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Abstract. We study mean convergence results for weighted multiple ergodic averages
defined by commuting transformations with iterates given by integer polynomials in
several variables. Roughly speaking, we prove that a bounded sequence is a good universal
weight for mean convergence of such averages if and only if the average of this sequence
times any nilsequence converges. Two decomposition results of independent interest play
key roles in the proof. The first states that every bounded sequence in several variables
satisfying some regularity conditions is a sum of a nilsequence and a sequence that has
small uniformity norm (this generalizes a result of the second author and Kra); and the
second states that every multiple correlation sequence in several variables is a sum of a
nilsequence and a sequence that is small in uniform density (this generalizes a result of the
first author). Furthermore, we use these results in order to establish mean convergence and
recurrence results for a variety of sequences of dynamical and arithmetic origin and give
some combinatorial implications.
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1. Introduction
Since the early 1980s, a lot of effort has been put into the study of the limiting behavior of
multiple ergodic averages. This study was partly motivated by combinatorial implications,
since positiveness properties of such averages imply various far reaching extensions of the
celebrated theorem of Szemerédi on arithmetic progressions. After a long series of partial
results, most notably those in [7, 20, 21, 34, 43–45, 52, 60, 62, 66], Walsh [64], building
on previous work of Tao [62], proved the following mean convergence result.

THEOREM 1.1. [64]† Let d, `, s ∈ N, (X, X , µ) be a probability space, and
T1, . . . , T` : X→ X be invertible commuting measure preserving transformations. Then,
for every Følner sequence (Ik)k∈N of subsets of Nd , polynomials pi, j : Nd

→ Z, i =
1, . . . , `, j = 1, . . . , s and functions f1, . . . , fs ∈ L∞(µ), the averages

1
|Ik |

∑
n∈Ik

f1

(∏̀
i=1

T pi,1(n)
i x

)
· · · · · fs

(∏̀
i=1

T pi,s (n)
i x

)
(1.1)

converge in L2(µ) as k→+∞.

Remark. In [64], the previous result was established under the weaker hypothesis that the
transformations T1, . . . , T` generate a nilpotent group. We believe that our results can be
extended to this more general set-up, but, in this article, we restrict our work to the case of
commuting transformations.

One of the main purposes of this article is to study mean convergence for weighted
versions of the averages (1.1): that is, averages of the form

1
|Ik |

∑
n∈Ik

w(n) f1

(∏̀
i=1

T pi,1(n)
i x

)
· · · · · fs

(∏̀
i=1

T pi,s (n)
i x

)
, (1.2)

wherew : Nd
→ C is a bounded sequence. A sequencew, for which the previous averages

converge for all choices of systems, functions, and polynomials, is called a good universal
weight for mean convergence of the averages (1.2).

When d = 1, examples of good universal weights for some multiple ergodic averages
can be found in [1–4, 18, 25, 29, 31, 46, 68]. Most of these results deal with the case
where `= 1 and are based on the theory of characteristic factors that was pioneered by
Furstenberg. They depend, crucially, on the work of Host and Kra [44] and subsequent
developments in [45, 52], which, in the case where all the transformations are equal, gives a
characterization in terms of nilsystems of the smallest factor of the system that controls the
limiting behavior of the averages (1.2). Unfortunately, no such characterization is known in
the case of general commuting transformations (but see [8, 9] for related progress), which
is the reason why this method is not applicable for our more general set-up. Moreover,
the method used by Walsh in [64] does not seem applicable to weighted averages and no
general criterion suitable for checking mean convergence of averages of the form (1.2) is
known. We fill this gap by showing, in Theorem 2.2, that a bounded sequencew : Nd

→ C

† The argument in [64] is given for Cesàro averages and d = 1 but the same proof works in this more general
case (see [67] for details).
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is a good universal weight for mean convergence of the averages (1.2) if and only if the
averages

1
|Ik |

∑
n∈Ik

w(n) · ψ(n) (1.3)

converge for every nilsequence ψ in d variables and Følner sequence (Ik)k∈N in Nd .
Furthermore, when one replaces, throughout the averages, (1/Ik)

∑
n∈Ik

by the Cesàro
averages (1/N d)

∑
n∈[1,N ]d , we prove, in Theorem 2.4, that a similar criterion holds for

weak convergence and that a condition somewhat stronger than (1.3) suffices for mean
convergence. Even for single variable sequences, the mean convergence criterion is new
and its proof (strangely) depends on decomposition results for sequences in two variables.
Prior to this work, only the case d = `= 1 was treated (in [18]) for mean convergence,
while, for weak convergence, the case where d = 1 and ` ∈ N is arbitrary was treated in
[29].

To prove these results, we use the mean convergence result of Walsh as a black box
and two decomposition results of independent interest. These are Theorems 3.9 and 3.10,
which extend similar results for single variable sequences from [46, Theorem 2.19] and
[29, Theorem 1.2]. Roughly speaking, they state the following.
(i) If the averages (1.3) converge for every nilsequence ψ : Nd

→ C and every Følner
sequence (Ik)k∈N in Nd , then the sequence w ∈ `∞(Nd) is a sum of a nilsequence
and a sequence that has small uniformity norm.

(ii) Any sequence of the form∫ ∏̀
i=1

f1(T
pi,1(n)

i x) · · · · ·
∏̀
i=1

fs(T
pi,s (n)

i x) dµ, n ∈ Nd

is the sum of a nilsequence and a sequence that is small in uniform density.
Regarding the second decomposition, Theorem 2.6 gives more precise information

when the iterates are linear: it implies, for example, that the sequences∫
f · T m

1 f · T n
2 f · T r

3 f dµ,
∫

f · T m
1 f · T n

2 f · T m+n
3 f dµ,∫

f · T n
1 f · T n

2 f · T n
3 f dµ (1.4)

are 1-step, 2-step and 3-step nilsequences, respectively, modulo small errors in uniform
density (simple examples show that the degree of nilpotency is optimal).

Using the previous criteria, we prove mean convergence results for weighted ergodic
averages with weights given by various sequences of dynamical origin, bounded
multiplicative functions, generalized polynomials and Hardy field sequences (see §§2.2,
2.3, 2.6). We deduce some multiple recurrence results and combinatorial consequences;
showing for example that every set of integers with positive upper density contains
arbitrarily long arithmetic progressions with common difference of the form m2

+ n2,
where m, n have an odd (or an even) number of distinct prime factors (see Theorems 2.12–
2.14) or m, n are taken from the set {k ∈ N : ‖ka

‖ ∈ [1/2, 3/4]}, where a is any positive
non-integer (see Theorems 9.1, 9.5). We also establish multidimensional variants of these
results regarding patterns in positive density subsets of Z`.
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In the next section, we give the precise formulation of our main results and define some
concepts used throughout the article.

2. Precise statement of main results
2.1. Notation and definitions. We first introduce some notation that is going to facilitate
our presentation.

2.1.1. Ergodic theory. Following, for example, [35] we say that a probability space
(X, X , µ) is a Lebesgue space if X can be given the structure of a Polish space (i.e.
metrizable, separable, complete) such that X is its Borel σ -algebra. Throughout the article,
we make the standard assumption that all probability spaces considered are Lebesgue.

By a system (X, X , µ, T1, . . . , T`) we mean a Lebesgue probability space (X, X , µ)
endowed with ` invertible commuting measure preserving transformations. For −→n =
(n1, . . . , n`) ∈ Z`, we write T−→n = T n1

1 · · · · · T
n`
` . Sometimes, we denote by

−→
T the action

of Z` on X and write the system as (X, X , µ,−→T ). In the subsequent work, we generally
omit the σ -algebra X from our notation.

2.1.2. Nilmanifolds and nilsequences. Let s ∈ N, G be an s-step nilpotent Lie group
and 0 be a discrete cocompact subgroup of G. Then the quotient space X = G/0 is called
an s-step nilmanifold. We prefer to denote the elements of X as points x, y, . . . , not as
cosets. The point eX is the image in X of the unit element of G. The natural action of G
on X is written (g, x) 7→ g · x and the unique measure on X invariant under this action is
called the Haar measure of X and is denoted by m X .

Let τ1, . . . , τd be commuting elements of G. For i = 1, . . . , d let Ti be the translation
x 7→ τi · x by τi on X . Then the system (X, m X , T1, . . . , Td) is called an s-step
nilsystem. Nilsystems have been extensively studied and basic properties were established
by Auslander [6], Parry [58, 59], Lesigne [56], Leibman [50, 51] and others.

Definition. [11] If X = G/0 is an s-step nilmanifold, 9 ∈ C(X) and τ1, . . . , τd ∈ G
are commuting elements, then the sequence (9(τ n1

1 · · · · · τ
nd
d · eX ))n1,...,nd∈N is called an

s-step nilsequence in d variables. Also, for notational convenience, we define a 0-step
nilsequence to be a constant sequence.

Remarks.
• In [11] the notion ‘basic s-step nilsequence’ is used for what we call here an ‘s-step

nilsequence’.
• By [50, Paragraph 1.11], the nilmanifold X is isomorphic to a sub-nilmanifold of a

nilmanifold X̃ = G̃/0̃, where G̃ is a connected and simply connected s-step nilpotent
Lie group and all elements of G are represented in G̃. Hence, whenever needed, we
can assume that the group G is connected and simply connected.

In recent years, nilsequences have played a key role in ergodic theory and additive
combinatorics. They form the right substitute for linear exponential sequences needed
to formalize certain inverse theorems which are used in the course of studying various
multilinear expressions in analysis and number theory.
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2.1.3. Følner sequences and related averages. First, we recall some notions and
introduce some notation.

Notation. We write [N ] for the interval {1, 2, . . . , N } in N.

Definition. A Følner sequence in Nd is a sequence I= (I j ) j∈N of finite subsets of Nd that
satisfies

lim
j→∞

|(I j + k)1I j |

|I j |
= 0 for every k ∈ Zd ,

where 1 denotes the symmetric difference and I j + k := {n+ k : n ∈ I j }.

An example of a Følner sequence in N is a sequence of intervals whose lengths tend to
infinity. If N j →+∞ and (k j ) j∈N is a sequence in Nd , then I j := k j + [N j ]

d , j ∈ N is
a Følner sequence in Nd . In all subsequent results and proofs, we can replace the general
Følner sequences by these particular examples.

