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Mean momentum equation based analysis of polymer drag-reduced channel flow is
performed to evaluate the redistribution of mean momentum and the mechanisms
underlying the redistribution processes. Similar to channel flow of Newtonian fluids,
polymer drag-reduced channel flow is shown to exhibit a four layer structure in the
mean balance of forces that also connects, via the mean momentum equation, to
an underlying scaling layer hierarchy. The self-similar properties of the flow related
to the layer hierarchy appear to persist, but in an altered form (different from the
Newtonian fluid flow), and dependent on the level of drag reduction. With increasing
drag reduction, polymer stress usurps the role of the inertial mechanism, and because
of this the wall-normal position where inertially dominated mean dynamics occurs
moves outward, and viscous effects become increasingly important farther from the
wall. For the high drag reduction flows of the present study, viscous effects become
non-negligible across the entire hierarchy and an inertially dominated logarithmic
scaling region ceases to exist. It follows that the state of maximum drag reduction is
attained only after the inertial sublayer is eradicated. According to the present mean
equation theory, this coincides with the loss of a region of logarithmic dependence
in the mean profile.

Key words: drag reduction, polymers, turbulent boundary layers

1. Introduction

The mean momentum balance of a polymer drag-reduced wall-bounded flow is
different compared to flow of a Newtonian fluid with nearly identical boundary
conditions. These differences result in a considerable modification of the underlying
flow structure, and consequently the turbulent flow statistics (see e.g. Lumley 1969;
Virk 1975; Nieuwstadt & Den Toonder 2001; Ptasinski et al. 2003; Dubief et al.
2004; Min et al. 2004). The most significant of these differences is a reduction in
the wall shear stress that can approach upwards of 80 %. Remarkably, such high drag
reduction (DR) can be achieved using only parts-per-million quantities of polymers by
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weight dissolved into solution. Indeed, the combined benefits of high drag reduction
and low additive concentration is the primary reason why polymer drag-reduced
flows have attracted, and continue to attract, considerable research interest from both
fundamental and practical viewpoints (White & Mungal 2008).

The present objective is to explore the mean momentum balance and the
mechanisms underlying its redistribution processes (related to Newtonian flow) in
polymer drag-reduced channel flow. The specific aim is to better understand the
effect of polymers on the dynamics of the inertially dominated layer of turbulent
channel flow. The focus on the inertial layer is twofold: (i) the effects of polymers
on the inertial layer have long been misinterpreted and (ii) the upper bound of
polymer drag reduction is directly correlated with the breakdown of the inertial layer
caused by the action of the polymers. One motivating factor for the present study
is that the studies of White, Dubief & Klewicki (2012) and Elbing et al. (2013)
provide detailed evidence that the behaviours of the mean velocity distribution in
polymer drag-reduced flows are distinct from long-held views (Virk, Mickley &
Smith 1970; Virk 1975). In particular, they found that the so-called ‘ultimate profile’
corresponding to the mean velocity profile at the asymptotic state of maximum drag
reduction is not logarithmic. Additionally, White et al. (2012) showed that at low
DR polymers modify the slope of the logarithmic region of the mean velocity profile.
Both of these observations are contrary to long-held views that have anchored many
phenomenological and theoretical descriptions of the mechanisms of polymer drag
reduction (Virk 1975; Benzi et al. 2006).

The findings of White et al. (2012) and Elbing et al. (2013) strongly suggest that
the exact shape of the mean velocity profile at maximum drag reduction (MDR) is not
universal, but likely depends on Reynolds number, polymeric properties or canonical
flow type. These findings are important since the shape of the mean velocity profile is
a manifestation of the underlying flow dynamics. Importantly, the lack of a logarithmic
region of mean velocity at MDR indicates that a dynamically self-similar inertial layer
does not exist. Stated otherwise, the state of maximum drag reduction is attained only
after the inertial sublayer is eradicated. This is suggestive of a lack of requisite scale
separation between the energetic and dissipative motions. It follows that the effect
of polymers on the inertial layer dynamics and corresponding disruption of the scale
separation is critically important to understanding the mechanisms of polymer drag
reduction. Indeed, it is likely that the limiting state of drag reduction (i.e. MDR)
corresponds to an asymptotic state of scale separation brought about by the interplay
between polymer and flow dynamics. Understanding these effects is the goal of the
present study.

Data from direct numerical simulation (DNS) studies of viscoelastic turbulent
channel flow that span 0 6 DR 6 62 % and 120 6 δ+ 6 1000, where δ+ is Reynolds
number based on channel half-height δ and friction velocity uτ =

√
τw/ρ with τw

being the shear stress at the wall and ρ the fluid density, are analysed in the context
of a mean momentum equation based analysis (Fife et al. 2005; Klewicki, Fife &
Wei 2009). This analysis provides, as a function of DR, the leading-order terms in the
momentum balance across the channel half-height, and how polymers affect the mean
momentum balance that underlies logarithmic-like behaviours of the mean velocity
profile. The co-spectra of the Reynolds shear stress and its wall-normal gradient are
analysed to investigate the effects of polymers on scale separation. Combined as
a whole, these investigations lead to an improved understanding of how polymers
modify the dynamics of the inertially dominated layer of turbulent channel flow, and
how these modifications can be interpreted within the context of our understanding of
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Study Symbol δ+ Weτ L γ DR

Dubief et al. (2013) (F) 120 720 200 0.9 61
Dubief et al. (2013) (f) 130 96 200 0.9 56
Dubief et al. (2004) (×) 186 120 100 0.9 60
Dubief et al. (2013) (6) 190 — — — 0
Dubief et al. (2004) (∗) 237 36 100 0.9 35
Dubief et al. (2004) (+) 300 — — — 0
Thais et al. (2011) (@) 395 — — — 0
Thais et al. (2011) (p) 395 115 100 0.9 62
Thais et al. (2011) (E) 590 — — — 0
Thais et al. (2011) (u) 590 115 100 0.9 61
Thais et al. (2013) (A) 1000 — — — 0
Thais et al. (2013) (q) 1000 50 30 0.9 30
Thais et al. (2013) (s) 1000 115 100 0.9 59

TABLE 1. Data symbols and parameters for the viscoelastic simulations. The Weissenberg
number Weτ = λu2

τ/νo, where ν0 is the zero shear rate kinematic viscosity of the solution.

the physical mechanisms of polymer drag reduction (Dubief et al. 2004; Kim et al.
2007; White & Mungal 2008), as well as the asymptotic state of maximum drag
reduction (Sreenivasan & White 2000; Graham 2014).

2. Direct numerical simulations of polymeric solutions

The mean momentum equation based analysis is conducted using datasets from
DNS simulations of viscoelastic turbulent channel flow from two independent research
groups. The parameters and the data symbols associated with the datasets are
summarized in table 1. The datasets were selected because they span almost a decade
in δ+. For ease of interpretation, and when appropriate, the datasets may be segregated
by DR into three categories: Newtonian flow (DR= 0 %), low drag reduction, LDR,
(0<DR 6 40 %), high drag reduction, HDR, (DR> 40 %). Alternatively, the datasets
from Dubief et al. (2004), Thais et al. (2011) and Dubief, Terrapon & Soria (2013),
Thais, Gatski & Mompean (2013) may be presented separately. In addition, only
representative datasets from the 13 total datasets may be presented.

