in the derivation tree with two kinds

of objects:

1. A reuse condition is a formula that, if it is implied by a goal’s constraint store

(the constraints accumulated during the execution of the derivation of the goal),

then it is guaranteed that no new answers can be generated, and thus, the search

can stop and backtrack to another choice point.

2. A set of answers for a goal is the constraint stores resulting from the successful

derivations for the goal.

Whenever a new goal is executed and its constraint store implies the reuse condition

of a recorded goal, the current clp execution can be stopped and the set of answers

from the more general state can be consumed without the need of running that

goal. We show that this is possible even in the presence of recursive clauses with

infinite derivations. To generate reuse conditions we use interpolation (Craig 1957),

a technique that has attracted much interest in counterexample-driven verification

during the last decade.

We start by describing our method through a recursion-free clp program. Later,

we will show how to deal with recursion and infinite derivations.

Example 1 (Recursion-Free Clauses)

Consider the query/program in Figure 1. Its depth-first, left-to-right derivation tree

is shown in Figure 2. Each oval node represents the call to a body atom and an

edge denotes a derivation step. A successful derivation is marked with a (green)

“tick” symbol and a failed derivation with a (red) “cross” symbol. It is easy to

https://doi.org/10.1017/S1471068413000379 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000379

Failure tabled constraint logic programming by interpolation 595

Interpolant:

X1 + Y + 2 ≤ R

subsumed

0 ≤ X ≤ 5, 0 ≤ Y ≤ 3, R ≥ 15

p1(X, Y, R)

X1 = X + Y + 2

p2(X1, Y, R)

Y3 = Y + 1

p3(X1, Y3 , R)

R = X1 + Y3 − 1

R = X1 + Y3

Y4 = Y + 2

p3(X1, Y4 , R)

R = X1 + Y4 − 1

R = X1 + Y4

X2 = X + Y + 1

p2(X2, Y, R)

p3(X2, Y3 , R) p3(X2, Y4 , R)

Fig. 2. (Colour online) The ftclp derivation tree (solid edges) for the program in Figure 1.

Dashed parts show the additional parts to make up the clp tree. The curved arrow shows the

shortcut enabled by the interpolant.

check that this tree has seven failed derivations in addition to the successful one

yielding (X = 5, Y = 3, R = 15). Our method takes advantage of the fact that

some failed derivations can be summarized by compact explanations which can be

used to produce a smaller derivation tree while preserving all original answers. The

non-dashed fragment of Figure 2 gives the derivation tree computed by our method.

Note that the clauses of p2/3 are explored only once.

From the leftmost derivation we collect in π all its constraints (including both

primitive and user-defined ones). That is, π ≡ [0 � X � 5, 0 � Y � 3, R � 15,

p1(X,Y , R), X ′
1 = X + Y + 2, p2(X ′

1, Y , R), Y ′
3 = Y + 1, p3(X ′

1, Y
′
3 , R), R =

X ′
1 + Y ′

3 − 1] . Note that we rename variables accordingly whenever there is a

match between a body atom and a clause head. For instance, the match between

the atom p1(X,Y , R) and the head p1(X1, Y1, R1) produces the renaming {X1 �→
X,Y1 �→ Y , R1 �→ R} which transforms the first clause of p1/3 to: p1(X,Y , R) :-

X ′
1 = X + Y + 2, p2(X ′

1, Y , R) .

The constraint store contains the formula

(0 �X � 5)∧(0 �Y � 3)∧(R � 15)∧(X ′
1 = X+Y +2)∧(Y ′

3 = Y +1)∧(R = X ′
1+Y ′

3 −1)

which is the conjunction of all primitive constraints in π. Now, this formula is

unsatisfiable, so the derivation fails. But before backtracking we want to record

some explanation of the failure. This is the role of an interpolant.

Given two formulas A and B such that the query A ∧ B is unsatisfiable, an

interpolant is a formula I that over-approximates A (that is, A |= I) while preserving

https://doi.org/10.1017/S1471068413000379 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000379

596 G. Gange et al.

the falsity of the query (that is, I ∧ B = false). The other essential property of an

interpolant is that the only variables allowed in I are those common to A and B.

We partition π into A and B where A contains the primitive constraints added up

to p2(X ′
1, Y , R), whereas B contains the primitives added subsequently:

A = {0 � X � 5, 0 � Y � 3, R � 15, X ′
1 = X + Y + 2}

B = {Y ′
3 = Y + 1, R = X ′

1 + Y ′
3 − 1}

By the chosen partitioning, the common variables between A and B are X ′
1, Y , and

R—exactly the variables of the body atom p2/3 called inside the first clause of

p1/3 (after renaming as explained in Section 2). Interpolants can be computed by

most SMT-solvers as a by-product of unsatisfiability proofs. As an example, a valid

interpolant computed by MathSAT (Griggio 2012) is X ′
1 + Y + 2 � R which can

be recorded together with the goal p2(X ′
1, Y , R). The advantage of recording the

interpolant I is that whenever we come across another call to p2/3 whose current

constraints are at least as strong as I , for example at program point /*?*/, we can,

without further ado, consider the call failed.

