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We consider the dynamics of an axisymmetric, partially wetting droplet of a
one-component volatile liquid. The droplet is supported on a smooth superheated
substrate and evaporates into a pure vapour atmosphere. In this process, we take
the liquid properties to be constant and assume that the vapour phase has poor
thermal conductivity and small dynamic viscosity so that we may decouple its
dynamics from the dynamics of the liquid phase. This leads to a so-called ‘one-sided’
lubrication-type model for the evolution of the droplet thickness, which accounts
for the effects of evaporation, capillarity, gravity, slip and kinetic resistance to
evaporation. By asymptotically matching the flow near the contact line region and
the bulk of the droplet in the limit of a small slip length and commensurably small
evaporation and kinetic resistance effects, we obtain coupled evolution equations for
the droplet radius and volume. The predictions of our asymptotic analysis, which also
include an estimate of the evaporation time, are found to be in excellent agreement
with numerical simulations of the governing lubrication model for a broad range of
parameter regimes.
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1. Introduction
The evaporation of droplets in contact with solid substrates has been attracting the

attention of the scientific community in recent decades, not only due to its presence
in nature and technology, but also due to a number of challenging fundamental
questions. On the applied front, sessile droplets are important both in emerging
domains such as, for example, in digital microfluidics (Choi et al. 2012) or DNA
analysis (Dugas, Broutin & Souteyrand 2005), and in more traditional application
fields such as cooling heat transfer (Kim 2007), micro-deposition and ink-jet printing
(Erbil 2012). Also noteworthy is the pioneering work by Deegan et al. (1997) on
the so-called coffee stain problem, which ultimately triggered intensive research on
the effects which control the size and morphology of dried deposits following the
evaporation of solutions or dispersion drops (see contributions in Brutin 2015, and
the references therein). On the theoretical front, the accurate modelling of droplet
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Asymptotic analysis of evaporating droplets 575

spreading and evaporation dynamics still faces considerable difficulties, not only
due to the intricate coupling between various effects, but also due to the intrinsic
multi-scale nature of problems involving non-equilibrium contact lines.

A substantial body of literature on the subject has been devoted to sessile droplets
of pure liquids, studied from two distinct lines of research depending on the nature
of the gas phase. When an inert gas such as air is present in the surrounding
atmosphere, the droplet evaporation is generally limited by vapour diffusion (see,
e.g. Poulard, Guéna & Cazabat 2005; Cazabat & Guéna 2010), and the droplet is
only slightly cooled by the latent heat needed for phase change. Yet these small
evaporation-induced temperature differences can trigger various types of flows and
instabilities (Girard, Antoni & Sefiane 2008; Sefiane et al. 2008; Sobac & Brutin
2012), which have been studied by various groups partly in view of their impact
on deposition and cleaning processes (Deegan et al. 2000; Hu & Larson 2006).
There are a number of recent contributions to this first line of research, e.g. on the
influence of the substrate thermal conductivity (Ristenpart et al. 2007; Dunn et al.
2009; Lopes et al. 2013), on the details of evaporation-induced flows near the contact
line (Gelderblom, Bloemen & Snoeijer 2012), on the effect of convection currents in
the gas (Shahidzadeh-Bonn et al. 2006; Kelly-Zion et al. 2009; Dehaeck, Rednikov
& Colinet 2014) as well as on the impact of Marangoni flows on the droplet shape
(Tsoumpas et al. 2015).

The second line of research concerns pure liquids evaporating into their own vapour
in the absence of any other gas. In this case, the dynamics is not limited by diffusion;
rather, it is heat transfer and cooling by latent heat that limit the evaporation rate.
Generally, it is more difficult to conduct experiments in this configuration due to
the technicalities of confining and visualising droplets in a hermetic set-up and, as a
result, considerably fewer experimental studies have been reported (Gokhale, Plawsky
& Wayner 2003; Sodtke, Ajaev & Stephan 2008; Cioulachtjian et al. 2010; Raj
et al. 2012), noting also the related works on evaporating menisci and condensing
droplets within closed cuvettes (Zheng et al. 2002; Plawsky et al. 2004). From the
modelling perspective, the governing equations admit a considerable simplification in
this conduction-limited scenario, by invoking the so-called ‘one-sided’ approximation
(Burelbach, Bankoff & Davis 1988). Such models rely on the assumption of a
poor thermal conductivity and small dynamic viscosity of the vapour, thus effectively
decoupling the vapour phase dynamics from that of liquid. In this manner, evaporation
is determined by the amount of heat reaching the liquid–vapour interface only from
the liquid side. This approach, used in conjunction with the lubrication hypothesis,
underpins most studies on the dynamics of thin evaporating menisci and droplets, both
in the complete wetting case (Potash & Wayner 1972; Moosman & Homsy 1980;
Ajaev 2005) and in partial wetting situations (Anderson & Davis 1995; Hocking
1995).

Despite this abundant literature on evaporating sessile droplets and, more specifically,
on their theoretical modelling, relatively few works deal with the important question
of the micro–macro coupling of evaporating droplets which occurs between the
small-scale physics prevailing near the contact line and the processes occurring in the
bulk of the droplet. The present work is based on an asymptotic matching procedure
that relies on a clear separation of the macroscopic scale of an axisymmetric droplet
and a microscopic scale relevant to the vicinity of the moving/evaporating contact
line. This is a highly non-trivial generalisation of previous analyses with non-volatile
droplets (see, e.g. Hocking 1983, 1992) to include evaporation, which will be assumed
to be limited mostly by thermal conduction within the drop, i.e. the gas phase is made
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of pure vapour (see Savva, Rednikov & Colinet 2014, for a preliminary study on the
two-dimensional geometry). Apart from the physical insight gained in understanding
the relative importance of the various effects involved at the different scales, such
analysis also provides a reduced description of the droplet dynamics in terms of two
ordinary differential equations for the droplet radius and volume, which are generally
easier to solve numerically compared to the original stiff free-boundary problem as
prescribed by the governing partial differential equation and its boundary conditions.
To assess the validity of our asymptotic analysis and its regimes of applicability, its
predictions are thoroughly scrutinised against the corresponding solutions to the full
problem. Noteworthy here are the recent studies by Oliver et al. (2015) and Saxton
et al. (2016), in which similar asymptotic analyses were undertaken, but for different
physical settings; the former deals with an imposed uniform mass flux whereas the
latter considers an isothermal scenario of diffusion-limited evaporation into an inert
gas.

Central to any problem with moving contact lines is the issue associated with
the singularity of the viscous stress (Huh & Scriven 1971; de Gennes 1985; Bonn
et al. 2009) and, possibly here, evaporation-induced singularities (to be discussed
hereinafter). Such singularities can be remedied by utilising some contact line model,
the most popular of which are based on either relaxing the no-slip condition on
the substrate with some slip model (e.g. Lacey 1982; Hocking 1983, 1992) or on
disjoining-pressure-induced precursor films, either extended (Schwartz & Eley 1998;
Wu & Wong 2004; Eggers 2005a; Yi & Wong 2007; Pismen & Eggers 2008) or
truncated to a finite length depending on the spreading parameter (Hervet & de
Gennes 1984; de Gennes 1985; Colinet & Rednikov 2011). Although other modelling
approaches for the contact line dynamics also exist in the literature including, for
example, diffuse interface models (Sibley et al. 2013) and the so-called interface
formation model (Shikhmurzaev 2008; Sibley, Savva & Kalliadasis 2012), precursor
film models have arguably been the most popular choice for exploring numerical
solutions to lubrication-type equations with evaporation and other complexities (see,
e.g. Ajaev 2005; Sodtke et al. 2008; Eggers & Pismen 2010; Murisic & Kondic
2011; Todorova, Thiele & Pismen 2012).

In the present study, we assume that the viscous singularity associated with the
motion of the contact line is resolved by the Navier slip. This choice was made partly
because it has been traditionally used in the context of partial wetting and partly
because of the still-unresolved controversies in disjoining pressure models, such as for
example addressing the question whether the disjoining pressure isotherm should be
taken to be slope dependent (see, e.g. Wu & Wong 2004). More importantly, a number
of studies discuss how the various contact line models can be formally linked through
their leading-order asymptotics at the vicinity of the contact line in such a way that
they exhibit nearly identical dynamics (King 2001; Eggers 2005a; Savva & Kalliadasis
2011; Sibley et al. 2012, 2013, 2015b). Thus, the main features of the dynamics are
likely to be qualitatively consistent across all contact line models and, in principle, the
analysis undertaken here can be adapted appropriately for any contact line model.

Focusing only on a regime where inertia is negligible and in the absence of
evaporation, three, usually distinct, scales/regions may be identified (see, e.g. Bonn
et al. 2009). Firstly, at scales comparable to the droplet size, capillarity and gravity
determine the shape of the droplet (which is taken to be quasi-static at leading order).
In this case, microscopic effects, such as disjoining pressure or slip, are negligible
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FIGURE 1. Sketch of a thin volatile droplet on a uniformly heated surface in axisymmetric
geometry, denoting with R(T) the radius of the circular contact area at time T . The inset
shows a zoom into the contact line region, which allows us to distinguish (i) the inner,
(ii) the intermediate and (iii) the outer regions over which the asymptotic analysis is
undertaken.

and possible flows within the droplet merely induce small corrections to the overall
shape. At much smaller scales, near the contact line, gravity is negligible, whereas
the previously neglected microscopic effects enter into play and balance the capillary
forces together with viscous friction due to contact line motion (see figure 1). Between
these two regions lies an intermediate region in which the corresponding free-surface
shape is described by the universal Cox–Voinov asymptotics (Voinov 1976; Cox
1986) in such a way that facilitates the matching of the dynamics at the macro- and
micro-scale (Hocking 1983). However, direct matching of inner and outer solutions
is possible without an intermediate region, provided that the infinite number of
non-negligible terms in the far-field expansion of the inner region are properly
accounted for (Lacey 1982; Sibley, Nold & Kalliadasis 2015a). In the end, with or
without an intermediate region, both approaches yield identical results, as expected.

How evaporation enters/modifies this three-region picture depends crucially on the
evaporation regime considered, although we emphasise that a full discussion of the
different scenarios is beyond the scope of this study. Here, we focus our attention
on the case where evaporation is limited, as previously mentioned, by conduction
of heat from the substrate towards the liquid–vapour interface. In the absence of a
precursor film as assumed here, this evaporation scenario typically yields unbounded
evaporation fluxes at the contact line if the thermal resistance of the liquid formally
vanishes. This flux singularity is in practice avoided by considering kinetic effects,
the importance of which becomes appreciable at nanoscopic scales (Burelbach et al.
1988; Anderson & Davis 1995; Hocking 1995). Yet, it is clear that among the
aforementioned asymptotic regions, the inner (micro-) region near the contact line
is affected the most by evaporation. In particular, intense microflows generated by
a highly localised peak in the evaporation flux near the contact line are known to
induce finite apparent contact angles even in the perfectly wetting case (Potash &
Wayner 1972; Moosman & Homsy 1980; Stephan & Busse 1992; Morris 2001; Ajaev
2005; Rednikov, Rossomme & Colinet 2009; Todorova et al. 2012). In the partial
wetting case which is of interest here, the corresponding effect of these flows is a
significant increase of the apparent contact angle above the equilibrium value given
by Young’s equation (Anderson & Davis 1995; Hocking 1995; Colinet & Rednikov
2011; Rednikov & Colinet 2011; Janeček & Nikolayev 2012; Rednikov & Colinet
2013; Saxton et al. 2016), noting also that this increase has also been observed
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in the context of other models of mass transfer (see, e.g. Davis & Hocking 1999;
Oliver et al. 2015). A final important remark to make is that although it makes
sense to neglect the effect of evaporation on the drop profile at both intermediate
(Cox–Voinov) and outer (macro-region) scales, this does not imply that the mass loss
due to evaporation at these scales is not appreciable. As we shall see in the following
sections, all scales contribute to the global evaporation rate of the drop, whose careful
evaluation is an essential feature of this work.

The paper is organised as follows. Section 2 presents the derivation of an evolution
equation for the droplet profile under the lubrication approximation with appropriate
boundary conditions, and provides the relevant scales, working hypotheses and
dimensionless numbers. Section 3 then focuses on the matched asymptotic analysis
in the limit of vanishingly small slip lengths, which is used to obtain evolution
equations for the droplet radius (§ 3.1) and volume (§ 3.2). Section 4 then presents and
discusses the results of a detailed numerical investigation to examine the outcomes
of our asymptotic analysis for various sets of parameters. In § 4.1, the stages of
the spreading/evaporation process are discussed, focusing on the (typically longer)
evaporation stage in § 4.2 and on the derivation of a rather accurate estimate for
the total evaporation time. Then, § 4.3 focuses on the case of relatively large kinetic
resistance, followed by an investigation on the influence of gravity in § 4.4, including
both pendant and sessile droplets. Then, § 4.5 is dedicated to the influence of slip,
§ 4.6 to the effect of Young’s equilibrium contact angle and § 4.7 discusses apparent
power-law behaviours observed for the radius and volume of the droplet versus time
remaining before complete evaporation. Section 5 then concludes the present work
and discusses some possible extensions.

2. Model
Consider the dynamics of an axisymmetric, partially wetting droplet evaporating in

its vapour. The droplet is supported on a uniformly heated rigid horizontal surface,
which is kept at temperature ΘS =Θ0 +1Θ , where Θ0 is the saturation temperature
corresponding to the pressure in the vapour phase and 1Θ is the superheat, with
1Θ � Θ0. At time T , the droplet has volume V(T) and wets the substrate over a
circular region of radius R(T) (hereinafter referred to simply as the droplet radius).
In the present study we assume that the liquid properties, namely the surface tension,
σ , density, ρ, and viscosity, µ, all remain constant and utilise the so-called one-sided
model proposed by Burelbach et al. (1988), which allows us to decouple the dynamics
in the vapour phase from that in the liquid.