The numerical methods used by the two research groups, described in Dubief et al.
(2004, 2005, 2013) and Thais et al. (2011, 2013), are briefly reviewed here. The
channel flow simulations employ a Cartesian domain defined by the orthonormal
vector base (ex, ey, ez) where x, y and z are the streamwise, wall-normal and spanwise
directions, respectively. The components of the velocity vector u are u, v and w. For
a viscoelastic flow, the governing equations for conservation of mass and transport of
momentum are

∇ · u= 0 and (2.1)
∂u
∂t
+ (u · ∇)u=−∇p+

γ

Re
∇

2u+
1− γ

Re
∇ ·Ψ + g(t)ex, (2.2)

where t is time, p is the hydrostatic pressure, γ is the ratio of solvent viscosity to the
zero-shear viscosity of the polymer solution, Ψ is the polymer stress tensor and g(t)
is the pressure gradient driving the flow. The polymer stress tensor Ψ is computed
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using the FENE-P (Finite Elastic Nonlinear Extensibility-Peterlin) model

Ψ =
1

We

(
C

1− tr(C)/L2
− I

)
, (2.3)

where the tensor C is the local conformation tensor of the polymer solution and
I is the unit tensor. The properties of the polymer solution are γ , the maximum
polymer extension L, and the relaxation time λ, based on the convection scales
Weissenberg number (We= λUc/δ) where Uc is the centreline velocity, δ the channel
half-height. The FENE-P models a polymer molecule by a pair of beads connected
by a nonlinear spring defined by the end-to-end vector q. The conformation tensor
is the phase average of the tensorial product of the end-to-end vector q with itself,
C = 〈q⊗ q〉 whose transport equation is

∂C

∂t
+ (u · ∇)C = C(∇ u)+ (∇ u)TC −Ψ . (2.4)

Equations (2.2)–(2.4) with appropriate boundary conditions are solved using slightly
different numerical methods between the two research groups. The datasets of Thais
et al. (2011) were obtained using a hybrid spatial scheme with Fourier spectral
discretization in the two homogeneous directions and high-order finite differences in
the wall-normal direction. This approach was chosen to efficiently simulate high δ+

flows. The datasets of Dubief et al. (2004, 2013) were obtained using finite differences
on a staggered grid and a compact upwind scheme for the polymer advection term.
The latter avoids the need to add a global artificial dissipation term to the transport
equation for the confirmation tensor (2.4). The inclusion of a dissipation term to (2.4)
is a common approach used to achieve code stability when simulating high We flows
using pseudo-spectral methods (Sureshkumar & Boris 1995). See Dubief et al. (2005)
and Thais et al. (2011) for detailed descriptions of the numerical methods and their
validation.

3. Behaviours of the mean velocity distribution in polymeric flows
The earliest description of the collective behaviours of the mean velocity distribution

in polymer drag-reduced flow was given by Virk (1975), and explained here with
reference to figure 1(a). The figure illustrates distributions of mean velocity in wall
coordinates for turbulent pipe flow of polymer solution at varying DR, where the
superscript + denotes normalization by the friction velocity uτ =

√
τw/ρ and kinematic

viscosity ν, where τw is the shear stress at the wall and ρ the fluid density. In semi-log
coordinates, regions of constant slope are suggestive of logarithmic dependence of the
mean velocity. i.e.

〈u〉+ =
1
κ

ln(y+)+C1, (3.1)

where 〈·〉 denotes an average, 1/κ (typically κ is called the von Kármán coefficient)
is the slope and C1 is the intercept at y+= 1. For Newtonian fluids over hydraulically
smooth walls, equation (3.1) is often referred to as the logarithmic ‘law of the wall’
with constants (at sufficiently high Reynolds number) κ ≈ 0.4 and C1 ≈ 5, with
some existing evidence for variations depending on the canonical flow type (Nagib &
Chauhan 2008). The polymer drag-reduced pipe flow data compiled by Virk (1975)
suggest logarithmic behaviours of the mean velocity distribution that vary with the
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FIGURE 1. (a) Schematic of the behaviours of the mean velocity distribution for wall-
bounded flow of polymer solutions as summarized by Virk (1975): (i) 〈u〉+ = y+, (ii) is
the Newtonian ‘law of the wall’ given by 〈u〉+=2.5 log(y+)+5.0, and (iii) is the ‘ultimate
profile’ given by (3.2). With DR, the mean velocity distribution initially follows (iii) and
then crosses over to a ‘Newtonian plug flow’ with the same value of κ as (ii) and C1
increasing with increasing DR. (b) Mean velocity profiles of DNS datasets tabulated in
table 1.

DR achieved. At maximum drag reduction (MDR), the entire profile outside of the
viscous sublayer appears logarithmic and adheres to the ‘ultimate profile’ determined
empirically by Virk et al. (1970) as

〈u〉+ = 11.7 ln(y+)− 17. (3.2)

It follows that a friction factor relation at MDR can be obtained by assuming
equation (3.2) holds across the entire pipe. This friction relation is the so-called
MDR asymptote and is given by

1
√

f
= 19 log Re

√
f − 32.4, (3.3)

where the friction factor f = 2u2
τ/U

2
b , Ub is the bulk velocity in the pipe, and the

Reynolds number Re = UbD/ν where D is the pipe diameter. Equations (3.2) and
(3.3) are commonly believed to be approximately universal and insensitive to polymer
species, molecular weight or the polymer–solvent pair. For intermediate DR, the
mean velocity profile is described as initially following (3.2) and then is described
as crossing over to a ‘Newtonian plug flow’ with the same value of κ as that for
wall-bounded flows of Newtonian fluids and C1 increasing with increasing DR. At
zero DR, the mean velocity profile of a polymer solution follows that of a Newtonian
fluid.

The inner-normalized mean velocity profiles from the DNS datasets tabulated in
table 1 are shown in figure 1(b). In general, the behaviours of the mean velocity
profiles with increasing DR appear to be generally well captured by the schematic
in figure 1(a). Consequently, it is clear why Virk’s description of the collective
behaviours of the mean velocity distribution in polymer drag-reduced flow has
endured for more than 40 years. Nevertheless, as pointed out by White et al. (2012),
there have been several studies over these 40 years that have reported discrepancies
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between measured velocity profiles and Virk’s model. This includes profiles with
slopes not quite parallel to the Newtonian log law, and profiles with slopes greater
than 11.7 at maximum drag reduction. Often, these discrepancies were attributed to
measurement uncertainty or second-order effects not captured by Virk’s model. In
addition, close inspection of the DNS profiles in figure 1(b) show that for the HDR
flows, the slope increases relative to the Newtonian case, but is less than the slope
given by (3.2). Similar observations have led to the common belief that there is a
difference between LDR and HDR flows (Warholic, Massah & Hanratty 1999; Dubief
et al. 2004).

