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Lighthill’s analysis (J. Fluid Mech., vol. 60, 1973, p. 1) of the Weis-Fogh lift mechanism
is extended to include the spreading phase of the cycle. Lighthill proposed a two-
dimensional inviscid irrotational analytical model to compute the circulation around
two flat plates (the wings) as they open out, in opposite directions, about a common
centre of rotation taken to be at the point of contact of an edge of each plate
(the ‘opening phase’). At a critical opening angle, the plates separate and move
apart horizontally (the ‘spreading phase’). During this second phase, the fluid region
becomes doubly connected and is not analysed by Lighthill. It can, however, also
be studied analytically and the results are presented here. We also extend a similar
analysis, in an application to turbomachinery, due to Furber & Ffowcs Williams
(J. Fluid Mech., vol. 94, 1979, p. 519).

1. Introduction
In a paper in this journal in Lighthill (1973) gave the first mathematical

rationalization of a newly discovered lift mechanism reported in the same year
by Weis-Fogh (1973). It was observed in a study of the hovering motions of the
chalcid wasp known as Encarsia formosa (Acheson 1992). It is a novel mechanism
that does not rely on vortex shedding for the generation of lift; rather, its success rests
on the instantaneous generation of net circulation around two wings brought about
by a change of flow domain topology as the wings carry out their flapping protocol.

Lighthill (1973) explained the mechanism by considering an inviscid, irrotational
two-dimensional model. By means of a complex variable approach and a Schwarz–
Christoffel mapping, he produced an explicit mathematical representation of the
solution for the ‘opening phase’. During this stage the two wings are initially close
to parallel and are touching at their two lowest ends; they remain in contact but fan
out, about a centre of rotation given by the point of contact of the lowest edges of
the wings, until they reach a critical opening angle. At this instant, and as the wings
are still fanning out, the wings detach (the ‘spreading phase’) and move apart along
a horizontal axis. Lighthill’s analysis, valid only during the opening phase, allows the
calculation of the net circulation Γ around each wing at the instant of separation. For
plates of length c opening up with constant angular velocity Ω to angle φ he found

Γ = Ωc2g(φ/2), (1)

where the function g(α) is given as an integral of Schwarz–Christoffel type and
is graphed in figure 4 of Lighthill (1973). Since, in ideal flow theory, a flow is

† Email address for correspondence: d.crowdy@imperial.ac.uk

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

22
29

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009992229


196 D. Crowdy

determined by the instantaneous motion of the boundaries, it is not altogether clear
how it can be justified that the circulation around the plates after separation is
given by the circulation just before separation. However, in a closely related problem
operating under the same principles, Furber & Ffowcs Williams (1979) investigate
this matter and give more detailed explanations as to how and why the circulation
around each wing even after separation can be expected to be given by Γ . In this
article, we proceed under the assumption that the relevant Γ is indeed given by (1).

Edwards & Cheng (1982) later showed that g(α) has the explicit analytical form

g(α) =

(
1 − 2α

π

) /
2 sin(2α)

(α

π

)2α/π (
1 − α

π

)2−2α/π

. (2)

Motivated by evidence presented by Maxworthy (1979) suggesting that the production
of shed vorticity at the leading edge of the wings plays a significant (if not dominant)
role in the mechanism, they also included the effect of this vorticity using a single-
vortex shedding model. Referring to Lighthill’s determination of the circulation Γ

at the end of the opening phase, Edwards & Cheng (1982) state: ‘its significance
lies entirely on the influence of this Γ on the subsequent lift development during
the spreading phase, which is not determined by the initial Joukowski lift ρUΓ

alone. . . . Of no less importance is the evaluation of the force experienced by, as
well as moment and power required of, an insect during the open phase of this
model.’ Lighthill does not calculate this lift development: there are mathematical
difficulties due to the change in topology of the fluid domain (it becomes doubly
connected). Since Lighthill’s early theoretical work, there have been a variety of other
experimental (e.g. Spedding & Maxworthy 1986) and numerical (e.g. Mao & Xin
2003) investigations of the Weis-Fogh mechanism in which additional physical effects
have been incorporated.