More specifically, the dynamics of the liquid is treated under the long-wave
approximation in the Stokes regime using the (X, Z) coordinate system, where X is
the distance from the axis of symmetry of the droplet and Z measures the vertical
distance from the substrate (see figure 1). For the liquid flow we have the usual,
leading-order lubrication-type equations

∂ZP=−ρg, (2.1a)
∂XP=µ∂2

ZU, (2.1b)
∂X(XU)+ X∂ZW = 0, (2.1c)

where U and W are the velocity components in the X- and Z-directions, respectively,
P is the pressure and g the gravitational acceleration. On the substrate (Z = 0) we
have

W = 0, U = b∂ZU, (2.2a,b)
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Asymptotic analysis of evaporating droplets 579

where b is the slip length, assumed constant. The presence of slip along the substrate
alleviates the aforementioned classical stress singularity that occurs at a moving
contact line (see § 1).

On the free surface (Z=H), we have the tangential and normal stress conditions

∂ZU = 0, P− P0 =−σ(∂
2
XH + X−1∂XH), (2.3a,b)

respectively, where P0 is the ambient vapour pressure, assumed constant. Lastly, mass
conservation combined with the kinematic boundary condition at Z =H yields

∂TH +U∂XH −W + ρ−1J = 0, (2.4)

where J(X, T) is the evaporative mass flux through the liquid–vapour interface
(measured in units of mass per unit area per unit time).

The liquid problem is coupled with the temperature field, Θ(X,Z,T). By neglecting
convective heat transport effects, the energy equation reduces in the considered
lubrication limit to

∂2
ZΘ = 0. (2.5)

Equation (2.5) is solved by taking

Θ =ΘS (2.6)

on the solid surface (Z = 0); on the droplet surface (Z = H) we have the balance of
energy, namely

k∂ZΘ + L J = 0, (2.7)

where k is the thermal conductivity of the liquid and L is the latent heat of
vaporisation, which reflects the balance of heat conducted through the droplet and the
latent heat associated with the phase change occurring at the liquid–vapour interface.
Lastly, we employ a constitutive relation arising from kinetic theory (see Schrage
1953), the linearised version of which implies that the deviations of the interfacial
temperature from its equilibrium value, Θ0, are proportional to J according to (see,
e.g. Potash & Wayner 1972; Wayner, Kao & LaCroix 1976; Carey 2007; Rednikov
et al. 2009, and the references therein)

J =
ρ̃faL

Θ
3/2
0 (2− fa)

√
2Mw

πRg
(Θ|Z=H −Θ0), (2.8)

where Mw is the molecular weight, Rg is the gas constant, ρ̃ is the vapour density and
0< fa 6 1 is the accommodation coefficient, which can be viewed as a measure of the
probability that a liquid particle impinging on the liquid–vapour interface enters into
the bulk vapour phase (see Paul 1962, for the values of fa for a number of working
fluids).

From these equations, the aim is to obtain an evolution equation for H(X, T)
based on the mass balance, equation (2.4), which implies that we need to express the
velocities and the evaporative flux in terms of H. To obtain J, we first determine the
temperature field from (2.5) and the conditions (2.6) and (2.7), giving

Θ =ΘS − L JZ/k. (2.9)
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Hence, by combining (2.8) and (2.9) we obtain

J =
k1Θ

L
1

s+H
, (2.10)

where

s=
kΘ3/2

0 (2− fa)

ρ̃faL2

√
πRg

2Mw
(2.11)

is a length scale below which kinetic (non-equilibrium) effects are important. More
precisely, for film thicknesses much above that scale, the interface can be assumed
to be at the saturation temperature, Θ0, i.e. a conduction-limited regime. In contrast,
for thicknesses smaller than s, deviations from Θ0 occur while the temperature is
uniform across the liquid, i.e. a kinetic- (or reaction-) limited regime. Importantly, as
s→ 0, J dramatically increases (and diverges) as the contact line is approached, where
H vanishes. For s > 0, J ultimately saturates for values of H below s (see also the
discussion on the limit of large kinetic resistance in § 4.3).

In our model we cannot take s = 0, because the resulting singularity in J at the
contact line is non-integrable. Thus, a non-vanishing kinetic resistance length s is
essential to avoid the divergence in J, just as a non-vanishing slip length b is necessary
for the resolution of the viscous stress divergence. In contrast, this issue does not
arise when precursor films/disjoining pressure models are invoked instead of slip, in
which case taking s = 0 is allowed in principle (Ajaev 2005; Sodtke et al. 2008;
Rednikov et al. 2009). It is also interesting to note in this context that these non-
integrable singularities associated with a moving and/or evaporating contact line can
be made integrable by employing a disjoining pressure model based on the classical
non-retarded van der Waals interactions (Colinet & Rednikov 2011) or even fully
resolved solely by the Kelvin effect accounting for the curvature dependence of the
saturation conditions (Rednikov & Colinet 2013). Moreover, integrable singularities in
the evaporation flux are also encountered in the case of diffusion-limited evaporation
into an inert gas (see Deegan et al. 1997; Saxton et al. 2016). Clearly there is an
abundance of modelling approaches that can be adopted, but here we will stick to
(2.10) for describing the evaporation flux, which can be viewed as a key first step
in developing an asymptotic framework for investigating more involved evaporation
models.

Eliminating the velocities from (2.4) is a matter of standard manipulations utilised
in related works (see e.g. Hocking 1983, for the non-volatile case): first eliminate W
from (2.4) using (2.1c) and (2.2a) to obtain

∂TH +
1
X
∂X

(
X
∫ H

0
U dZ

)
+

J
ρ
= 0, (2.12)

then derive an expression for P with (2.1a) and (2.3b) and finally an expression for
U using (2.1b) together with (2.2b) and (2.3a),

U =−
1
µ

(
1
2

Z2
−HZ − bH

)
∂X

[
σ

(
∂2

XH +
1
X
∂XH

)
− ρgH

]
. (2.13)

Combining (2.12) together with (2.13) and (2.10) yields the governing equation for
the evolution of the droplet thickness, which is cast in dimensionless form as

∂th+
1
x
∂x

{
h2(h+ λ)x∂x

(
∂2

x h+
1
x
∂xh− Bh

)}
=−

E
h+K

. (2.14)
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In (2.14) we introduced the dimensionless variables

x=
X
d
, t=

T
τ
, h=

H
dϑs

, r=
R
d
, (2.15a−d)

with τ = 3µd/(σϑ3
s ) being the time scale of capillary action and d the length scale

defined by

d=
(

V0

2πϑs

)1/3

, (2.16)

for a droplet of reference volume V0, usually taken to be the volume at t = 0.
Equation (2.14) depends on four dimensionless parameters, namely

λ=
3b
dϑs

, B=
ρgd2

σ
, E =

3kµ1Θ
ρ dσϑ5

s L
, K=

s
dϑs

, (2.17a−d)

where λ is the dimensionless slip length, B is the Bond number comparing gravity
to capillarity, E is the evaporation number, which can be thought of as the ratio
of τ and the time scale of evaporation, and K is the kinetic resistance, which is
a non-equilibrium parameter comparing the length scale of kinetic effects with the
macroscopic length scale.

In our model, as a first step, we have neglected other effects, such as thermocap-
illarity, the unsteady heat conduction in the solid or heat losses to the gas phase
above the liquid film which were included in a model with a precursor film developed
by Sodtke et al. (2008). It is also important to note the more involved slip-based
model utilised by Anderson & Davis (1995), which, unlike our present treatment, was
analysed by assuming a priori that the contact line speed is prescribed in terms of a
given function of the apparent contact angle.

To solve (2.14), at the contact line, x= r(t), we require that

h= 0, ∂xh=−1, (2.18a,b)

so that we have an actual contact line with the free surface meeting the substrate at
the (static) Young angle, ϑs, which is taken to be small in order to be consistent with
the assumptions of the lubrication model. In the non-volatile case, fixing the contact
angle is equivalent to having an invariant Hamaker constant and surface tension (see
e.g. Savva & Kalliadasis 2011), which is typically assumed to be the case in precursor
film models with evaporation. Noteworthy is also that the use of (2.18b) as a boundary
condition for slip models has been advocated by Hocking both in the non-volatile
(1992) and volatile (1995) cases, arguing that the contact angle variations which are
observed in experiments are for the macroscopic, apparent contact angles and arise due
to the flow in the vicinity of the contact line region where slip effects are significant.

The above-mentioned conditions are supplemented with appropriate symmetry
conditions to be applied at the polar axis, x= 0, namely

∂xh= 0, ∂3
x h= 0 (2.18c,d)

and the moving boundary condition

ṙ=−
E
K
+ λ lim

x→r
h∂3

x h, (2.18e)
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Water Ethanol Ammonia FC-72

Θ0 (K) 373 352 300 305
ρ (kg m−3) 960 727 600 1665
ρ̃ (kg m−3) 0.6 1.6 9.0 5.7
σ (N m−1) 0.059 0.020 0.020 0.010
L (×106 J kg−1) 2.3 0.88 1.2 0.091
Mw (kg mol−1) 0.018 0.046 0.017 0.338
k (W m−1 K−1) 0.68 0.17 0.48 0.06
µ (×10−4 Pa s) 2.8 4.4 1.3 5.9
s (nm) 41.6 15.3 5.3 42.1

TABLE 1. Material properties for various liquids. Data for water and ethanol (at 1 atm)
were taken from Burelbach et al. (1988); data for ammonia (at 10.5 atm) were taken from
Stephan & Busse (1992); data for FC-72 (at 0.40 atm) were taken from Raj et al. (2012).

which is derivable directly from a local expansion of (2.14) at the contact line and
invoking conditions (2.18a,b) (see also Oliver et al. 2015, for additional details).

Finally, we define the dimensionless volume of the droplet, v(t)= V/V0, given by

v =

∫ r

0
xh dx. (2.19)

Clearly, if we multiply (2.14) by x, integrate from 0 to r and use (2.18) we find that

v̇ =−E
∫ r

0

x
h+K

dx, (2.20)

noting also that initially we typically take

v(0)= 1, (2.21)

with our chosen non-dimensionalisation if V0 in (2.16) is to represent the initial
droplet volume. However, in some computations we allow for different values of
v(0), with V0 taken to be some reference volume (e.g. to directly compare the
evaporation times of droplets of different initial volume, whilst all parameters of the
system, including the characteristic length scale, remain constant).

Solving (2.14) and (2.20) for h(x, t) and v(t) subject to the boundary conditions
(2.18) and some specified initial conditions (see (C 6) and the discussion in
appendix C) results in a nonlinear free-boundary problem. Although its solution can
be obtained using purely numerical means, in the following sections we investigate
the problem with the method of matched asymptotic expansions, which allows us to
obtain a reduced problem consisting of a set of evolution equations for the droplet
volume, v(t), and radius, r(t).

To get a sense of the relative size of the various non-dimensional parameters
and to motivate the asymptotic analysis to be developed, let b = 1 nm, 1Θ = 1 K,
d = 1 mm, fa = 1 (ideal evaporation scenario) and use the parameter values for
various fluids listed on table 1. If we take ϑs = 8◦, we get λ = 2.1 × 10−5 and
the following pairs of approximate values for (E, K): (8.3 × 10−5, 29.8 × 10−5) for
water; (33.0× 10−5, 10.9× 10−5) for ethanol; (24.5× 10−5, 3.8× 10−5) for ammonia;
(132× 10−5, 30.1× 10−5) for perfluorohexane (FC-72). When ϑs = 4◦, the values of
λ and K become twice as large compared to the previous sets of parameter values,
whereas the values of E become 32 times larger. Clearly, since E scales with 1Θ
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Asymptotic analysis of evaporating droplets 583

and ϑ−5
s , we can obtain comparatively larger values of E at higher superheats and

smaller contact angles, subject to the caveat that the constitutive law (2.8) relies on
the assumption of weak evaporation rates and 1Θ�Θ0.

It should be emphasised here that the values of the parameters reported above
are only indicative of their sizes, especially because the length scale s can lie in a
much wider range of values due to the difficulties associated with the experimental
determination of fa. Thus, the presence of contaminants, the sensitivity of fa on
pressure and/or temperature variations and the difficulties in measuring the temperature
jumps across the vapour–liquid interface with high accuracy can be some of the
contributing factors for the scatter of data across experiments reported in the literature
(e.g. for water, fa was found to range somewhere between 0.01 and 1 in the relatively
more recent experiments; see Eames, Marr & Sabir 1997; Marek & Straub 2001;
Davidovits et al. 2004, for reviews). Hence accounting for this variation in fa, the
values of s (or, equivalently, K) given above can undergo a hundredfold increase,
thus becoming comparable or even larger than the slip length, b (or, equivalently, λ),
which, in turn, can undergo a hundredfold or more increase if one accounts for the
variations in the values of b reported in the literature (typically, b≈ 1 nm–1 µm; see
Lauga, Brenner & Stone 2007).

From the above discussion, one can readily conclude that the parameters λ, E and
K are typically small, which means that we deal with macroscopically large drops
where evaporation occurs at a time scale that is much longer compared to τ . Thus, in
order to develop a consistent asymptotic analysis based on only one small parameter,
we introduce the modified evaporation number, E = λ−1E and the modified kinetic
resistance K=λ−1K, so that λ is always the small parameter of the problem. However,
based on the discussion of the preceding paragraphs, this rescaling amounts to having
the values of E and K span a few orders of magnitude. The analysis that follows is
undertaken in the limit as λ→ 0 and, in the distinguished limit we are investigating
here, the evaporation term in (2.14) becomes important only within a small region
near the contact line, as is the case with slip (see, e.g. Hocking 1983). This limits
the focus of the present study up to values of E which are moderately large, although,
as we shall see, the predictions of the analysis compare rather favourably with full
numerical simulations for much larger values of E as well. We consider moderate
gravitational effects, so that B is assumed to be O(1). Lastly, as we shall see, the
analysis is valid for small to moderately large values of K > 0, although the limit
K� 1 so that K=O(1) will also be explored.