Following White et al. (2012), the influence of polymer on the mean velocity
distribution is evaluated using the so-called indicator function, ζ = y+ d〈u〉+/dy+,
typically used to investigate logarithmic dependence of the mean velocity profile.
Profiles of ζ for the DNS datasets are shown in figure 2. To frame the discussion,
note that a region of local minima approaching constancy indicates logarithmic
dependence of the mean velocity in an interior inertial region of the flow (i.e. the
so-called inertial sublayer), where the approximately constant value corresponds to
1/κ . The near-wall maximum in ζ is nominally centred in the so-called buffer layer.
Note that the mean velocity distribution in the buffer layer appears logarithmic in
wall coordinates, but is clearly not logarithmic as illustrated by the parabolic shape
of ζ in the buffer region.

The Newtonian ζ profiles show a clear δ+ dependence. Here the log layer moves
outward from the wall and κ decreases with increasing δ+, consistent with the results
of Nagib & Chauhan (2008). For the LDR ζ profiles, the log layer is farther from
the wall and the slope is modified (larger) compared to the Newtonian case at a
similar δ+. Importantly, the HDR ζ profiles do not show a region of local minima
in the interior region of the flow, indicating that the mean velocity distribution does
not possess an inertially dominated logarithmic region (i.e. it has been eradicated
by the action of the polymers). Consequently, the mean velocity profile in polymer
HDR flow is not accurately captured by a logarithmic function. Instead, the ζ profiles
show that the apparent logarithmic-like behaviours of the HDR mean velocity profiles
correspond to a thickened buffer layer. (Virk (1975) termed the extended buffer layer
the elastic sublayer.) It follows that the slope of the ultimate profile (i.e. 11.7 and
shown as a horizontal dashed-dotted line in figure 2) corresponds to an approximate
peak value of ζ in the extended buffer layer at maximum drag reduction. These
data also suggest that this peak value is likely not universal, but depends on δ+ and
possibly polymeric properties (White et al. 2012). Since the mean velocity profile at
MDR is not precisely described by (3.2), it follows that the friction relation at MDR
is not precisely described by (3.3).

The ζ profiles shown in figure 2 provide clear evidence that, with increasing DR,
the action of polymers first modify then eliminate the inertially dominated logarithmic
region of the flow. It then follows that the state of maximum drag reduction is attained
only after the inertial sublayer is eradicated. Since the existence and behaviours of the
inertial layer are a manifestation of the underlying dynamical behaviours of turbulent
wall-bounded flow, understanding how polymers modify the inertial layer should be
inherently important to understanding the dynamics of polymer drag reduced flow,
and, consequently, the phenomenon of polymer drag reduction. The goal of the
present study is to employ the mean momentum equation based framework to gain
an improved understanding of the effects of polymers on the mean dynamics of the
inertial layer.
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FIGURE 2. Indicator function typically used to investigate logarithmic dependence of the
mean velocity profile. (a) Newtonian channel flow, (b) LDR viscoelastic channel flow, (c)
HDR viscoelastic channel flow. Symbol key is given in table 1. The — corresponds to
2.5 and — · — corresponds to 11.7.

4. The mean momentum equation based framework

A description of the mean momentum equation analysis framework can be found
in Fife et al. (2005), Wei et al. (2005), Fife, Klewicki & Wei (2009), Klewicki et al.
(2009), Klewicki, Ebner & Wu (2011), Klewicki (2013), among others. Nevertheless,
to keep the article self-contained and to provide a useful context relative to the mean
dynamics in polymer drag-reduced flow, we first provide a condensed description
of the framework applied to the Newtonian DNS channel flow simulations listed in
table 1.
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FIGURE 3. (a) The ratio of the gradient of the viscous stress (B) to the gradient of the
Reynolds shear stress (C) for channel flow of a Newtonian fluid at different δ+. The
symbol key is given in table 1. (b) Sketch of the four layers of turbulent wall-bounded
flows for one Reynolds number: layer I |A| ' |B|� |C|; layer II |B| ' |C|� |A|; layer III
|A| ' |B| ' |C|; layer IV |A| ' |C| � |B| (Wei et al. 2005).

4.1. Mean dynamics of Newtonian channel flow
For a canonical turbulent channel flow of channel half-height δ the inner-normalized
mean momentum equation is given by

0=
1
δ+︸︷︷︸
A

+
d2
〈u〉+

dy+2︸ ︷︷ ︸
B

−
d〈u′v′〉+

dy+︸ ︷︷ ︸
C

. (4.1)

Three physical mechanisms are represented from left to right in (4.1): term A is the
mean pressure gradient, term B is the mean viscous force, term C is the net mean
effect of turbulent inertia. The mean effect of turbulent inertia (term C) becomes non-
zero shortly after the onset of the transition to turbulence. This quantity increases in
magnitude with increasing Reynolds number, and owing to the constancy of the mean
pressure gradient (at any given δ+), the mean viscous force responds in accord with
the balance expressed by (4.1). At δ+ ' 180, the terms in (4.1) begin to nominally
satisfy the four layer magnitude ordering of terms first revealed by Wei et al. (2005)
that is characteristic of the flow for all higher δ+ (Klewicki et al. 2011). The four
layer structure is revealed through the ratio B/C as shown in figure 3. Within three
sub-regions (4.1) is brought into balance owing to two large terms and one small term
(layers I, II and IV, see figure 3b), while in another sub-region (layer III) all three
terms continue to contribute significantly to the balance. Thus, while all of the terms
in (4.1) are of leading order over some portion of 06 y6 δ, in three of the four layers
there emerges only two dominant terms.

Table 2 describes the magnitude ordering of terms in each layer and the Reynolds
number dependent scaling properties of the layer wall-normal widths and their
velocity increments (i.e. the velocity change across the layer). These scalings have
been analytically determined and empirically verified to hold for all of the canonical
turbulent wall flows. From layer II to layer IV (i.e. across layer III) there is a balance
breaking and exchange of mean forces. In this regard, the outer edge of layer III
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Physical layer Magnitude ordering 1y Increment 1U Increment

I |A| ' |B| � |C| O(ν/uτ ) (6 3) O(uτ ) (6 3)
II |B| ' |C| � |A| O(

√
νδ/uτ ) (' 1.6) O(Uc) (' 0.5)

III |A| ' |B| ' |C| O(
√
νδ/uτ ) (' 1.0) O(uτ ) (' 1)

IV |A| ' |C| � |B| O(δ) (→ 1) O(Uc) (→ 0.5)

TABLE 2. Magnitude ordering and scaling behaviours associated with the four layer
structure of the leading-order balance of mean forces in turbulent channel flow of a
Newtonian fluid (Klewicki et al. 2007). Note that A, B and C refer to the mean pressure
gradient, mean viscous force and turbulent inertia terms given in (4.1).

has particular dynamical significance, since beyond this point the mean viscous force
loses dominant order in (4.1). Note that two of the layers scale with an intermediate
length that is proportional to the geometric mean of the inner and outer length scales.
Note further that the point where the turbulent inertia term crosses zero (always
within layer III) coincides with where 〈u′v′〉 attains its maximum value. In Newtonian
channel flow, this position is located at y+ ' 1.9

√
δ+ (Sahay & Sreenivasan 1999;

Wei et al. 2005).
Analyses that exploit the magnitude orderings indicated in table 2 reveal that (4.1)

formally admits an invariant form on each of a continuous hierarchy of scaling layers.
Collectively, these scaling layers, which span an interior region of the flow, are called
the Lβ hierarchy (Fife et al. 2009). In this name the L refers to the layer hierarchy,
while the subscript β indicates that the hierarchy properties depend upon the parameter
β. This analytically derived parameter is directly related to the decay rate of the
turbulent inertia term over the interior domain where it is a monotonically decreasing
function of y+: between y+' 7 and y/δ' 0.5, which also locates the lower and upper
endpoints of the layer hierarchy (Fife et al. 2005).