If a : Nd
→ C is a sequence and I= (I j ) j∈N is a Følner sequence in Nd , we let

lim AvI a(n) := lim
j→+∞

1
|I j |

∑
n∈I j

a(n),

assuming, of course, that the previous limit exists. If the previous limit exists for every
Følner sequence I, then it is independent of I; we denote its common value with

lim Av a(n)

and say that the averages of a converge. When it is unclear with respect to which variable
we take the averages, we use the notation

lim Avn,I a(n), lim Avn a(n).

Furthermore, we use the notation

limsup |AvI a(n)| := lim sup
j→+∞

∣∣∣∣ 1
|I j |

∑
n∈I j

a(n)
∣∣∣∣

and
limsup |Av a(n)| := sup

I
(limsup |AvI a(n)|),

where the sup is taken over all Følner sequences I= (I j ) j∈N of subsets of Nd .
We use similar notation for limits in L2(µ) involving averages of functions ( fn)n∈Nd in

L2(µ) and write

lim AvI fn, lim Av fn, limsup ‖AvI fn‖L2(µ), limsup ‖Av fn‖L2(µ)

for the corresponding limits, where, in the first two cases, convergence takes place in
L2(µ) and, in the last two cases, we use L2(µ) norms in place of the absolute values.
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2.2. Convergence results for uniform averages. First, we give convergence criteria for
weighted ergodic averages which are defined using uniform averages, that is, averages over
arbitrary Følner sequences in Nd .

Definition. If pi : Nd
→ Z, i = 1, . . . , `, are polynomials, we call the map−→p : Nd

→ Z`
defined by−→p := (p1, . . . , p`) a polynomial mapping from Nd to Z`. The degree deg(−→p )
of −→p is maxi=1,...,`(deg(pi )).

We first state a strengthening of Theorem 1.1 that will be used frequently in this article.
It is proved in §4.3.

PROPOSITION 2.1. For every d, `, s ∈ N, polynomial mappings −→pi : Nd
→ Z`,

i = 1, . . . , s, nilsequence ψ : Nd
→ C, system (X, µ, T1, . . . , T`) and functions

f1, . . . , fs ∈ L∞(µ), the limit

lim Av ψ(n) · T−→p1(n) f1 · · · · · T−→ps (n) fs

exists in L2(µ).

Remark. For d = 1 this was proved in [29, §2.4].

Our main convergence criterion for uniform averages is the next result, which is proved
in §7.1.

THEOREM 2.2. Let d, `, s, t ∈ N. Then there exists a positive integer k = k(d, `, s, t),
such that the following holds: if w ∈ `∞(Nd) is a sequence and, for every k-step
nilsequence ψ : Nd

→ C, the limit

lim Av w(n) ψ(n) exists, (2.1)

then, for every system (X, µ, T1, . . . , T`), functions f1, . . . , fs ∈ L∞(µ) and polynomial
mappings −→pi : Nd

→ Z`, i = 1, . . . , s of degree at most t , the limit

lim Av w(n) · T−→p1(n) f1 · · · · · T−→ps (n) fs (2.2)

exists in L2(µ). Furthermore, if the limit in (2.1) is zero for every k-step nilsequence ψ
in d variables, then the limit in (2.2) is always zero. Lastly, if the polynomial mappings
−→pi : Nd

→ Z`, i = 1, . . . , s are linear, then we can take k = s.

Remarks.
• For d = `= t = 1, this result was proved in [46] and, for d = `= 1 and t ∈ N

arbitrary, in [18].
• In Theorem 3.9, we give a characterization using ‘uniformity seminorms’ of

sequences satisfying the hypothesis of Theorem 2.2.

The next result shows that the hypothesis of Theorem 2.2 is necessary in order to have
weak convergence of the averages in (2.2) for all linear polynomial mappings.
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PROPOSITION 2.3. Let d, s ∈ N and w ∈ `∞(Nd) be a sequence. Suppose that for every

system (X, µ, T1, . . . , Td), functions f0, . . . , fs ∈ L∞(µ) and linear forms
−→
L i : Nd

→

Zd , i = 1, . . . , s, the limit

lim Av w(n)
∫

f0 · T−→L1(n)
f1 · · · · · T−→Ls (n)

fs dµ

exists. Then the limit
lim Av w(n) ψ(n)

exists for every s-step nilsequence ψ in d variables.

Remark. For d = 1, this was proved in [29].

Next, for d = 1, we give some examples of sequences of weights in `∞(N) for which
Theorem 2.2 is applicable.

Examples. Let (Y, S) be a minimal uniquely ergodic system with invariant measure ν
and, for every s ∈ N, let (Zs, νs, S) be the ‘factor of order s’ defined in [44]. Suppose that,
for every s ∈ N, the factor map πs : Y → Zs is continuous. Then, for every 9 ∈ C(Y ) and
every y0 ∈ Y , the sequence w : N → C defined by w(n) :=9(Sn y0), n ∈ N satisfies the
hypothesis of Theorem 2.2 [46, Proposition 7.1]. Examples of this type include:
(i) the Thue–Morse sequence, which is the indicator function of those integers that have

an odd sum of digits when expanded in base two (see [46, Proposition 2.21]); and
(ii) bounded generalized polynomials (see [46, Corollary 2.23])†. These include

sequences of the form ({p(n)})n∈N or (e(p(n)))n∈N, where p : N→ Z is an arbitrary
generalized polynomial, {x} denotes the fractional part of x and e(t) := e2π i t .

2.3. Convergence results for Cesàro averages. The assumptions of Theorem 2.2 are,
in many cases, too strong to be of use (this is the case for the examples (i)–(v) below)
and we would like to have a criterion that uses convergence assumptions of certain Cesàro
averages instead of uniform averages. We obtain such a result by utilizing tools different
from those used in the proof of Theorem 2.2 (Theorem 2.2 relies on Theorem 3.9 which
necessitates the hypothesis (2.1)). The key new ingredients are decomposition results for
multiple correlation sequences, which are stated in §2.4, below.

THEOREM 2.4. Let d, `, s, t ∈ N. Then there exists a positive integer k = k(d, `, s, t),
such that the following hold.
(i) If w ∈ `∞(Nd) and, for every k-step nilsequence ψ : Nd

→ C, the limit

lim
N→+∞

1
N d

∑
n∈[N ]d

w(n) ψ(n) exists, (2.3)

then, for every system (X, µ, T1, . . . , T`), functions f0, . . . , fs ∈ L∞(µ) and
polynomial mappings −→pi : Nd

→ Z`, i = 1, . . . , s, of degree at most t , the limit

† A generalized polynomial is a real-valued function that is obtained from the identity function and real constants
by using the operations of addition, multiplication and taking the integer part.
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lim
N→+∞

1
N d

∑
n∈[N ]d

w(n) ·
∫

f0 · T−→p1(n) f1 · · · · · T−→ps (n) fs dµ (2.4)

exists.
(ii) If w ∈ `∞(Nd) and, for every k-step nilsequence ψ : N2d

→ C, the limit

lim
N ,N ′→+∞

1
(N N ′)d

∑
n∈[N ]d , n′∈[N ′]d

w(n) w(n′) ψ(n, n′) (2.5)

exists, then, for every system (X, µ, T1, . . . , T`), functions f1, . . . , fs ∈ L∞(µ)
and polynomial mappings −→pi : Nd

→ Z`, i = 1, . . . , s, of degree at most t , the limit

lim
N→+∞

1
N d

∑
n∈[N ]d

w(n) · T−→p1(n) f1 · · · · · T−→ps (n) fs (2.6)

exists in L2(µ).
Furthermore, if the limit in (2.3) (respectively, (2.5)) is zero for every k-step nilsequence

ψ : Nd
→ C (respectively, ψ : N2d

→ C), then the limit in (2.4) (respectively, (2.6)) is
always zero.

Lastly, in (i) (respectively, (ii)), if the polynomial mappings −→pi are linear, then we can
take k = s (respectively, k = 2s − 1), and if, in addition, `= s and T−→pi (n) = T L i (n)

i for
i = 1, . . . , s, where L1, . . . , Ls are linear forms spanning a subspace of dimension r,
then we can take k = s − r + 1 (respectively, k = 2s − 2r + 1).

Remarks.
• For d = 1, the first part of this result was proved in [29].
• For single variable polynomials, in order to prove Part (ii) of this result, we rely

on decomposition results of correlation sequences involving polynomials in two
variables.

An analogue of Proposition 2.3, with Cesàro averages in place of uniform averages,
holds with the same proof. This implies that the condition (2.3) is also necessary in order
for the limit (2.4) to exist for all linear polynomial mappings.

Sequences w ∈ `∞(Nd) that satisfy the hypothesis (2.3) and (2.5) of Theorem 2.4 (but
do not satisfy the condition (2.1) of Theorem 2.2, even for ψ = 1) include the following.
(i) Any sequence of the form (g(S−→n y))−→n ∈Nd , where (Y, ν, S1, . . . , Sd) is a system

and g ∈ L∞(ν), for y ∈ Y belonging to a set of full measure that depends only on
the system and the function g. For d = 1, this was proved in [46, Theorem 2.22] for
hypothesis (2.3) but a similar argument also gives hypothesis (2.5) and works (using
Theorem 3.1) for general d ∈ N.

(ii) Any ‘good’ multiplicative function φ : Nd
→ C (see §2.6 and Theorem 8.1). For

d = 1, an alternate proof which depends on [30], and thus on deep results from [38]
and [40], was given in [31].

(iii) The indicator function of all vectors of Nd whose coordinates have an even (or an
odd) number of distinct prime factors; or more generally, the indicator function of
any set S defined as in Theorem 2.12 below (this follows from Theorem 8.1 and the
argument in §8.2).
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(iv) Any sequence of the form (e(
∑d

i=1 nai
i ))n1,...,nd∈N, where a1, . . . , ad are positive

non-integers. In this case the limits in (2.3) and (2.5) are always zero (see
Theorem 9.1 and Proposition 9.3). Moreover, for d = 1, we give necessary and
sufficient conditions for a sequence of the form (e( f (n)))n∈N, where f is a Hardy
field function of at most polynomial growth, to be a good universal weight for mean
convergence of the averages (2.6) (see Corollary 9.2).