Notwithstanding that other physical effects play important roles in the Weis-Fogh
mechanism, this paper makes a theoretical contribution to the topic by completing the
analysis of Lighthill’s original model. Our principal objective here is to demonstrate
the use of a new calculus, described by Crowdy (2009), applicable to the study
of ideal flows in multiply connected domains. The Weis-Fogh problem presents a
paradigmatic physically motivated example of a flow involving a change in topology
and, until now, only the simply connected stage of an idealized model of the process
has been analysed in the literature: here we complete the picture by analysing the
doubly connected stage under the same model assumptions as those of Lighthill.
Another case in point is the related work of Furber & Ffowcs Williams (1979), who
explored engineering applications of the Weis-Fogh mechanism in the design of an
axial-flow compressor. They also present a model of the relevant process but only
consider the simply connected stage: in § 6 we also complete their analysis and derive
analogous solutions to the doubly connected phase of that model.

2. Mathematical formulation
Following Lighthill (1973), consider irrotational motion in a fluid of uniform density

ρ̂ = 1. Each wing is modelled as a flat plate with unit length (so c = 1) and we let
Ω = 1 during the opening phase. Let φ be the critical opening angle at which the
plates separate with equal and opposite speed U (t) (henceforth U, although it is
understood to be time dependent). We focus on the case φ = 2π/3 and assume that
there are circulations ±Γ as calculated by Lighthill (1973) around each wing so that,
for φ = 2π/3, then Γ = 0.69. Note that U can be arbitrarily specified in our model
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–U U

–Γ Γ

ρ 1

Figure 1. Schematic showing a typical image, for φ = 2π/3, of ρ(t) < |ζ | < 1 under the
mapping z(ζ, t) in (4). Here, |ζ | = 1 maps to the left wing.

but we later describe one prescription for determining it based on the assumptions
that the circulations ±Γ around the wings are constant in time and that Kutta
conditions are satisfied at the trailing edges of the wings after separation. There is
still a singularity in the velocity field at the leading edge of each plate which, in
reality, would result in vortex shedding there but this is ignored here. If a single plate
is in isolation, a routine calculation using a Joukowski mapping from a unit disk to
a unit-length plate inclined at an angle (π + φ)/2 to the positive real axis (this is true
of the leftmost plate) can be used to deduce that the Kutta condition at the trailing
edge implies the following relationship between Γ and U :

Uπ cos(φ/2) = Γ. (3)

This simple relation is expected to be modified by unsteady interaction effects between
the two separating wings.

3. Conformal mapping
The flow exterior to the two wings after separation is doubly connected. At each

instant there exists a conformal map, z(ζ, t) say, from some annulus 0 <ρ(t) < |ζ | < 1
in a parametric ζ -plane to the fluid region. Let the complex potential for the flow
at each instant be w(z, t). Given z(ζ, t), define W (ζ, t) ≡ w(z(ζ, t), t). The problem is
solved if both z(ζ, t) and W (ζ, t) can be found explicitly.

We have found that a formula for the conformal mapping to the fluid region
exterior to the wings at any instant after they have separated is

z(ζ, t) = iA(t)e−iφ/2

(
P (ζ

√
ρ(t)

−1
eiφ, ρ(t))P (ζ

√
ρ(t)eiφ, ρ(t))

P (ζ
√

ρ(t)
−1

, ρ)P (ζ
√

ρ(t), ρ(t))

)
− i d(t), (4)

where A(t), ρ(t) and d(t) are real functions of time and

P (ζ, ρ) ≡ (1 − ζ )

∞∏
k=1

(1 − ρ2kζ )(1 − ρ2kζ −1). (5)

Figure 1 shows an example for a typical choice of parameters. Equation (4) has
been derived using results on multiply connected conformal slit mappings given
by Crowdy & Marshall (2006). Let s(t) denote the x-position of the midpoint of
the rightmost plate. Given s(t), the parameters A(t), ρ(t) and d(t) can be found by
imposing various geometrical requirements. Details are given in the Appendix.
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198 D. Crowdy

4. The complex potential
By making use of a general calculus for planar ideal flows described by

Crowdy (2009), the required instantaneous complex potential W (ζ, t) in the annulus
ρ(t) < |ζ | < 1 can also be found. It is

W (ζ, t) = Γ G0(ζ,
√

ρ(t)) − Γ G1(ζ,
√

ρ(t)) + WU (ζ, t), (6)

where

G0(ζ, α) ≡ − i

2π
log

(
|α|P (ζα−1, ρ)