Interpolants are computed for each atom along π (so for p1(X,Y , R) and

p3(X ′
1, Y

′
3 , R) as well). We have left them out, as p2/3 turns out to be the interesting

predicate in the example. Moreover, we compute an interpolant for each atom L and

for every failed execution within the subtree rooted at L. The interpolant for L is the

conjunction of all the interpolants generated from L’s subtree. In our example, from

the second and third derivations, the interpolants generated for p2(X ′
1, Y , R) do not

further strengthen the interpolant from the leftmost derivation. Using MathSAT we

obtain

(X ′
1 + Y ′

3 + 2 � R) ∧ (X ′
1 + Y ′

3 + 2 � R) ∧ (X ′
1 + Y ′

3 + 2 � R) ≡ X ′
1 + Y3 + 2 � R

Note that the fourth derivation will produce the only answer of the program

X = 5, Y = 3, R = 15 so no interpolant is generated.

After we backtrack finishing the execution of p1/3’s first clause, we would like

to avoid exploring the clauses of p2/3 again when visiting the program point

/*?*/. As before, we collect all the constraints up to that point π′ ≡ [0 � X �
5, 0 � Y � 3, R � 15, p1(X,Y , R), X ′

2 = X + Y + 1, p2(X ′
2, Y , R)]. To be able to

reuse the interpolant from p2(X ′
1, Y , R) we must apply the renaming {X ′

1 �→ X ′
2}.

Then, we can check if the current constraint store entails the interpolants stored for

p2(X ′
1, Y , R) after renaming

(0 � X � 5) ∧ (0 � Y � 3) ∧ (R � 15) ∧ (X ′
2 = X + Y + 1) |= X ′

2 + Y + 2 � R

and this entailment is easily seen to hold.

Next we try to reuse the answer computed so far. Like tclp, ftclp cannot directly

consume answers since an answer may not be possible with the constraint store of

the subsumed goal. So when we attempt to reuse an answer, we discard it if it

becomes a failure under the execution of the subsumed goal. In our example, the

answer from the fourth derivation of Figure 2, effectively, X ′
2 = 10, Y = 3, R = 15,

when renamed and conjoined with the current store, leads to failure. Thus, no more

answers are generated.

https://doi.org/10.1017/S1471068413000379 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000379

Failure tabled constraint logic programming by interpolation 597

G | C

L2, . . . , Lm | C ∧ L1 if{ L1 is primitive and C ∧ L1 is satisfiable
L1, . . . , Lk, L2, . . . , Lm | C if L1 is user-defined and

(H:-L1, . . . , Lk) ∈ unify(L1, vars(C) ∪ vars(G))
| false otherwise

Fig. 3. The result of a derivation step 〈G | C〉 ⇒ 〈G′ | C ′〉 where G ≡ L1, . . . , Lm.

If the entailment had failed then we would have to re-explore the clauses

of p2/3. Those explorations generate new interpolants for each clause. Then,

we can either form disjunctive interpolants or record each one separately as a

different entry. The former can provide more pruning than the latter at the

expense of more expensive entailment tests. In our experiments, we have imple-

mented both and failed to observe any improvement from keeping disjunctive

interpolants. �

Note that the approach relies, for correctness, on depth-first traversal of the

derivation tree. The reuse of an interpolant I for atom H assumes that I has come

about as the result of one or more complete derivations from H .

It is not hard to see that interpolation corresponds to a weak form of constraint

projection, but an interpolant provides unique benefits:

1. it can be computed in linear time relative to the size of the unsatisfiability proof;

2. many useful theories, for which we do not have efficient constraint projection

algorithms or any projection at all, are equipped with interpolation: integer and

real linear arithmetic, uninterpreted functors, arrays, etc.; and

3. it can be quite effective as a reusable condition for pruning other derivations.

However, interpolants are computed only from failed derivations, and so our method

should not be considered a substitute for projection-based tclp.

2 Preliminaries

We assume the reader is familiar with the operational semantics of Constraint Logic

Programming (clp) as described by, for example, Marriott and Stuckey (1998). Here

we define Craig interpolants, a key concept in our method.

The operational semantics of a clp program is based on the concept of derivation.