(v) The indicator function of any set of the form

S := {n1, . . . , nd ∈ N : ‖ f1(n1)‖ ∈ [a1, b1], . . . , ‖ fd(nd)‖ ∈ [ad , bd ]},

where 0≤ ai < bi ≤ 1/2, ‖x‖ := d(x, Z) and fi are Hardy field functions of at
most polynomial growth that stay away from polynomials (this follows from
Proposition 9.3 and an approximation argument that uses the estimate (9.1)).
Furthermore, the set S is good for multiple recurrence and mean convergence and
the L2(µ) limit

lim
N→+∞

1
|S ∩ [N ]d |

∑
n∈S∩[N ]d

T−→p1(n) f1 · · · · · T−→ps (n) fs

is equal to the limit obtained when S is replaced by Nd (see Theorem 9.5).

2.4. Multiple correlations in ergodic theory. Multiple correlation sequences are well
studied objects in ergodic theory and form an indispensable tool in the study of various
multiple ergodic averages. For single variable sequences, structural results have been
obtained in [11, 29, 53, 54, 57]; we extend some of these results to sequences in several
variables. These extensions turn out to be key for the proof of the convergence criterion
given in Theorem 2.4. Our argument follows closely the method used in [29] to obtain
similar results for single variable sequences; but some refinements obtained (for example
Theorem 2.6) require new methodology.

Notation. For a bounded sequence a : Nd
→ C, we let

‖a‖2 :=
(
limsup Av |a(n)|2

)1/2
. (2.7)

Definition. A bounded sequence a : Nd
→ C is an approximate s-step nilsequence in d

variables if, for every ε > 0, it admits a decomposition as a = ast + aer, where:
(i) ast : Nd

→ C is an s-step nilsequence in d variables with ‖ast‖∞ ≤ ‖a‖∞; and
(ii) ‖aer‖2 ≤ ε.

The subscripts ‘st’ and ‘err’ are used to indicate ‘structured’ and ‘error’, respectively.
In §6.2 we show the following theorem.

THEOREM 2.5. Let d, `, s, t ∈ N. Then there exists a positive integer k = k(d, `, s, t)
such that, for every system (X, µ, T1, . . . , T`), functions f0, . . . , fs ∈ L∞(µ) and
polynomial mappings −→pi : Nd

→ Z`, i = 1, . . . , s, of degree at most t , the sequence
a : Nd

→ C, given by

a(n) :=
∫

f0 · T−→p1(n) f1 · · · · · T−→ps (n) fs dµ, n ∈ Nd , (2.8)

is an approximate k-step nilsequence in d variables.
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Furthermore, if the polynomial mappings −→p1, . . . ,
−→ps are linear, then we can take

k = s.

Remark. For d = 1, this result was proved in [29].

The degree of nilpotency provided in the last part of Theorem 2.5 is not always optimal.
In §6.3, we establish the following improvement for particular correlation sequences.

THEOREM 2.6. For d, ` ∈ N, let (X, µ, T1, . . . , T`) be a system, f0, . . . , f` ∈ L∞(µ)
be functions and L1, . . . , L` : Nd

→ Z be linear forms spanning a space of dimension r.
Then the sequence a : Nd

→ C, given by

a(n) :=
∫

f0 · T
L1(n)

1 f1 · · · · · T
L`(n)
` f` dµ, n ∈ Nd ,

is an approximate (`− r + 1)-step nilsequence in d variables.

Remark. Examples of sequences for which this theorem applies and gives the optimal
degree of nilpotency are the three sequences in (1.4).

A crucial ingredient in the proof of the previous two decomposition results is
Theorem 3.10, which gives a characterization involving uniformity seminorms of
approximate nilsequences. Furthermore, the proof of Theorem 2.6 uses a structural
result for the generalized Kronecker factor of a not necessarily ergodic system that is of
independent interest (see Theorem 5.2).

Lastly, we give an interesting corollary of Theorem 2.5. For d ∈ N, we consider various
subsets of `∞(Nd). The first is the set

Nd := {(ψ(n))n∈Nd : ψ is a nilsequence in d variables}.

With MCd,pol we denote the set that contains all sequences of the form(∫
f0 · T−→p1(n) f1 · · · · · T−→ps (n) fs dµ

)
n∈Nd

for arbitrary systems (X, µ, T1, . . . , T`), functions f0, . . . , fs ∈ L∞(µ), polynomial
mappings −→p1, . . . ,

−→ps : Zd
→ Z` and `, s ∈ N.

We also denote by MCd,lin the set of multiple correlation sequences defined, as above,
using linear polynomial mappings only.

THEOREM 2.7. For every d ∈ N, the sets Nd , MCd,lin, MCd,pol are subspaces of `∞(Nd)

and
Nd =MCd,lin =MCd,pol,

where the closure is taken with respect to the seminorm ‖·‖2, which was defined in (2.7).

2.5. Multiple correlations for sequences in Nd and Zd
N . We use the decomposition

results of the previous subsection in order to deduce similar results for multiple correlations
of bounded sequences in Nd .
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Definition. Let A be a finite collection of bounded complex valued sequences in `

variables and I= (I j ) j∈N be a Følner sequence in N`. We say that the collection A admits
correlations along I if, for every s ∈ N and all h1, . . . , hs ∈ N`, the limit

lim Avk,I

s∏
j=1

b j (k+ h j )

exists, where, for j = 1, . . . , s, the sequence b j or the sequence b j belongs to A.

Combining Theorem 2.5 with the correspondence principle stated in Proposition 6.4
below, we deduce the following statement.

THEOREM 2.8. Let d, `, s, t ∈ N. Then there exists a positive integer k = k(d, `, s, t)
such that the following holds: if a1, . . . , as : Z`→ C are bounded sequences admitting
correlations along a Følner sequence I in N` and −→pi : Nd

→ Z`, i = 1, . . . , s are
polynomial mappings of degree at most t , then the sequence b : Nd

→ C, defined by

b(n) := lim Avk,I

s∏
i=1

ai (k+−→pi (n)), n ∈ Nd ,

is an approximate k-step nilsequence in d variables.
Moreover, if the polynomial mappings are linear, then we can take k = s − 1.

If A is a finite set, we let En∈A := (1/|A|)
∑

n∈A. Decomposition results of a similar
nature also hold in the finite world. For example, the following theorem is true.

THEOREM 2.9. Let d, `, s, t ∈ N. Then there exists a positive integer k = k(d, `, s, t)
such that the following holds: for every ε > 0 there exists a k-step nilmanifold X =
X (d, `, s, t, ε) such that, for every N ∈ N, finite sequences a1, . . . , as : Z`N → C of
modulus at most one and polynomial mappings −→pi : Nd

→ Z`, i = 1, . . . , s, having
integer coefficients and degree at most t , the sequence b : Nd

→ C, defined by

b(n) := Ek∈Z`N

s∏
i=1

ai
(
k+−→pi (n)

)
, n ∈ Zd

N , (2.9)

admits a decomposition of the form b = bst + ber where:
(i) bst : Nd

→ C is a convex combination of k-step nilsequences defined by functions on
X with Lipschitz norm at most one; and

(ii) En∈Zd
N
|ber(n)| ≤ ε.

Furthermore, if the polynomial mappings are linear, then we can take k = s − 1.

Remark. It is important that the nilmanifold X and the Lipschitz norm of the function
defining the nilsequence are independent of N ∈ N.

2.6. Applications to arithmetic. Next we give some applications with number theoretic
and combinatorial flavor.
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Definition. A function φ : N→ C is called multiplicative if

φ(mn)= φ(m) φ(n) whenever (m, n)= 1.

It is called completely multiplicative if this relation holds for all m, n ∈ N.
We say that a multiplicative function φ : N→ C that is bounded by one is good if the

limit

lim
N→+∞

1
N

N∑
n=1

φ(an + b) (2.10)

exists for all a ∈ N, b ∈ Z+. It is called aperiodic if all these limits are equal to zero.

For d ∈ N, a function φ : Nd
→ C is called multiplicative if it is of the form

φ(n1, . . . , nd)= φ1(n1) · · · φd(nd), n1, . . . , nd ∈ N

for some multiplicative functions φi : N→ C, i = 1, . . . , d, which we call the
components of φ. We call a multiplicative function φ : Nd

→ C good if all its component
functions are good and aperiodic if at least one of its component functions is aperiodic.

By a classical result of Wirsing [65], every real-valued multiplicative function that is
bounded by one is good. A result of Halász [42] allows us to characterize good and
aperiodic multiplicative functions. Let P be the set of primes. A Dirichlet character is
a periodic completely multiplicative function which takes the value one at one.

Notation. [36] If φ1, φ2 : N→ C are multiplicative functions, bounded by one, we define
D(φ1, φ2) ∈ [0,+∞] by

D(φ1, φ2)
2
:=

∑
p∈P

1
p
(1−<(φ1(p)φ2(p))).

Remark. Note that if |φ1| = |φ2| = 1, then D(φ1, φ2)
2
=
∑

p∈P (1/2p) |φ1(p)− φ2(p)|2.

The next result can be deduced from [27, Theorem 6.3].

THEOREM 2.10. Let φ : N→ C be a multiplicative function that is bounded by 1. Then φ
is good if and only if, for every Dirichlet character χ , we either have:
(i) D(φ χ, ni t )=+∞ for every t ∈ R; or
(ii) for some t ∈ R, D(φχ, ni t ) <∞ and χ(2)kφ(2k)=−2ikt for all k ∈ N; or
(iii)

∑
p∈P 1/p(1− φ(p)χ(p)) converges.

Moreover, φ is aperiodic if and only if either the condition (i) or (ii) is satisfied for every
Dirichlet character χ .

For a more complete discussion of these notions, see [31, §2.5]. The next result is
proved in §8.1.

THEOREM 2.11. Let d ∈ N and φ : Nd
→ C be a good multiplicative function.

Then,for every `, s ∈ N, system (X, µ, T1, . . . , T`), functions f1, . . . , fs ∈ L∞(µ) and
polynomial mappings −→pi : Nd

→ Z`, i = 1, . . . , s, the limit

lim
N→+∞

1
N d

∑
n∈[N ]d

φ(n) · T−→p1(n) f1 · · · · · T−→ps (n) fs exists in L2(µ). (2.11)

Furthermore, if the multiplicative function φ is aperiodic, then the limit is equal to zero.
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Remarks.
• This result and its consequences below were proved in [31] for d = 1 using a deep

structural result for multiplicative functions from [30]. The current argument relies
on the convergent criterion of Theorem 2.4 and uses much softer number theoretic
input (we only use Theorem 8.1).

• Conversely, if for d = `= s = 1 the averages in (2.11) converge weakly, then
examples of periodic systems show that φ has to be good, and if the averages in
(2.11) converge weakly to zero, then φ has to be aperiodic.