3. Asymptotic analysis
A brute force numerical approach, in which h(x, t), r(t) and v(t) are determined

directly by solving the model under consideration, reveals that droplets typically
undergo a four-stage process, each valid at a different time scale (further details are
given in § 4.1). Qualitatively, the predictions of the present model are equivalent to
those seen in the model investigated by Saxton et al. (2016) for the diffusion-limited
evaporation scenario. For t=O(1), the details of the macroscopic initial free-surface
shape are lost, as the shape relaxes to a quasi-static profile (see (3.4)). This stage
turns out be too brief to have an impact on the dynamic behaviours that follow (see
also the computations by Savva & Kalliadasis 2012; Ren, Trinh & Weinan 2015, for
non-volatile droplets). In fact, we expect the volume of the droplet to be conserved
and the contact line to remain stationary at leading order (see also Saxton et al.
2016). For these reasons, considering in detail the early stages is perhaps not worth
the additional effort required since this would involve, for the most part, a numerical
treatment.
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584 N. Savva, A. Rednikov and P. Colinet

During the second stage (the spreading stage), the contact line moves an order
unity distance either by advancing or by receding towards an apparent contact angle,
denoted by ϑm, which can be quite different from ϑs. This difference is attributed
to the evaporation-induced contributions into the apparent contact angle and become
more pronounced for stronger evaporation fluxes near the contact line (see, e.g.
Stephan & Busse 1992; Rednikov & Colinet 2011; Janeček & Nikolayev 2012;
Saxton et al. 2016). We will see shortly that, consistently with Saxton et al. (2016),
there is no appreciable mass loss during this stage either. For this reason, it is natural
to anticipate that the spreading stage occurs on the same time scale as the spreading
time scale of non-volatile droplets, namely t = O(|ln λ|) as λ → 0 (Lacey 1982;
Hocking 1983).

The third stage, during which the droplet loses an order-unity volume due to
evaporation will turn out to occur at the much longer time scale t = O(1/(λ|ln λ|))
as λ→ 0 (see § 3.2). Later on, we will argue that a specialised asymptotic treatment
of this evaporation stage is not necessary and avoids the intricacies of constructing
a composite asymptotic expansion that encompasses all the relevant time scales of
the problem. Lastly, during the fourth and final stage of the dynamics, the droplet
is close to extinction. We do not have a clear separation of length scales since λ
becomes comparable to the droplet size and undertaking an asymptotic analysis close
to extinction is no longer possible.

Thus, in the analysis that follows, we focus on the second stage of the dynamics,
also implying that the leading-order dynamics of the evaporation stage is described
by the same equations. We will extend the work of Hocking (1983) on non-volatile
droplets to obtain an equation for ṙ(t) that accounts for the evaporative term appearing
in (2.14), which will then be complemented with an appropriate equation for v̇(t).

3.1. Evolution of the droplet radius
Obtaining an evolution equation for the droplet radius, r(t), is carried out in the same
fashion as in related studies involving contact line dynamics without evaporation
(see e.g. Hocking 1983; Savva & Kalliadasis 2009; Vellingiri, Savva & Kalliadasis
2011; Savva & Kalliadasis 2012, 2013), whereby we treat the bulk of the liquid drop
separately from the region in the vicinity of the contact line. In the central region of
the droplet, the outer region, slip and evaporation-induced free-surface deformations
are neglected, but they become important near the contact line. Gravitational effects
are important at the onset in the outer region only, since they diminish as the droplet
becomes smaller due to evaporation.

3.1.1. Outer region
The analysis of the outer region is nearly identical to the analysis undertaken by

Hocking (1983), the main difference being the time variation of the droplet volume.
Here we reiterate the main results, albeit with a slightly different notation, referring
the interested reader to the original work of Hocking for further details. The rate
of spreading ṙ is assumed to be small, so that we may employ the quasi-static
approximation, introducing the expansion

hout ∼ h0(x, r, v)+ ṙh1(x, r, v)+ · · ·, (3.1)

i.e. time enters the problem through v, r and ṙ. Anticipating the scalings for ṙ and
v̇ determined later on, we find that, as λ→ 0, ṙ=O(1/|ln λ|) (as in the non-volatile
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case) and v̇=O(λ|ln λ|) (as will follow from the analysis of (2.20)). Hence, although
ṙ is small, it is nonetheless generally much greater than λ and v̇ and is accordingly
treated as such. Thus, we neglect the evaporation and slip effects in the outer region,
so that hout satisfies at O(λ0)

∂thout +
1
x
∂x

{
h3

outx∂x

(
∂2

x hout +
1
x
∂xhout − Bhout

)}
= 0. (3.2)

Collecting powers of ṙ in (3.2) gives

∂x

(
∂2

x h0 +
1
x
∂xh0 − Bh0

)
= 0 (3.3)

to O(ṙ0). This is a third-order differential equation, and is solved subject to (2.18a),
(2.18d) and (2.19). The solution to (3.3) is given in terms of modified Bessel functions
as

h0 =
θ
√

B

I0(c)− I0(x
√

B)
I1(c)

, (3.4)

where c= r
√

B and θ is the apparent contact angle, defined as

θ =
2v
√

BI1(c)
r2I2(c)

. (3.5)

Note that θ corresponds to a rescaled angle, which needs to be multiplied by ϑs to
obtain the true one. When B= 0, equations (3.4) and (3.5) reduce to

h0 =
θr
2

(
1−

x2

r2

)
and θ =

8v
r3
, (3.6a,b)

respectively. From the O(ṙ) terms in (3.2) we find that h1 must satisfy

∂rh0 +
1
x
∂x

{
h3

0x∂x

(
∂2

x h1 +
1
x
∂xh1 − Bh1

)}
= 0, (3.7)

obtained by taking ∂th0 = ṙ∂rh0. Multiplying both sides by x and integrating yields

∂x

(
∂2

x h1 +
1
x
∂xh1 − Bh1

)
=

r3I1(c)I2(c)[xI1(c)− rI1(x
√

B)]

4v2[I0(c)− I0(x
√

B)]3
. (3.8)

This is also a third-order differential equation solved subject to homogeneous
boundary conditions, namely h1 = 0 at x = r(t), ∂xh1 = 0 at x = 0 and

∫ r
0 xh1 dx = 0.

Here we are merely interested in obtaining the behaviour of the slope of h1 as the
contact line is approached. Following Hocking (1983), the slope has the asymptotic
form

−∂xh1 ∼
1
θ 2

ln
[

e2

δ

(
1−

x
r

)]
(3.9)

as x→ r, where δ is determined from

ln δ =
∫ 1

0
x
{

cI3
1(c)[xI1(c)− I1(xc)]2

I2
2(c)[I0(c)− I0(xc)]3

−
1

1− x

}
dx, (3.10)
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–2

–1

0

1

0 2 4 6 8 10

FIGURE 2. Dependence of ln δ on r
√
|B| for a sessile (B> 0; solid curve) and a pendant

(B < 0; dashed curve) droplet. As the droplet evaporates, r → 0, the curves approach
asymptotically the value of ln δ =−ln 2, corresponding to the B= 0 case.

which changes with r and needs to be evaluated numerically. In (3.9), O(x − r)
terms are neglected and, just as in many instances throughout the manuscript, the
constant terms are absorbed into the logarithmically diverging term. It is important
to emphasise that although the above analysis concerns sessile droplets (with B> 0),
the extension to pendant droplets (with B < 0) is trivial and one needs to replace
the modified Bessel functions with Bessel functions, take c = r

√
−B throughout

and change the sign of the first term in braces in (3.10), keeping also in mind that
sufficiently large pendant droplets may possibly detach from the substrate. Thus, since
our model does not account for the detachment dynamics of pendant droplets, we
restrict our treatment to pendant droplets for which c is always less than the limiting
value of c, the first positive root of the Bessel function J1. When c attains this value,
the denominator of (3.4) vanishes when modified appropriately for pendant droplets.
Figure 2 shows a plot of ln δ as a function of r

√
|B| for both pendant and sessile

droplets. As expected, we see that as the droplet evaporates so that r→ 0, the effect
of gravity on the value of δ diminishes and δ→ 1/2, the zero Bond number limit.
For pendant droplets, there is a vertical asymptote near 3.83, the first positive root
of J1.

Hence, the asymptotics of the slope of the free surface as x→ r can be readily
obtained by combining (3.4) and (3.9):

−∂xh∼ θ +
ṙ
θ 2

ln
[

e2

δ

(
1−

x
r

)]
. (3.11)

This behaviour is to be matched, within an appropriate overlap region, with the
corresponding behaviour of the inner region.

3.1.2. Inner region
Whilst considering the solution in the outer region, we did not use the contact angle

condition, equation (2.18b), which can only be applied in the inner region, where slip
and evaporation effects become important. From the inner region near the contact line,
we anticipate a behaviour that allows the matching with the outer-region dynamics as
we move away from the contact line.
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To investigate the inner-region dynamics, introduce the change of variables

η=
r− x
λ

and φ =
h
λ
, (3.12a,b)

which allows us to write (2.14) as

ṙ∂ηφ + ∂η[φ2(φ + 1)∂3
ηφ] =−

E
φ +K

for η > 0, (3.13)

where we have retained O(λ0) terms only, neglecting O(λ2B) terms for moderate
gravitational effects. The boundary conditions to be applied are φ = 0 and ∂ηφ = 1 at
η= 0 and, in order to match with (3.11), ∂ηφ must be no more than logarithmically
large as η →∞. Note that (3.13) arises in the two-dimensional geometry as well
(Savva et al. 2014), which is not surprising given that the contact line appears to be
a straight line in its immediate vicinity when r� λ.

Generally, the evaporative flux terms are comparable to the capillary terms and need
to be retained in the leading-order equations (see also appendix A, where the case
E�1 is explored). To proceed, just like the outer region, consider a small-ṙ expansion
in (3.13) of the form

φ ∼ φ0 + ṙφ1 + · · ·. (3.14)

At leading order in ṙ, (3.13) gives

∂η[φ
2
0(φ0 + 1)∂3

ηφ0] =−
E

φ0 +K
, (3.15)

which is solved for η > 0 subject to

φ0 = 0 and ∂ηφ0 = 1 (3.16a,b)

at η= 0 and requiring that φ0 behaves linearly at infinity, namely

φ0 ∼ θmη as η→∞, (3.16c)

where θm is the (rescaled with ϑs) macroscopic Young’s angle modified by evaporation.
As it turns out, θm is a degree of freedom arising from the far-field expansion of the
problem and needs to be determined for given values of E and K. Thus, solving (3.15)
with (3.16) numerically allows us to extract the value of θm (see appendix B.1 for
details).

Figure 3 summarises some representative computations performed for θm and its
asymptotics. Figure 3(a) shows the dependence of θm with E for different values of
K. For small values of E, the curves obtained from the full problem (3.15)–(3.16) are
tangential to the asymptotic result deduced in appendix A for weakly modified θm,
see (A 5) with (A 8), and is shown as dashed lines. Figure 3(b) shows plots of θm
as K is varied between 0.1 and 25 for different values of E. As K increases, θm
gradually approaches Young’s angle. For the smaller values of E we have good
agreement between the full numerics (solid curves) and the asymptotic result (A 5)
with (A 8) (dashed curves), which improves as K is further increased. When E = 10
and E = 100, the small-E asymptotic result, equation (A 5) with (A 8), over-predicts
θm and for this reason these curves are discarded. This is to be expected given that
these values of E cannot possibly conform with the conditions stated in appendix A,
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FIGURE 3. (a) Plots of θm as a function of E for various values of K. (b) Plots of θm
as a function of K for various values of E. The solid curves correspond to the values
of θm obtained by solving (3.15)–(3.16); the dashed curves correspond to the asymptotic
result for E� 1, equation (A 5) with (A 8); the black dotted curves show the asymptotic
behaviour θm ∼ ζ (K)E1/4 as E→∞; the grey dotted curves show the result of Hocking’s
asymptotics, equation (3.17). The asymptotic results are only shown for the cases where
their applicability can reasonably be expected.

which are necessary for the asymptotic result to hold. From these plots it is clear
that θm increases as E increases and as K decreases. Thus evaporation enhances θm
but its effect is diminished if the kinetic resistance effects become too large. These
results are consistent, at least qualitatively, with those of Rednikov et al. (2009), who
used a disjoining pressure model for the contact line dynamics, the main difference
being the presence of a weak singularity of θm in the present model, manifested as
K→ 0.

As E→∞, we find that θm� 1 and θm tends asymptotically to ζ (K)E1/4, where
ζ (K) is a function of K to be determined numerically (see appendix B.2). In this limit,
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we find that the original, non-scaled, evaporation-modified Young’s angle, ϑm = θmϑs,
will no longer depend on the actual value ϑs, because E scales with ϑ−4

s . The
results corresponding to the strong-evaporation result, θm = ζ (K)E1/4, are represented
in figure 3 as black dotted curves and appear to yield a very good estimate even
for E = O(1), provided that K is sufficiently small. Noteworthy is also that similar
E1/4 power-law behaviours in evaporation-modified angles have also been reported in
different evaporation settings, e.g. by Morris (2001) in a setting which is equivalent to
taking K� 1 (see also Todorova et al. 2012), but not in an explicit context of weak
or strong evaporation, and also by Rednikov et al. (2009) in the weak evaporation
limit for a different model. Interestingly, the recent analysis of Saxton et al. (2016)
uncovered a remarkably similar, E2/7 power-law behaviour in the diffusion-limited
evaporation scenario with E� 1.