P (ζα, ρ)

)
, G1(ζ, α) ≡ − i

2π
log

(
|α|P (ζα−1, ρ)

P (ζαρ−2, ρ)

)
, (7)

and where

WU (ζ, t) = I+(ζ, t) − I−(ζ, t), (8)

with

I+(ζ, t) ≡ 1

2π

∮
|ζ ′ |=1

dζ ′

ζ ′ K(ζ/ζ ′, ρ(t))Re[−iUz(ζ ′, t)],

I−(ζ, t) ≡ 1

2π

∮
|ζ ′ |=ρ(t)

dζ ′

ζ ′ K(ζ/ζ ′, ρ(t)){Re[iUz(ζ ′, t)] + d1(t)},

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(9)

and

d1(t) =
1

2πi

(∮
|ζ |=1

dζ

ζ
Re[−iUz(ζ, t)] −

∮
|ζ |=ρ(t)

dζ

ζ
Re[iUz(ζ, t)]

)
. (10)

The function K(ζ, ρ) is related to P (ζ, ρ) by

K(ζ, ρ) ≡ ζ∂P (ζ, ρ)/∂ζ

P (ζ, ρ)
. (11)

The first two terms in (6) produce the required circulations around the two wings
(see, for example, Crowdy 2006, 2009); the term WU (ζ, t) is associated with the fact
that the two wings are in motion (see Crowdy, Surana & Yick 2007).

4.1. A model system

The solution is now complete. To illustrate how the results might be used, we now
compute a natural (albeit physically unrealistic) extension of Lighthill’s inviscid flow
model. We ignore any effects of vortex shedding at the sharp edges of each plate, take
Lighthill’s value Γ = 0.69 and assume that it does not change as the wings separate. In
reality, a Kutta condition will always be satisfied at the trailing edges of the wings so,
given that Γ is fixed, we determine U dynamically by imposing this Kutta condition
(by the geometrical symmetry, this is a single constraint). This is an artificial choice
(and is the opposite of what usually happens in standard aerofoil theory) but it is
consistent with our assumption that Γ remains fixed in time with no vortex shedding
at the trailing edge. (In reality, U might depend on physiological factors associated
with the organism.) To impose this choice, the two values (ζ1 and ζ2, say) on the unit
circle |ζ | =1 given by the two conditions

∂z(ζ1, t)

∂ζ
=

∂z(ζ2, t)

∂ζ
= 0 (12)

are found using Newton’s method. These are the preimages of the leading and
trailing edges of the leftmost wing. If ζ1 is the preimage of the trailing edge then U is
determined by ensuring that the condition ∂W (ζ1, t)/∂ζ = 0 is satisfied (the condition
is linear in U ). A graph of U , as a function of s, is shown in figure 2 (from this

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

22
29

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009992229


The spreading phase in Lighthill’s model of the Weis-Fogh lift mechanism 199

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

s

U

Figure 2. Graph, as a function of s, of the speed U of separation of the wings as given by
imposing the Kutta condition at the trailing edges.
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Figure 3. Instantaneous streamlines for a typical configuration of two separating wings
showing the jet through the gap between them.

graph one could, if required, determine s(t) as a function of time). If a single isolated
wing had the same circulation around it, U would be given by the constant value
(3); the fact that U is not constant is associated with the unsteady interference effects
between the two wing sections. It is clear that unsteady interaction between the wings
generally leads to increase in the velocity at which the wings must travel to satisfy
the Kutta condition at the trailing edges. Within this model, the closer the wings are,
the faster they must separate.

Figure 3 shows the streamlines, in a fixed frame, associated with a typical wing
configuration during the opening phase. The jet flow through the gap between the
wings is clearly visible. It is the momentum of this jet flow that balances the motion
of the two wings.
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5. Unsteady lift
By Bernouilli’s theorem for unsteady irrotational flow (Acheson 1992), the fluid

pressure is

p = −∂φ

∂t

∣∣∣∣
z

−1

2
|u|2 + H (t), (13)

where H (t) is some time-dependent function. Using the fact that

φ = Re[W (ζ, t)], |u|2 =

∣∣∣∣∂W/∂ζ

∂z/∂ζ

∣∣∣∣
2

, (14)

we can compute the total hydrodynamic force on each wing. It is given by

−
∫

pn ds, (15)

where the integral is taken around each wing, n = (nx, ny) is the outward normal
vector and ds is an element of arclength. In complex notation, the (complex) force
on the leftmost wing becomes