• Similar statements, with similar proofs, hold if, in (2.11), we use averages of the
form (1/(N1 · · · Nd))

∑
n∈[N1]×···×[Nd ]

and take the limit as N1, . . . , Nd →+∞.
A similar comment applies for the next two results.

Definition. For a ∈ Z+ and b ∈ N we let Sa,b consist of those n ∈ N whose number of
distinct prime factors is congruent to a mod b.

We can also define Sa,b by counting prime factors with multiplicity; then all results
stated below continue to hold with similar proofs. The next result is proved in §8.2.

THEOREM 2.12. Let d ∈ N, ai , ci ∈ Z+, bi ∈ N, i = 1, . . . , d and let

S := (Sa1,b1 + c1)× · · · × (Sad ,bd + cd). (2.12)

Then, for all `, s ∈ N, polynomial mappings −→p1, . . . ,
−→ps : Nd

→ Z`, system
(X, µ, T1, . . . , T`) and functions f1, . . . , fs ∈ L∞(µ), the limit

1
|S ∩ [N ]d |

∑
n∈S∩[N ]d

T−→p1(n) f1 · · · · · T−→ps (n) fs

exists in L2(µ) and is equal to the limit obtained when one replaces S with Nd .

Remark. It follows, from our argument, that limN→+∞ |S ∩ [N ]d |/N d
= (
∏d

i=1 bi )
−1.

In §8.2, we deduce from this result the following multiple recurrence statement.

THEOREM 2.13. We use the notation of Theorem 2.12 and assume, in addition, that
−→pi (0)=

−→
0 for i = 1, . . . , s. Then, for S as in (2.12), for every A ∈ X with µ(A) > 0,

lim
N→+∞

1
|S ∩ [N ]d |

∑
n∈S∩[N ]d

µ(A ∩ T
−
−→p1(n)A ∩ · · · ∩ T

−
−→ps (n)A) > 0.

Lastly, we give some combinatorial implications of the previous multiple recurrence
result. We define the upper Banach density d∗(E) of a set E ⊂ Z` by d∗(E) :=
lim sup|I |→+∞ |E ∩ I |/|I |, where the lim sup is taken over all parallelepipeds I ⊂
Z` whose side lengths tend to infinity, and we define the lower natural density as
lim infN→∞ |E ∩ [−N , N ]`|/(2N + 1)`. Using a modification of the correspondence
principle of Furstenberg ([33], proved as in [12]), we deduce, from Theorem 2.13, the
following result.
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THEOREM 2.14. We use the notation of Theorem 2.12 and assume, in addition, that
−→pi (0)=

−→
0 for i = 1, . . . , s. Then, for S as in (2.12) and for every set E ⊂ Z` with

d∗(E) > 0, the set

{n ∈ S : d∗(E ∩ (E −−→p1(n)) ∩ · · · ∩ (E −−→ps (n))) > 0}

has positive lower natural density.

Applying this for d = 2, ai = 2, bi = 0 or 1, ci = 0 and −→pi (n1, n2)= i(n2
1 + n2

2) for
i = 1, . . . , s, we obtain the refinement of Szemerédi’s theorem, which was mentioned
towards the end of the introduction.

2.7. Open problems. When all the maps T1, . . . , T` are powers of the same
transformation and d = 1, a strengthening of Theorem 2.5 holds which shows that the
error term can be taken to converge to zero in uniform density (see [11, 53–55]). It is not
clear whether a similar result holds for arbitrary commuting transformations, even when
d = 1, `= 2, and the polynomial mappings are linear.

Problem 1. Let (X, µ, T1, T2) be a system and f0, f1, f2 ∈ L∞(µ). Is it true that the
sequence a : N→ C, defined by

a(n) :=
∫

f0 · T n
1 f1 · T n

2 f2 dµ, n ∈ N,

can be decomposed as a = ast + aer, where ast is a uniform limit of 2-step nilsequences
and ‖aer‖2 = 0?

When T2 = T 2
1 this is shown to be the case in [11, 54, 55].

Theorem 2.4 shows that condition (2.3) is sufficient for weak convergence of the
averages in (2.6), but we needed the stronger hypothesis (2.5) in order to guarantee mean
convergence. This is probably an artefact of our proof.

Problem 2. Show that condition (2.3) is sufficient for mean convergence of the averages
in (2.6).

When d = 1 and all the maps T1, . . . , T` are powers of the same transformation, this is
shown to be the case, in [18, Theorem 1.3].

In Theorem 2.5, even in seemingly simple cases, it is not clear what the optimal
dependence of k on d, `, s, t is, even when the polynomial mappings are linear. It is
expected (but we are unable to verify this) that this optimal dependence can already be
inferred from the case where all the T1, . . . , T` are powers of the same transformation (a
case which is much more tractable using the theory of characteristic factors). We record
here a relevant open problem.

Problem 3. Let (X, µ, T1, T2) be a system and f, g, h ∈ L∞(µ). Show that the sequence
a : N2

→ C, defined by

a(m, n) :=
∫

f · T m
1 T n

2 g · T n
1 T m

2 h dµ, m, n ∈ N,

is an approximate 1-step nilsequence in two variables.

When T1, T2 are powers of the same transformation, this can be verified by an argument
similar to the one used in the proof of Theorem 2.6. Note, also, that Theorem 2.5 gives
that the sequence a is an approximate 2-step nilsequence in two variables.
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2.8. Notation and conventions. For the convenience of the reader, we gather here some
notation used throughout the article.
• We denote the set of positive integers by N, the set of non-negative integers by Z+

and the set of non-negative real numbers by R+.
• For N ∈ N, we denote the set {1, . . . , N } by [N ].
• With `∞(Nd), we denote the space of all bounded sequences a : Nd

→ C.
• If A is a finite set, we let En∈A := (1/|A|)

∑
n∈A.

• We write C : C→ C for the complex conjugation.
• If x is a real, e(x) denotes the number e2π i x and ‖x‖ denotes the distance between x

and the nearest integer.
• Given d ∈ N, we write n= (n1, . . . , nd) for a point of Zd .
• We typically use the letter ψ to denote nilsequences.

3. Uniformity seminorms and decomposition results
In this section, we extend to sequences in `∞(Nd) some results established in [46] and [29]
for sequences in `∞(N). The statements and the proofs are analogous and we only give
the necessary definitions and sketch the main steps of the proofs.

Some definitions and notation. We write C : C→ C for the complex conjugation; then
Ck z = z, if k is even, and Ck z = z, if k is odd. We let JkK := {0, 1}k and Jk∗K := JkK \ {0}.
Elements of JkK are written as ε = (ε1, . . . , εk). We let |ε| := ε1 + · · · + εk . Elements
of (Nd)k are written as h= (h1, . . . , hk), where hi ∈ Nd for i = 1, . . . , k. For h ∈ (Nd)k

and ε ∈ JkK, we let ε · h := ε1h1 + · · · + εkhk ∈ Nd .

3.1. The definition of the seminorms. We follow [46, §2].
We say that a finite or countable family F of bounded sequences in `∞(Nd) admits

correlations along a Følner sequence I= (I j ) j∈N in Nd if the limit

lim Avn,I

( m∏
i=1

bi (n+ hi )

)

exists for every m ∈ N, all h1, . . . , hm ∈ Nd and all sequences b1, . . . , bm ∈ `
∞(Nd) such

that either bi or bi belongs to F for i = 1, . . . , m. We remark that, from every Følner
sequence I, we can extract a subsequence I′ so that a given family of sequences admits
correlations along I′.

Suppose that the sequence a ∈ `∞(Nd) admits correlations along I. Then, for k ∈ N and
h= (h1, . . . , hk) ∈ (Nd)k , we write

CorrI(a; h) := lim Avn,I

( ∏
ε∈JkK

C|ε|a(n+ ε · h)
)

and

‖a‖I,k :=
(

lim
H→+∞

1
Hdk

∑
h1,...,hk∈[H ]d

CorrI(a; h)
)1/2k

.
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In [46, Proposition 2.4] it is shown that, for d = 1, the previous limit exists and is non-
negative; the proof is similar for general d ∈ N. Furthermore, the map a 7→ ‖a‖I,k is
subadditive ([46, Proposition 2.5] for d = 1): that is, if the sequences a, b, and a + b
admit correlations along I, then ‖a + b‖I,k ≤ ‖a‖I,k + ‖b‖I,k .

For a ∈ `∞(Nd), we define

‖a‖U k (Nd ) := sup
I
‖a‖I,k,

where the supremum is taken over all Følner sequences I in Nd for which the sequence a
admits correlations. Then the map a 7→ ‖a‖U k (Nd ) is a seminorm on `∞(Nd); we call it
the uniformity seminorm of order k of a.

3.2. Interpretation. Next, we interpret the previous definitions and results in dynamical
terms. We use a variant of Furstenberg’s correspondence principle that enables to transfer
results from ergodic theory to results about bounded sequences of complex numbers. We
follow the method used in [46, §6.1] when d = 1; similar arguments work for general
d ∈ N and we summarize them here. For notational convenience, we restrict to the case
where the family F contains only a single sequence a : Nd

→ C; the general case being
completely similar. Let D be the closed disk in C of radius ‖a‖∞ and let DZd

be endowed
with the product topology and with the natural shifts T1, . . . , Td given by

(Ti x)(n1, . . . , nd)= x(n1, . . . , ni−1, ni + 1, ni+1, . . . , nd)

for i = 1, . . . , d, where we use the notation n= (n1, . . . , nd) ∈ Zd and x = (x(n))n∈Zd ∈

DZd
. We define the continuous function f : DZd

→ C by f (x) := x(0). Furthermore, we
define the point ω in DZd

by ω(n) := a(n) for n ∈ Nd and ω(n)= 0 otherwise. Then

f (Tnω)= a(n), n ∈ Nd .

Let X be the closed orbit of ω under T1, . . . , Td . Then (X, T1, . . . , Td) is a topological
dynamical system and ω is a transitive point of this system, meaning that it has a dense
orbit in X .

Let I= (I j ) j∈N be a Følner sequence in Nd for which the sequence a admits
correlations. Let µ be a w∗-limit point for the sequence of measures

µ j :=
1
|I j |

∑
n∈I j

δTnω, j ∈ N.

Then µ is a probability measure on X , invariant under T1, . . . , Td and, by construction,
for every m ∈ N, all η1, . . . , ηm ∈ {0, 1} and all h1, . . . , hm ∈ Zd ,

lim Avn,I

( m∏
i=1

Cηi a(n+ hi )

)
= lim Avn,I

( m∏
i=1

Cηi Thi f (Tnω)

)
=

∫ m∏
i=1

Cηi Thi f dµ.