In channel flow β = (−d〈u′v′〉+/dy+) + (1/δ+), and thus by virtue of (4.1) it
is also equal to −d2

〈u〉+/dy+2. For any given δ+, a value of β uniquely locates
a corresponding y+ position within the noted bounds of the layer hierarchy (the
smaller the β the larger y+). At any such y+ location, the analysis reveals that the
mean momentum equation undergoes an exchange of leading balance like that which
occurs across layer III. Thus, through the formulation employing β this exchange
is shown to occur as a function of scale with distance from the wall as determined
by the value of β. The relevant scale here is the width of the Lβ hierarchy layer,
W+(y+), over which each scale dependent exchange of balance takes place. The
theory analytically reveals that the width function is given by W+ = β−1/2.

At each wall-normal position on the hierarchy, W+(y+) is mathematically the
characteristic length that allows (4.1) to be written in the following invariant form:

d2
〈u〉+

dŷ2
−

d〈̂u′v′〉
dŷ
+ 1= 0, (4.2)

where the hat variables denote normalization by W(y+) and uτ (Fife et al. 2009).
Thus, the theory shows that under this normalization at each position on the layer
hierarchy, the mean dynamical equation takes on the same parameter free form. From
this formulation, the logarithmic law emerges as an asymptotic similarity solution
on the inertial domain where W+ asymptotically becomes a linear function of y+
(Klewicki & Oberlack 2015).
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101
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100 103102101

FIGURE 4. Layer width distribution of the Lβ hierarchy versus y+ for channel flow of
a Newtonian fluid at different δ+. The solid vertical line at y+ = 7 denotes the lower
bound of the hierarchy. The dashed vertical lines denote the approximate upper bound of
the hierarchy as a function of δ+, given by y/δ ' 0.5. The thick angled line above the
datasets at y+> 100 has a slope =

√
κ , where κ= 0.4. The symbol key is given in table 1.

Figure 4 shows W+(y+) distributions for the Newtonian DNS datasets. As indicated,
at the lower end of the hierarchy (i.e. near the inner peak of d〈u′v′〉+/dy+ denoted by
a solid vertical line in the figure), W+ is only approximately four viscous units, and
at the upper end of the hierarchy (i.e. near the outer peak of d〈u′v′〉+/dy+ denoted
by dashed vertical lines in the figure), W+ ' δ+/3 (Klewicki et al. 2011). Thus, for
Newtonian channel flow the Lβ hierarchy domain and layer widths always span from
O(ν/uτ ) to O(δ), which, in order of magnitude, is the full scale separation at any
given δ+.

As noted, equation (4.2) physically stems from a balance breaking and exchange
of mean forces occurring across each Lβ layer. This is analogous to what occurs
across layer III, as layer III is the central (or average) layer on the hierarchy, e.g.
Klewicki et al. (2011). (In this manner one can think of each scaling layer as a
boundary layer within a boundary layer.) Thus, across the hierarchy this self-similar
dynamical process occurs as a function of distance from the wall. The existence of
layer III results from the collective effect of the ensembles of self-similar dynamics
at both larger and smaller scales. At each scale, the leading-order mean dynamical
equation transitions from containing a dominant-order mean viscous force term to
being dominated by the inertial terms. This dynamical structure, in concert with
the properties of the layer width distribution, W(y+), underlie the scaling properties
reflected in table 2, as well as the behaviours of the solutions to (4.1) on the hierarchy
domain. In particular, the emergence of a mean velocity profile that is increasingly
well approximated by a logarithmic function as δ+ becomes large arises because
W+(y+) approaches a linear function on the inertial portion of the hierarchy domain
(2.6
√
δ+ . y+ . 0.3δ+), where the lower bound is the outer edge of layer III (Fife

et al. 2009; Klewicki et al. 2009; Klewicki 2013).
This linearity of W+ is analytically predicted by the theory, and this feature

of the W+ profile provides a well-founded theoretical basis for the origin of the
distance-from-the-wall scaling. This scaling is often assumed to hold since it provides
perhaps the most direct means to rationalize a logarithmic mean velocity profile.
Under the present theory, however, no such assumption is required. Furthermore, it
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FIGURE 5. (Colour online) Distribution of stress gradients in (4.3) for (a) δ+= 300/1000,
%DR = 0/0; (b) δ+ = 237/1000, %DR = 35/30; (c) δ+ = 186/1000, %DR = 60/59.
The lines correspond to - - - - 1/δ+ (A); – - – - – d2

〈u〉+/dy+
2 (B); – – – d〈u′v′〉+ (C);

—— d〈τp〉
+/dy+ (D). The symbol key is provided in table 1.

can be analytically shown (Klewicki et al. 2009) that the slope of W+(y+) on the
inertial portion of the hierarchy domain at sufficiently high δ+ is

√
κ , where κ is

the von Kármán coefficient. With increasing δ+, κ approaches a constant. The thick
angled line above the datasets at y+ > 100 in figure 4 has a slope =

√
0.4.

4.2. Force balance data in polymer drag-reduced channel flow
The inner-normalized Reynolds-averaged x-momentum equation for a statistically
steady, fully developed channel flow of polymer solution is

0=
1
δ+︸︷︷︸
A

+
d〈u〉+

dy+2︸ ︷︷ ︸
B

−
d〈u′v′〉+

dy+︸ ︷︷ ︸
C

+
d〈τp〉

+

dy+︸ ︷︷ ︸
D

, (4.3)

where τp is the polymer shear stress, which when determined from the DNS contains
the viscoelastic parameters simulated, or can be formulated by Reynolds averaging the
FENE-P model (Iaccarinoa, Shaqfeh & Dubief 2010; Resende et al. 2013). Relative
to channel flow of a Newtonian fluid, the structure associated with the magnitude
ordering of terms in (4.3) has not previously been explored. Since figure 2 clearly
demonstrates that the action of the polymers modifies the inertial layer dynamics,
fundamental questions pertain as to how the magnitude ordering of terms varies with
increasing DR, and to what degree the four layer structure of figure 3 is preserved.

