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Consider the Cauchy problem for a one-dimensional compressible flow through
porous media,

vt —uz =0, xz€R, t>0,

ut + p(v)a

(v, u)|t=0 = (vo, o) ().

—au,

Hsiao and Liu showed that the solution (v, u) behaves as the diffusion wave (7, a),
i.e. the solution of the porous-media equation due to the Darcy law. The optimal
convergence rates have been obtained by Nishihara and co-workers. When vo(z) has
the same constant state at 2 = Ftoo, the convergence rate ||(v —0)(-,t)||p = O(t™1)
obtained is ‘optimal’, since ||7(-,t)||co = O(t~'/?). However, this ‘optimal’
convergence rate is less sufficient to determine the location of the diffusion wave. Our
aim in this paper is to obtain the ‘truly optimal’ convergence rate by choosing
suitably located diffusion waves.

1. Introduction

Subsequent to [13,17], we investigate the asymptotic behaviour of solutions to the
Cauchy problem
ve—u, =0, x€R, t>0,

ug + p(v)y = —au, (1.1)

(U7u)|t:0 (Uo,uO)(:E),

which models a one-dimensional compressible flow through porous media. Here, v
(> 0) is the specific volume, u is the velocity, p = p(v) = v~"7 is the pressure with
the adiabatic constant v > 1 and « is a positive constant. The initial data are
assumed to have constant states (v, uy), vy > 0, at © = Fo0,

lim (vg,uo)(z) = (v, us), vx >0. (1.2)

T—Fo0
The solution to (1.1), (1.2) is expected to behave as that to
by — i, =0,
b i (1.3)
p(V)y = —ad,
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due to the Darcy law. By (1.3), (7, ), called the diffusion wave, is determined by
the porous-media equation

I o
vy + Ep(v)w:v =0, with U|:E:ioo = V4,

(1.4)
p(0), = —ad.
When vy # v_, the diffusion wave is a similarity solution of the form
o=t taont) = v R ). we) = v, (1.5)

where a shift g is uniquely determined by the initial data (vg,uo). Convergence of
the solution (v, u) to the diffusion wave (0, @) was first shown by Hsiao and Liu [2,3]
under suitable smallness conditions. The convergence rates were investigated in [13]
and the optimal convergence rates

(v =0, u = @) (-, t)|[Lr = O(~H/2- A7 YPI2 41202102, (1.6)

as t — oo for p > 2 have been recently obtained in [17].
On the other hand, when

vy =v_ =:p and, for simplicity, uy =u_ =0, (1.7)

¥ is taken asymptotically as the solution to (1.4), with its initial data vp(z), or

o R G 7Y W

where

In this case, the convergence rate

(v =, u—a)(,t)[ = = O, t°/?) (1.9)
(treat the L*°-norm for simplicity) was obtained in [13]. As easily seen,

[9(,8) = v a( e~ = O V2 67, (1.10)

the convergence rate (1.9) is ‘optimal’. However, the ‘optimal’ convergence rate (1.9)
is not satisfactory in the sense that the location of the diffusion wave (o, @)(x,t) is
not determined, since

[9(- + zo,t) = (-, )l = O(t™1),
which is derived by

_ _ iL’ + 9%0) > { (:E + 91’0)1’0 }
t) — t — — de.
oz +20,t) —0(@,1) ~ ,/—4m 1 / ( da(t+1) 2a(t + 1)
Hence it is necessary to obtain
||(U7u)(':t) - (676)(':t)||L°° = O(tila t73/2) (111)

for a suitably located wave (0, a).
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Our aim in this paper is to reconsider (1.1), (1.2), in case of (1.7), and to obtain
the ‘truly optimal’ convergence rate satisfying (1.11) by deciding the location of
the diffusion wave (v,u). As far as we know, there have been few works in which
the location of the diffusion wave around the constant state is considered.

We now explain the idea of how to decide the location of the diffusion wave by
the following simple problem:

UV — Ve =0, z€E€R, t>0,
vle=o = vo(@), (1.12)

/OO Uo(m) :(507&0

The solution v to (1.12) is expected to behave as

_ (50 ( (£E+£L’0)2>

v(r + 20,t) = ———=exp | ———% 1.13

(a0t = ey "\ a1 (1.13)
or

Up — Vg = 0, / v(x + g, t) dz = dp. (1.13)

Since [|5(-,t)||p= = Ot™Y?) and ||o(- 4 0, t) — 5(,t)|| L= = O(t™1), we need to
obtain
o, 8) = o + 20, Dl = = o(t™) (1.14)
for a suitably chosen z, in the same manner as (1.11). To derive (1.14), define
xT B x+x0
Vix,t) = / v(y,t) dy, V(z + zo,t) = / o(y,t) dy. (1.15)