In particular, for h= (h1, . . . , hk) ∈ (Nd)k ,

CorrI(a; h)=
∫ ∏

ε∈JkK

C|ε|Tε·h f dµ
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and thus
‖a‖I,k = |‖ f ‖|µ,k,

where |‖ · ‖|µ,k is the seminorm on L∞(µ) defined in [44] in the ergodic case and in [19]
in the general case†. We recall the definition and some properties of these seminorms in
Appendix A. Note, also, that if ψ : Nd

→ C is a nilsequence of the form (8(Tnx))n∈Nd ,
then ψ admits correlations along every Følner sequence I and

‖ψ‖I,k = ‖ψ‖U k (Nd ) = ‖8‖µ,k, (3.1)

where the last seminorm is defined with respect to the action of Tn, n ∈ Nd , on X . From
the properties (A.1) and (A.4), we deduce

limsup |AvI a(n)| ≤ ‖a‖I,1, (3.2)

‖a‖2
k
+1

I,k+1 = lim
H→+∞

1
Hd

∑
h∈[H ]d

‖σha · a‖2
k

I,k, k ∈ N, (3.3)

where σha(n) := a(n+ h) for h, n ∈ Nd .
Then (see [46, Proposition 4.5] for d = 1)

‖a‖U k (Nd ) = sup
µ invariant probability measure on X

|‖ f ‖|µ,k

= sup
µ invariant ergodic probability measure on X

|‖ f ‖|µ,k, (3.4)

where the last equality follows by using the ergodic decomposition of the measure µ.

3.3. Tools. For an ergodic system (X, µ, T ), the structure theorem of [44] links
the seminorms |‖ · ‖|µ,k with the factors of the system (X, µ, T ) that are (k − 1)-step
nilsystems. This result was generalized to Zd -actions by Griesmer [41, Lemma 4.4.3 and
Theorem 4.10.1] and an alternate proof, based on finitestic inverse theorems, was recently
given by Tao [63, Remark 4]. We record an immediate corollary of this result that is more
convenient for our purposes.

THEOREM 3.1. ([44] for d = 1, [41, 63] for general d) Let d, k ∈ N, (X, µ, T1, . . . , Td)

be an ergodic system, f ∈ L∞(µ) and ε > 0. Then there exists a (k − 1)-step nilsystem
(Y, ν, T1, . . . , Td), a factor map π : X→ Y and a continuous function 8 on Y such that

‖8‖∞ ≤ ‖ f ‖∞ and |‖ f −8 ◦ π‖|µ,k ≤ ε.

The next result can be considered as a strengthening of the correspondence principle of
Furstenberg. We recall that a topological dynamical system (Y, T1, . . . , Td) is distal if,
for all y 6= y′ ∈ Y , infn∈Zd dY (Tn, y, Tn y′) > 0, where dY is the distance on Y defining its
topology. It is known that every nilsystem is distal [6].

PROPOSITION 3.2. ([46, Proposition 6.1] for d = 1) Let d ∈ N, (X, T1, . . . , Td) be a
topological dynamical system, ω ∈ X be a transitive point and µ be an invariant ergodic

† The seminorms were defined for a single transformation but the properties we use extend immediately to the
case of several commuting transformations.
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measure on X. Moreover, let (Y, T1, . . . , Td) be a distal topological dynamical system, ν
be an invariant measure on Y and π : X→ Y be a measure theoretic factor map. Then
there exists a point y0 ∈ Y and a Følner sequence I= (I j ) j∈N on Nd such that

lim
j→+∞

1
|I j |

∑
n∈I j

f (Tnω) g(Tn y0)=

∫
X

f · g ◦ π dµ

for every f ∈ C(X) and every g ∈ C(Y ).

The important point in this statement is that we do not assume that the map π is
continuous. The proof is exactly the same as in the case of a single transformation. The
following theorem states the classical property of distal systems that we use.

THEOREM 3.3. [5, Ch. 5] Let d ∈ N and (Y, T1, . . . , Td) be a distal system. Then, for
every y1 ∈ Y and every sequence (mi )i∈N with values in Nd , there exists y0 ∈ Y and a
subsequence (m′i )i∈N of (mi )i∈N such that Tm′i y0 converges to y1.

From Theorem 3.1 and the discussion of §3.1 we deduce the following proposition.

PROPOSITION 3.4. [46, Proposition 6.2 for d = 1] Let d, k ∈ N, a ∈ `∞(Nd) be a
sequence and let ε > 0. Then there exists a Følner sequence I= (I j ) j∈N and a (k − 1)-step
nilsequence ψ1 in d variables such that the sequences a and a − ψ1 admit correlations
along I and

‖a‖I,k ≥ ‖a‖U k (Nd ) − ε, ‖ψ1‖∞ ≤ ‖a‖∞ and ‖a − ψ1‖I,k ≤ ε.

Proof. As explained above, there exists a system (X, T1, . . . , Td), a transitive point ω ∈
X and a continuous function f on X such that a(n)= f (Tnω) for every n ∈ Nd . Note
that then ‖a‖∞ = ‖ f ‖∞. Moreover, by (3.4), there exists an invariant ergodic probability
measure µ on X with |‖ f ‖|µ,k ≥ ‖a‖U k (Nd ) − ε.

Let the nilsystem (Y, ν, T1, . . . , Td), the factor map π and the function 8 be defined
as in Theorem 3.1. Let σ be the measure on X × Y which is the image of µ under the
map id× π . This measure is ergodic under the product action and thus admits a generic
point (x1, y1). Since ω is a transitive point of X , there exists a sequence (m j ) j∈N in
Nd such that Tm jω→ x1. By Theorem 3.3, substituting a subsequence for the sequence
(m j ) j∈N, we can assume that there exists a point y0 ∈ Y such that Tm j y0→ y1 and thus
(T × T )m j (ω, x0)→ (x1, y1). Since the point (x1, y1) is generic, substituting, again, a
subsequence for (m j ) j∈N and defining the Følner sequence I by I j =m j + [ j]d , j ∈ N,
we obtain that the sequence of probability measures

1
|I j |

∑
n∈I j

δTnω × δTn y0 , j ∈ N

on X × Y converges weak* to a probability measure σ . Let the nilsequence ψ1 be defined
by ψ1(n) :=8(Tn y0), n ∈ Nd . We have ‖ψ1‖∞ ≤ ‖8‖∞ ≤ ‖ f ‖∞ = ‖a‖∞. By applying
the preceding discussion to the product system on X × Y , for the point (ω, y0) (the
Følner sequence I and the function given by F(x, y)= f (x)), we obtain ‖a‖I,k = |‖F‖|σ,k .
Letting G(x, y)= f (x)−8(y), gives ‖a − ψ1‖I,k = |‖G‖|σ,k . By the definition of σ
and of the seminorms |‖ · ‖|k , we have |‖F‖|σ,k = |‖ f ‖|µ,k and, by the definition of 8,
|‖G‖|σ,k = |‖ f −8 ◦ π‖|µ,k ≤ ε. This completes the proof. �
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3.4. Anti-uniformity. We introduce certain classes of sequences that are asymptotically
approximately orthogonal to k-uniform sequences; in Theorem 3.1 we give a
characterization of such sequences in terms of (k − 1)-step nilsequences.

Definition. Let a ∈ `∞(Nd).
• We say that the sequence a is strongly k-anti-uniform if there exists a constant C ≥ 0

such that, for every b ∈ `∞(Nd),

limsup |Av a(n) b(n)| ≤ C‖b‖U k (Nd ). (3.5)

In this case, we write ‖a‖∗U k (Nd )
for the smallest constant C such that (3.5) holds.

• We say that the sequence a is k-anti-uniform if, for every ε > 0, there exists C =
C(ε)≥ 0 such that, for every b ∈ `∞(Nd),

limsup |Av a(n) b(n)| ≤ C‖b‖U k (Nd ) + ε‖b‖∞.

PROPOSITION 3.5. ([46, §5] for d = 1) Let d, k ∈ N, (X, T1, . . . , Td) be an ergodic (k −
1)-step nilsystem and let fε ∈ C(X) for ε ∈ Jk∗K. Then the limit

8(x) := lim
H→+∞

1
Hdk

∑
h1,...,hk∈[0,H)d

∏
ε∈Jk∗K

fε(Tε·hx) (3.6)

exists for every x ∈ X and the convergence is uniform in x ∈ X (and hence 8 ∈ C(X)). If
x0 ∈ X and a ∈ `∞(Nd) is the sequence defined by

a(n) :=8(Tnx0), n ∈ Nd ,

then a is strongly k-anti-uniform and

‖a‖∗U k (Nd )
≤

∏
ε∈Jk∗K

|‖ fε‖|k ≤
∏
ε∈Jk∗K

‖ fε‖∞.

Sketch of the proof. The first part of the result is proved in [46, Corollary 5.2].
To prove the second part, let b ∈ `∞(Nd) and I= (I j ) j∈N be a Følner sequence such that

b admits correlations along I. We use (3.6) for x := Tnx0, take the averages for n ∈ I j and
exchange the limits in j and in H ; this can be achieved because of the uniform convergence
in (3.6) (see [46, Theorem 5.4]). By an iterated use of the Cauchy–Schwarz inequality (this
is estimate (12) in [46]), we obtain that

limsup |AvI a(n) b(n)| ≤ ‖b‖I,k ·
∏
ε∈Jk∗K

|‖ fε‖|k . (3.7)

Taking the supremum over all Følner sequences I in the left-hand side, we obtain the
announced bound. For d = 1 the details can be found in [46, §5.4]; the proof for general
d ∈ N is similar. �

Let (X, T1, . . . , Td) be a (k − 1)-step nilsystem defining the nilsequence ψ : Nd
→ C.

By [46, Proposition 5.6] (see also [19, Proposition 3.2]), the linear span of the functions
defined as in (3.6) is dense in C(X) with the uniform norm. By Proposition 3.5, the
sequence ψ is a uniform limit of strongly k-anti-uniform sequences. We deduce the
following corollary.
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COROLLARY 3.6. Every (k − 1)-step nilsequence is k-anti-uniform.

Remark. Alternatively, this follows by combining Propositions 4.2 and 6.1.

For d = 1, the first statement of the next Proposition is [46, Theorem 2.16] and the
second statement is [29, Theorem 2.1].