A state σ is a pair written 〈G | C〉 where G is a goal and C is a constraint. A goal, G,

is a sequence of literals L1, . . . , Lm where m � 0 and each literal is either an atom or

a primitive constraint. We assume for simplicity that clauses have been translated so

that every atom has distinct variables as arguments. In case m = 0, we say the goal

is empty, denoted by the symbol �. C is called the constraint store. A derivation step

from 〈G | C〉 to 〈G′ | C ′〉, written 〈G | C〉 ⇒ 〈G′ | C ′〉, is defined in Figure 3. Given

two atoms A and A′, let σ = variant(A,A′) be a renaming such that σ(A) = A′ or

σ = ⊥ if there is no such renaming (the atoms are for a different predicate). The

function unify(L,W) returns the set of all renamed rules originated from matching

https://doi.org/10.1017/S1471068413000379 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000379

598 G. Gange et al.

a selected atom L with the head of a rule renamed to be L and all other variables

have been suitably renamed so that all are disjoint from the set W .

A derivation for state 〈G0 | C0〉 is the sequence of states 〈G0 | C0〉 ⇒ 〈G1 | C1〉 ⇒
. . . such that for each i � 0 there is a derivation step from 〈Gi | Ci〉 to 〈Gi+1 | Ci+1〉.

A derivation tree for a goal G and program P is a tree with states as nodes where

each path corresponds to a derivation of G, and branches occur in the tree whenever

there is a choice of rule with which to rewrite a user-defined constraint.

Definition 1 (Craig Interpolant)

Given formulas A,B with A ∧ B unsatisfiable, a Craig interpolant is a formula

P , such that: (1) A |= P , (2) P ∧ B is unsatisfiable, and (3) vars(P) ⊆ vars(A)∩
vars(B). �

An interpolant P allows us to discard irrelevant information from A not needed to

ensure unsatisfiability with B. Thus, P is an over-approximation of A. Importantly, P

is defined only in terms of the variables shared by A and B. In this sense, interpolation

acts as a specialized form of projection. Efficient interpolation procedures exist for

quantifier-free fragments of theories such as linear real and integer arithmetic,

uninterpreted functions, pointers and arrays, and bitvectors. In all these cases,

interpolants can be extracted from the refutation proof in time linear in the size

of the proof. We refer the reader to Cimatti et al. (2008) and McMillan (2011) for

details.

Note that we would like to annotate multiple points along the failed derivation

since our ultimate goal is to annotate the whole derivation tree with interpolants.

Therefore, it is convenient to use the following definition.

Definition 2 (Inductive Sequence Interpolant)

Given a sequence of formulas π ≡ [F1, . . . , Fn], [P 0, . . . , P n] is an inductive sequence of

interpolants (also called a path interpolant) (Jhala and McMillan 2006) for π when:

1. P 0 = true and Pn = false,

2. ∀ (1 � i � n) : P i−1 ∧ Fi |= P i, and

3. ∀ (1 � i < n) : vars(P i) ⊆ vars(Fi) ∩ vars(Fi+1)

That is, the i-th element of the interpolant is a formula in the common language of

Fi and Fi+1, and is a logical consequence of the first i elements of π. �

We will assume a procedure SeqIntp that takes a sequence of formulae [F1, . . . , Fn]

and returns an inductive sequence of interpolants [P 0, . . . , P n]. Note that since

Pn = false the formula F1 ∧ . . . ∧ Fn must be unsatisfiable.

3 A tabled CLP algorithm with interpolation

We present in Figure 4 a new clp execution algorithm that, given an initial state

〈G | C〉, produces all its answers. During this process, the algorithm explores

the derivation tree corresponding to the execution of 〈G | C〉, while recording

knowledge about the failed derivations encountered during the traversal as well

as all the answers. The main purpose is to eliminate future executions which cannot

https://doi.org/10.1017/S1471068413000379 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000379

Failure tabled constraint logic programming by interpolation 599

FailureTabling(G | C , Path)
if G = then return {C}
Let G be L1, . . . , Lm for some m ≥ 1
if L1 is primitive then

Path.push(L1)
if C ∧ L1 is satisfiable then

Aret := FailureTabling(L2, . . . , Lm | C ∧ L1 , Path)
else

FT := CombineIntp(FT, Path,SeqIntp(Path))
Path.pop

else % L1 is a user-defined constraint
if for some H and σ = variant(H, L1), C |= σ(FT [H]) then

Aret := {σ(C) ∧ C | C ∈ AT (H), σ(C) ∧ C is satisfiable}
Path.push(not σ(FT [H]))
FT := CombineIntp(FT, Path,SeqIntp(Path))
Path.pop

else
Rs := unify(L1, vars(C) ∪ vars(G)))
Path.push(L1)
Aret := ∅
foreach L1:-L1, . . . , Lk in Rs do

Aret := Aret∪ FailureTabling(L1, . . . , Lk, L2, . . . , Lm | C , Path)
Path.pop

AT := AT [L1 Aret ∪ AT (L1)]
return Aret

Fig. 4. Tabled CLP algorithm based on interpolation.

lead to additional answers. There are two tables at the heart of our algorithm. The

Failure table (FT) maps an atom A appearing in a derivation to an interpolant (its

reuse condition). The Answer table (AT) maps an atom A to the set of answers

generated so far during the execution of A.