It is important to note that evaporation-modified contact angles have also been
considered in a similar setting by Hocking (1995) and it is thus of interest to put his
findings in the present context. More specifically, motivated by the work of Anderson
& Davis (1995), Hocking focused on steady two-dimensional droplet shapes in which
the fluid lost due to evaporation was replaced by a flux of fluid through the substrate
so that there was no contact line motion and no volume variations. He used the
same ingredients for evaporation as here, but retained the evaporative term in his
outer-region analysis, which is neglected here. Another key difference is the assumed
order of magnitude of the kinetic resistance to evaporation. Here, this non-equilibrium
effect is treated to be small and only appreciable in the vicinity of the contact line,
just as slip is. In contrast, Hocking (1995) formally treated the kinetic resistance to be
significant at the macro-scale, although in the end he aimed at the small-K limit (in
his terms). Hence, unsurprisingly, Hocking needed to obtain the evaporation-modified
angles from the coupling of the micro- and macro-scales, unlike here, where θm is
solely determined from the inner-region asymptotics. Clearly, Hocking’s asymptotic
treatment and ours correspond to two distinct parameter regimes, neither of which is
a particular case of the other. Nevertheless there can exist a region in the parameter
space where the two asymptotic cases overlap, when the kinetic resistance is small
compared to the baseline case of Hocking (1995), but large in terms of the present
study, i.e. when K � 1 and λK � 1. The overlap region in question is described
by Hocking’s (1995), equation (14), where we note a typo in the denominator of
the logarithmic term, with the factor 2 to be replaced by 3. When rendered in our
notation and scalings and with the typo rectified, equation (14) in Hocking (1995)
can be written as

θ 4
m = 1+

4E
K

ln
eK
θm
, (3.17)

which is a transcendental equation for θm. In accordance with Hocking’s derivation,
equation (3.17) is valid, in our terms, for K � 1 and E/K � 1 and generally for
(E/K) ln K = O(1), allowing for O(1) deviations from Young’s angle, scaled to
unity here. In a sense, equation (3.17) can be viewed as the counterpart of the
work of Morris (2001) carried out in the limit K � 1. Although, as we mentioned,
equation (3.17) still holds when θm− 1=O(1), it simplifies to θm= 1+ (E/K) ln(eK)
in the particular case θm − 1� 1. This two-term asymptotic result matches perfectly
with our result for weakly evaporation-modified angles, equation (A 5), when α, given
by (A 8), is expanded for K� 1. To demonstrate this overlap, Hocking’s asymptotic
result, equation (3.17), is represented in figure 3 by grey dotted curves and is seen
to agree well within the domain of its validity with the full computation result (solid
curves).
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Looking at the O(ṙ) terms of (3.13) using (3.14) gives a linear problem to
determine φ1,

∂ηφ0 + ∂η[φ
2
0(φ0 + 1)∂3

ηφ1 + φ0(3φ0 + 2)φ1∂
3
ηφ0] =

Eφ1

(φ0 +K)2
, (3.18)

which is treated with homogeneous conditions at η= 0,

φ1 = ∂ηφ1 = 0 (3.19a)

and by requiring that ∂ηφ1 is no more than logarithmically large as η→∞, where
the last condition and the asymptotics of (3.18) and φ0 dictate that

∂ηφ1 ∼
1
θ 2

m

ln βη as η→∞. (3.19b)

Here, β is a degree of freedom which needs to be determined as part of the
solution for given values of E and K (see appendix B.3 for a brief discussion
on the implementation of the numerical scheme for φ1).

Combining (3.16c) and (3.19b) and going back to the original variables, we find

−∂xh∼ θm +
ṙ
θ 2

m

ln
(
β

r− x
λ

)
as (r− x)/λ→∞, (3.20)

which is to be matched with the asymptotics of the outer solution, (3.11). It is clear
from (3.20) that λ/β is a measure of the size of the inner region and it is thus of
interest to explore how β varies as a function of E and K. Figure 4 shows plots of
ln β as E and K are varied and, unlike the corresponding plots of θm, the dependence
on these parameters is non-monotonic. In figure 4(a) ln β exhibits an initial decrease
followed by an increase as E becomes large, but this behaviour is delayed for large K.
A similar behaviour is observed in figure 4(b) as K is varied while E is kept constant,
but we now have that lnβ→ 1 as K→∞, which corresponds to the non-volatile case
(Hocking 1983). The approach to this asymptotic behaviour becomes more gradual for
larger values of E.

At this point, we note that the differences in the contact line model employed,
be it a precursor or a slip model, will only manifest themselves in the inner-region
dynamics, when the droplet is sufficiently large. Thus, had we used, for example,
a disjoining pressure model in our formulation we would have anticipated the
same behaviour as in (3.20) with the slip length being replaced by the associated
micro-scale of the disjoining pressure model, say, the thickness of the precursor film
(Savva & Kalliadasis 2011) or a length scale obtained by the Hamaker constant,
surface tension and the contact angle (Colinet & Rednikov 2011). Similar conclusions
can also be drawn with other popular contact line models (see, e.g. Sibley et al.
2012, 2013, 2015b).

3.1.3. Matching
One readily observes that the outer solution, equation (3.11), cannot match with

the inner one, equation (3.20), since the x-dependent logarithmic terms have different
coefficients. This issue can be resolved with an intermediate layer sandwiched between
the inner and outer regions as shown in figure 1 (Hocking 1983). As noted in previous
studies (see, e.g. Savva & Kalliadasis 2009; Sibley et al. 2015a), this intermediate
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FIGURE 4. (a) Plots of ln β as a function of E for various values of K. (b) Plots of ln β
as a function of K for various values of E.

region ultimately justifies why matching can be carried out simply by considering
the cubes of the outer and inner slopes, equations (3.11) and (3.20), respectively.
Matching inner and outer solutions can be accomplished without an intermediate
region by an alternative path originally proposed by Lacey (1982). In this case,
matching is performed not only for the first few terms of the asymptotic expansion,
but effectively for the infinite series of the inner and outer solutions (for a discussion
placed in the context of contact line motion with mass transfer, see the work of
Oliver et al. 2015). In a more recent development, Sibley et al. (2015a) discuss this
alternative method of matching inner and outer solutions for contact line motion
in a more general setting, explaining how it can be performed in a straightforward
manner for more complicated problems for which simply considering the cubes of
the slopes argument does not work. As expected, however, both approaches yield the
same results.

In the present problem, considering the cubes of (3.11) and (3.20) does allow us to
cancel the x-dependent logarithmic terms and by matching the terms that are constant
in x we obtain the following evolution equation for the droplet radius

ṙ=
θ 3
− θ 3

m

3 ln
βδr
λe2

, (3.21)
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which is valid for ṙ = O(1/|ln λ|) and is determined with O(1/|ln λ|3) error as λ→
0. Although a detailed consideration of an intermediate region is omitted here, as
done, for example in other works studying contact line motion in different settings
(see, e.g. Eggers 2005b; Savva & Kalliadasis 2014; Xu & Jensen 2016), the matching
procedure can be rigorously justified by following nearly identical arguments as the
ones presented in the above-mentioned works.

Equation (3.21) tells us that the contact line will move an order-unity distance
within t=O(|ln λ|) as λ→ 0, but we will also argue heuristically later on (see § 4.2)
that it can be extended to the evaporation stage as well. Before continuing with our
analysis, we remark that a similar analysis undertaken by Anderson & Davis (1995)
with a one-sided evaporation model assumed as a starting point a functional relation
between ṙ and θ ; here (3.21) is the outcome of the matched asymptotic analysis
we have undertaken. Moreover, recall that the θ 4

m law obtained through matching
by Hocking (1995), equation (3.17), is for evaporation-modified angles and not for
motion-modified ones, which results to a θ 3 term, as seen in (3.21). Lastly, we note
that an analogous result was obtained by Saxton et al. (2016) in the diffusion-limited
evaporation case, but without the O(1/ ln2 λ) terms as retained here.

On the other hand, an asymptotically consistent expansion for ṙ in which O(1/ ln2 λ)
terms are retained requires, in principle, the inclusion of an O(1/|ln λ|) correction to
r(0) to be used as an initial condition to (3.21), as compared to the value of r(0)
for the full problem. This correction would arise from a (mostly numerical) treatment
of the capillary action stage which occurs for t = O(1) (see also Oliver et al. 2015;
Ren et al. 2015; Saxton et al. 2016). Yet, although our simulations repeatedly show
that the capillary action phase and the initial droplet profile are unimportant for the
subsequent dynamics, one can take the r(0) correction to be a priori negligibly small
by considering initial drop shapes which are already sufficiently close to the quasi-
static profiles, equation (3.4).

3.2. Evolution of the droplet volume
Equation (3.21) depends on the droplet volume, v(t), through the expression for θ ,
equation (3.5). Hence, to close the system, we will utilise (2.20) to obtain an evolution
equation for v̇ in terms of r(t), v(t) and the system parameters, E , K, λ and B.

As a first approximation, we may assume that the fine details coming from the
contact line region are negligible. Hence, we may take

v̇ =−

∫ r

0

Ex
h0 +K

dx, (3.22)

where h0 is the leading-order outer solution, equation (3.4). This expression is not
amenable to further analysis and one needs to compute this integral at each time,
unless we consider the B = 0 case, so that we may use (3.6a) for h0 in (3.22) to
obtain

v̇ =−
Er
θ

ln
(
θr
2K
+ 1
)
. (3.23)

From (3.23) we can easily deduce that v̇=O(λ|ln λ|) as λ→ 0 for moderate values of
E and K. However, equation (3.23) is not expected to work well for all the parameter
regimes of interest. The reason is because the influence of the inner region near the
contact line is not always accounted for in sufficient detail. To properly do this, we
can pursue further our asymptotic approach that relies on the assumption that the
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FIGURE 5. A schematic diagram showing the three regions in the vicinity of the contact
line at x = r (not drawn to scale), distinguishing between the apparent, macroscopic
angle, θ , the microscopic, static angle, θs = 1 (normalised to unity in our chosen
non-dimensionalisation) and the evaporation-modified Young’s angle, θm.

droplet size is much larger than K and λ. Ultimately, however, as the droplet volume
diminishes, this formula will fail to describe the long-term behaviour of the volume,
just as (3.21) will fail in this limit.

Unlike the matching carried out to obtain ṙ, to estimate v̇ we need to consider
all three regions, inner, intermediate and outer. This is particularly true if (2.20) is
to be evaluated at the spreading stage, although, as alluded to earlier, v(t) is not
altered appreciably during this stage. Evaporation effects manifest themselves during
the third stage, where θ ≈ θm. As the transition to the evaporation stage occurs, the
extent of the intermediate region shrinks and can be omitted altogether in the last two
stages. However, in what follows we retain the presence of the intermediate region
contributions for the sake of completeness.

Based on the above, we expect that all scales contribute to the net evaporative flux
at leading order. To proceed, we split v̇ into three parts, each consisting of an integral
carried out in each region, namely

v̇ = q1 + q2 + q3, (3.24)

where

q1 =−

∫ r

r̃

xλE
h+ λK

dx, q2 =−

∫ r̃

r∗

xλE
h+ λK

dx and q3 =−

∫ r∗

0

xλE
h+ λK

dx,

(3.25a−c)
with r∗ and r̃ being the radii where the intermediate region matches within appropriate
overlap regions with the solution in the outer and inner regions, respectively (see
figure 5), i.e. such that η̃= (r− r̃)/λ�1 and r− r∗�1, but, at the same time, we also
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have ṙ ln η̃� 1 and ṙ ln(r− r∗)� 1. Based on these requirements for the asymptotics
of r̃ and r∗, each integral in (3.25) is estimated by making use of the smallness of ṙ
and the appropriate asymptotic limits, retaining only the leading algebraic-order terms
in λ.

The integral over the inner region is estimated using

q1 =−

∫ r

r̃

xλE
hin + λK

dx∼−
∫ η̃

0

rE
φ0 +K

dη, (3.26)

as λ→ 0, where we took hin = λφ0(η), with η = (r − x)/λ and φ0 determined from
(3.15). Using the asymptotics of φ0 as η→∞ in the left-hand side of (3.15) and
integrating, we find that (3.26) behaves like

q1 ∼−
rE
θm

ln(η̃β̃θme−3/2) as η̃→∞, (3.27)

where β̃ is a parameter appearing in the next term of the asymptotics of ∂ηφ0 as a
function of φ0, namely

∂ηφ0 ∼ θm −
E

2θ 3
mφ0

ln(φ0β̃) as φ0→∞ (3.28)

and is determined using similar techniques as those discussed in appendix B. Had we
merely used hin=λθmη in (3.26), which is the leading-order behaviour as we approach
the intermediate region, we would have obtained

q1 ∼−
rE
θm

ln
θmη̃

K
as η̃→∞, (3.29)

which is equivalent to the inner-region contributions of (3.22) with θ = θm.
In figure 6 we show a few representative plots of β̃ for various values of E and K.

In figure 6(a) we provide plots for 10−3 6 E 6 30, to contrast the values of β̃ with
e3/2/K as a means to compare (3.27) and (3.29). It is readily seen that (3.29) gives
a rough estimate for q1 which works better for smaller values of E and larger values
of K, i.e. for weaker evaporation effects. This is not surprising given that in this limit
φ0 ≈ η with θm ≈ 1 (cf. appendix A) is no different from the simplified form used to
obtain (3.29). In particular, it is interesting to note that the calculations presented in
figure 6(a) suggest that β̃→ e3/2/K as E→ 0+.