PROPOSITION 3.7. Let d, k ∈ N, a ∈ `∞(Nd) be a sequence and δ > 0. Then there exists
a Følner sequence I= (I j ) j∈N such that the following hold.
(i) There exists a (k − 1)-step nilsequence ψ2 : Nd

→ C such that

‖ψ2‖
∗

U k (Nd )
≤ 1 and limsup |AvI a(n) ψ2(n)| ≥ ‖a‖U k (Nd ) − δ.

Moreover, if b ∈ `∞(Nd) is a sequence that admits correlations along a Følner
sequence J, then

limsup |AvJ ψ2(n) b(n)| ≤ ‖b‖J,k . (3.8)

(ii) If ‖a‖∞ ≤ 1, then there exists a (k − 1)-step nilsequence ψ3 : Nd
→ C such that

‖ψ3‖∞ ≤ 1 and limsup |AvI a(n) ψ3(n)| ≥ ‖a‖2
k

U k (Nd )
− δ.

Proof. Let the (k − 1)-step nilsequence ψ1 : Nd
→ C and the Følner sequence I be given

by Proposition 3.4 for an ε > 0 that will be specified later. Then a − ψ1 admits correlations
along I and

‖a − ψ1‖I,k ≤ ε, ‖ψ1‖I,k ≥ ‖a‖U k (Nd ) − 2ε and ‖ψ1‖∞ ≤ ‖a‖∞. (3.9)

The sequence ψ1 has the form ψ1(n)=81(Tnx0), n ∈ Nd , for some (k − 1)-step ergodic
nilsystem (X, µ, T1, . . . , Td), point x0 ∈ X and function 81 ∈ C(X) with ‖81‖∞ ≤

‖a‖∞. For x ∈ X , we define the function8 on X as in Proposition 3.5, taking fε := C|ε|81

for ε ∈ Jk∗K. Then 8 ∈ C(X) and
∫
881 dµ= |‖81‖|

2k

µ,k . Let ψ3 : Nd
→ C be the

nilsequence defined by
ψ3(n) :=8(Tnx0), n ∈ Nd .

If we assume that ‖a‖∞ ≤ 1, then ‖81‖∞ ≤ 1, and thus ‖8‖∞ ≤ 1 and ‖ψ3‖∞ ≤ 1. By
unique ergodicity of (X, µ, T1, . . . , Td),

lim AvI ψ1(n) ψ3(n)=
∫
81 8 dµ= |‖81‖|

2k

µ,k = ‖ψ1‖
2k

I,k by (3.1)

≥(‖a‖U k (Nd )−2ε)2
k
≥‖a‖2

k

U k (Nd )
−δ/2,

by (3.9), if ε is chosen sufficiently small. Moreover, since a − ψ1 admits correlations
along I, by (3.7),

limsup |AvI ψ3(n) (a − ψ1)(n)| ≤ ‖a − ψ1‖I,k ‖81‖
2k
−1
∞ ≤ ε ≤ δ/2,

by (3.9), if ε ≤ δ/2. Combining the last two estimates we get Part (ii).
We move now to the proof of Part (i). First, notice that, using Proposition 3.5 and (3.1),

we get that
‖ψ3‖

∗

U k (Nd )
≤ |‖81‖|

2k
−1

µ,k = ‖ψ1‖
2k
−1

U k (Nd )
.

https://doi.org/10.1017/etds.2016.19 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2016.19


102 N. Frantzikinakis and B. Host

Moreover, if the sequence b ∈ `∞(Nd) admits correlations along a Følner sequence J, then
(3.7) and (3.1) give

limsup |AvJ ψ3(n) b(n)| ≤ ‖b‖J,k |‖81‖|
2k
−1

µ,k = ‖b‖J,k ‖ψ1‖
2k
−1

U k (Nd )
.

Defining
ψ2 := (‖ψ1‖

2k
−1

U k (Nd )
)−1
· ψ3,

we deduce that ‖ψ2‖
∗

U k (Nd )
≤ 1 and estimate (3.8) is satisfied. Furthermore, as before, we

get

lim AvI ψ1(n) ψ2(n)= ‖ψ1‖
2k

U k (Nd )
/‖ψ1‖

2k
−1

U k (Nd )
= ‖ψ1‖U k (Nd ) ≥ ‖a‖U k (Nd ) − δ/2,

by (3.9), if ε ≤ δ/4. Using (3.7) and (3.1), we get

limsup |AvI ψ2(n) (a − ψ1)(n)| ≤ ‖a − ψ1‖I,k
|‖81‖|

2k
−1

µ,k

‖ψ1‖
2k−1
U k (Nd )

= ‖a − ψ1‖I,k ≤ ε ≤ δ/2,

by (3.9), if ε ≤ δ/2. Combining the last two estimates finishes the proof of Part (i). �

COROLLARY 3.8. Let d, k ∈ N and a ∈ `∞(Nd) be such that the averages of a(n) ψ(n)
converge to zero for every (k − 1)-step nilsequence ψ : Nd

→ C. Then ‖a‖U k (Nd ) = 0.

3.5. Regular sequences and their structure. Next, we introduce certain classes of
sequences for which we are able to prove the two decomposition results of this section.

Definition. Let d ∈ N, k ∈ Z+. We say that a sequence a ∈ `∞(Nd) is k-regular if the limit

lim Av a(n) ψ(n)

exists for every k-step nilsequence ψ : Nd
→ C.

Remarks.
• Every nilsequence is k-regular for every k ∈ N.
• The product of two k-regular sequences may not be k-regular†.

THEOREM 3.9. ([46, Theorem 2.19] for d = 1) Let d, k ∈ N and a ∈ `∞(Nd) be a
sequence. Then the following are equivalent.
(i) a is (k − 1)-regular.
(ii) For every δ > 0, the sequence a can be written as a = ψ + u, where ψ is a (k − 1)-

step nilsequence with ‖ψ‖∞ ≤ ‖a‖∞, and ‖u‖U k (Nd ) ≤ δ.

Proof. The implication (ii) H⇒ (i) is a simple consequence of Corollary 3.6 and the fact
that the product of two nilsequences is a nilsequence and thus has convergent averages.

Now, we establish the converse implication. For δ > 0, let ψ := ψ1 and I be as
in Proposition 3.4, with ε := δ/2. Then ‖a − ψ‖I,k ≤ δ/2. Since a = ψ + (a − ψ), it

† Let a(n) := e(nk+1α), n ∈ N, where α ∈ R \Q and b := a ·
∑
∞
k=0 1

[22k ,22k+1). The sequences a, b are k-

regular for every k ∈ N, but the sequence a · b is not even 0-regular since the averages 1/N
∑N

n=1 a(n) b(n) do
not converge as N →+∞.

https://doi.org/10.1017/etds.2016.19 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2016.19


Weighted multiple ergodic averages 103

remains to show that ‖a − ψ‖U k (Nd ) ≤ δ. Suppose that this is not the case. Then Part (i)
of Proposition 3.7 provides a Følner sequence J and a (k − 1)-step nilsequence ψ2 with

limsup |AvJ(a(n)− ψ(n)) ψ2(n)| ≥ ‖a − ψ‖U k (Nd ) − δ/3≥ 2δ/3.

Since a is a (k − 1)-regular sequence and ψψ2 is a (k − 1)-step nilsequence, the sequence
(a − ψ)ψ2 has convergent averages. We deduce that

|lim AvI (a(n)− ψ(n)) ψ2(n)| = |lim AvJ (a(n)− ψ(n)) ψ2(n)| ≥ 2δ/3.

On the other hand,

|lim AvI (a(n)− ψ(n)) ψ2(n)| ≤ ‖a − ψ‖I,k ≤ δ/2,

where the second estimate follows from our data and the first estimate follows from the
estimate (3.8), since the sequence a − ψ admits correlations along I. Combining the
above, we get a contradiction. �

3.6. The structure of regular anti-uniform sequences. The next result gives
a characterization of regular anti-uniform sequences in `∞(Nd). Assuming the
multiparameter inverse theorem of Proposition 3.7, its proof is identical to the proof of
Theorem 1.2 in [29], where the case d = 1 was treated; we only sketch the main idea of
the proof below.

THEOREM 3.10. ([29, Theorem 1.2] for d = 1) Let d, k ∈ N and a ∈ `∞(Nd) be a
sequence. Then the following properties are equivalent.
(i) a is (k − 1)-regular and k-anti-uniform.
(ii) a is an approximate (k − 1)-step nilsequence.

Idea of the proof. The implication (ii) H⇒ (i) follows from Corollary 3.6 and the fact that
a product of two nilsequences is a nilsequence, and hence a regular sequence.

We explain now the main idea of the converse implication. Let a ∈ `∞(Nd) be (k − 1)-
regular and k-anti-uniform. Let N be the linear space of (k − 1)-step nilsequences in d
variables and let H be the linear span of N and a. Then it follows from our (k − 1)-
regularity assumption and Theorem 3.9 that, for all c, c′ ∈H, the averages of c(n) c′(n)
converge and we write 〈c, c′〉 for this limit. We remark that ‖c‖22 = 〈c, c〉.

If the space H endowed with the ‘scalar product’ 〈·, ·〉 was a Hilbert space and N was a
closed subspace, then we could define ψ to be the orthogonal projection of a on N . Then
〈a − ψ, ψ ′〉 = 0 for all ψ ′ ∈N and Corollary 3.8 would imply that ‖a − ψ‖U k (Nd ) = 0.
Since, by assumption, a is k-anti-uniform, we deduce that ‖a − ψ‖2 = 0: that is, a is a
(k − 1)-step nilsequence plus a sequence that converges to zero in uniform density. In
our present set-up, there is lack of completeness, so we choose ψ to be an ‘approximate
orthogonal projection’, in the sense that ‖a − ψ‖2 is sufficiently close to the distance of a
to N , and we obtain the announced decomposition, using Part (i) of Proposition 3.7. For
the details, see the proof of Theorem [29, Theorem 1.2], which contains a proof for d = 1
under the assumption of strong k-anti-uniformity (it is called k-anti-uniformity there); the
same argument works without change for general d ∈ N under the weaker assumption of
k-anti-uniformity. �
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4. Correlations are regular sequences
The goal of this section is to show that modulo small `∞-errors, nilsequences can be
represented as multiple correlation sequences, and then use the mean convergence result
of Walsh (Theorem 1.1) in order to show that multiple correlation sequences are regular
sequences.