While AT has an entry per predicate, FT has at least one entry per clause head.

It is to facilitate this that different clause heads for the same predicate use different

variables, as exemplified in Figure 1. The reason for the distinction is that a given

predicate can be explored repeatedly during the execution of the program, and we

want to store interpolants for each of these explorations separately. Initially, FT

maps all entries to ⊥ and AT maps all entries to ∅. For clarity of presentation, both

tables will be global variables.

Before describing the algorithm, we stress that FailureTabling (as described in

Figure 4) will run forever if an infinite derivation is executed. In the next section,

we will describe how to extend the algorithm to deal with this difficult problem.

FailureTabling takes two inputs, an initial state 〈G | C〉 and Path, a stack

that contains all constraints (both primitive and user-defined) along the current

derivation. Its output is the set of answers generated during the execution of

〈G | C〉.
If the goal is empty we simply return a singleton set with the current store as

the unique answer. Otherwise if the first literal L1 is a primitive constraint and

satisfiable with the current store, we add it to the store and continue execution. If

it is not satisfiable, we update FT with the interpolants generated from the failed

derivation.

https://doi.org/10.1017/S1471068413000379 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000379

600 G. Gange et al.

Generation and combination of interpolants. Since Path is a stack that contains all

the constraints along the current derivation, it is a sequence of the form
[
c1
1, . . . , c

1
k1
, H1, c

2
1, . . . , c

2
k2
, H2, . . . , c

n−1
1 , . . . , cn−1

kn−1
, Hn−1, c

n
1, . . . , c

n
kn

]

where cij is a primitive constraint and Hi is an atom. From this, we can form the

sequence

F =
[
c1
1 ∧ · · · ∧ c1

k1
, c2

1 ∧ · · · ∧ c2
k2
, · · · , cn−1

1 ∧ · · · ∧ cn−1
kn−1

, cn1 ∧ · · · ∧ cnkn
]

Then, SeqIntp(F) will return a sequence of inductive interpolants [P 0, . . . , P n].

From those, P 1, . . . , P n−1 (recall that P 0 = true and Pn = false) can be used

directly as reuse conditions for atoms H1, . . . , Hn−1, respectively. Abusing notation,

the procedure SeqIntp will also take a path constraint Path as input and transform

it into a sequence of formulae F , as described above, before calling the interpolation

algorithm. Once the interpolants have been generated we need to record them in

the failure table. This is the purpose of the procedure CombineIntp that takes as

arguments FT , the current path constraints Path, a sequence of interpolants as

returned by SeqIntp and returns an updated FT .

CombineIntp(FT , Path, [P1, . . . , Pn−1])

foreach Hi in Path do

if FT (Hi) = ⊥ then FT := FT [Hi �→ true]

FT := FT [Hi �→ Pi ∧ FT (Hi)]

return FT

Pruning and reusing answers. When we reach a user-defined constraint L1 we first

check whether the failure table has an answer for atom H that can be reused. If the

current store C implies the suitably renamed interpolant FT [H], we filter the answers

for H to find those applicable to the current state 〈G | C〉. In general we may have

multiple entries in FT that are variants of L1. Thus, we check each of these entries

to see if the entailment test succeeds. Moreover, we need to generate interpolants

from the subsumed derivation. Otherwise, it would be unsound. Note that we know

that C |= σ(FT [H]) or equivalently, C ∧ not σ(FT [H]) is unsatisfiable. Note also

that Path contains all constraints in C but it does not contain not σ(FT [H]). So

we simply push not σ(FT [H]) temporarily onto Path and call SeqIntp. As before,

the new interpolants must be combined by the procedure CombineIntp which will

further update FT . Otherwise we consider all the rules that match L1 and recursively

visit the resulting states, collecting all the answers in Aret. When we pop L1 off the

path, we are guaranteed that the interpolant stored in FT [L1] is correct, since it

then considers all possible derivations for L1.
1 Finally, before leaving the call to

FailureTabling we update the answers attached to L1 in the answer table AT to

include Aret.

We can show that FailureTabling returns the correct answers for a state, by

showing that when the FT lookup succeeds, it returns the correct answers for the

derivation.