To estimate q2, perform a change of variable to the stretched coordinate η and
consider to leading order as λ→ 0

q2 ∼−

∫ η∗

η̃

λ2rE
hint

dη, (3.30)

where η∗ = (r− r∗)/λ and hint is the intermediate solution

hint = λη

(
θ 3

m + 3ṙ ln
βη

e

)1/3

(3.31)

as expressed in terms of the inner variable η. The derivation of (3.31) is nearly
identical to the intermediate solution of Hocking (1983) for non-volatile droplets,
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FIGURE 6. (a) Solid curves: plots of ln β̃ as a function of E for various values of K and
0.0016E 6 30; dashed curves: plots of ln(e3/2/K) corresponding to each of the values of
K shown as solid curves, to compare (3.27) and (3.29). (b) Plots of ln β̃ as a function
of K for various values of E. The curves from bottom to top correspond to the values
E= 0.1, 1, 10 and 100, respectively.

arguing, as in Saxton et al. (2016), that the evaporation term is negligible within the
intermediate region and matching the solution with appropriate conditions at the far
field of the inner region. In (3.30) we have neglected the kinetic resistance effects
which is an acceptable approximation for K� 1. Hence, we obtain

q2 ∼−
rE
2ṙ

[(
θ 3

m + 3ṙ ln
βη∗

e

)2/3

−

(
θ 3

m + 3ṙ ln
βη̃

e

)2/3
]
. (3.32)

Next, we need to find the asymptotic behaviour of q2 as we have both η̃→∞ and
r∗→ r. Using (3.21) we modify the first term in the square brackets of (3.32) so that
we can eventually take the limit r∗→ r. Hence we obtain

q2 ∼−
rE
2ṙ

{[
θ 3
+ 3ṙ ln

(
e
δ

r− r∗
r

)]2/3

−

(
θ 3

m + 3ṙ ln
βη̃

e

)2/3
}
, (3.33)
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noting that the limits η̃→∞ and r∗→ r must be taken with the understanding that
the O(ṙ) terms of the asymptotic expansions are still of higher order compared to the
O(1) terms. Hence, expanding into a series in ṙ gives as λ→ 0

q2 ∼−rE
{

3(θ + θm)

2(θ 2 + θθm + θ 2
m)

ln
βδr
λe2
+

1
θ

ln
[e
δ

(
1−

r∗
r

)]
−

1
θm

ln
βη̃

e

}
. (3.34)

Lastly, to find the leading-order expression for the integral within the outer region, q3,
we neglect, just as in the intermediate region, kinetic resistance effects and consider

q3 ∼−

∫ r∗

0

xE
h0

dx (3.35)

as λ→ 0, where h0 is the leading-order outer solution given by (3.4). Clearly the
integrand has a logarithmic singularity as r∗→ r, since h0 vanishes as r∗→ r. Hence,
we can remove the singularity as r∗→ r outside the integrand by writing

q3 ∼−
E
θ

{∫ r

0

[
x
√

BI1(c)

I0(c)− I0(x
√

B)
−

r
r− x

]
dx− r ln

(
1−

r∗
r

)}
(3.36)

as r∗→ r. In the limit B→ 0, equation (3.36) simplifies to

q3 ∼
rE
θ

ln
[
2
(

1−
r∗
r

)]
. (3.37)

Adding the contributions from (3.27), (3.34) and (3.36) cancels the singular terms
involving ln η̃ and ln(r − r∗) and we obtain an expression for v̇ determined up to
and including O(λ) terms,

v̇ =−rE
{

1
θm

ln
β̃θm

βe1/2
+

1
θ

ln
e
γ δ
+

3(θ + θm)

2(θ 2 + θθm + θ 2
m)

ln
βδr
λe2

}
, (3.38)

where

ln γ =
∫ 1

0

[
1

1− x
−

xcI1(c)
I0(c)− I0(xc)

]
dx, (3.39)

noting that γ → 2 as r
√

B→ 0 (see figure 7 for plots of γ (c) for pendant and sessile
droplets). To compute γ for pendant droplets we take c= r

√
−B, replace the modified

Bessel functions by Bessel functions and change the sign of the second term in (3.39).
In the stages dominated by evaporation, where we can take θ ≈ θm, equation (3.38)
simplifies further to

v̇ =−
Er
θ

ln
β̃θr
γ λe3/2

. (3.40)

The arguments leading to the derivation of (3.38) reveal that it is able to capture the
evolution of v(t) both in the spreading and the evaporation stages as λ→ 0 and for
O(1) values for E, K and B. As it turns out, using the simpler expression (3.40)
to simulate the full dynamics does not typically yield appreciably different results
from using the more complete expression (3.38). This is mainly due to the fact that
spreading takes place on a shorter time scale compared to the long evaporation stage
during which θ ≈ θm.
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FIGURE 7. Dependence of ln γ on r
√
|B| for a sessile (B> 0; solid curve) and a pendant

(B < 0; dashed curve) droplet. As the droplet evaporates, r → 0, the curves approach
asymptotically the value of ln γ = ln 2, corresponding to the B= 0 case.

As already anticipated from our earlier discussion, equation (3.38) and, perhaps
more transparently, equation (3.40) reveal that, in the distinguished limit under
consideration, v̇ = O(λ|ln λ|) as λ → 0. Comparing this scaling with the scaling
ṙ = O(1/|ln λ|) as λ→ 0, which was deduced from (3.21), confirms a posteriori the
assumptions underpinning the analysis of the second stage, namely that λ� ṙ � 1
and v̇� ṙ. However it is clear that our analysis will break down when the argument
of the logarithm in (3.40) tends to unity with r→ rc, where

rc =
γ λe3/2

β̃θm
=O(K), (3.41)

i.e. when the size of the droplet becomes comparable to the kinetic length scale. When
this happens, equation (3.40) incorrectly predicts that v̇→ 0 with v 6= 0. This indicates
that K can no longer be assumed to be smaller than the droplet size which invalidates
the assumptions put forth for our analysis to hold.

The derivation of an evolution equation for v(t) concludes the asymptotic analysis
we have undertaken. Although we concede that the arguments we presented above
are centred around the spreading time scale, we did not deem necessary a separate
treatment of the evaporation stage to produce a composite expansion valid across
both stages, as done, for example in the analysis of Saxton et al. (2016). Later on,
we will offer some heuristic arguments as to why doing so is acceptable (see § 4.2),
but, more importantly, throughout the following section we will provide rather
compelling numerical evidence from over one hundred simulations of the governing
partial differential equation, which are found to be in excellent agreement with the
predictions of the equations (3.21) and (3.38) obtained from matching.

4. Numerical results
In this section, the findings of our analysis are scrutinised against the solutions

to the full problem, offering the appropriate commentary to elucidate the effects of
the various parameters of the problem. In what follows, the full problem refers to
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FIGURE 8. Evaporating droplet with λ = 2 × 10−5, E = 4, K = 14, B = 0 and v(0) =
r(0) = 1. (a) Droplet profiles at different times obtained from the full problem; curves
‘a’–‘h’ correspond to the profiles when t = 0.1, 1, 10, 500, 1000, 1500, 1800 and 2000,
respectively. In (b–d), the solid and dashed curves correspond to the solutions of the full
and reduced problems, respectively (in most plots the curves cannot be distinguished from
each other); the solid circles correspond, left to right in each plot, to data taken from the
profiles ‘a’–‘h’, respectively. (b) Evolution of the apparent contact angle, equation (3.6b),
demonstrating the transition to θm (dotted line). (c,d) Evolution of r and v in linear and
logarithmic time scales, respectively. The dotted curve in (d) shows the evolution of r in
the non-volatile case for comparison.

the governing partial differential equation, equation (2.14), subject to the boundary
conditions (2.18) and the appropriate initial condition (see appendix C), whereas
the reduced problem refers to the system of differential equations obtained from
the asymptotic analysis, equations (3.21) and (3.38), and its corresponding initial
conditions. The numerical methods used to solve both problems are briefly outlined
in appendix C. All parameters used are loosely based on the parameters used for
some of the liquids discussed in § 2, because we are after the qualitative features of
the dynamics and reasonably realistic parameter values are generally sufficient for
this purpose.

4.1. The four-stage dynamics
Figure 8 shows a typical calculation which is performed for parameters that are close
to the values for water reported in § 2. We see that the solutions of the full (solid
curves) and reduced problems (dashed curves) are visually indistinguishable and
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the solutions are on top of each other; there are some barely noticeable differences
at early times (see, e.g. figure 8b), which are solely attributed to our choice of ε.
Indeed, if we repeat the calculation with a much smaller value of ε, the dynamics is
indistinguishable throughout. We should also note that using the simpler expression
for v̇, equation (3.23), instead of the more rigorously obtained (3.38) the agreement
between the full and reduced problems degrades and the solutions no longer exhibit
such excellent agreement, particularly during the late stages of the dynamics (see
also § 4.3).

From figure 8 we see that the contact line advances initially up to t = O(10) =
O(1/|ln λ|) and then gradually recedes due to evaporation, with the apparent contact
angle, defined by (3.6b), being close to the evaporation-modified Young’s angle (see
figure 8b), as expected from our analysis. Looking at the various plots in figure 8,
we can identify the four stages for the evaporation dynamics of the contact line,
anticipated earlier in the discussion, at the beginning of § 3. The first stage, is typically
very brief and corresponds to the relaxation of the droplet shape in the bulk to the
leading-order outer solution (in this calculation the first stage lasts approximately up
to t = O(0.1)). In the second stage, the dynamics is driven primarily by (3.21) with
v(t) ≈ v(0). This is evidenced in figure 8(d), where we show for comparison the
evolution of the droplet radius in the non-volatile case. Here we see good agreement
with the non-volatile case up to t = O(1), but the agreement degrades when θ 3

becomes of the same order of magnitude as θ 3
m, which, interestingly, occurs long

before the volume changes become appreciable. Due to the brief duration of the first
two stages, the volume of the droplet hardly changes (see, e.g. the droplet profiles
‘a’–‘c’ in figure 8a and the plots of r and v against a logarithmic time scale in
figure 8d).

The distinguishing characteristic of the third stage is that the apparent contact angle
remains close to θm. During this stage, evaporation effects dominate the dynamics and
most of the liquid of the droplet evaporates into the saturated atmosphere (see, e.g. the
droplet profiles ‘d’–‘h’ in figure 8a and the plots of r and v against a linear time scale
in figure 8c). At the fourth stage, the droplet becomes too small and all assumptions
upon which our analysis is based no longer hold. Hence, this stage is not captured
by the reduced model; the computations of the full problem suggest that during this
final stage θ decreases abruptly below θm (see figure 8b). These final moments of the
droplet’s lifetime are admittedly rather difficult to resolve with high accuracy due to
the computation being prone to round-off errors and the aforementioned difficulties
associated with the stiffness of the full problem. Nevertheless, it is clear that this
stage will be rather short in duration and is thus deemed of lesser importance in our
discussion.

In a second example, we test the limits of applicability of our analysis by
considering the case of an FC-72-like droplet discussed in § 2. More specifically,
if we consider the case when 1Θ = 10 K, ϑs = 4◦, d = 2.2 mm, while all other
parameters are kept unchanged, we have approximately the following parameters,
E = 9800 (E = 0.20), K = 14 and λ = 2 × 10−5. This is a rather extreme scenario
given that the value of E is comparatively large and perhaps beyond the regime of
applicability of our asymptotic theory. Yet, as figure 9 shows, our theory still applies
and accurately predicts the dynamic behaviour of the full problem. Even in this case
we have nearly indistinguishable dynamics throughout. However, here we see that the
droplet recedes from the outset due to the evaporation-modified Young’s angle being
larger than the initial apparent contact angle (as also remarked by Todorova et al.
2012). This calculation is also an example which illustrates that the distinction and
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FIGURE 9. Evaporating droplet with E = 9800, K = 14, B = 0, λ = 2 × 10−5, ε = 10−2

and v(0) = r(0) = 1. (a) Evolution of the droplet radius and volume. (b) Evolution of
the apparent contact angle, equation (3.6b). In (a,b) the solutions to both the full (solid
curves) and the reduced problems (dashed curves) are virtually indistinguishable.

duration of the previously discussed stages are strongly dependent on the parameters
of the problem. The estimated evaporation time in this case is t∗≈ 8.8. Based on the
parameters of the problem, we can conclude that a droplet of volume 4.7 µl would
evaporate completely within 10 s, a figure which is in the right ballpark based on
the discussion in the work of Raj et al. (2012).

4.2. The evaporation stage
From the results presented above, we saw that (3.21) and (3.38) are able to adequately
describe the dynamics throughout. We also saw that the droplet evaporates completely
in finite time after a comparatively long third stage, which is the stage during which
the apparent contact angle is roughly equal to the evaporation-modified Young’s
angle. Thus, if we simply take θ ≈ θm, equation (3.21) gives ṙ ≈ 0, i.e. the contact
line velocity is very small and the contact line motion is slaved to the slow process
of evaporation, so that ṙ≈ 2v̇/(3θ 1/3

m v2/3) (when B= 0). This means that at the onset
of the third stage, where v =O(1), both ṙ and v̇ are of the same order and hence ṙ
ceases to be the greatest smallness parameter, and, self-consistently, one can neglect
its active role when evaporative effects dominate. However, as v → 0+, it follows
that, just as in the second stage, we have that ṙ� v̇. This means that (3.21), which
arises from the quasi-static analysis of the second stage may become relevant again.
Thus we can reasonably expect that both the reduced problem, equations (3.21) and
(3.40), and the modified problem in which (3.40) is solved together with θ = θm
(see also Saxton et al. 2016) will yield comparable results. Undertaking a more
rigorous approach to justify this argument is likely to be rather unwieldy, so instead
we resorted to making comparisons of the solutions of the reduced and modified
problems with the full problem when B = 0 with r(0) = 2/θ 1/3

m and v(0) = 1 for
various choices of E and K. The particular choice for r(0) was made to ensure
that the droplet does not undergo a spreading stage. For all cases considered, the
reduced problem was visually indistinguishable from the full problem, whereas with
the modified problem there were small differences which became more noticeable
as r→ 0+. This provided us with sufficient numerical evidence that the validity of
(3.21) can be extended into the evaporation stage as well, as it is able to capture the
transition of θ→ θm and dynamics of the evaporation stage as v→ 0+, provided that
r� λ.
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On the other hand, by replacing (3.21) with θ = θm in the reduced problem, we
can decouple the system of equations for r(t) and v(t) so that we can utilise just
the equation for v̇. Since the droplet loses an order unity of its volume during the
slow evaporation stage, this ultimately allows us to obtain an estimate of the time it
takes a droplet of initial volume v(0)= v0 to evaporate completely when B= 0. The
evaporation time, t∗, can be computed from (3.40) and using r= 2v1/3θ−1/3

m , namely

t∗ =
θ 4/3

m

2E
−

∫ v0

0

dv

v1/3 ln
β̃θ 2/3

m v1/3

λe3/2

. (4.1)

It is important to note that since (3.40) does not allow the volume to vanish
completely, the integral for estimating t∗ only exists in the Cauchy principal value
sense and as such is given above. Similar considerations can be followed to obtain t∗
when B 6= 0, but the integral expression is cast with the radius being the variable of
integration. Unlike the case with B 6= 0, equation (4.1) can be evaluated analytically
to obtain

t∗ =
3λ2e3

2E β̃2
Ei

(
ln
v

2/3
0 β̃2θ 4/3

m

λ2e3

)
, (4.2)

where Ei(x) is the exponential integral, defined as

Ei(x)=−
∫
∞

−x

e−y

y
dy (4.3)

for x> 0. Using the large-argument expansion Ei(x)= ex/(x− 1)+O(exx−3), we can
write (4.2) as

t∗ =
3

4E
v

2/3
0 θ 4/3

m

ln
β̃v

1/3
0 θ 2/3

m

λe2

. (4.4)

Although K does not appear explicitly in (4.4), it is clear from our earlier discussion
that K together with E and λ influence the values of both θm and β̃ which appear in
(4.4) above.