4.1. Producing nilsequences as correlations. The argument we use below is analogous
to the one used in [29] to handle single variable nilsequences.

LEMMA 4.1. [37, Lemma 14.2] Let d, k ∈ N and X = G/0 be a (k − 1)-step nilmanifold.
Then there exists a continuous map P : X k

→ X such that

P(hg · eX , h2g · eX , . . . , hk g · eX )= g · eX for all g, h ∈ G. (4.1)

Remark. The result in [37, Lemma 14.2] gives P(g0, hg0, h2g0, . . . , h`−1g0)= h`g0.
Inserting h−`g in place of g, then h−1 in place of h and rearranging coordinates, we get
(4.1).

PROPOSITION 4.2. Let d, k ∈ N andψ : Nd
→ C be a (k − 1)-step nilsequence. Then, for

every ε > 0, there exists a system (Y, ν, S1, . . . , Sd) and functions F1, . . . , Fk ∈ L∞(ν),
such that the sequence b : Nd

→ C, defined by

b(n) :=
∫ k∏

j=1

( d∏
i=1

S
` j ni
i

)
F j dν, n= (n1, . . . , nd) ∈ Nd , (4.2)

where ` j = k!/j for j = 1, . . . , k, satisfies

‖ψ − b‖`∞(Nd ) ≤ ε.

Proof. The sequence ψ : Nd
→ C has the form

ψ(n)=9
( d∏

i=1

τ
ni
i · eX

)
, n= (n1, . . . , nd) ∈ Nd ,

for some (k − 1)-step nilmanifold X = G/0, commuting elements τ1, . . . , τd of G and
function 9 ∈ C(X). Let ε > 0. As remarked after the definition of the nilsequence in
§2.1.2, we can assume that the group G is connected.

For i = 1, . . . , d , let gi ∈ G be such that gk!
i = τi (such elements exist since G is

connected, and hence divisible). Let m= (m1, . . . , md) ∈ Nd . Using Lemma 4.1, with
g :=

∏d
i=1 gk!ni

i and h :=
∏d

i=1 gmi
i and writing H =9 ◦ P , we have H ∈ C(X k) and we

obtain

ψ(n)= H
((( d∏

i=1

gmi+k!ni
i

)
,

( d∏
i=1

g2mi+k!ni
i

)
, . . . ,

( d∏
i=1

gkmi+k!ni
i

))
· eXk

)
for all m and n ∈ Nd . Letting

α̃i := (gi , g2
i , . . . , gk

i ) ∈ Gk, i = 1, . . . , d,

https://doi.org/10.1017/etds.2016.19 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2016.19


Weighted multiple ergodic averages 105

averaging with respect to m ∈ Nd and using the equidistribution results for sequences on
nilmanifolds (see [56] or [50]), we get that, for every n ∈ Nd ,

ψ(n) = lim
M→+∞

1
Md

∑
m∈[M]d

H
((( d∏

i=1

gk!ni
i

)
,

( d∏
i=1

gk!ni
i

)
,

. . . ,

( d∏
i=1

gk!ni
i

))
· α̃

m1
1 · · · · · α̃

md
d · eXk

)

=

∫
Ỹ

H
(( d∏

i=1

gk!ni
i

)
·x1,

( d∏
i=1

gk!ni
i

)
·x2, . . . ,

( d∏
i=1

gk!ni
i

)
·xk

)
dmỸ (x1, . . . , xk),

where Ỹ is the closure of the sequence {̃αm1
1 · · · · · α̃

md
d · eXk : m1, . . . , md ∈ N} in X k and

mỸ is the Haar measure of this sub-nilmanifold of X k . For i = 1, . . . , d, let S̃i : Ỹ → Ỹ
be the translation by α̃i . Note that (Ỹ , mỸ , S̃1, . . . , S̃d) is a nilsystem.

The continuous function H on X k can be approximated uniformly by linear
combinations of functions of the form f1 ⊗ · · · ⊗ fk , where f j ∈ C(X) for j = 1, . . . , k.
Since finite linear combinations of sequences of the form (4.2) have the same form (see the
proof of Theorem 2.7 in §6.6 below), it remains to show that any sequence ψ ′ : Nd

→ C,
given by

ψ ′(n) :=
∫

Ỹ

k∏
j=1

f j

(( d∏
i=1

gk!ni
i

)
·x j

)
dmỸ (x1, . . . , xk), n= (n1, . . . , nd) ∈ Nd ,

has the form (4.2). To this end, for j = 1, . . . , k, let F j ∈ C(X k) be given by F j (̃x) :=
f j (x j ) for x̃ = (x1, . . . , xk) ∈ X k . Recall that ` j = k!/j for j = 1, . . . , k. Since S̃i x̃ =

α̃i x̃ = (gi , g2
i , . . . , gk

i )̃x , i = 1, . . . , d , the j th coordinate of the element (
∏d

i=1 S̃
` j ni
i )̃x

is
∏d

i=1 g
j` j ni
i · x j =

∏d
i=1 gk!ni

i · x j and thus, for j = 1, . . . , k,

F j

(( d∏
i=1

S̃
` j ni
i

)
x̃
)
= f j

( d∏
i=1

gk!ni
i · x j

)
, n1, . . . , nd ∈ N.

Therefore,

ψ ′(n)=
∫

Ỹ

k∏
j=1

F j

(( d∏
i=1

S̃
` j ni
i

)
x̃
)

dmỸ (̃x), n= (n1, . . . , nd) ∈ Nd .

This completes the proof. �

4.2. Proof of Proposition 2.3. Let d, s ∈ N and w ∈ `∞(Nd) satisfy the hypothesis of
Proposition 2.3. Let ψ be an s-step nilsequence in d variables.

We set k := s + 1. Let ε > 0 and let the system (Y, ν, S1, . . . , Sd) and the functions
F1, . . . , Fk ∈ L∞(ν) be as in Proposition 4.2. Letting h j := F j+1, for j = 0, . . . , s, the
sequence b : Nd

→ C, defined by (4.2), can be rewritten as

b(n)=
∫

h0 ·

s∏
j=0

S(` j+1−`1)·nh j dν, n ∈ Nd .
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By hypothesis, the averages of w(n) b(n) converge. Since |b(n)− ψ(n)| is uniformly
bounded by ε, the oscillations of the averages of w(n) ψ(n) are uniformly bounded by 2ε.
Since this holds for every ε > 0, the averages of w(n) ψ(n) converge, which completes
the proof. �

4.3. Proof of Proposition 2.1. By Proposition 4.2, it suffices to prove that the limit

lim Av b(n) T−→p1(n) f1 · · · · · T−→ps (n) fs

exists in L2(µ) for every sequence (b(n))n∈Nd , defined as in (4.2).
By Theorem 1.1, the limit

lim Avn

( k∏
j=1

F j

( d∏
i=1

S
` j ni
i y

)
·

s∏
m=1

fm
(
T−→pm (n)x

))

exists in L2(ν × µ). Taking the integral over Y with respect to ν we obtain the announced
result. �

5. The structure of systems of order one
In this section, we prove a structural result which is going to be used in the proof of
Theorem 2.6 in the next section. Here we work only with systems (X, µ, T ) with a single
transformation. We denote the σ -algebra of T -invariant subsets of X by I(T ) and write
the ergodic decomposition of µ under T as

µ=

∫
µx dµ(x),

where for µ-almost every x ∈ X , the measure µx is invariant and ergodic under T and the
map x 7→ µx is invariant under T . Let f ∈ L1(µ). Then, for µ-almost every x ∈ X , the
function f is defined µx -almost everywhere and belongs to L1(µx ); the map x 7→

∫
f dµx

is measurable with respect to I(T ), and

Eµ( f | I(T ))(x)=
∫

f dµx for µ-almost every x ∈ X,

which means that, for every set A ∈ I(T ),∫
A

f dµ=
∫

A

(∫
f dµx

)
dµ(x).

The factor Z1 is defined in Appendix A.2 and reduces to the Kronecker factor for
ergodic systems.

Definition. We say that a system (X, µ, T ) has order one if Z1 = X .

Throughout this section, we work only with systems of order one. Generalizing
the construction of a Fourier basis of a compact Abelian group, our goal is to
construct a ‘relative orthonormal’ basis for systems of order one consisting of ‘relative’
eigenfunctions. This is the context of Theorem 5.2, below.
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5.1. Relative orthonormal basis.

Definition. A relative orthonormal system (with respect to the T -invariant σ -algebra
I(T )) is a countable family (φ j ) j∈N of functions belonging to L2(µ) such that:
(i) Eµ(|φ j |

2
| I(T )) has value zero or one µ-almost everywhere for every j ∈ N; and

(ii) Eµ(φ jφk | I(T ))= 0 µ-almost everywhere for all j, k ∈ N with j 6= k.
The family (φ j ) j∈N is a relative orthonormal basis if it also satisfies:
(iii) the linear space spanned by all functions of the form φ jψ, is dense in L2(µ), where

j ∈ N and ψ ∈ L∞(µ) varies over all T -invariant functions.

We do not make the apparently natural assumption that Eµ(|φ j |
2
| I(T ))= 1 µ-almost

everywhere, as there does not exist, in general, a relative orthonormal basis satisfying this
additional condition (consider a system with ergodic components given by rotations on
cyclic groups of different order). This creates a few minor complications in the statements
and the proofs below. We remark that the definition allows some of the elements of the
base to be identically zero. This explains why we can assume, without loss of generality,
that all relative orthonormal systems are countably infinite, and thus indexed by N.

Definition. Given a relative orthonormal system (φ j ) j∈N and f ∈ L2(µ), we let

f j := Eµ( f φ j | I(T )), j ∈ N.

If (φ j ) j∈N is a relative orthonormal basis, we say that the T -invariant functions f j , j ∈ N,
are the coordinates of f in this basis.

Example 5.1. On T2 with the Haar measure mT2 , let T : T2
→ T2 be given by T (x, y)=

(x, y + x). Then (e( j y)) j∈Z is a relative orthonormal basis for L2(mT2). The coordinates
( f j ) j∈Z of a function f ∈ L2(mT2) are given by f j (x) :=

∫
f (x, y) e(− j y) dy, j ∈ Z.

We remark that if ‖ f ‖L∞(µ) ≤ 1, then ‖ f j‖L∞(µ) ≤ 1 for every j ∈ N. We will use,
repeatedly, that condition (i) implies the identity

f j = f j · Eµ(|φ j |
2
| I(T )) µ-almost everywhere, j ∈ N; (5.1)

in particular, f j (x)= 0µ-almost everywhere on the set where E(|φ j |
2
| I(T ))(x)= 0. We

remark, also, that for µ-almost every x ∈ X for every j ∈ N, we have the identities

f j (x)=
∫

f φ j dµx and E(| f |2 | I(T ))(x)= ‖ f ‖2L2(µx )
.