—0o0

Then, by (1.12)—(1.13),

(V—=V)i=(V—=V)u =0,

(V= V)li=o = Vo(z) — V(z + 20,0), Vo(z) = /; vo(y) dy. (1.16)
Since
Vo(@), V(x + 2o, 0) — {go# ) e ;Ooo
if vg(x) — 0 fast as & — o0, the shift z( is uniquely determined by
/OO (Vo(z) = V(z + 20,0)) dz = 0. (1.17)

Thus we arrive at the definition
(z,t) / / (2,t) — 9(z + o, 1)) dzdy, (1.18)
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which satisfies

— Wee = 0,
1.19
W= = wo(x) = / / (vo(2) — (2 + x0,0)) dzdy. ( )

If wg € L', which is reasonably assumed, then we easily obtain
(W, W, Wz ) (-, )| Lo = O/ 471 ¢73/2), (1.20)
Therefore, the desired estimate
[v(-,) = 0(- + @0, )| Lo = O(t™*?) (1.21)

is obtained, provided that the initial data wvo(z) tend to zero suitably fast as
x — Foo.

The simple idea on the linear heat equation can be applicable to our prob-
lem (1.1), (1.2) with (1.7). We reformulate our problem. Suppose first that

/O:O(vo(m) —v,ug(x))dz =: (doy,004), dow # 0, (1.22)
and that (v, u) is defined as the solution to
b= = () e = 0,
Ult=0 = Do(x; z0), (1.23)
i = = p(0)s

p(0)e = —a,
(0.0l = (o)~ () )

for o uniquely determined later. Similar to [2], we introduce auxiliary functions

(1.24)

1
(0,(,0) = (-~ ().~ ma(o) ) (1.25)
for a function mg satisfying
/ mo(x) dz = doy, mo € Cy°(R), (1.26)

so that (0, 1) satisfies

@t_uwzoa

’(lt = —Olﬁ7

(6, 0)] 4o = (—émé(:ﬂ),mo(m)) (1.27)
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By (1.1), (1.24) and (1.27),

(v=0—=0)— (u—1u—10), =0, (1.284a)
(w == @)+ (p(v) — p(0)a =~ — 1= ) + ~p(D)er (1.280)
(v—0—0,u—8—1)|4=g = (vo — 79 + émfpuo + ép(ﬁo)l - m0> (z).

(1.28¢)

From (1.28a),

since
/ (00—60+—m0>()dx:0
Also, since
i 1
/ (UO + Ep(l_)o) — m0> (:E) dz =0,
we have

by (1.28b). Hence integrating (1.28 a) twice with respect to = yields

/ / -0 - )dydx—/ (u—a—a)de =0,
and hence

—0—9)(z,t)dzdz = h ' (vo — Dp)(2)dz + lmo(ac) dx.
NG IR ;

Hence we choose 9g(x; zg) such that

~ dow (:E+£E0)2>
. _ _ TR0 1.2
To(w;0) = v+ — eXP( " , (1.29)

with a shift x¢ uniquely determined by

/:)O /f (vo(2) — Up(z;29)) dz = —ééow (1.30)

Thus we arrive at the definition of the perturbation

(z,1) / / — 0 —0)(z,t)dzdy, (1.31)

(v,u) = (V4 0+ Weg, T+ U + Wyt ). (1.31)

and
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By (1.28), w satisfies the second-order wave equation

. _ 1,
wie +p(V+ 0+ war) = p(0) + awe = =(p(v) — plu))e, (1.32)
by integrating (1.28 a) twice and (1.28b) once, with initial data

(w, wt)|t=0 = (wo, w1)(x)

= ([ ) -t az - 2 gy,
¢ (g — m )(Z)dz+]9(170($;$0))—]9(2) '
/m S * (1>.33)

Our present goal is to obtain a global solution w to (1.32), (1.33) and its behaviour
as t — oo, provided that (wg,w;) is suitably small. To do this, it is necessary to
know the behaviours of v, the solution of the porous-media equation.

Consider the Cauchy problem with, general initial data ¥y(x) instead of v(z; o),

Vg — (_p(ﬁ))wz = 0:

Ult=0 = Vo(x),

- (1.34)
/ (Vp(z) —v) dz = dgy-
As an asymptotic profile, we take
o(z tz1) = v+ d1(x, 1) + da(z,t; 21), (1.35)
with
dou ( (z + £E1)2>
T,t;11) = ——=exp| ————— | =: J0,G(z + 21,1 + 1),
o) = Zr—re=s P\ T+ 00G(z + 21,8+ 1)
¢ e (1.36)
brtostiz) = [ [ Gl =yt =) 06Ty dyd,
0 J—0
where a shift x; is uniquely determined by
/ / {09(2) — W+ 00,G(2 4+ 21,1))}dzdz =0 (1.37)
and , .
o 2a
Denoting the usual Sobolev spaces by H™, W™P (m =0,1,2,...,1 < p < 00), our

first theorem is as follows.