Figure 10 shows the dependence of t∗ on the initial droplet volume for two
different sets of parameters. The values of t∗ obtained from solutions to the full
problem are in excellent agreement with the values predicted with (4.4). Unlike the
typical scaling t∗∼ v

2/3
0 , which can be deduced by simple arguments, e.g. by assuming

the integral evaporation flux to be proportional to the droplet radius, in this set of
parameters we have found better agreement with the scaling t∗ ∼ v0.63

0 for both sets
of calculations (note that other exponents can be obtained for different values of
the system parameters). This result highlights the importance of the presence of the
logarithmic terms in (4.4) in modulating the power law. An important consequence
of the calculation presented above is that the evolution of v(t) and r(t) during the
evaporation stage can be approximately predicted using the implicit formulae

t∗ − t=
3

4E
v2/3θ 4/3

m

ln
β̃v1/3θ 2/3

m

λe2

and t∗ − t=
3

16E
r2θ 2

m

ln
β̃rθm

2λe2

. (4.5a,b)
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FIGURE 10. (a) Evaporation times for droplets with K = 14, B = 0, λ = 2 × 10−5 and
v(0)= 10n/3, r(0)= 2θ−1/3

m [v(0)]1/3 for n= 0, ±1, ±2, ±3, when E= 4 (black circles) and
E = 24 (grey circles), as predicted by the solution to the full problem. The solid curves
correspond to the predictions of (4.4) for each set of parameters. (b,c) Plots of v and r as
functions of t∗ − t for each solution to the full problem from (a), respectively. For each
set of parameters (grey curves for E= 24 and black curves for E= 4), the data ultimately
collapse onto the same dotted curve, which corresponds to the theoretical prediction of
(4.5); the dashed curves in (b) and (c) correspond to the classical power laws v∼ (t∗− t)3/2
and r∼ (t∗ − t)1/2, respectively.

The above predictions are readily verified in figures 10(b) and 10(c), where we plot
v and r, respectively, as functions of t∗ − t for all 14 solutions of the full problem
(solid curves), which were performed in preparation of figure 10(a). Looking at
figure 10(b), all data from the solutions to the full problem collapse onto two (dotted)
curves, corresponding to the theoretical result, (4.5a), for the two different sets of
parameters under consideration. The same happens when we plot r as a function of
t∗ − t (see figure 10c), apart from the brief initial transients in the first two stages
of the dynamics, which appear as nearly vertical lines in the plot. For comparison,
we included in figure 10(b,c) the simple power-law scalings, v ∼ (t∗ − t)3/2 and
r∼
√

t∗ − t, respectively, to demonstrate that they do not always predict the behaviour
of the system accurately. In fact better fit to the data with the radius is provided
by power laws with an exponent of approximately 0.53, i.e. slightly larger than 1/2.
Interestingly, this is in qualitative agreement with what has been reported in the
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FIGURE 11. (a) Influence of K on the evaporation time, for droplets with λ= 10−4, B= 0,
v(0)= r(0)= 1 for two different values of E, namely E= 1 (black) and E= 8 (grey). The
solid curves correspond to the theoretical prediction, equation (4.4); the circles represent
the results obtained by solving the full problem when K = 10−2n/3, n = 0, ±1, ±2, ±3.
(b) Influence of E on the evaporation time, for droplets with λ= 10−4, B= 0, K= v(0)=
r(0)= 1. The solid curve corresponds to (4.4); the circles to solutions of the full problem
for E= 10n/3, n= 0, 1, 2, . . . , 9.

literature for diffusion-limited evaporation of water droplets (Cazabat & Guéna 2010).
However, as will be discussed later, our model predicts such apparent exponents to be
always larger than 1/2, which does not match experiments with other liquids. This is
not surprising given the different evaporation regime (limited mostly by heat transfer)
considered here.

In figure 11(a) we show typical plots demonstrating the dependence of t∗ on K.
We find that t∗ increases with K provided that K is large enough. This dependence,
however, is not monotonic and there exists a moderate value of K for which t∗
attains a minimum. This can be attributed to the different mechanisms that operate
at disparate values of K. The increase of t∗ for large values of K is to be expected,
since the evaporative flux diminishes as K increases. For small K, decreasing K
towards 0 increases θm (and the apparent contact angle as a result), which in turn
decreases the evaporative flux, given that the droplet becomes thicker with a smaller
evaporation surface and a smaller contact area with the substrate. Nevertheless,
these effects are less dramatic for larger values of E, as the comparison of the two
sets of calculations in figure 11(a) reveals. The dependence of t∗ on E is more
straightforward to describe, since, as expected, we always have a monotonic decrease
of the evaporation time with E (see figure 11b). We should note that although E
appears explicitly at the denominator of t∗, see (4.4), θm and β̃ also depend on E,
giving rise to non-trivial power-law dependencies (best fit to the data in figure 11b
was achieved with t∗ ∼ E−0.69).

4.3. The large-K limit
The large-K limit can be of relevance if fa is rather small for the reasons outlined
in § 2. For example, some experimental studies with water reported values of O(10−3)

for fa (see Marek & Straub 2001, and the references therein). In this limit, we expect
that the evolution of v(t) will not be well described by (3.38) because the analysis
ceases to work for relatively large radii, see (3.41).
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FIGURE 12. Comparison of the asymptotic predictions with the solution to the full
problem for the evolution of r(t) (solid curves) with λ = 2 × 10−5, E = 40, B = 0,
v(0)= r(0)= 1 and for K = 14, 140, 1400 and 14 000. The dashed curves show solutions
to (3.21) with (3.38); the dotted curves show the solutions to (3.21) with (3.23). As K
increases, the agreement of the dashed curves with the full solution degrades; the opposite
happens with the dotted curves.

At the same time, one can also infer from figure 6(a) and the discussion about q1

that simply approximating the inner region as a wedge of slope θm suffices to capture
well the inner-region contributions to v̇. This, in turn, means that utilising the simpler
expression for v̇, equation (3.22), or, when B = 0, the exact expression (3.23), will
provide a better approximation for v̇, noting that it does not suffer from the cutoff
radius limitation of (3.38). By following similar arguments as in the derivation of (4.4)
we obtain an estimate for t∗ that pertains in this limit, namely

t∗ =
3v2/3

0 θ 4/3
m

4E ln
v

1/3
0 θ 2/3

m

Ke1/2

, (4.6)

where K appears explicitly, unlike (4.4) where the dependence on K is implicit.
Sample computations with large values of K are shown in figure 12 for water-like

parameters (see also figure 8). The evolution of v(t) is not shown here because the
differences are more subtle compared to those seen in the evolution of r(t). Here
we compare the solutions to the full problem (solid curves) and solutions to the
reduced problems using (3.21) either with (3.38) (dashed curves) or with (3.23)
(dotted curves) for various values of K. We demonstrate that indeed using (3.38) is
not appropriate for the larger values of K because rc becomes unacceptably large.
In contrast, equation (3.23) appears to perform well throughout, albeit with less
favourable agreement for moderately large values of K, particularly as t→ t∗ (see,
e.g. the calculation when K = 14). Note also that the non-monotonic variation of t∗
with K (the simulation with K= 14 requires a longer time for the droplet to evaporate
compared to K = 140 and K = 1400) is consistent with what has been observed in
figure 11(a).
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FIGURE 13. Comparison of pendant (grey curves) and sessile (black curves) droplet
dynamics when |B| = 3; the rest of the parameters are as in figure 8. (a) Snapshots
of pendant (left) and sessile (right) droplets at different times. Top to bottom profiles
correspond to t= 10, 500, 1000, 1500 and 1800, respectively; arrows indicate the direction
of gravity. (b,c) Evolution of the droplet radius and volume, respectively. Solid curves
show the solutions to the full problem; the solutions to the reduced problem (dashed
curves) are indistinguishable from those to the full problem. For comparison, the solution
when B= 0 is also shown (dotted curves).

4.4. The influence of gravity; pendant droplets
As previously mentioned, the effect of gravity diminishes as the droplet shrinks in
size due to evaporation. Although the qualitative features of the dynamics remains
unaltered, a number of important observations can be made in relation to the effect of
gravity on the evaporation time. Figure 13 summarises the results of two calculations
using the same parameters and initial condition as in figure 8, but with non-zero Bond
number. More specifically, we study the case when B= 3 (sessile droplet) and B=−3
(pendant droplet) and the results are contrasted with the calculation of figure 8, where
B= 0. First, we note the excellent agreement of our theory with the solutions to the
full problems, confirming that our analysis is applicable when B 6= 0 as well. Second,
we see from these plots that the sessile droplet evaporates faster than the pendant one,
with the droplet in the zero-gravity case completely evaporating at some instant in
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FIGURE 14. (a) Plot of the evolution of the volume shown in figure 13(c) as a function of
t∗− t. (b) Plot of the evaporation time, t∗, as a function of the initial volume when B= 3
(black circles) and B=−3 (grey circles). The rest of the parameters are as in figure 13.
The circles correspond to data extracted by solving the appropriate full problems. The
dotted curve corresponds to the theoretical estimate, equation (4.4); the dashed curves in
(b) are numerically computed evaporation times, using techniques which were discussed
in § 4.2.

time between the two. The reason for the enhanced evaporation for the sessile droplet
can be readily deduced in figure 13(a), where we see that gravity flattens a sessile
droplet, which, apart from increasing the contact area, also boosts the evaporation
rate density, see (2.10). This ultimately increases the evaporation flux, particularly at
early times, when gravity manifests itself more strongly. Exactly the opposite happens
when considering pendant droplets due to the fattening of the droplet near its axis of
symmetry (see left-hand side of figure 13a).

If the evolution for the volume shown in figure 13(c) is plotted as a function of
t∗ − t (see figure 14a) we see that for gravitational effects to be negligible, namely
for the curves to approach the dashed curve corresponding to the zero gravity case, a
rather significant amount of time must elapse until the volume of the droplet becomes
sufficiently small. Indeed, a similar observation can be made if we plot the evaporation
time as a function of the initial volume when B = ±3 (see figure 14b). For smaller
volumes, the estimate given by (4.4), the dotted curve, is reasonable. However, for
larger sessile droplets, there is a significant deviation of the evaporation time from
the value predicted by (4.4). This deviation can be estimated by numerical means
by following the same principles as in § 4.2 which were invoked in estimating t∗
when B = 0 – see the dashed curves in figure 14(b). We should note here that for
pendant droplets only four data points were collected by solving the full problem for
volumes between 0.1 and 1 due to the previously mentioned critical value of c≈ 3.83,
beyond which pendant droplets cannot be suspended from the substrate and droplet
detachment/breakup may occur.

4.5. The influence of slip
From the preceding discussion, we saw that λ can influence the parameters of the
inner-region asymptotics appearing in (3.21) and (3.38), namely θm, β and β̃ if we
keep the other parameters of the system fixed (i.e. for fixed E and K). For example,
in figure 15 we present the results of two computations where we keep all system
parameters the same apart from the values of λ. We see that when λ = 10−3, the
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FIGURE 15. (a) and (b) depict the evolution of the droplet radius and volume, respectively
for two disparate values of the slip length, λ, 10−5 (grey curves) and 10−3 (black curves).
The rest of the parameters are E = 10−3, K = 10−4, B = 0 with v(0) = r(0) = 1. The
solutions to the full problems are shown as solid curves and are indistinguishable from
those of the reduced problems (plotted as dashed curves).
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FIGURE 16. (a) Dependence of θm on λ and for three sets of pairs of values (E, K):
(10−3, 10−4) – curves marked by black circles; (10−3, 10−3) – curves marked by white
circles; (10−2, 10−3) – curves marked by grey circles. (b) Dependence of t∗ on λ for the
same set of parameters as in (a), B = 0 and v(0) = r(0) = 1. The circles correspond to
values of t∗ obtained from the full problem; the solid curves correspond to the estimate
given by (4.4).

droplet spreads more and, as a consequence of the flattening of the droplet, total
evaporation occurs faster, nearly twice as fast compared to the case when λ = 10−5.
Figure 16(a) shows that θm decreases as λ increases for fixed E and K, thus explaining
why in the computations of figure 15 the droplet with the larger λ spreads to a larger
radius before entering the evaporation stage. Lastly, figure 16(b) shows solutions of
the full problem (circles) compared with the predictions of (4.4) (solid curves). In
all computations considered, we see that t∗ decreases nearly linearly as ln λ increases
with a slope which depends on the other parameters of the system, although for
comparatively larger values of E the dependence of t∗ on λ becomes weaker.

4.6. The influence of substrate wettability
The wettability of a substrate is characterised by the value of Young’s equilibrium
contact angle, ϑs. It is thus of interest to explore its effect on the dynamics and, more
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specifically on the evaporation time. One may naturally expect that a lower value for
ϑs would cause the droplet to spread more, thus increasing its contact area with the
wall, so that, just as gravity, shorter evaporation times would be observed.