1 Here we assume that there are no two syntactically identical recursive calls—renaming can ensure this.

https://doi.org/10.1017/S1471068413000379 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000379

Failure tabled constraint logic programming by interpolation 601

Theorem 1

Given a goal G, the algorithm in Figure 4 preserves all answers. That is,

FailureTabling(〈G | true〉, []) = {C | 〈G | true〉 ⇒∗ 〈� | C〉, C is satisfiable} �

We observed during the evaluation of our method (discussed in Section 5) that if

we generate an interpolant for each atom within a failed derivation, the algorithm

described in Figure 4 can degrade. The reason is that the number of calls to the

interpolation procedure is too high. Thus, it is important to reduce the number of

calls to interpolation. The following lemma provides a key optimization.

Lemma 1

Let π1 = [F1, . . . , Fk, Fk+1, . . . , Fn] and π2 = [F1, . . . , Fk, F
′
k+1, . . . , F

′
m] be two formula

sequences, and let [P0, . . . , Pn] and [P ′
0, . . . P

′
m] be two corresponding inductive

sequence interpolants. If Pk |= P ′
k then [P0, . . . , Pk, P

′
k+1, . . . , P

′
m] is a correct inductive

sequence interpolant for π2. �

This allows us to start computing interpolants backwards from P ′
m in a lazy manner

and stop if for some point i, Pi |= P ′
i where Pi is the current interpolant at that

point, without the need to eagerly compute all the interpolants from each failed

derivation.

4 How to handle infinite derivations

The algorithm FailureTabling does not give any special treatment to recursive

clauses. Therefore, it will not terminate in the presence of infinite derivations. We

propose a simple extension based on counter instrumentation (Gulwani et al. 2009;

McMillan 2010) that can produce complete and finite derivation trees even with

infinite derivations:

1. Transform the original program P into a new program P ′ by adding a new

counter variable ki to each recursive clause i such that ki is decremented by

one each time a goal is called recursively. Moreover, each recursive clause fails

if ki < 0. The purpose of this transformation is to generate some fake failed

derivations (depending on ki counters) within recursive clauses so that the clp

execution can terminate.

2. Set each di = 0 (these are the limits on recursive calls for clause i)

3. Run FailureTabling on P ′ with ki = di
4. After termination of FailureTabling extract from each failed derivation the

deepest atom L that corresponds to a recursive clause i and whose interpolant

involves ki. Then, check if the procedure Check Inductive Invariant(L,i) suc-

ceeds for every L. If yes, we can stop. Otherwise, set di = di + 1 and go to

Step 3.

We now describe how the procedure Check Inductive Invariant(L,i) performs

the inductive invariant test. During the execution of FailureTabling we keep track,

for every failed derivation, of the atom L at level di that corresponds to a recursive

https://doi.org/10.1017/S1471068413000379 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000379

602 G. Gange et al.

x := i ; y := j;
while (x = 0) {

x := x − 1;
y := y − 1;

}
if (i == j) assert(y ≤ 0);

?- X = I, Y = J , l(X, Y, I, J) .

l(X1, Y1, I1, J1) :- X1 = 0, X1 = X1 − 1, Y1 = Y1 − 1,
l(X1, Y1 , I1, J1) .

l(X2, Y2, I2, J2) :- X2 = 0, error(X2, Y2, I2, J2) .

error(, Y3, I3, J3) :- I3 = J3, Y3 > 0 .

Fig. 5. C and clp version of a verification example from (Jhala and McMillan 2006).

clause and whose interpolant may depend on ki (that is, the interpolant is fake).

Moreover, we identify each ancestor Lanc of L. For a given derivation π in which

L appears, the set of all its ancestors is all the occurrences of the same recursive

predicate corresponding to L that is defined above on π (that is, at level < di).

For every atom L we then repeat the following process until there are no more

candidates to check (we have at most di candidates for each L) or a candidate is

confirmed to be an inductive invariant for every L. Let ILanc
be the interpolant (our

candidate) of an ancestor Lanc after ignoring the part that involves ki. This can be

done by plugging ki = 0. Then check that ILanc
in conjunction with all the constraints

from every possible derivation from Lanc to L entails the candidate ILanc
after proper

renaming.

This process is the analogue of tabling’s completion check, but without the need

for constraint projection. Note that our renaming to perform the entailment test is

purely syntactic and it does not need projection.

We omit details of the entailment test because although straightforward it is quite

tedious. Instead, we show our method for handling infinite derivations through an

example.

Example 2 (Infinite derivations)

clp has been shown a successful model for verifying safety properties in infinite

state systems, see for example (Jaffar et al. 2009; Angelis et al. 2012). The resulting

Horn clauses are usually recursive and the goal is to prove that clp model of the

program is empty (that is, no answers). Figure 5 shows a C program from Jhala

and McMillan (2006) and its corresponding clp translation. We describe now how

our method can terminate and prove that the derivation tree has no successful

derivations.