THEOREM 1.1. Let

Vo = [w /:j {’(7(2) - (Q+ 6OUG(Z + 1, 1))}d2dy
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be in HS N L' (s = 3). If both ||Vyllgrsnr: and |8o,| are suitably small, then there
exists a unique (weak) solution v to (1.34) satisfying v — ¢ € C([0,00); H*~2) and
decay properties

109.(0(-,t) = ¢(-, t; 1)) Lo < C(1 4 1)~ A7/P/2=32 " 0g (2 4 1) (1.39)
for0<j<s—3,2<p<oo,
[09(5(-,t) — B(-, t;21)) || e < Ct=U/P/273/27 ogt ¢ > 2, (1.40)
for0<j<s—3,1<p<2, and
18572 (@(8) = & (st z)) 22 < ClVollmrean (1 + )72, (1.41)

where C = Co(|| Vol zrsnrt +|60v]). Moreover, if Vo € HSNW =11 then (1.39) holds
for0<j<s—3,1<p< oo for C=Co(|Vollgsaws-11 + |dovl)-

If the initial data 0o (z) is given by o(z; xo) in (1.29) with (1.30), then z1 = zo
and

z )
/ / {9(2) = (+ 800G (2 + 20, 1))} dzdy € H® N WL,

and hence (1.39) holds for j =0,1,2,..., in which 27 is changed to zg. As is easily
seen, since

104(6 (-, tsw0) = w)llLe < Cdoy(1+ 1)~ 7H/PI/27I/2

(see lemma 2.1 in §2), and [|Vp|| gsnws-1.1 depends on &y, we have the following
corollary.

COROLLARY 1.2. The solution (v,u) to (1.23) or (1.24) with (1.29), (1.30) satisfies
the decay properties

182, t) = )|l v

lloza(, )| Lo

1)~ 1p)/2-0/2, (1.42)
+ 1)~ (-1/p)/2=(+)/2 (1.43)

601} (

< Clgy(1
< CdOv(l

for 7=0,1,2,..., 1 <p < oo.

Using this corollary and employing the L?-energy method, we arrive at the fol-
lowing result.

THEOREM 1.3. Let (wo,w1) be defined as in (1.33). If both (wo,w1) € H3x H? and
80 := |80w| + |00u| are sufficiently small, then there exists a solution (v,u) to (1.1),
(1.2) with (1.7), which satisfies the behaviours

lv—o,u—allL: <O((L+)7", (1+)7%2), (1.44)
v —7,u—al L <O(1+1)"/% (1 41)77/4), (1.45)

The estimates (1.44), (1.45) are enough to determine the location of the diffusion
wave (U, u). However, by the Green-function method, we will be further able to
get the ‘truly optimal’ convergence rates, though unfortunately we could not delete
‘log’ from the rates.
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THEOREM 1.4. Suppose that

(wo,w1) € (H* x H3 N (L' x LY).

If both ||wo,w1||gix gz and 8o = |dou| + |00u| are suitably small, then the solution
(v,u) to (1.1), (1.2) with (1.7) satisfies, fort > 2,

(v — 5, u —@)(-,t)||ne = O(t3/?logt,t =2 logt) (1.46)
and
v—v,u—u)(,t)||2 =0t ogt,t— ogt). .
O(t=5/11 /41 1.47

As an asymptotic profile of (v, u), we adopt (¢(z,t;x0), —(1/a)p(P(x,t;20))s).
Then, combining theorems 1.1 and 1.4, we get our main result.

THEOREM 1.5 (main theorem). Under the assumptions of theorem 1.4, it holds that

= O(t=3/?logt,t~?logt) (1.48)
LOQ

|0 oo tizo) ut Tp(otatio)
and

= O(t=%*logt, t~*logt). (1.49)
L2

H (v — ¢(x,t;20),u + ép(¢(iﬂ7t; mo))w>

We finally state the related works. Following the pioneering work of Hsiao and
Liu [2,3], there are developments in several directions. One is to obtain the con-
vergence rates just treated in this paper (see [12,13,17]). Second, weak solutions
should be treated when no smallness condition is assumed (see [4,7-9, 18, 20]).
Moreover, the initial-boundary-value problems, the problems for the full system
including the equation from the conservation of energy, etc., have been considered
in [5,6,10,11,15,16] and the references therein (see also the book [1] by Hsiao).

The plan of this paper is as follows. In §2, we first investigate the behaviour
of solutions to the porous-media equation, so that the decay rates of v — v are
obtained. In § 3, applying the L2-energy method, we prove theorem 1.3. Finally, we
prove the optimal convergence rate (theorem 1.4) by using the Green function of
the heat equation.