The starting point of the analysis is to determine the relative magnitude of terms
A–D in (4.3) over 0 6 y 6 δ. For the three segregated categories of DR, profiles of
stress gradients are plotted in figure 5 for two different δ+ (see table 1). Term A, the
normalized pressure-gradient term, which provides the driving force for the flow, is
constant across the channel half-height (as expected) and relatively small in magnitude.
For the Newtonian case, the gradient of the viscous stress, term B, and the gradient of
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the Reynolds stress, term C, peak at y+≈ 7 (i.e. the inner bound of the Lβ hierarchy)
and are nearly mirror images, differing in magnitude only by the magnitude of term
A. With increasing DR, the peak in term B and term C move outward from the wall
and the gradient of polymer stress, term D, increases and trends similar to term C.
The peak in D is, however, closer to the wall than the peak in C. In addition, a clear
δ+ dependence is observed with increasing DR. For DR 30 %–35 %, the magnitude of
term D is small compared to term C but for DR≈ 60 % (i.e. HDR flow) term D is
larger than term C at δ+=186 and of the same order as C at δ+=1000. Consequently,
it is likely that the underlying mechanism responsible for the LDR modification of the
inertial layer and its subsequent eradication under the HDR condition underlies the
importance of term D and diminishing importance of term C in (4.3) with increasing
DR. This likely mechanistic scenario is explored in more detail below.

Equation (4.3) is effectively the time-averaged statement of Newton’s second law
for a differential fluid element, and as such must be locally satisfied over 0 6 y 6
δ. For the Newtonian case, the ratio B/C best exposes how the balance is realized.
For polymer DR flows, a single ratio to expose the balance is insufficient owing to
the four non-zero terms in (4.3). Since the additional force-like term of the polymer
stress gradient is similar dynamically to the Reynolds stress gradient (as observed
in figure 5), the sum of the Reynolds and polymer shear stress is represented as an
apparent shear stress. Figure 6 shows profiles of Reynolds, polymer and apparent shear
stress and their gradients for the three categories of DR. With increasing DR, the
polymer stress contribution to the apparent stress increases. The magnitude of this
contribution is a function of δ+. Nevertheless, the gradient of apparent stress for the
polymer DR flows is quantitatively similar to the gradient of Reynolds stress for the
Newtonian flow. It follows that the ratio B/(C+D) is useful for revealing the structure
associated with the magnitude ordering of terms in (4.3). This grouping of C+D is
also consistent with the findings of Thais et al. (2013) who found a strong dynamic
coupling between the turbulent energy and polymeric energy.

Figure 7(a) shows the ratio of the stress gradients B/(C+D) for the three categories
of DR for two different δ+, where C + D is the apparent stress gradient. Consistent
with figure 3, a four layer structure is nominally maintained, although a dependence
on DR and δ+ is observed. Specifically, with increasing DR, the importance of the
viscous forces near the wall increase such that in layer II |B|> |C+D|, although the
dependence on DR is greater at the lower δ+. Consequently, layers II and III extend
farther from the wall with increasing DR. This behaviour is consistent between the
low and high δ+ datasets.

The thickening of layers II and III in polymer DR flow is further supported by
figure 7(b) which shows the ratio B/(C+D) for Newtonian, LDR and HDR flow at
δ+=1000 versus y/

√
νδ/uτ . (Note that y/

√
νδ/uτ = y+/

√
δ+ is the intermediate length

scale associated with the layer III width in channel flow of a Newtonian fluid.) The
upper edge of the width for layers I, II and III, as provided in table 2, are shown
as vertical lines in the figure. It is apparent that the scalings for the layer widths
change significantly in polymer drag-reduced flow as compared to channel flow of
a Newtonian fluid. Most significant is that the width of layer III for the HDR flow
extends almost twice as far as it does for the Newtonian case, i.e. the 1y increment
across this layer at δ+ = 1000 and DR= 59 is O(

√
νδ/uτ ' 2.0). Here it is useful to

recall that the upper edge of layer III is where the mean viscous force loses leading
order. Consequently, in polymer drag-reduced flow, the direct importance of the mean
viscous force extends much farther from the wall compared to channel flow of a
Newtonian fluid at the same δ+. It is important to note, however, that the increased
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FIGURE 6. (Colour online) Distribution of Reynolds, polymer and apparent stress (a,c,e)
and the gradient of the apparent stress (b,d, f ): (a,b) δ+ = 300/1000, %DR = 0/0; (c,d)
δ+= 237/1000, %DR= 35/30; (e, f ) δ+= 186/1000, %DR= 60/59. The lines correspond
to – – – 〈u′v′〉+ and C; – - – - – 〈τp〉

+ and - - - - 〈u′v′ + τp〉
+
≡ C + D. The symbol key is

provided in table 1.

importance of the viscous effects is owed not to an increase in viscosity but to the
diminishing importance of the inertial effects.

Collectively, figures 5–7 demonstrate the net effect of the viscoelastic interactions
between polymers and turbulence. In particular, the polymer stress gradient is shown
to serve both as an augmented ‘viscous’ force that reduces the Reynolds stress
gradient (say by local dampening of vortices), but also usurps the role of the inertial
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FIGURE 7. (a) The ratio of the gradient of the viscous stress (B) to the gradient of
the Reynolds (C) + polymer (D) shear stress for channel flow of a viscoelastic fluid at
different δ+ and DR. The symbol key is given in table 1. (b) The ratio B/(C + D) for
Newtonian, LDR and HDR at δ+= 1000 plotted versus an intermediate length that is the
geometric mean of the inner and outer length scales. The vertical lines moving from right
to left denote the upper bound of layer I, II, III respectively for Newtonian channel flow
at δ+ = 1000 (open triangles) described in table 2.

mechanism. In this latter role, the polymer stress-gradient force is less effective than
the Reynolds stress-gradient force. Consequently, the transport of momentum towards
the wall is reduced (hence the drag is reduced).

Given the reduced role of the inertial mechanism (here the inertial mechanism
includes contributions from the polymer and Reynolds shear stress gradients), polymer
DR flow is seen to exhibit similarities to transitional flow (White & Mungal 2008;
Dubief et al. 2010; Graham 2014). This similarity is made evident by comparing
profiles from the bypass transition in a boundary layer flow of Wu, Moin & Hickey
(2014) shown in figure 8 to the profiles from polymer drag-reduced channel flow.
Specifically, the mean velocity profiles shown in figure 8(a) are similar to the profiles
in figure 1(b). The indicator function profiles shown in figure 8(b) are similar to the
profiles in figure 2. Lastly, the Reynolds shear stress profiles in figure 8(c) are similar
to the profiles in figure 6(e). The difference being that in polymer DR flow, the flow
states are inherently more stable compared to Newtonian transitional flow. Since the
mean velocity profile (and Reynolds shear stress profile) effectively represent the
mean solution to the Navier–Stokes equations, the similarities between Newtonian
transitional flow and viscoelastic flow are likely more than merely a coincidence.
Most interesting is that the transitional profiles near the beginning of the nonlinear
development stage (i.e. 200 6 Reθ 6 300) are highly similar to the MDR profiles
(Dubief et al. 2010).