Fx − iFy = i

∮
|ζ |=1

(
∂φ

∂t

∣∣∣∣
z

+
1

2

∣∣∣∣∂W/∂ζ

∂z/∂ζ

∣∣∣∣
2
)

dz. (16)

Note that

∂φ

∂t

∣∣∣∣
z

= Re

[
∂W

∂t

∣∣∣∣
z

]
and

∂W

∂t

∣∣∣∣
z

=
∂W

∂t

∣∣∣∣
ζ

−
(

∂W/∂ζ

∂z/∂ζ

)
∂z

∂t

∣∣∣∣
ζ

, (17)

and these relations must be used to compute the integral in (16). The second integral
in (17) has a simple pole singularity on the contour at the point ζ2 (the preimage of
the leading edge) and this is computed using the Plemelj formula for Cauchy-type
integrals.

Figure 4 shows a graph of the lift development on the leftmost wing as a function
of s. The initial separation between the two trailing edges of the wings is taken to be
10−2. As s → ∞, so that the wings are far apart, interference effects become negligible
and the lift tends to the Kutta–Joukowski lift associated with an isolated wing in
steady motion (with U and Γ related by (3)). It is also confirmed that the drag on the
wings tends to zero. Out of interest, the instantaneous values of Γ U are superposed
on this graph for comparison (by a dotted line): Γ U is the Kutta–Joukowski lift value
for a single wing. It is interesting that the computed lift values for the two wings as
they separate remain very close to Γ U under evolution and only depart appreciably
from it when the plates are very close together. Unfortunately, this observation does
not obviate the need to solve the full two-wing interaction problem to compute the
lift because, as already observed, U is not constant but depends strongly on unsteady
interaction effects.

The above calculations explore one scenario. The same mathematical approach can
easily be adapted to study other situations.

6. Engineering applications
Inspired by Lighthill’s analysis (Lighthill 1973), Furber & Ffowcs Williams (1979)

proposed a design for an axial-flow compressor based on increasing the unsteady
interaction effects between a moving (rotor) blade and a stationary (stator) blade due
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Figure 4. Unsteady lift development as a function of s. The instantaneous values of Γ U are
superposed (dotted line). As s → ∞, the lift tends to the Kutta–Joukowski lift for a single wing
in steady motion.

to the Weis-Fogh mechanism. They performed potential flow calculations, following
Lighthill (1973), for the phase in the cycle where the rotor and stator are in contact
(the fluid domain is then simply connected). They find that a higher stage loading
could be achieved under a wide range of operating conditions indicating significant
performance advantages. Concerning an analysis of the full problem they state:
‘Unfortunately we have found no way of obtaining an exact solution to the problem
when the bodies are not in contact’. We now derive such a solution.

Both before and after the rotor touches down on the stator the fluid domain is
doubly connected. Adapting, again, the results of Crowdy & Marshall (2006), the
map z(ζ, t) from some annulus ρ(t) < |ζ | < 1 to the fluid domain both before and
after touchdown is

z(ζ, t) = A(t)

(
P (ζeiφ, ρ(t))P (ζeiφ, ρ(t))

P (ζ/β(t), ρ(t))P (ζβ(t), ρ(t))

)
+ d(t). (18)

Here, A(t), β(t), ρ(t) and d(t) are the real functions of time and φ is the fixed angle
between the rotor and stator. Equation (18) can be derived using similar considerations
to those in the Appendix. Figure 5 shows the image of the circles |ζ | = ρ(t) and 1 under
the map (18) for φ = π/4 (before touchdown) and φ = −3π/4 (after touchdown) and
the appropriate values of the other parameters for a range of values of s(t) (defined
in figure 5). Note that A(t), β(t) and ρ(t) can be determined once s(t) is specified.
Here, both plates have unit length (other choices are possible). Armed with z(ζ, t),
the solution to the complex potential W (ζ, t) has the same general form (6) as in the
Lighthill problem. The solution is then complete. As done earlier, the hydrodynamic
forces on the plates throughout the cycle can now be readily computed. Again, it
would be important to include the effects of shed vorticity in modelling this system
but this might be done, following Edwards & Cheng (1982), using the Brown–Michael
single-vortex model (see also Michelin & Llewellyn Smith 2009).