We first show the code of the recursive predicate after the counter instrumentation-

based transformation that ensures a finite derivation tree:

l(X1, Y1, I1, J1, K1) :- K1 � 0, X1 �= 0, X ′
1 =X1 − 1, Y ′

1 =Y1 − 1, K ′
1 = K1 − 1,

l(X ′
1, Y

′
1 , I1, J1, K

′
1) .

l(X2, Y2, I2, J2,) :- X2 = 0, error(X2, Y2, I2, J2) .

Let us assume we fix di = 0 and let us focus on the interpolants generated for the

atom l(X,Y , I, J, K). From one derivation (the one corresponding to the recursive

clause) we obtain K � 0 and from the derivation that explores error/4 (the non-

recursive clause) we obtain the interpolant Y + I � X + J . Therefore, the resulting

https://doi.org/10.1017/S1471068413000379 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000379

Failure tabled constraint logic programming by interpolation 603

interpolant is P ≡ K � 0 ∧Y + I � X + J . Unfortunately, we cannot claim to prove

the derivation tree has no solutions yet since the interpolant depends on K which

was not originally in the program. We then construct the formula P ′ ≡ (P∧K = 0) to

eliminate the dependency on K . Next we check whether P ′ is an inductive invariant.

That is,
C︷ ︸︸ ︷

(Y1 + I1 � X1 + J1) ∧
Π︷ ︸︸ ︷

(X1 �= 0, X ′
1 = X1 − 1, Y ′

1 = Y1 − 1) |=
C ′

︷ ︸︸ ︷
(Y ′

1 + I1 � X ′
1 + J1)

Note that we rename both C and C ′ using substitutions {X �→ X1, Y �→ Y1, I �→
I1, J �→ J1} and {X �→ X ′

1, Y �→ Y ′
1 , I �→ I1, J �→ J1}, respectively but once again

constraint projection is not required. In general, Π can be a disjunctive formula

encoding the execution of all body literals. Although this may be expensive, we

rely on SMT to deal with it. Since the entailment test holds, we have proven

that the interpolant P ′ ≡ Y + I � X + J is an inductive invariant and hence,

we can finally claim that the derivation tree will not have answers, that is, the

safety property holds. Note that the invariant cannot be expressed in difference

logic. Therefore, a tclp system such as that of Chico de Guzmán et al. (2012)

using a difference logic constraint domain (which has efficient projection) will run

forever. It is worth mentioning that, in general, the interpolant generated may not

be an inductive invariant. In that case, we increment the value of di and repeat the

process (for example, the program t5 in the online appendix requires to fix di = 2).

The process of repeatedly incrementing di could, of course, also be an indefinite

one. �

5 Experimental evaluation

To evaluate our method we have implemented a proof-of-concept clp meta-

interpreter2 using the Ciao system (Hermenegildo et al. 2012) and the SMT solver

MathSAT (Griggio 2012) for checking satisfiability and generation of interpolants.

Our prototype does not necessarily compute inductive sequence interpolants. This

does not affect the use of Theorem 1 but it does affect the applicability of Lemma 1.

Thus, we only make use of Lemma 1 after checking that a sequence interpolant is

inductive.

All experiments3 have been run on a single core of a 2.7GHz Core i7-26202M

with 8GB memory. The first experiment compares clp programs that implement the

RCSP problem examined in Jaffar et al. (2008). The results are shown in Table 1.

Columns labelled with clp, ftclp, and ftclp+opt is our interpreter without pruning,

with pruning, and with pruning and optimization using Lemma 1, respectively.

Clearly as the size of derivation tree (column States) grows, the number of failed

derivations (column Failure) grows and failure tabling becomes more and more

2 Available at http://code.google.com/p/ftclp together with all test programs.
3 It would be natural to compare against the system of Chico de Guzmán et al. (2012). However, at

the time of writing, this system is not entirely stable, and we observed incorrect behaviour in the two
experiments.

https://doi.org/10.1017/S1471068413000379 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000379

604 G. Gange et al.

Table 1. Execution of a clp program that implements the RCSP problem with data from the

instance rcsp-1 in the OR-library. All answers with cost � C are generated

clp ftclp ftclp+opt

C Answers Time(s) States Failure Time(s) States Failure Time(s)

150 2 1.7 5112 1056 4.3 4269 862 3.8

200 16 14.4 40342 8302 22.5 16870 3026 18.8

225 58 44.1 116684 23961 47.3 28624 4636 37.5

250 164 138 323154 65865 88.2 43796 6327 67.0

275 451 450 827770 167969 148.6 61276 7529 111.5

Table 2. Comparing ftclp with several verifiers for some verification problems. For ftclp we

show execution time of running the clp encodings. For the rest, we show the time to verify the C

programs. ERR indicates an error, ∞ timeout after 5 minutes, and UNSAFE is a false positive

Program ftclp BLAST HSF TRACER

t1 ∞ ∞ 0.3s ∞
t1-a 0.1s ERR 0.2s ∞
t2 0.1s 0.1s UNSAFE 0.1s

t3 0.1s 0.1s 0.25s 0.1s

t4 0.1s 0.6s 0.3s 0.2s

t5 0.2s 0.2s 0.3s 0.1s

competitive. The overhead of computing and looking up interpolants eventually

pays off in terms of a massive search reduction.