2. The porous-media equation

We consider the Cauchy problem for the porous-media equation

Vg — (_p(ﬁ))wz = 0:

lt=0 = To(2),
|G - wyde = 6 £ 0.
Here, let 9p(x) be given.
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First, the asymptotic profile ¢(x, t; x1) of ¥ is defined by (1.35) with (1.36)—(1.38).
Of course, ¢1, ¢ satisfy

¢1t — aizz = 0, $1li=0 = \/64?7%1 exp (—¥> =t do(z;21) — 1,
(2.2)
P2t — abazy = b(¢7)aws  Dolimo =0,
respectively, and so
(614 ¢2) — a(d1 + h2)ax — b(d1 + $2)2, = —b(20102 + 3)aa
i.e.
Gt — ez — b($ — 0)5, = —D(20102 + $3)zw  Dli=o = Po(x) := po(w;21). (2.4)
Denote the perturbation by
Vi, t) = /; /io(@ —)(z,t)dzdy or U=+ Via. (2.5)
Then V satisfies
Vi = (=p(é + Vaw) + p(2) + a9 — u) + b(¢ — 0)*) = b(2102 + ¢3),
Vo = Vo(x / / — po(z;21)) dady. (2.6)

Linearizing this around v, we have the reformulated problem

Vi = aViy = 266102 + 261 Vi + O(6} + 65 + V) =: 26162 + F(Via),

(2.7)
V|t:0 = Vo(m)

To estimate V', it is necessary to have the properties of ¢; (i = 1,2).

LEMMA 2.1. Let ¢1, ¢ be given by (1.36). Then they satisfy the following esti-
mates:

10961 (-, s 1)l Lo < Cdou(1 + 1)~ /P27, (2.8)
||8£¢2(., )| e < ngv(l + t)*(lfl/p)/%(lJrj)/2 (2.9)
for 7=0,1,2,... and 1 < p < 00.

%

Proof. The estimate (2.8) is well known. We only show (2.9) for j = 0. For t > 2,
/2
ll¢2(t)ll Lo < C(/O 102Gt = )l L= 167 (-, 7) | 1 dr
¢
+ [ 106Dl i )
t/2

t
< C’égvt’?‘/z/ (1+7)"2dr
0

< O8R!
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and
t/2
foatlr < ([ 102600 = DBl ar
t
+ [ 0.6t Dl 16
t/2

t

<Cagvf1/ (1+7)""2dr
0

<O 12

By combining these with ||¢2(¢)||f1nr~ < C (¢ < 2), the desired estimate (2.9) is
obtained. O

Using lemma 2.1, we have the following theorem.

THEOREM 2.2. Let Vi € H® N LY(s > 3) be sufficiently small and |8o,| also small.
Then problem (2.7) has a unique solution V € C([0,00); HSNLY)NC((0,00); W21)
with V, € L?(0,00; H®), which satisfies the following for C = Co(||Vol| g+t +60v),

185V ()] < Ct~F/21ogt, t>2 k=012, (2.10)
105V ()|l < C(L+1)" P 210 (2 41), >0, k=0,1,2, 2<p<oo,

(2.11)
185V ()] < C(L+1t)7F/2, t>0, k=3.4,...,s, (2.12)

and

t s
[ S asntitvi ar <o, (2.13)
0 k=0

and, moreover,

J05V (1)1 < C(1+ 1)~ O=1/P/27K 2108 (3 1),

t>0, k=0,1,...,s—1, 2<p< oo,

(2.14)

[0FV ()| < Ct=O-YP/2=R 2100t t>2 k=0,1,...,s—1, 1<p<2.
(2.15)

In addition, if Vo € WS™U1 then it holds that, fort > 0,

105V ($)|lLr < C(1+8)~ M2 =E R 10g (2 4 1),
k=0,1,...,5—1, 1<p< o0, (2.16)

for C = Co(IVollgsnaws-1.1 + [doul)-

Theorem 1.1 is a direct consequence of theorem 2.2, since
@(mvt) - ¢(£L’7t;l’1) = wa

The case 0(x) = vp(x) is a special case with s = co. So we easily have corollary 1.2.
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Proof of theorem 2.2. The method is similar to that in [19], so we only sketch the
proof.
Define the solution space X (T)(T < o0) by

Xu(T) ={v|veC(0,T;H* N L") NC((0,T); W),
vy € Lz(O:T; HS) with ”U”X(T) < M}:

where

2

ol x (r) = Sup >t (og (1+ ) HI95u(D)] 1
=7 k=0

2
+ max (Z(log(? +1)~*

0<t<T
k=0

< {1+ )Y age()]] + (1 + t)1/2+’“/2||8§v(t)IILw}>

s t s 1/2
+Z(1+t)’“/2||8§v(t)ll+(/ Z(HT)’“II@?%(T)II%T) :
k=3 0 k=0 217)