4.3. Layer hierarchy
As discussed previously, the properties of the Lβ layer hierarchy on an inertial sublayer
determine the conditions for (i) a logarithmic mean velocity profile, including (ii) the
value of κ . Namely, the first of these will exist when the layer width distribution,
W+(y+), becomes a linear function of y+, and the second is determined by the constant
value of dW+/dy+. The layer width distributions of the Lβ hierarchy, W+(y+), versus
y+ computed from the drag-reduced viscoelastic channel flow simulations are shown
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FIGURE 8. Profiles from the transitional boundary layer simulation of Wu et al. (2014)
for four momentum thickness Reynolds numbers: —— Reθ = 200; - - - - Reθ = 300;
· · · · · · Reθ = 375; — · — Reθ = 670. (a) 〈u〉+, where (ii) is 〈u〉+ = 2.5 log(y+) + 5.0
and (iii) is the ‘ultimate profile’ given by (3.2); (b) ζ = y+ d〈u〉+/dy+, where the lower
horizontal line corresponds to 2.5 and the upper horizontal line corresponds to 11.7; (c)
〈u′v′〉+.
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FIGURE 9. Layer width distribution of the Lβ hierarchy versus y+ for (a) LDR viscoelastic
channel flow and (b) HDR viscoelastic channel flow. Profiles from the Newtonian channel
flow (vertically offset by a factor of 5) are included for comparison. The thick angled line
above the datasets at y+> 100 has a slope =

√
κ , where κ = 0.4. The symbol key is given

in table 1.

in figure 9. Profiles from the Newtonian simulations (vertically offset by a factor of
5) are included for comparison. The W+(y+) profiles for drag-reduced viscoelastic
channel flow approximately collapse with %DR over an interior portion of the flow.
The region over which they collapse correlates well with the physical extent of the
hierarchy that spans from(

−d〈u′v′〉+

dy+
+

d〈τp〉
+

dy+

)
inner peak

/ y /
(
−d〈u′v′〉+

dy+
+

d〈τp〉
+

dy+

)
outer peak

. (4.4)
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FIGURE 10. Width of the layer hierarchy as given by relation (4.4) as a function of DR
plotted in (a) outer-normalized coordinates and (b) normalized by an intermediate length
scale that is the geometric mean of the inner and outer length scales. The peak location
of the apparent stress, which corresponds to the centre of layer III, is shown for reference
and denoted by the data point within the open circle.

Note that (4.4) is also valid for a Newtonian fluid with 〈τp〉 = 0. Note also that the
linear extent of the inertial portion of the W+(y+) profiles (i.e. from the outer edge
of layer III to y/δ ≈ 0.3) has been truncated (if it exists at all). This truncation is
owed to the fact that the outer edge of layer III has moved farther from the wall to
≈4
√
δ+, see figure 7(b). It is therefore not possible to reasonably estimate κ from

these W+(y+) profiles. Moreover, Klewicki et al. (2011) have shown that while the
slope of W+(y+) is related to κ at high δ+, it is likely not as directly related to κ in
transitional flow, i.e. κ is ill defined in this case. Polymer DR flows, of course, are
inherently transitional-like and at HDR the mean velocity profile does not posses a
logarithmic subregion, as described earlier. The apparent linear portion of the W+(y+)
profile below the outer edge of layer III, with a steeper slope than the thick angled
line in the figure, represents region II and III (or an extended buffer region), and as
such is not an inertial region since the mean viscous force is still leading order.

The bounds of the hierarchy for viscoelastic channel flow, as given by relation (4.4),
are plotted in figure 10 as a function of DR. The peak location of the apparent stress,
which corresponds to the centre of layer III, is shown for reference (denoted by the
centre data point within an open circle on a horizontal line). For the Newtonian case,
the hierarchy spans y+ ' 7 to y/δ ' 0.5. For polymer DR flows, the hierarchy starts
farther from the wall (the data suggest that the distance is likely a function of Re and
DR) compared to Newtonian flow. For LDR flow, the outer extent of the hierarchy is
similar to that for the Newtonian flow, while for HDR flow the outer extent is closer
to the channel centreline. When scaled by an intermediate scale, the peak location
of the apparent stress shows reasonable collapse with DR, independent of Re. This
conclusion is, however, tentative given the limited δ+ range of the DNS.

Physically, the layer widths on the hierarchy represent the characteristic sizes of
turbulent motions responsible for the wall-ward transport of momentum. It follows
that in viscoelastic drag-reduced channel flow, the effect of the polymer is to increase
the near-wall turbulent length scales responsible for the transport of momentum to the
wall. This is consistent with previous studies that show that the near-wall turbulent
structures become larger and migrate farther from the wall with increasing DR (Dubief
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FIGURE 11. Spectrograms of the premultiplied co-spectra of the Reynolds stress Φ+
−uv

(a,c) and its gradient ∂Φ+
−uv/∂y+ (b,d). (a,b) Show Newtonian channel flow at δ+ = 187

and (c,d) Show viscoelastic channel flow at δ+ = 127 and DR= 56 % (see table 1).

et al. 2004; White, Somandepalli & Mungal 2004). In LDR flow, the increase in
the near-wall scales modifies the inertial layer dynamics by effectively modifying the
inner boundary condition seen by the inertial layer, or by reducing the overall scale
separation of the flow. In HDR flow, the scale separation is insufficient to support an
inertially dominated layer. In some respects, this increase in scale can be interpreted
as a decrease in the Reynolds number that moves the flow towards the transitional
regime.

5. Co-spectra
Further insights regarding the effect of the polymer are gained by examining

spectral behaviours associated with the turbulent inertia. Figure 11 shows spectrograms
of the premultiplied co-spectra of the Reynolds stress k+x φ

+

−uv ≡ Φ
+

−uv (a,c) and its
gradient ∂Φ+

−uv/∂y+ (b,d) as a function of streamwise wavelength λ+ and wall distance
y+, where kx is the streamwise wavenumber. Panel (a,b) shows Newtonian channel
flow at δ+ = 187 and the panel (c,d) shows viscoelastic channel flow at δ+ = 127
and DR = 56 % (see Table 1). (The data needed to compute the spectrograms for
the data presented in figures 1–7 and 9–10 were not available.) For Newtonian
flow, the peak location of the co-spectra of 〈−u′v′〉+ is at y+ ≈ 25 (i.e. at the peak
location of the Reynolds shear stress) and λ+ ≈ 700, consistent with previous studies
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(del Álamo & Jimenez 2003; Wu, Baltzer & Adrian 2012; Chin et al. 2014). In
drag-reduced viscoelastic channel flow, the peak location of the co-spectrum of
〈−u′v′〉+ moves farther from the wall and the streamwise wavelength significantly
increases to λ+ ≈ 1000. Since the co-spectra represents the spectral contribution
to 〈−u′v′〉+, it follows that viscoelastic interactions between the polymers and the
turbulence lead to an increase in the characteristic turbulent length scales associated
with the 〈−u′v′〉 motions.