Although the results of this experiment are promising, we recognize that the

execution times obtained by ftclp+opt are not yet fully satisfactory. In a preliminary

experiment we modified our interpreter to use the simplex method implemented

in the Ciao system and compared with the same interpreter with MathSAT. We

observed that the former was at least one order of magnitude faster than the latter.

We suspect that the method implemented in Ciao is more incremental that the one

in MathSAT.

The second experiment compares the verification times of several C programs,

each taken from different verification publications. In the interest of the readers,

we give each original C program and its clp encoding in the online appendix.

Table 2 shows the execution times for ftclp in running the clp encodings. There

are no successful derivations for any of these programs (since the conditions to

be verified holds in each case). We also show the verification times of three state-

of-the-art verifiers: BLAST (Beyer et al. 2007), HSF (Grebenshchikov et al. 2012)

and TRACER (Jaffar et al. 2012) taking the C programs as inputs. Both HSF and

TRACER use clp as intermediate representation. As can be seen, ftclp is highly

robust, and comparable to specialised verification tools on these problems, while it

can achieve termination in cases where other tools cannot.

https://doi.org/10.1017/S1471068413000379 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000379

Failure tabled constraint logic programming by interpolation 605

6 Related work

In previous sections we compared with tclp through several examples We review

now works from other areas (mostly from verification) which inspired us.

Jaffar et al. (2008) proposed a solution for a combinatorial optimization problem,

the Resource-Constrained Shortest Path (RCSP). The RCSP problem is modelled

as a clp program and a dynamic programming algorithm computes either strongest

or weakest preconditions for pruning derivations that violate the maximum resource

consumption. Since it is an optimization problem the method keeps track of only

one answer, namely the optimal one. Jaffar et al. (2009) focus on the problem of

verification of safety properties in loop-free C programs.4 The C program is again

modelled as a clp program, and then verification boils down to checking whether

the program does not have any successful derivation. The method only prunes

finite derivations and since this is a decision problem, no answers are generated.

Our method can be seen as a generalization of these works. Rather than solving

specific problems we aim at improving arbitrary (recursive) clp programs. Another

important difference is that Jaffar et al. (2008) and Jaffar et al. (2009) generate

reuse conditions by computing either strongest or weakest preconditions which are

defined in terms of constraint projection.

Another approach for proving safety properties computes an over-approximation

of the set of reachable states via predicate abstraction (Graf and Säıdi 1997). The set

of predicates π is usually very coarse (for example, π = ∅) and new predicates are

added into π whenever a counterexample is found. Interpolation has proven a very

effective technique to discover those predicates (Henzinger et al. 2004). Gupta et al.

(2011a) observed that the interpolation problem can be reduced to solving a set of

recursion-free Horn clauses. They proposed an algorithm that builds a derivation

tree proving the unsatisfiability of a set of recursion-free Horn clauses and augments

it with some inference rules to compute interpolants over linear rational arithmetic.

Gupta et al. (2011b) and Grebenshchikov et al. (2012) follow this line of research

and extend it for uninterpreted functions and further applications such as inter-

procedural interpolants. A very recent work also using clp clauses as intermediate

representation is Rümmer et al. (2013) which introduces disjunctive interpolants

solving a more general class of problems in one step by handling multiple paths

simultaneously.

These works encode into clp clauses only the set of spurious counterexamples

encountered by the predicate abstraction-based exploration. Since these counterex-

amples are spurious (i.e. unsatisfiable) and finite, the set of clp clauses is ensured to

be recursion-free and without answers. Moreover, they rely on building a derivation

tree which can be of exponential size relative to the number of clauses since no

pruning techniques are employed. Our approach can be also seen as an interpolation

method based on Horn clauses and, in fact, it subsumes previous works since it can

handle (recursive) Horn clauses producing also disjunctive interpolants without

restriction (e.g . Rümmer et al. 2013 handle only body disjoint Horn clauses).

4 Although the method can be extended to handle loops assuming loop invariants are provided.

https://doi.org/10.1017/S1471068413000379 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000379

606 G. Gange et al.

Moreover, these methods can benefit from our pruning technique to mitigate their

exponential search space.