From now on, we denote the L?-norm simply by || - ||.
We define the iteration {V (™) (z,t)} by

t
VO (zt) = /G(m —y,)Vo(y) dy + / /G(m —y,t — 7)2bp1d2(y, T) dydr,
0

t
VO = VOG0 + [ [ Gla ot = )R (7)) dyar
0

and show that {V(")(z,t)} is a Cauchy sequence in Xy, (T) for some positive
constant My independent of T', provided that ||Vl gsnrt + dou is sufficiently small.
Here and hereafter, the integrand (—oo, 00) will be abbreviated. In fact, for ¢ > 2,

VO < @+ 2Voll s

t/2 t
+c( | 161~ horallzs o + // 1G I 61l dT)
0 t/2

< C(I[Vollzr + 65,)t/* logt (2.18)
and
VOl < CUVollz +63,) logt. (2.19)
The estimates of first- and second-order derivatives are similar. Moreover, V(%)
satisfies
VO — VD = 2165, (2:20a)
VO |_g = Vo(z). (2.20b)
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Hence, differentiating (2.20a) k times with respect to « and multiplying the resul-
tant equation by (1 + t)*0*V (k=0,1,...,s), we have

t
(L +0)* 05V O @) +/ (1 + )5V (DI dr < C(IVollFr- +63,).  (2:21)
0

Noting that [|0FV O (t)||p~ < CIV©O(#)||gs for k = 0,1,2, and combining (2.18)—
(2.21), we have

IVOllxy < OIVollaenzs +65,%) (< 2):
In a similar fashion to that above, we have that, if |V ("] x,. < Moe, then
[V x, < Cre + Ca(doy - € 4 €2) < Moe

if C1 + C2(d0y + €) < My. Moreover, taking e smaller if necessary, we have that
{v(™} is a Cauchy sequence in X~ ,.(T) for any T < oo.

Thus we obtain the solution V' to (2.7) that satisfies (2.10)—(2.13).

Again, estimating the expression

V(x,t) :/G(m—y,t)vo(y)dy+/0 /G(m—y,t—T)(2b¢1¢2+ﬁ'(Vm))(y,T)dydT,

we have (2.14), (2.15) for ¢t > 2. In particular, note that 95~V can be estimated
by

t
07 = [0 6Vody+ [ [ 0.Gla ot = 10052 @h0n6 + (V) dyi
0

Since V € H®. For t < 2, |08V (t)|l» < C (p =2, k < s) completes (2.14). Also, if
Vo € Wbl then (2.16) holds.

Thus we have completed theorem 2.2. O
3. L?%-energy method
Consider the linearized problem for the reformulated one (1.32) with (1.33),

Wit — QWgqe + Wy = F(wyy), (3.1a

(w, wt)|t=0 = (wo, w1)(z), (3.1b
where a = 1 without loss of generality, a = —p'(v) > 0, b = —1p” () and

F=-pu+@0—2+0+wy))+pe+ @ —20)+p(@we+ (0(0) - p)):
= b(0 — L) war + O8] + [0 — v + wl, + [04]). (3.2)

To obtain the time-global solution to (3.1), we combine the local existence theorem
with the a priori estimates.

PROPOSITION 3.1 (local existence). Suppose that (wg,w;) € H x H?, with

lwo, w1l g3 x> < M.
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Then there is a positive number Ty such that problem (3.1) has a unique solution
w € C([0,To); H37), i = 0,1,2,3, with

sup |lw, wel| gs gz < CoM
0<t<To

for a constant Cy > 0.

PROPOSITION 3.2 (a priori estimates). Let w € C*([0,T); H37%), i = 0,1,2,3, be
a solution to (3.1) for any T > 0. Then there is some constant g > 0 such that, if
lwo, w1l 3 x iz + 0 < €0, S0 = |dou| 4 |00u|, then it holds that

3 2
DA+ 5w @) + (1 + 0 2 a5w (1))
k=0

k=0

1
) @+ O Ewn () + (1 + ) wee (1)
k=0

2

t 2
- (Z<1+T>kna§wm<7>n2+Z<1+T>k+1na§wt<¢>n2

k=0 k=0
1
Z 14 7) 30k wy (7 )||2> dr

C(llwo, w1l s x> + o).
(3.3)

Propositions 3.1 and 3.2 yield the global existence theorem.

THEOREM 3.3. Suppose that (wo,w1) € H3 x H? and that ||wo, w1 | gs x g2 + 6o is
small. Then there exists a unique solution w € C([0,00); H37%) to (3.1), which
satisfies

3 2
Yo Ew(b)] + D (1 + )29k w (1)
k=0

k=0
1
+Z 1+t 3/2+k/2”8kwtt( )” +(1 +t)2”wttt(t)||
k=0
< C(Jwo, wi || s x g2 + 00)-

We only show the a priori estimates. Suppose that

3 2
N(T):= sup (Z(l + 005w ()1 + Y (1 + 1) 2 0fwe ()|

0<t<T

k=0 k=0
t 2 2
+ (1 + 1) ¥ we ()17 + > (1 +7) 05wy (7)]1* ) dr
[z > )or)
<e (<1). (3.4)