The co-spectra of the wall-normal derivative of 〈−u′v′〉+ provides evidence that
attenuation of turbulent inertia in drag-reduced viscoelastic channel flow is associated
with an increase in the characteristic length scales associated with the turbulent
transport of momentum. Since

∂〈−uv〉+

∂y+
=

∫
∞

0

∂〈Φ+
−uv〉

∂y+
d log(λ+) (5.1)

and ∫ δ+

0

∂〈−uv〉+

∂y+
dy+ = 0, (5.2)

it follows that blue regions in the gradient spectrograms represent strong momentum
sink-like regions, red regions represent strong momentum source-like regions (Chin
et al. 2014) and the positive and the negative areas of the spectrograms sum to
zero. Effectively, momentum is transported from red regions to blue regions by
turbulent inertia, with contributions from different λ+ as described by the spectrogram.
Interpreted as a force term in the momentum equation, source-like regions will
accelerate the flow and sink-like regions will decelerate the flow (Wu et al. 2012).
For Newtonian flow, a strong momentum source-like region is observed in the region
y+ < 20, and for λ+ > 100. Conversely, a strong sink-like region is observed for
y+ > 30 and for λ+ > 500. Note that for λ+ > 300, a clear dividing line is observed
between these two regions near the peak location of the Reynolds shear stress (i.e.
y+ ≈ 25). While for λ+ < 300, there is a small peninsula-like region of momentum
source. In addition, a small island of momentum sink is observed from y+ ≈ 2–8
and λ+ < 100. The strong momentum sink- and source-like regions observed in
figure 11 are consistent with previous studies (Wu et al. 2012; Chin et al. 2014).
For drag-reduced viscoelastic channel flow, the peak magnitude of the co-spectra is
reduced, indicating an attenuation of turbulent inertia. In addition, the spectrogram is
shifted up and to the right compared to the Newtonian flow, indicating an increase
in the characteristic turbulent length scales associated with the turbulent transport
of momentum. Importantly, the shifted spectrogram shows that turbulent transport of
momentum in the viscous sublayer is significantly reduced. Lastly, the source and
sink-like regions are noticeably less coherent compared to the Newtonian flow.

Following Chin et al. (2014), the Reynolds stress-gradient term is decomposed into
velocity–vorticity correlations to better understand the physical mechanisms by which
polymers modify the Reynolds stress gradient term:

∂〈−uv〉+

∂y+
= 〈vωz〉

+
+ 〈−wωy〉

+, (5.3)

where ωz and ωy are fluctuating vorticity in the z and y directions, respectively.
Physical interpretations of the vorticity–velocity correlations can be found in Tennekes
& Lumley (1972), Townsend (1976), Klewicki (1989), Morrill-Winter & Klewicki
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FIGURE 12. Spectrograms of the premultiplied co-spectra Φ+vωz
(a,c) and Φ+

−wωy
(b,d).

(a,b) Show Newtonian channel flow at δ+= 187 and (c,d) show viscoelastic channel flow
at δ+ = 127 and DR = 56 %. Observe that row summation yields the spectrograms of
∂Φ+
−uv/∂y+ in figure 11(b,d).

(2013), and are briefly described here. The first term on the right-hand side of
(5.3) represents the mean transport of spanwise vorticity fluctuations by wall-normal
velocity fluctuations. The second term on the right-hand side of (5.3) represents a
body force associated with the change of scale of turbulent eddies in a flow where
eddy sizes vary in the wall-normal direction. Here we adopt the terminology of
Morrill-Winter & Klewicki (2013) and associate 〈vωz〉

+ with vorticity dispersion,
and 〈−wωy〉

+ with vorticity stretching. It follows from (5.3) that the co-spectra of
the Reynolds stress-gradient term can be obtained by summing the co-spectra of the
velocity–vorticity correlations. In this manner various features of the co-spectra of
the Reynolds stress gradient can be attributed to the effects of dispersion/stretching
of the vorticity field.

Figure 12 shows spectrograms of the premultiplied co-spectra of k+x φ
+

vωz
≡ Φ+vωz

(a,c) and k+x φ
+

−wωy
≡ Φ+

−wωy
(b,d) as a function of streamwise wavelength λ+ and

wall distance y+. Panel (a,b) shows Newtonian channel flow at δ+ = 187 and panel
(c,d) shows viscoelastic channel flow at δ+ = 127 and DR = 56 %. Observe that
row summation in figure 12 yields the spectrograms of ∂Φ+

−uv/∂y+ in figure 11(b,d).
For Newtonian flow, 〈vωz〉

+ (i.e. vorticity dispersion) changes sign around y+ ≈ 10.
The region of positive 〈vωz〉

+ of large magnitude near the wall is believed to be
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FIGURE 13. Spectrograms of the premultiplied co-spectra of (a) the Reynolds stress and
polymer stress Φ+

−uv+τp
and (b) its gradient ∂Φ+

−uv+τp
/∂y+ at δ+= 127 and DR= 56 % (see

table 1).

due to the vertical advection of sublayer streaks (Klewicki, Murray & Falco 1994),
while the region of negative 〈vωz〉

+ of large magnitude is believed to be due to the
vertical advection of detached hairpin vortex heads (Klewicki et al. 1994; Klewicki
& Hirschi 2004). In drag-reduced viscoelastic channel flow, the positive and negative
regions of 〈vωz〉

+ are strongly attenuated. This is consistent with observations that
sublayer streaks are much more stable (White et al. 2004), the number and strength
of near-wall vortical structures are reduced (Dubief et al. 2004), and the so-called
‘bursting frequency’ decreases (Oldaker & Tiederman 1977) in polymer drag-reduced
flow compared to Newtonian flow. For both Newtonian and drag-reduced viscoelastic
channel flow, 〈−wωy〉

+ (i.e. vorticity stretching) is positive, representing an underlying
mechanism of momentum source (i.e. flow acceleration). In Newtonian flow, 〈−wωy〉

+

is approximately zero above y+≈ 40, or stated otherwise, the vorticity stretching term
is more important (less important) below (above) the onset of the inertial layer (i.e.
below the outer extent of layer III). The length scales contributing to 〈−wωy〉

+ are
λ+ > 100. In drag reduced viscoelastic channel flow, the magnitude of 〈−wωy〉

+ is
reduced compared to Newtonian channel flow. The positive region of the spectrogram
is shifted up and to the right compared to the Newtonian flow, indicating an increase
in the characteristic length scales associated with the turbulent transport of momentum.
For example, the length scales contributing to 〈−wωy〉

+ as shown in the spectrogram
have increased to λ+ > 400.

Since the Reynolds shear stress and polymer shear stress are strongly coupled (see
§ 4.2), we now examine the spectral behaviours associated with their sum. Figure 13
shows spectrograms of the premultiplied co-spectrum of the sum of the Reynolds
and polymer shear stress Φ+

−uv+τp
, (a) and its gradient ∂Φ+

−uv+τp
/∂y+ (b) at δ+ = 127

and DR= 56 % as a function of streamwise wavelength λ+ and wall distance y+. In
general, the features of these spectrograms exhibit similarities with their Newtonian
flow counterparts. This provides further evidence that at HDR, the force-like term
of the polymer stress gradient usurps the role of the inertial mechanism. Compared
to the co-spectrum of only the Reynolds shear stress and its gradient in viscoelastic
channel flow (see figure 11c,d), the co-spectrum of Φ+

−uv+τp
is more coherent and

of higher magnitude. In addition, the peak location is closer to the wall and its
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corresponding wavelength is significantly smaller. The latter indicates that, perhaps
not surprisingly, the scales associated with the polymer shear stress are smaller than
those associated with the Reynolds shear stress. The spectrogram of ∂Φ+

−uv+τp
/∂y+

shows that the source and sink-like regions occupy a much broader spectral range and
their dividing line is less well defined (i.e. the interface shape is complex) compared
to Newtonian channel flow. Lastly, the transport of momentum near the wall remains
significantly reduced compared to Newtonian channel flow.