7 Conclusions and future work

We have presented a new clp execution strategy called Failure Tabling (ftclp)

that allows the pruning of redundant failed derivations, and can produce, in some

cases, a finite derivation tree even in the presence of infinite executions. From the

verification community we have borrowed ideas developed for symbolic reachability

with interpolation and we have adapted these to the new setting of executing clp

programs. Interpolation can remove the tyrannic dependency in tclp on projection

algorithms which may either not exist or be too inefficient. However, ftclp should

not be seen as a substitute for tclp since they provide different benefits.

Future work should involve better assessing of the practical benefits of ftclp

with a broader set of programs, the generation of inductive sequence interpolants

(e.g . Christ et al. 2012), and the integration of our method within a tclp system (such

as Chico de Guzmán et al. 2012) to take advantage of a real tabling implementation.

References

Angelis, E. D., Fioravanti, F., Proietti, M. and Pettorossi, A. 2012. Software model

checking by program specialization. In CILC, 89–103.

Beyer, D., Henzinger, T., Jhala, R. and Majumdar, R. 2007. The software model checker

BLAST. International Journal on Software Tools for Technology Transfer (STTT) 9, 505–

525.

Chico de Guzmán, P., Carro, M., Hermenegildo, M. V. and Stuckey, P. J. 2012. A general

implementation framework for tabled CLP. In FLOPS, 104–119.

Christ, J., Hoenicke, J. and Nutz, A. 2012. SMTInterpol: An interpolating SMT solver. In

SPIN, 248–254.

Cimatti, A., Griggio, A. and Sebastiani, R. 2008. Efficient interpolant generation in

satisfiability modulo theories. In TACAS, 397–412.

Codognet, P. 1995. A tabulation method for constraint logic programming. In Symposium

and Exhibition on Industrial Applications of Prolog.

Craig, W. 1957. Linear reasoning: A new form of the Herbrand-Gentzen theorem. Journal

of Symbolic Logic 22, 3, 250–268.

Graf, S. and Säıdi, H. 1997. Construction of abstract state graphs with pvs. In CAV, 72–83.

Grebenshchikov, S., Lopes, N. P., Popeea, C. and Rybalchenko, A. 2012. Synthesizing

software verifiers from proof rules. In PLDI, 405–416.

Griggio, A. 2012. A practical approach to satisfiability modulo linear integer arithmetic.

Journal on Satisfiability, Boolean Modeling and Computation 8, 1–27.

Gulwani, S., Mehra, K. K. and Chilimbi, T. M. 2009. SPEED: Precise and efficient static

estimation of program computational complexity. In POPL, 127–139.

Gupta, A., Popeea, C. and Rybalchenko, A. 2011a. Predicate abstraction and refinement

for verifying multi-threaded programs. In POPL, 331–344.

Gupta, A., Popeea, C. and Rybalchenko, A. 2011b. Solving recursion-free Horn clauses over

LI+UIF. In APLAS, 188–203.

https://doi.org/10.1017/S1471068413000379 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000379

Failure tabled constraint logic programming by interpolation 607

Henzinger, T. A., Jhala, R., Majumdar, R. and McMillan, K. L. 2004. Abstractions from

proofs. In POPL, 232–244.

Hermenegildo, M. V., Bueno, F., Carro, M., López-Garcı́a, P., Mera, E., Morales, J. F.

and Puebla, G. 2012. An overview of Ciao and its design philosophy. Theory and Practice

of Logic Programming 12, 1–2, 219–252.

Jaffar, J. and Lassez, J. 1987. Constraint logic programming. In POPL, 111–119.

Jaffar, J., Murali, V., Navas, J. A. and Santosa, A. E. 2012. TRACER: A symbolic execution

tool for verification. In CAV, 758–766.

Jaffar, J., Santosa, A. E. and Voicu, R. 2008. Efficient memoization for dynamic

programming with ad-hoc constraints. In AAAI, 297–303.

Jaffar, J., Santosa, A. E. and Voicu, R. 2009. An interpolation method for CLP traversal.

In CP, 454–469.

Jhala, R. and McMillan, K. L. 2006. A practical and complete approach to predicate

refinement. In TACAS, 459–473.

Marriott, K. and Stuckey, P. J. 1998. Introduction to Constraint Logic Programming. MIT

Press, Cambridge, MA, USA.

McMillan, K. L. 2010. Lazy annotation for program testing and verification. In CAV,

104–118.

McMillan, K. L. 2011. Interpolants from z3 proofs. In FMCAD, 19–27.

Rümmer, P., Hojjat, H. and Kuncak, V. 2013. Disjunctive interpolants for horn-clause

verification. In CAV, 347–363.

Tamaki, H. and Sato, T. 1986. OLD resolution with tabulation. In ICLP, 84–98.

Warren, D. S. 1992. Memoing for logic programs. Communcations of the ACM 35, 3, 93–111.

https://doi.org/10.1017/S1471068413000379 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000379