Similarly to [13], we show (3.3) by series of estimates.
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ESTIMATE 1. Multiplying (3.1a) by w; + Aw for 0 < A < 1 and integrating it over
R x [0,t], we have

/(%w? + Awgw + $Aw? + Law?)(z,t) dz
¢
—|—/ /((1 - Mw? + %)\awi)(mﬂ') dzdr
0

t
< Ol s By + | [ Flwaa) e+ 3o) 7)oty
0

< Cllwo, w1135y g2

t
+ / (Gu? + {15 - 2l lwas (P2 + 1161
15— 2l + Twame (7| wan (7)]*}) dr
t
+ / C(l15 =l + s (M + 0]
o= a3 + e (120 ()] dr
< C(lwo, wn |3 g2 + 80+ N(T)?)
t
+C’(60+N(T))/ (1 +7)75 4 w(r)| dr.
0

Hence

[ (we, wa, w) (B + /Ot [(we, we ) (T)|I? dr < C(llwo, will e x a2 + 60 + N(T)?)
=: Cj. (3.5)
Here we have used
|o(x, )] < Cdge™,

| <
1o = 2P|l < Cllo — wlfe < CSHL+1)7>4, (3.7)

etc., and Gronwall’s inequality. Using (3.5) and multiplying (3.1a) by (1 + ¢)w;
yields

t
(1 + ) (we, wa) (1)1 +/ (1 +7)[[we(r)|I* dr < Co. (3.8)
0
ESTIMATE 2. Differentiating (3.1a) in « yields
Wytt — QWggy + Wat = F(wwz)w (39)

By (3.5), we can multiply (3.9) by (1 + ¢)(wz: + Aw,) for 0 < A < 1, which results

in
t
(1 + )l (wat, Waa, we ) (1) +/ (1 + )l (wat, wee ) (7)[|* d7 < Co. (3.10)
0
Again, multiplying (3.9) by (1 + t)*w., k = 0,1,2, and using (3.10), we have

(14 )2 (war, war) (D)1 + / (4 12l 2dr < Co.  (3.11)
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EsTIMATE 3. Multiplying (3.9) by —(1 + t)* (Waper + AMUgee ), k = 0,1,2, yields

t
(14 ]| (Wt Woaas wee) (D) + / |(Wat wase)(7)|2dr < Co. (3.12)
0

Hence we can multiply (3.9) by —(1 + t)*wg,qe, k = 0,1,2,3, and obtain

(L + 6| (et wase) ()12 + / (1 + 7|zt (r)]12 dr < Co. (3.13)

Combining estimates 1-3 and taking N(T") (< ) small, we get
N(T) < C(”wO: w1 ||§{3><H2 + (50)

Moreover, since F(w,,) € CH([0,T); H*=%), i = 0,1, uyz € C¥([0,T); H'~%). Using
these facts, we continue the estimates.

ESTIMATE 4. Differentiating (3.1a) in ¢ yields
Wit — GWggt + Wt = F(wwz)t (314)

By (3.8), we can multiply (3.14) by (1 + t)*(wy + Aw,), k = 0,1,2, so that

t
(1+ ) (wee, war, we) ()| +/ (14 7)2|[(wet, wae) (7)[|* dr
0
< C(|lwo, will3s g2 + 60) =: Co.  (3.15)

Hence we multiply (3.14) by (1 4 ¢)*ws, k= 0,1,2,3, so that
t
1+ 0N ) OF + [ 0+ P lwu@lPar <o (316)
0

ESTIMATE 5. Finally, multiplying (3.14) by —(1 4+ t)*(waatt + AMzat), k = 0,1,2,3,
and —(1 + t)*wgps, k = 0,1,...,4, we obtain

t
(1 + t)SH(wwtta wwwt:wwt)(t)nz + / (]— + T)3||(wwtt:wwzt)(7—)”2 dr < CO (317)
0

and
t
(1+ ) (wapes waae) ()| +/ (14 7)were ()] dT < Co,  (3.18)
0

respectively. Using (3.14), we have
(14 ) lwe (H)]* < Co. (3.19)

Combining (3.15)—(3.19) shows (3.3).
Continuing this process, we have the regularity theorem.

THEOREM 3.4. Suppose that

(wo,w1) € H* x H™'  for s > 3.
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If |lwo, willgsxmgs—1 + 0o s small, then there exists a unique solution to (3.1),
w € C([0,00); H*7%), i =0,1,...,s, which satisfies

(1+ ) 2050w (t)]| < Olwo, willmex et + bo) (3.20)
forj=0,1,....s—2and k=0,1,...,8 — 7j,
(1 + ) FFD2H=2) 980w (t) ]| < Clllwo, il o o1+ 60) (3.21)
and
(1 + ) HIopw(®) | < Clllwo, will e xare—1 + 8o)- (3.22)

Theorem 1.3 is a direct consequence of theorem 3.3. If we apply theorem 3.4 with
s = 4 to our original problem (1.1), then the solution (v, ) is classical. However,
this regularity theorem will be used in the next section, where we will try to obtain
the ‘truly optimal’ convergence rates.