To demonstrate this, consider a calculation of a fluid with parameters E = 0.125,
K = 14, λ= 2× 10−5 and a Young’s angle of ϑs= 20◦, subject to the initial condition
r(0) = 1.5 and v(0) = 1. This set of parameters, denoted as set A, corresponds to
parameter values which are close to those of FC-72. This calculation is repeated with
all physical parameters kept the same, apart from ϑs which is taken to be ϑs = 10◦

(set B). To maintain the same scaling for the radius and keep the same dimensional
initial volume as in set A, E must be increased by 16 times, whereas v(0) and λ must
undergo a twofold increase, whilst the rest are kept the same (hence, E= 2, v(0)= 2
and λ=4×10−5 for set B). This is because E scales with ϑ−4

s , whereas λ and V0 scale
with ϑ−1

s if the characteristic length scale, d, is to be kept constant. Hence, decreasing
ϑs further to 5◦ (set C), we need to take E= 32, λ= 8× 10−5 and v(0)= 4, with the
remaining parameters kept the same as in set A. The results of these calculations are
shown in figure 17(a). Since time scales differently across the three set of parameters
(left-hand side of figure 17a), a proper comparison of the dynamics in the three cases
would be made by matching the time scales of each set. Hence, on the right-hand side
of figure 17(a), we match the time scales of the sets A and C to that of set B and we
see that the actual evaporation time is approximately 76 % higher in set A and 12 %
lower in set C compared to the evaporation time of set B.

By increasing the values of E in all three sets of parameters by 12 times and
producing their corresponding plots in figure 17(b), we find that the curves for
sets B and C nearly collapse on top of each other when time is rescaled, with the
dimensional evaporation time in set B differing from those of sets A and C by about
17 % and 1 %, respectively (right-hand side of figure 17b). A further increase in the
values of E in all three sets of parameters of figure 17(a) by 144 times (i.e. 12
times higher compared to the calculations of figure 17b) yields the plots shown in
figure 17(c). We readily observe that all curves nearly collapse on top of each other
when time is rescaled appropriately as in panels (a) and (b) (see right-hand side
of figure 17c). In this case, we find that the dimensional evaporation time in set B
differs from those of A and C by approximately 2 % and 0.1 %, respectively.

From these calculations, we see that for small values of E there is a clear
dependence of the dynamics on the value of ϑs, which aligns with the expectation
that lower values for ϑs yield shorter evaporation times. However, we have also
seen that for sufficiently large values of E the dependence of the evaporation time
on ϑs diminishes. This can be rationalised by using (4.4) to cast the dimensional
evaporation time in terms of the parameters of the problem as

3ρLV2/3
0 ϑ4/3

m

4k1Θ(2π)2/3

[
ln

β̃V1/3
0 ϑ2/3

m

3be2(2π)1/3

]−1

, (4.7)

where V0 is the initial dimensional droplet volume. First, we note that ϑs does not
appear explicitly in the expression above. The presence of ϑs is implicit, however, due
to its influence on ϑm. At the same time, we have seen in § 3.1.2 that this dependence
diminishes in the strong evaporation limit (E� 1), which allows us to conclude that
under such conditions the evaporation time becomes practically independent of the
wetting properties of the substrate, which effectively corresponds to the completely
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FIGURE 17. Influence of ϑs (set A: light grey curves ϑs=20◦; set B: grey curves ϑs=10◦;
set C: black curves ϑs = 5◦). (a) E = 0.125 × 16i, K = 14, λ = 2i+1

× 10−5, r(0) = 1.5,
v(0)= 2i where i= 0, 1, 2 for ϑs= 20◦, 10◦, 5◦, respectively, which corresponds to keeping
the initial geometry and all physical parameters the same for all sets apart from ϑs. (b) As
in (a) but with E = 1.5 × 16i. (c) As in (a) but with E = 18 × 16i. Left plots: r as a
function of the dimensionless time, t; right plots: r as a function of the dimensionless
time for set B, t′. In all plots solid and dashed curves correspond to the solutions to the
full and reduced problems, respectively.

wetting regime. Indeed, this is a direct consequence of the fact that the inner region,
where the influence of ϑs features more prominently, influences the dynamics through
ϑm, whose value is dominated by the evaporation-induced contribution when E� 1.
Hence as the apparent contact angle becomes close to ϑm during the comparatively
longer evaporation stage, the influence of Young’s angle, ϑs, becomes negligible.
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4.7. Apparent power laws
The section concludes with some remarks on the apparent power-law behaviours
characterising the evolution of the radius and volume of the droplet close to complete
evaporation. In a typical experiment, it is observed that the time remaining until
extinction is approximately proportional to the droplet radius raised to some power
(see, e.g. Deegan et al. 2000; Shahidzadeh-Bonn et al. 2006; Cazabat & Guéna
2010, and the references therein). The theoretical prediction of these exponents,
which sometimes deviate from the classical r2-law (i.e. when the time remaining
until extinction is proportional to the radius squared), was identified as one of the
‘hot topics’ discussed in the review of Bonn et al. (2009). As previously alluded to,
the logarithmic dependencies which arose from our analysis also predict non-trivial
(apparent) power laws. For example, if we consider d(ln t∗)/d(ln v0) using (4.4), we
deduce that t∗ ∼ vn

0 , where n is given by

n=
2
3
−

1
3

(
ln
β̃θ 2/3

m v0

λe1/2

)−1

≈
2
3
−

1
3

(
ln
β̃θ 2/3

m

λe1/2

)−1

. (4.8)

Clearly the ‘local’ exponent n depends on v0 itself, but we may neglect v0 appearing
inside the logarithm by invoking a key assumption of our analysis, namely that the
droplet is macroscopically large, or, equivalently, r � rc. In all cases considered,
this approximation works rather well. For example, the differences in the exponents
obtained from fitting the data of figure 10(a) and the exponents computed from (4.8)
were within O(10−4).

From (4.8), we also see that for realistic values of the various parameters we always
have n < 2/3 (recall that n = 2/3 corresponds to the classical r2-law). Nevertheless,
having exponents n > 2/3 is likely to become more feasible with the inclusion of
additional effects which are neglected in the simple model of our study. Although a
detailed parametric investigation of these apparent power laws is beyond the scope of
this work, for the sake of completeness, we show a few representative calculations in
figure 18 to reveal some qualitative trends about the dependence of the exponent a in
v∼ (t∗− t)a on the system parameters using the calculation in figure 8 as a reference
system. Looking at figure 18(a), we find that larger values of K increase a slightly,
but they manifest themselves more strongly as the droplet shrinks, thus altering the
power law as t→ t∗. Indeed, one would expect a power law of the form v∼ (t∗− t)3

in the kinetically limited regime, where the global evaporation rate is proportional
to the surface area of the droplet. This behaviour is observed here because using
the larger value of K moves the onset of this regime to larger droplet sizes. From
figure 18(b) we deduce that increasing E decreases a, but the change is generally
negligibly small. Moreover, as we have seen in the preceding section, increasing λ
speeds up the evaporation process and as a result we see an increase in the prefactor
(figure 18c). In figures 18(a–c) we also plotted the apparent power law predicted by
using a= 1/n where n is given by the approximation (4.8). We readily see that the
theoretical estimate predicts the overall trend quite well, provided that the volume of
the droplet does not become too small. In figure 18(d) we explore the influence of
gravity. Although its inclusion changes the exponent only at the onset (see the inset
of figure 18d), this change can yield appreciable differences in t∗ (for example, for
the two simulations shown in figure 18d, the evaporative dynamics is approximately
1.5 times slower when B= 0 compared to B= 10).
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FIGURE 18. Plots of v as a function of t∗ − t for different sets of parameters. The
solutions to the full problems and the corresponding reduced problems are shown by
solid and dashed curves, respectively. In all plots, the grey curves correspond to the data
obtained with E = 8 × 10−5, K = 28 × 10−5, λ = 2 × 10−5, B = 0 and r(0) = v(0) = 1,
also plotted in figure 8. The black curves depict calculations where only one parameter
is varied compared to the grey curves: (a) K= 28× 10−4 – the classical power laws are
also shown for visual comparison; (b) E = 8 × 10−3; (c) λ = 2 × 10−4; (d) B = 10. The
dotted curves in (a–c) are based on power laws of the form v ∼ (t∗ − t)a where a= 1/n.
The inset in (d) shows the volume evolution at early times.

A final observation that can be made by looking at the curves of figure 18 is the
clear breakdown of our analytical theory (the dashed curves) when the volume of the
droplet becomes small, but this only occurs when typically more than 99 % of the fluid
of the droplet evaporates. This departure of the theory from the numerics is strongly
dependent on the parameters of the problem (compare, e.g. the simulations shown in
figure 18d), but ultimately, as expected from (3.40), the theory incorrectly predicts that
the droplet stops evaporating when v reaches a (small) value in finite time.

5. Concluding remarks

In the present study, we have performed an asymptotic analysis of a minimal model
describing the evaporative dynamics of thin partially wetting droplets in the Stokes
flow regime. Our model contains the most basic ingredients needed to capture the
essential physics of evaporation of droplets into a pure vapour atmosphere, requiring
three parameters, slip, evaporation and kinetic resistance to evaporation, with gravity
added as an extra parameter. A key new development in the present theory is
the coupling of the micro- and macro-scales that allowed us to obtain a system
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of differential equations for the radius and volume of the droplet for a one-sided
evaporation model, which was previously studied asymptotically only in contrived
settings (see, e.g. Anderson & Davis 1995; Hocking 1995).

By focusing on the limit when E =O(λ) as λ→ 0, the droplet dynamics was found
to be governed by the universal contact line law at leading order (see (3.21)) and an
appropriate evolution equation for the volume, utilising (3.38) with the baseline case
K=O(λ). The latter equation can be replaced by (3.23), when λ�K� 1 and B= 0.
Particular emphasis was placed on treating the dynamics in the vicinity of the contact
line and the evaporative term, which depends crucially on the droplet thickness. Thus,
estimating the rate of mass loss required a detailed calculation which accounted for
the contributions coming from the inner and outer regions.

A possibility for future work is to pursue other distinguished limits of the present
model, e.g. when K = O(1) and E = O(1/|ln λ|) as λ→ 0. This limit can possibly
be physically relevant subject to the caveat that the modelling assumptions require
the evaporative flux to be small with 1Θ�Θ0. In such a case, departures from the
universal contact line law may be observed, as elucidated by the asymptotic analysis
of Oliver et al. (2015) for a model with constant mass flux, which applies to the
distinguished limit of our model for droplets much smaller than the kinetic length, s.

In our analysis, we did not treat the contact line dynamics during the evaporation
stage separately from the dynamics during the spreading stage, as in the recent work
of Saxton et al. (2016). Instead, we assumed that the contact line law persists across
both the spreading and the evaporation time scales. Although we gathered sufficient
numerical evidence and offered some heuristic arguments why our approach may yield
slightly better results as opposed to simply taking θ = θm as done by Saxton et al.
(2016), we have not undertaken a detailed error analysis to rigorously determine the
accuracy of this step. For this to be done properly, it is likely that (3.21) must be
generalised to include not only ṙ, but also v̇ contributions giving rise to a reliable
evaluation of the error made by taking θ = θm. Here, we found the contact line law to
be consistently in excellent agreement with the predictions of the governing equations,
thus avoiding the extra work described above.

The procedure we followed here can be readily adapted to other models that include
additional effects (see, e.g. Ajaev 2005; Sodtke et al. 2008), which will most likely
reduce to determining how they influence the parameters, β, β̃ and θm of the inner
problem. This framework also applies if a precursor film model is used instead of a
slip model. Unlike the non-volatile case, however, mapping the dynamics of different
contact line models, be it a precursor film or a slip-based model, as done, for example,
by Savva & Kalliadasis (2011) and Sibley et al. (2015b) is perhaps impossible due
to the fact that from the inner region we need to extract the three aforementioned
parameters; in contrast, in the non-volatile case only one parameter is extracted from
the inner region, which allows us to easily map one model onto the other so that
an asymptotic analysis followed by matching yields an identical set of differential
equations at leading order.

We have demonstrated throughout this work the validity of our analysis, given that
in all calculations we have performed the dynamics of the full problem was nearly
indistinguishable from that of the reduced problem. Moreover, we managed to obtain
a closed-form expression that enables the accurate prediction of the dynamics during
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the evaporation stage and we were able to extract an expression for the evaporation
time based on the system parameters, see (4.7). Our results also demonstrate that some
of the non-trivial apparent power laws reported in experiments (see, e.g. Deegan et al.
2000) can be rationalised by the presence of the logarithm in (4.4), which can possibly
modulate the exponent of a power law emerging from discrete data points.

The emphasis of the present work was placed on developing and verifying the
asymptotic theory we have presented and no attempt was made to compare our
results with the admittedly scarce experimental data reported in the literature.
Moreover, in experiments the so-called constant radius mode is often observed
(see, e.g. Cioulachtjian et al. 2010), whereby the contact angle decreases, but the
contact line appears to be pinned. This pinning is apparently due to substrate
heterogeneities, which are not accounted for in the present model. Our model,
whose key assumption is that the substrate is free from heterogeneities, is only able
to capture the constant contact angle mode, during which the contact line is freely
receding in the evaporation stage, whereas the contact angle remains constant above its
equilibrium value determined by Young’s relation. To date, this remains an important
question in the field, namely how the selection occurs between a pinned contact line
(‘constant contact radius’ mode) and freely receding contact line (‘constant contact
angle’ mode) (Bourges-Monnier & Shanahan 1995; Semenov et al. 2014; Stauber
et al. 2014, 2015). It is clear, however, that explicitly accounting for the substrate
heterogeneities will be instrumental for capturing the transition between the two
modes and providing an accurate description of the underlying contact line dynamics.
This and related topics will be subjects of future investigations.
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Appendix A. Weakly modified Young’s angles
When E�1 and K=O(1), θm is weakly modified by evaporation, so that have θm≈

1 at leading order. Given also that in the present study we have ṙ� 1, we introduce
an inner expansion of the form

φ ∼ η+ φ̃ + · · ·, (A 1)

where φ̃ retains the linear terms in E and ṙ so that we can take η� φ̃. The linearised
differential equation for φ̃ satisfies

ṙ+ ∂η[η2(η+ 1)∂3
η φ̃] =−

E
η+K

, (A 2)

which is to be solved subject to the homogeneous conditions at η= 0, namely

φ̃ = ∂ηφ̃ = 0 (A 3)
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and possesses the following asymptotic behaviour as η→∞:

∂ηφ̃ ∼ αE+ ṙ ln(βη), (A 4)

where α and β are constants to be determined. Hence, it follows that in the weak
evaporation limit, the modified Young’s angle is approximately given by

θm = 1+ αE. (A 5)

Integrating (A 2) once and requiring that both sides vanish as η→ 0, gives, after some
term rearrangement

ṙ
η+ 1

+ η∂3
η φ̃ =−

E
η(η+ 1)

ln
η+K

K
. (A 6)

Integration by parts for η ranging from 0 to some large scale `� 1 gives

[η∂2
η φ̃ − ∂ηφ̃]

`
0 + ṙ ln(`+ 1)=−E

∫ `

0

1
η(η+ 1)

ln
η+K

K
dη. (A 7)

From (A 3) we must have η∂2
η φ̃→0 as η→0, whereas (A 4) gives η∂2

η φ̃∼ ṙ as η→∞.
Hence, by standard manipulations, it is easy to see from (A 7) that the constants α and
β in (A 4) are

α =

∫
∞

0

1
η(η+ 1)

ln
η+K

K
dη= dilog K +

1
2

ln2 K +
π2

6
, (A 8)

β = e, (A 9)

where dilog K denotes the dilogarithm function, which is defined as

dilog K =
∫ K

1

ln x
1− x

dx. (A 10)

From the asymptotics of the inner region, we need to have αE� 1, which restricts
the regime of validity of the calculation presented here. Using the small- and large-K
expansions of α we find that if K is small, good agreement is expected if E is chosen
so that

E�
6

2π2 + 3 ln2 K
, (A 11)

whereas if K is large, it suffices to choose

E�
K

1+ ln K
. (A 12)

This shows that (A 5) can be an acceptable approximation to θm provided that K is
sufficiently large, even when E=O(1).
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FIGURE 19. Plots of φ0 as a function of η for K = 1 and different values of E. The
dashed lines show the asymptotic slope, θm.