Finally, because both flow situations considered in this article involve doubly
connected domains, it is possible, in principle, to translate all the analyses here into
the language of elliptic function theory (although we make no claim that this is a
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s(t)

U
(a)

(b)

Stator plate

Rotor plate

s(t)

Rotor plate

Stator plate

U

Figure 5. Image of the two circles |ζ | = ρ(t) and 1 under the conformal map (18) for φ = π/4
(a) and φ = −3π/4 (b) for six different values of s(t) (from which the values of A(t), ρ(t) and
d(t) follow on the imposition of the required geometrical constraints). The images are relevant
to a rotor plate before and after it is in contact with a stator plate. All plates have unit length.

straightforward matter). However, if there is more than one rotor blade, then the
fluid domain becomes triply connected (for two rotors blades) or higher connected
(for three or more rotor blades) and elliptic function theory is irrelevant; nevertheless,
the general calculus presented by Crowdy (2009), and used here, can still be applied
in such situations (together with results on multiply connected slit mappings or
Schwarz–Christoffel maps).

7. Discussion
While it is known that additional physical effects are crucial to the mechanism, our

intention here has been to reappraise Lighthill’s original analysis of the Weis-Fogh
process in light of new theoretical developments for analysing ideal flows in multiply
connected domains. We have, in a sense, completed Lighthill’s solution and used it
to compute the lift development in the spreading phase of his model. As for the
leading-edge singularity, Edwards & Cheng (1982) have used a single-vortex model to
study shedding from this edge during the opening phase (their analysis relied heavily
on Lighthill’s analytical solution (Lighthill 1973)). In principle, a similar analysis can
now be performed during the separation phase with the help of the results herein.

This work has presented analytical solutions to two ideal flow problems involving
doubly connected flow regions. The same methods are adaptable to the study of other
flow problems involving two interacting flat plates. The formulae for the conformal
maps found here may also be applied in a formulation of the Weis-Fogh mechanism
at zero Reynolds number (Stokes flow) where complex variable techniques can also
be used.

The author acknowledges the hospitality of the California Institute of Technology,
where he was a Visiting Professor while this work was carried out. He also
acknowledges support from an EPSRC Advanced Research Fellowship.
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Figure 6. Image of the annulus ρ(t) < |ζ | < 1 under R(ζ, t) for two different values of ρ(t)
(with A(t) chosen so that all slits have unit length).

Appendix. The conformal mapping (4)
To understand (4), consider the image of ρ(t) < |ζ | < 1 under the map

R(ζ, t) = A(t)

(
P (ζ

√
ρ(t)

−1
eiφ, ρ(t))P (ζ

√
ρ(t)eiφ, ρ(t))

P (ζ
√

ρ(t)
−1

, ρ(t))P (ζ
√

ρ(t), ρ(t))

)
, (19)

where A(t) and ρ(t) are some real parameters (to be determined). This is a doubly
connected case of a so-called radial slit map as discussed by Crowdy & Marshall
(2006) (P (ζ, ρ) is the Schottky–Klein prime function for this case—it is related to the
first Jacobi theta function). It takes |ζ | =1 to a slit segment along the ray arg[R] = φ;
it takes |ζ | = ρ(t) to a slit segment of the same length along the ray arg[R] = 0. The
rescaling parameter A is chosen so that each plate has unit length. Then, the distance
m(t) = s(t)/ sin(φ/2) of the midpoint of each wing along the rays arg[R] = φ and
arg[R] = 0 is controlled by choosing ρ(t) appropriately (a simple Newton method can
be used to find ρ(t)). Next, by multiplying R(ζ, t) by i e−iφ/2 the two wings appear
as in figure 6, which shows the images of |ζ | =1, ρ(t) for two different ρ(t)-values.
Simple geometrical considerations give

d(t) = cot(φ/2)[s(t) − s(0)], (20)

which must be subtracted from i e−iφ/2R(ζ, t) so that the midpoints of the wings are
at the same vertical position for different s(t). The final result is z(ζ, t) in (4).
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