For the proof of theorem 3.4, we only note that we can differentiate (3.1a) s — 2
times with respect to t, from which we obtain the estimates

L+ NG 2w®?, (0220w, (1)1,
(1 + 027 2*210 2w (NP < Cllwo, will e o1+ 8o)
in a similar fashion to estimates 4, 5. These derive (3.20). We cannot differenti-

ate (3.1a) more than s — 2 times, and hence we only have (3.21), (3.22).

4. The Green-function method

We rewrite (3.1), using the Green function G of the heat equation, as

wat) = [ Gy thwa)dy+ [ [ 6=t =)=+ Flay).7) dydr
(4.1)
Remember that

F(wge) = b(0 — w)wae + O8] + [0 — v’ + w}, +[v]). (4.2)
As in [14], since

/2
Gz —y,t — 7)(—wsr)(y, ) dydr

[ (o fa)o

/Gw—y, Jwi (y) dy — /G —y, 2wy, 3t) dy

/2
- [ [ e = vt = pyuntyr) ayar
0

0

https://doi.org/10.1017/5S0308210500002341 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500002341

Asymptotics toward the diffusion wave 193

we have the following expression for w,
w(z,t) = P(z,t) /G —y, st)wi(y, 3t) dy

t/2
- / / Gz — y,t — 7w, (y, 7) dydr
0

t
— / /G(m —y,t — T)wr,(y,7) dydr
/2

" /ot / Gz =y, t = 7)F(wyy)(y,7) dydr

Lt s, (4.3)
with I5 =: Is; + - + I54 from (4.2). Here,
wlat) = [ Gl = yut) o+ w)) dy (4.4)
or
wt - awww = 0:
4.4
Yle=0 = (wo+w1)(m).} e

Using the estimates obtained the preceding section, we estimate the right-hand
side of (4.3).

THEOREM 4.1. Suppose that (wo,w1) € H® x H*~', with s = 4 as in theorem 3.4,
and that (wo,w1) € L. Then the solution w to (3.1) satisfies, fort > 2,

0k w(t)|| < Ct=Y4 2 10gt  and (85w (t)||p~ < Ct~/* % 21ogt (4.5)
for k=0,1,2,3 and
05w, ()| < Ct=5/4%21ogt and ||0Fw,(t)|| L~ < Ct=3/27 /2 10gt (4.6)
for k=0,1,2.
Theorem 1.4 is a direct consequence of theorem 4.1.
Proof of theorem 4.1. Since s = 4, theorem 3.4 gives the estimate
|oFalw(t)| < Ct%277,  j=0,1,2, k=0,1,2,3, (4.7)
[okafw(t)|| < Ct=*T3/2 ) K =0,1.

Using these, I1,..., 1, are easily estimated. For example,
t/2
035l < C [ [Gunaalt = 1)l ()] 7
0

t/2
<C’t*1/4*1*3/2/ (L+7) " dr
0

=Ct " logt
<Ot 2,
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t
193l <€ [ 1Gutt = lltrreet)l e
t

t
< C’tiB/ (t—7)~3/*dr
t

We now estimate I,

t
151l Lo </O 1G(t =)= [1(? = L) wae (7)l| L1 dT

t/2 t
< Ct*l/Q/ (1+ 7)Y dr 4 o 1/4t / (t—7)"Y2dr
0 t

/2
<ot 2,

t
|53 o< </O IG(t =)l [l — w)(7)[I7s dT

t/2 t

< Ct*l/Q/ (1+7)"" dT+Ct*1/ (t—7)"Y2dr
0 t/2

< Ct Y2 logt,

t
| sall o < / IG(t = )|z l[was (1) 22 dr

t/2 t
< Ct*l/Q/ (1+T)*2dT+Ct*2/ (t—7)"Y2dr
0 t/2

<ot V2,

Since ¥ decays exponentially, I is easily estimated. L2-estimates and the higher
order in z estimates are similar to the above. Thus we have (4.5).
To get (4.6), we differentiate (4.3) in ¢,

wilast) = (e t) — [ Gular =y, 3wl 300y
+ [ Gl =y 30wl 30+ Flwy) 30 dy
t/2
—/O /Gtt(:r —y,t — T)w;(y, 7) dydr
t
- / /G(l’ - Y, t— T)wTTT(yJ T) dydT
/2
t/2
+ /o /Gt(m —y,t —7)F(wyy)(y, ) dydr