In summary, both the vorticity dispersion and vorticity stretching contributions
to d〈−u′v′〉/dy are strongly attenuated in drag-reduced viscoelastic channel flow
compared to Newtonian channel flow. Note that the attenuation of near-wall turbulent
structures has been described by Dubief et al. (2004) and Kim et al. (2007) as
the underlying mechanism of polymer drag reduction. The net effect of a modified
vorticity field in polymer drag-reduced flow is an increase in the length scales
responsible for the turbulent transport of momentum. This increase in length scale
reduces the scale separation across the channel (or boundary layer) with the following
effects on the inertial layer: at low DR an inertial layer exists but is modified
compared to Newtonian flow (i.e. κ is modified), at high DR (and likely at low to
moderate δ+) the flow is unable to establish an inertially dominated layer owing to
insufficient scale separation. The lack of scale separation and the lack of an inertial
layer have similarities to what is observed in transitional flow of a Newtonian fluid.
With increasing drag reduction, as the Reynolds stress-gradient term is diminished,
the contribution from the polymer stress-gradient term to the wall-ward transport of
momentum increases. Comparing the spectrograms of ∂Φ+

−uv/∂y+ to ∂Φ+
−uv+τp

/∂y+ at
δ+ = 127 and DR = 56 %, it is evident that for HDR and low to moderate δ+ the
polymer stress gradient is primarily responsible for the transport of momentum.

6. Conclusions
The redistribution of mean momentum and the underlying mechanisms of the

redistribution processes in polymer drag-reduced channel flow were investigated by
employing a mean momentum equation based analysis. By analysing the distribution
and ratios of the stress-gradient terms in the mean momentum equation, the polymer
stress-gradient term was shown to both augment the viscous force (by attenuating the
Reynolds stress gradient) and to usurp the role of the inertial mechanism. For the
latter, the polymer stress gradient is less effective than the Reynolds stress gradient,
hence the wall-ward transport of momentum and, consequently, skin friction drag is
reduced.

Similar to channel flow of Newtonian fluids, polymer drag-reduced channel flow
is shown to exhibit a four layer structure in the mean balance of forces across
the channel half-height. The widths of the four layers are, however, different than
Newtonian channel flow and show a dependence on DR and δ+. In particular, with
increasing DR, the viscous stress gradient is important over a larger domain of the
flow, and layers II and III extend farther from the wall. An important clarifying
point is that the increased importance of the viscous effects is owed to a decrease
in the inertial mechanisms, not to an increase in viscosity. This view is different
than several theories of polymer drag reduction (Lumley 1969; Ryskin 1987; L’vov
et al. 2004; Benzi et al. 2006), which postulate that polymer stretching produces a
space dependent effective viscosity that increases from the wall outward. Nevertheless,
for modelling purposes, these ‘viscous theories’ have significant value as they can
reproduce the same effects as a decrease in the inertial mechanisms and, importantly,
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are numerically simple to implement. Furthermore, viscous effects likely are important
in local regions of the flow, in particular near flow structures that are likely modified
by the polymer such as hairpin-like vortices of the type described by Adrian (2007),
or those involved in the near-wall cycle as studied by Waleffe (2001) in Newtonian
fluid flow, and Graham (2014) in polymer drag-reduced flows.

The increasing influence of the viscous stress gradient, in conjunction with a
diminishing influence of turbulent inertia, underlies the modification (at LDR) and
eradication (at HDR) of the interior inertial (physical space inertial sublayer) layer of
the flow. We surmise that the dividing line between LDR and HDR flow corresponds
to the minimum DR when an inertially dominated scaling region ceases to exist. The
precise DR when this occurs likely depends on Reynolds number, polymeric properties
and canonical flow type. Nevertheless, the results of the present study suggest that
HDR flow occurs when the polymer stress-gradient term becomes comparable to
the Reynolds stress-gradient term in the mean momentum balance. A second related
criteria is that HDR flows occur when the outer edge of layer III shifts outward from
the wall to y+ ≈ 4

√
δ+. Note that the outer edge of layer III is where the viscous

force terms become negligible. Given the increased importance of viscous effects and
the reduced importance of turbulent inertia, it is not surprising that the statistics of
HDR flow closely resemble the statistics of Newtonian transitional flow.

The streamwise spectral decomposition of turbulent inertia, given by the wall-
normal gradient of the Reynolds shear stress, showed that viscoelastic interactions
between polymer and turbulence results in the attenuation of turbulent inertia and an
increase in the characteristic length scales associated with the turbulent transport of
momentum. In LDR flow, the increase in the characteristic turbulent length scales
associated with the 〈−u′v′〉 motions leads to a modification of the inertial layer
dynamics. The mean effect of this modified dynamics is an increase in the slope of
the logarithmic region of the mean velocity profile. While in HDR flow, the scale
separation is insufficient to support an inertially dominated layer. By decomposing
the turbulent inertia into velocity–vorticity correlations, it was shown that the vorticity
dispersion mechanism (associated with 〈vωz〉) and the vorticity stretching mechanism
(associated with 〈−wωy〉) are strongly attenuated in drag-reduced viscoelastic channel
flow compared to Newtonian channel flow. The observed modification to these
vortical contributions is consistent with the view that the mechanism responsible
for drag reduction is vortex suppression. Here the polymers directly interact with
and subsequently dampen the near-wall quasi-streamwise vortices that are primarily
responsible for the 〈−u′v′〉 motions (Dubief et al. 2004; Kim et al. 2007; White &
Mungal 2008; Graham 2014).

In closing, we briefly frame the present findings from a mechanistic viewpoint: the
analysis shows that polymers reduce the intensity of near-wall vorticity stretching,
which leads to an outward migration of the peak in the Reynolds shear stress and
its gradient. This outward migration leads to a reduced mean velocity gradient at the
wall, a more gradual decay of the mean vorticity, and causes the wall-normal position
where inertially dominated mean dynamics occurs to move outward from the wall. At
a fixed Reynolds number, the latter effect reduces the wall-normal range over which
an inertial sublayer (in physical space) can exist. Eventually, at high enough DR, the
inertial sublayer runs out of physical space and ceases to exist. The eradication of
the inertial sublayer is a precursor to the flow reaching a state of maximum drag
reduction.
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The connection between this mechanistic description and a reduction in the skin
friction drag is revealed by examining the equation for the mean enstrophy:

0=Ω+z

(
∂〈wωy〉

+

∂y+
−
∂〈vωz〉

+

∂y+

)
+
∂2( 1

2Ω
+2
z )

∂y+2 −

(
∂Ω+z

∂y+

)2

. (6.1)

As described in Klewicki (2013), the most important term is the first term on the right-
hand side of (6.1), which is associated with the net effect of vorticity stretching. Note
that the contribution in parentheses is the wall-normal gradient of the Reynolds stress-
gradient term (see (5.3)). In polymer drag reduced flow, the first term on the right-
hand side of (6.1) is reduced owing to reductions in both the mean vorticity and the
Reynolds stress gradient. This results in a more gradual decay of the mean vorticity
with distance from the wall, hence a more gradual decay of the mean velocity at the
wall. The net effect is a reduction in the wall shear stress and skin friction drag.
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