Appendix B. Numerical solution of boundary value problems arising in the
analysis

B.1. Boundary value problem for θm

In order to determine θm, we solve (3.15) with (3.16) numerically. Noting that (3.15)
does not depend explicitly on the independent variable, η, a change of the independent
variable to φ0 leads to the lower-order differential equation

F∂φ0[φ
2
0(φ0 + 1)F∂φ0(F∂φ0F)] =−

E
φ0 +K

, (B 1)

where we set F = ∂ηφ0. This is a differential equation for F(φ0) to be solved along
with ∂φ0F→ 0 and ∂2

φ0
F→ 0 as φ0 →∞, as well as F(0) = 1. A straightforward

calculation reveals that the order of (B 1) is equal to the sum of the degrees of
freedom in the local expansions of F as φ0→ 0 and as φ0→∞, one of which is θm.

The advantage of this variable change is that it facilitates the extraction of θm, by
simply obtaining the value of F as φ0→∞ (or, equivalently, η→∞) as part of the
numerical solution, instead of finding θm from a non-constant asymptotic behaviour.
This calculation was completed numerically using the pseudo-spectral collocation
method (Boyd 2000; Trefethen 2000), noting that in order to avoid the logarithmic
singularity of ∂φ0F at φ0 = 0, we introduced yet another change of variable y= ln φ0

with y ∈ (−∞,∞), which was then mapped appropriately to the interval [−1, 1] of
the Chebyshev collocation points. By doing so, the derivatives with respect to y are
well defined everywhere and, at the same time, we also manage to avoid domain
truncation and the use of a shooting method to achieve the desired behaviour at
infinity. In this manner, we form a nonlinear boundary value problem on the interval
[−1, 1] which is solved with Newton iterations. One can then obtain φ0(η) from
the implicit formula η=

∫ φ0

0 dϕ/F(ϕ). The results of such calculations are shown in
figure 19, where we plot φ0 as a function of η. The plots confirm that in all cases
the free surface meets the substrate with a unit slope, i.e. the curves approach the
origin tangentially to the E= 0 line, φ0= η. At short distances away from the contact
line, the free surface bends abruptly, with its slope approaching θm as η→∞.
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FIGURE 20. Plot of ζ as a function of K describing the large-E asymptotics of
θm ∼ ζ (K)E1/4.

B.2. Boundary value problem for ζ (K)
To obtain ζ (K) numerically, we eliminate E from (B 1) by considering the equation
for F̃(φ0)= E−1/4F(φ0). This merely changes the aforementioned conditions on F to
F̃(0) = E−1/4 at φ0 = 0, whereas the condition at infinity, ∂φ0 F̃→ 0, stays the same.
In this manner, if we formally take the limit E→∞, F̃(0)→ 0 and we can obtain
ζ (K) from the value of F̃ as φ0 →∞ which is well defined for non-zero K (see
figure 20). Such a formulation corresponds to a perfectly wetting scenario, i.e. with
zero ϑs. Although the perfectly wetting case is interesting in its own right (e.g. we
can easily verify that φ0 scales with η4/3 as η→ 0), it is not pursued further in the
present study.

B.3. Boundary value problem for β
Proceeding analogously to the method utilised to obtain θm (see appendix B.1), we
take φ0 as the dependent variable so that (3.18) becomes:

L[φ1] + 1= 0, (B 2)

where we defined the differential operator

L[·] = ∂φ0{φ
2
0(φ0 + 1)F∂φ0[F∂φ0(F∂φ0[·])] + φ0(3φ0 + 2)F∂φ0(F∂φ0F)[·]}

−
E[·]

F(φ0 +K)2
. (B 3)

Even though (B 2) is a more complicated differential equation compared to (3.18), we
note that it is a linear one, with its coefficients depending on the solution to (B 1).
Changing the dependent variable from η to φ0 transforms the condition (3.19b) to

∂φ0φ1 ∼
1
θ 3

m

ln
βφ0

θm
, (B 4)

which is equivalent to having

φ1 ∼
φ0

θ 3
m

ln
βφ0

θme
(B 5)
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as φ0→∞. As before, we use the mapping φ0 = ey to solve for β. We also exploit
the linearity of (B 2), casting it as a problem for ψ(y), where ψ(y) is defined from

φ1 = ey

(
ψ(y)+

y
θ 3

m

ey

ey + 1

)
, (B 6)

and is subject to homogeneous conditions as y→±∞, namely ψ = ∂yψ = 0 as y→
−∞ and ∂yψ = ∂

2
yψ = 0 as y→∞. By doing so, we avoid dealing with φ1 becoming

unbounded as φ0→∞, while at the same time, we can extract β, since from (B 5)
and (B 6) we have ψ→ψ∞ as y→∞, so that

ψ∞ =
1
θ 3

m

ln
β

θme
. (B 7)

The value of β is readily found from (B 7), i.e.

β = θme1+ψ∞θ3
m . (B 8)

Appendix C. Numerical solution of the full and reduced problems

Solving (3.21) and (3.38) with (3.5) subject to initial conditions r(0)= r0 and v(0)=
v0 (typically we consider cases with v0 = 1) is rather straightforward, once we have
the values of β̃, β and θm from the asymptotics of the inner region (see discussion
in §§ 3.1.2 and 3.2). For time stepping, a standard Runge–Kutta scheme suffices for
accurate solutions, evaluating the integrals of δ and γ , equations (3.10) and (3.39),
respectively, using the Legendre–Gauss quadrature (see Abramowitz & Stegun 1972,
§ 25.4).

On the other hand, the original partial differential equation, equation (2.14), is
a free-boundary problem and is considerably more difficult to solve, due to the
boundary layers present at x = r(t) which make the problem rather stiff particularly
for smaller values of λ. Moreover, enforcing the condition (2.18e) is impossible by
standard numerical methods as it requires ∂3

x h to be singular for h∂3
x h to be finite as

x→ r(t). To remedy these difficulties, we use similar ideas as in Savva & Kalliadasis
(2009), thus transforming the governing equation into a fixed boundary problem by
an appropriate mapping and casting it in the form of an integral partial differential
equation, which is solved in MATLAB.

More specifically, we introduce the mapping x = yr(t), where 0 6 y 6 1, multiply
(2.14) by y and integrate the resulting equation from 0 to y so that we obtain

∂tg+
ṙ
r
(2g− y∂yg)+

1
r4

yh2(h+ λ)∂y

(
∂2

y h+
1
y
∂yh− Br2h

)
+ j= 0, (C 1)

where

g(y, t)=
∫ y

0
ỹh(ỹ, t) dỹ and j(y, t)=

∫ y

0

Eλỹ
h(ỹ, t)+Kλ

dỹ. (C 2a,b)

In (C 1) and (C 2b), h(y, t) is evaluated from

h= y−1∂yg. (C 3)
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Hence, in this new formulation, we solve for g(y, t) instead of h(y, t), which is
determined by the formula above. The axisymmetric geometry requires g(y, t) to be
an even function of y i.e. we require that at y= 0 we have

∂yg= 0 and ∂3
y g= 0, (C 4a,b)

together with the boundary conditions of the original problem at x= r, equations (2.18a)
and (2.18b), being transformed to conditions at y= 1,

∂yg= 0 and ∂2
y g=−r, (C 4c,d)

respectively. However, the condition prescribing the velocity of the contact line of the
original problem, equation (2.18e), which was essentially a derived explicit equation
for the velocity of the free boundary at the contact line, is no longer practicable.
This is because (C 1) is a fourth-order problem in y for g and (2.18e) requires the
evaluation of ∂4

y g at y= 1. However, the usefulness of (2.18e) in the present context
is that it explicitly shows that h∂3

y h remains finite and hence the third term on the
left-hand side of (C 1) vanishes at the contact line, as y→ 1. Therefore, to complete
the set of conditions for the reformulated problem, equation (C 1) turns out to be
compatible (asymptotically as y→ 1) with the following condition

g=
v

r2
(C 4e)

at y = 1, which follows from (C 2a) evaluated at y = 1, equation (2.19) and the
definition y= x/r; lastly

v̇ =−r2j(1, t), (C 5)

which is essentially (2.20) rewritten with the help of (C 2b). The new problem,
equations (C 1) and (C 5) subject to the boundary conditions (C 4) is less stiff to
solve compared to the original problem given that only the third spatial derivative of
h needs to be computed, instead of the fourth derivative in (2.14).

The governing equation is discretised in space using the Chebyshev pseudo-spectral
collocation method, which naturally clusters more points near the contact line. It is
also important to note that the discretisation is done over the interval −1 6 y 6 1
using an even number of collocation points to avoid complications at the axis of
symmetry, y = 0. In the end, the solution is computed for 0 6 y 6 1 only, having
discarded the remaining points due to symmetry (see, e.g. Trefethen 2000). By doing
so, we achieve symmetry about y = 0 in the computed solution, without imposing
explicitly the symmetry condition of the original problem, equation (2.18c,d). The
spatially discretised problem is solved using the method of lines. Noteworthy is also
that since we no longer use an explicit equation for ṙ, but an additional condition on g,
equation (C 4e), the problem is most appropriately cast as a system of differential
algebraic equations.

As an initial droplet shape we use

h(y, 0)=
[

m+
(

1
θ
−m

)
1

1+ (1− y2)ε−1

]
h0(yr0), (C 6)

for some numerical parameter ε � 1 and specified values for r0 = r(0) and v0 =

v(0), where h0 and θ are given by substituting r = r0 and v = v0 in (3.4) and (3.5),
respectively, and m≈ 1 is found by computing

m=
v0 − θ

−1S
v0 − S

with S= r2
0

∫ 1

0

yh0(yr0)

1+ (1− y2)ε−1
dy (C 7)
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to ensure that the initial volume condition v(0)= v0 is satisfied. However, just setting
m= 1 is usually sufficient when ε=O(λ) since the deviations from v0 are very small,
typically within 0.1 % of the actual value of v0. The initial condition given by (C 6)
satisfies the requirement that the free surface must meet the substrate at Young’s angle,
whilst the bulk is well approximated by the leading-order outer solution. By choosing
such an initial shape with ε = O(λ), we avoid the transient dynamics necessary for
an arbitrarily shaped free surface to relax approximately to the quasi-static shape in
the bulk (see also the last paragraph of § 3.1). Unless otherwise specified, in our
simulations we chose ε = 0.1� λ to demonstrate that these transients are rather brief.
Besides, even if the initial free surface shape is significantly different from the leading-
order, quasi-static solution, equation (3.4), we found that the droplet reaches the quasi-
static regime within t=O(10−1).

Lastly, we should mention that solving numerically the governing partial differential
equation becomes increasingly stiffer as the droplet evaporates, because the mesh
points get crammed in a smaller and smaller spatial domain. For this reason, we
usually do a three-step computation, stopping the calculation twice, when r becomes
10−1 and 10−2, mapping some of the mesh points away from the contact line region
towards the bulk of the droplet and restarting the computation with an initial condition
obtained by utilising the polynomial interpolant associated with the collocation scheme
of the previous step. Ultimately, we terminate the computation when the droplet radius
becomes O(10−4) since further mesh adaptivity does not help much with regards to
the stiffness of the problem. Besides, at this stage v(t)=O(10−12), whose evolution is
beyond the scope of the macroscopic analysis we presented. Thus, we did not deem
continuing the computation necessary for smaller values of the radius. The time at
which the droplet will completely evaporate, denoted by t∗, is a singular limit for
the partial differential equation. Even though the evaporation time is expected to be
very close to the time at which a computation is terminated, it was estimated by
extrapolating the droplet radius to zero by simply using the last data points recorded
for the radius, say (t1, r1) and (t2, r2). Then t∗ is estimated by fitting a square root
through the points so that the slope of r(t) becomes infinite at t∗. We find

t∗ ≈
r2

1t2 − r2
2t1

r2
1 − r2

2
. (C 8)

In all cases we tested, this simple formula gave results that were within 0.01 % of the
value returned by including more data points and using a more involved extrapolation
method, such as Neville’s extrapolation algorithm (Press et al. 1992). It should be
emphasised, however, that (C 8) is merely used as a numerical tool to get a closer
estimate to t∗ and we do not actually claim a square-root law at the singular limit of
the problem.
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