+ /t/2 / G(z —y,t — 71)0-F(wyy)(y, 7) dydr. (4.9)
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Here we have used integration by parts in 7. Similar estimates for (4.9) yield (4.6).
We omit the details. O

REMARK 4.2. To apply theorem 4.1 to theorem 1.4, the estimates of w,, and w;,
are needed. To estimate wy,, we need the estimate of

t
/ /Gw(m —y,t — T)Wrrr(y,7) dydr =: II5,
/2

from the fifth term in the right-hand side of (4.9). If (wq,w;) € H3 x H?, then we
have only ||w,.(7)|| < C(1 4 7)72, so that
t
115l < Cr2/ (t—7)"¥*dr < Ct™7/4,

t/2
This decay order seems to be less sufficient. So we assume s = 4 in theorem 3.4.
In (4.6), (4.7), we could not delete ‘log’. These come from I53, etc., which depend
on the choice of the diffusion wave ¢(z,t; zo). We believe that ‘log’ will be deleted if
the diffusion wave ¢ is selected more suitably. We also note that the L'-convergence
result should be obtained. But our present method will not be applicable.

Acknowledgments
The author was supported in part by Grant-in-Aid for Scientific Research (C)(2)
13640223 of JSPS (Japan).

References

1 L. Hsiao. Quasilinear hyperbolic systermns and dissipative mecharisms (World Scientific,

1998).

2 L. Hsiao and T.-P. Liu. Convergence to nonlnear diffusion waves for solutions of a system of
hyperbolic conservation laws with damping. Corrram. Math. Phys. 143 (1992), 599-605.

3 L. Hsiao and T.-P. Liu. Nonlinear diffusion phenomena of nonlinear hyperbolic system.
Chin. Ann. Math. 14 (1993), 465-480.

4 L. Hsiao and T. Luo. Nonlinear diffusive phenomena of solutions for the system of com-
pressible adiabatic flow through porous media. J. Diff Egns 125 (1996), 329-365.

5 L. Hsiao and D. Serre. Large-time behavior of solutions for the system of compressible
adiabatic flow through porous media. Chin. Arnn. Math. 16 (1995), 1-14.

6 L. Hsiao and D. Serre. Global existence of solutions for the system of compressible adiabatic

flow through porous media. SIAM J. Math. Analysis 2'7 (1996), 70-77.

7 L. Hsiao and D. Serre. Asymptotic behavior of large weak entropy solutions of the damped
p-system. J. PDFs 10 (1997), 355-368.

8 L. Hsiao and S. Q. Tang. Construction and qualitative behavior of solutions of perturbed

Riemann problem for the system of one-dimensional isentropic flow with damping. Q. Appl.
Math. 53 (1995), 487-505.

9 T. Luo and T. Yang. Interaction of elementary waves for compressible Euler equations with
frictional damping. J. Diff. Egns 161 (2000), 42-86.
10 P. Marcati and M. Mei. Convergence to nonlinear diffusion waves for solutions of the initial

boundary problem to the hyperbolic conservation laws with damping. Q. Appl. Math. 58
(2000), 763-784.

11 P. Marcati and R. Pan. On the diffusive profiles for the system of compressible adiabatic
flow through porous media. SIAM J. Math. Analysis 33 (2001), 790-826.

12 P. Marcati, M. Mei and B. Rubino. Optimal convergence rates to diffusion waves for solu-
tions of the hyperbolic conservation laws with damping. (Preprint.)

https://doi.org/10.1017/5S0308210500002341 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500002341

196

13
14
15
16
17
18
19

20

K. Nishihara

K. Nishihara. Convergence rates to nonlinear diffusion waves for solutions of system of
hyperbolic conservation laws with damping. J. Diff. Egns 131 (1996), 171-188.

K. Nishihara. Asymptotic behavior of solutions of quasilinear hyperbolic equations with
linear damping. J. Diff. Egns 137 (1997), 384-395.

K. Nishihara and M. Nishikawa. Asymptotic behavior of solutions to the system of com-
pressible adiabatic flow through porous media. STAM J. Math. Analysis 33 (2001), 216-239.
K. Nishihara and T. Yang. Boundary effect on asymptotic behavior of solutions to the
p-system with linear damping. J. Diff. Egns 156 (1999), 439-458.

K. Nishihara, W. Wang and T. Yang. L?-convergence rate to nonlinear diffusion waves for
p-system with damping. J. Difff Egns 161 (2000), 191-218.

H. Zhao. Convergence to strong nonlinear diffusion waves for solutions of p-system with
damping. J. Diff. Egns 174 (2001), 200-236.

S. Zheng. Nonlinear parabolic equations and hyperbolic—parabolic coupled system (New
York: Longman, 1995).

C.-J. Zhu. Convergence rates to nonlinear diffusion waves for weak entropy solutions to
p-system with damping. (Preprint.)

(Issued 21 February 2003)

https://doi.org/10.1017/5S0308210500002341 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500002341