Next, we establish a relative version of the Parseval and Fourier identity and give
necessary and sufficient conditions for a relative orthonormal system to be a relative
orthonormal basis.

PROPOSITION 5.1. Let (X, µ, T ) be a system with ergodic decomposition µ=∫
µx dµ(x) and let (φ j ) j∈N be a relative orthonormal system for L2(µ).

(i) For every f ∈ L2(µ) and for µ-almost every x ∈ X, the series

P f :=
∑
j∈N

f jφ j (5.2)

converges in L2(µx ) and
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‖P f ‖2L2(µx )
=

∑
j∈N
| f j (x)|2 and ‖ f ‖2L2(µx )

= ‖P f ‖2L2(µx )
+ ‖ f − P f ‖2L2(µx )

.

(5.3)
(ii) (φ j ) j∈N is a relative orthonormal basis if and only if, for every f ∈ L2(µ) and for

µ-almost every x ∈ X, the series (5.2) converges to f in L2(µx ). In this case,

‖ f ‖2L2(µx )
=

∑
j∈N
| f j (x)|2 µ-almost everywhere. (5.4)

(iii) (φ j ) j∈N is a relative orthonormal basis if and only if, for every f ∈ L2(µ),

‖ f ‖2L2(µ)
=

∑
j∈N
‖ f j‖

2
L2(µ)

. (5.5)

Proof. We prove (i). Let f ∈ L2(µ); then f ∈ L2(µx ) for µ-almost every x ∈ X . Recall
that

∫
|φ j |

2 dµx = Eµ(|φ j |
2
| I(T ))(x) ∈ {0, 1} for µ-almost every x ∈ X . Let Ex = { j ∈

N :
∫
|φ j |

2 dµx = 1}. Then for µ-almost every x ∈ X , the functions (φ j ) j∈Ex form an
orthonormal system in the Hilbert space L2(µx ) and, viewing f as an element of L2(µx ),
the functions ( f j ) j∈Ex are the coordinates of f in this system. Note, also, that by (5.1),
f j = 0 if j /∈ Ex . This establishes (i).

We prove (ii). Suppose, first, that, for every f ∈ L2(µ) for µ-almost every x ∈ X
we have P f = f µx -almost everywhere. It follows that the series in (5.2) converges to
f in L2(µ). Therefore, f belongs to the closed linear subspace of L2(µ) spanned by
all functions of the form φ jψ , where j ∈ N and ψ ∈ L∞(µ) varies over all T -invariant
functions. By definition, (φ j ) j∈N is a relative orthonormal system.

Now we establish the converse implication. Suppose that (φ j ) j∈N is a relative
orthonormal basis and let f ∈ L2(µ). For µ-almost every x ∈ X , the function P f , defined
by (5.2), satisfies

∫
P f φ j dµx = f j for every j ∈ N, and hence Eµ(( f − P f ) φ j |

I(T ))= 0 and
∫
( f − P f ) φ j ψ dµ= 0 for every T -invariant function ψ ∈ L∞(µ).

Therefore, the function f − P f is orthogonal in L2(µ) to the linear space spanned by
all functions of the form φ jψ , where j ∈ N and ψ ∈ L∞(µ) varies over all T -invariant
functions. Thus f − P f = 0, by hypothesis. Inserting f in place of P f in (5.3) gives
identity (5.4).

We prove (iii). If (φ j ) j∈N is a relative orthonormal basis, then (5.5) follows by
integrating the identity in (5.4) over X with respect to µ. To prove the converse
implication, let f ∈ L2(µ). Using (5.5), inserting the first identity of (5.3) in the second
and integrating over X with respect to µ, we deduce that f = P f for µ-almost every
x ∈ X . Hence, Property (iii) of the definition of a relative orthonormal basis is satisfied. �

5.2. Relative orthonormal basis of eigenfunctions.

Definition. Let λ ∈ L∞(µ) be a T -invariant function and φ ∈ L∞(µ). We say that φ is an
eigenfunction with eigenvalue λ if:
(i) |φ(x)| has value zero or one for µ-almost every x ∈ X ;
(ii) λ(x)= 0 for µ-almost every x ∈ X such that φ(x)= 0; and
(iii) φ ◦ T = λ · φ µ-almost everywhere.
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The role of Property (ii) is to avoid ambiguities. Note, also, that Property (iii) does not
imply anything about the value of λ(x) at the points x ∈ X where φ(x)= 0.

Property (iii) gives that, for µ-almost every x ∈ X such that φ(x) 6= 0, we have
φ(T−1x) 6= 0 and thus |φ(x)| = |φ(T−1x)| = 1, by Property (i) above, and |λ(x)| = 1, by
Property (iii). On the other hand, for µ-almost every x ∈ X such that φ(x)= 0, we have
φ(T−1x)= 0, by Property (iii), and λ(x)= 0, by Property (ii). Therefore, the function |φ|
is T -invariant and

|φ| = |λ|. (5.6)

Next, we state the main result of this section and we prove it in §5.4.

THEOREM 5.2. Let (X, µ, T ) be a system of order one. Then L2(µ) admits a relative
orthonormal basis of eigenfunctions.

Remarks.
• It is true, and not difficult to prove, that if a system has a relative orthonormal basis

of eigenfunctions, then it has order one.
• For ergodic systems, Theorem 5.2 is well known, but it is not easy to deduce

the general case from the ergodic one. The reason is that, although the ergodic
components of a system of order one are ergodic rotations (Proposition A.1), we
cannot simply ‘glue’ together their eigenfunctions, because of measurability issues.

Example 5.2. For the system described in the Example 5.1, (e( j y)) j∈Z is a relative
orthonormal basis of eigenfunctions with eigenvalues (e( j x)) j∈Z.

The next proposition will be used in the proof of Theorem 2.6.

PROPOSITION 5.3. Let (X, µ, T ) be a system of order one with ergodic decomposition
µ=

∫
µx dµ(x). Suppose that (φ j ) j∈N is an orthonormal basis of eigenfunctions and

that f ∈ L∞(µ), and let ( f j ) j∈N be the coordinates of f in this base. Then, for µ-almost
every x ∈ X,

|‖ f ‖|4T,µx ,2 =
∑
j∈N
| f j (x)|4 µ-almost everywhere. (5.7)

Remark. After integrating (5.7) over X with respect to µ, it follows, from (A.3), that
|‖ f ‖|4T,µ,2 =

∑
j∈N‖ f j‖

4
L4(µ)

.

In the proof of Proposition 5.3, we will use the following basic fact.

LEMMA 5.4. Let (X, µ, T ) be a system, let (φ j ) j∈N be a relative orthonormal system
of eigenfunctions and let (λ j ) j∈N be the corresponding eigenvalues. Then, for µ-almost
every x ∈ X, λ j (x)λk(x) 6= 1 for all j, k ∈ N with j 6= k.

Proof of Lemma 5.4. Note that the set A = {x : λ j (x)λk(x)= 1} is T -invariant and the
function 1Aφ jφk is T -invariant, by Part (iii) of the definition of an eigenfunction, and thus
equal to zero, by Part (ii) of the definition of a relative orthonormal system. On the other
hand, for µ-almost every x ∈ A, |φ j (x)φk(x)| = 1, by (5.6). Thus, µ(A)= 0 and the claim
follows. �
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Proof of Proposition 5.3. By Part (ii) of Proposition 5.1, for µ-almost every x ∈ X ,

f =
∑
j∈N

f j · φ j ,

where f j =
∫

f φ j dµx and the convergence takes place in L2(µx ). It follows that, for
µ-almost every x ∈ X and for every n ∈ N,

T n f · f =
∑
j,k∈N

λn
j f j fk φ j φk,

where convergence takes place in L1(µx ). Using this, identity (5.1) and that
∫
φ jφk dµx =

0 for j, k ∈ N with j 6= k, we deduce that, for µ-almost every x ∈ X ,∫
T n f · f dµx =

∑
j∈N

λn
j | f j |

2.

Note that, by (5.4), the above series converges absolutely for µ-almost every x ∈ X .
Hence, for µ-almost every x ∈ X ,∣∣∣∣∫ T n f · f dµx

∣∣∣∣2 = ∑
j,k∈N

(λ jλk)
n
| f j |

2
| fk |

2.

Averaging in n ∈ N and using that, by (A.2),

|‖ f ‖|4T,µx ,2 = lim
N→+∞

1
N

N∑
n=1

∣∣∣∣∫ T n f · f dµx

∣∣∣∣2,
we obtain, for µ-almost every x ∈ X , that

|‖ f ‖|4T,µx ,2 =
∑
j,k∈N

(
lim

N→+∞

1
N

N∑
n=1

(λ jλk)
n
)
· | f j |

2
| fk |

2,

where the interchange of limits is justified because
∑

j,k∈N | f j |
2
| fk |

2 converges µ-almost
everywhere, by (5.4).

If j 6= k, since |λ jλk | ≤ 1 and λ jλk 6= 1, by Lemma 5.4, for µ-almost every x ∈ X ,

lim
N→+∞

1
N

N∑
n=1

(λ jλk)
n
= 0.

Suppose now that j = k. Forµ-almost every x ∈ X , the following holds: if λ j (x)= 0, then
φ j (x)= 0, by (5.6), and f j (x)= 0, by (5.1). If λ j (x) 6= 0, then |λ j (x)| = 1, by (5.6) and
Part (i) of the definition of an eigenfunction. In both cases, |λ j (x)|2n

| f j (x)|4 = | f j (x)|4.
Combining the above we get (5.7). �

5.3. A Borel selection result. The proof of Theorem 5.2 needs some technical
preliminaries. We will need the following selection theorem of Lusin–Novikov.

THEOREM 5.5. (See, for example, [49, Theorem 18.10]) Let X, Y be Polish (i.e. complete,
separable, metric) spaces and P ⊂ X × Y be a Borel set such that every vertical section
Px = {y : (x, y) ∈ P} is a countable set. Then the vertical projection A of P on X is Borel
and there exists a Borel function f : A→ Y such that f (x) ∈ Px for every x ∈ A.
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PROPOSITION 5.6. Let X, K be Polish spaces and F : X × K → R+ be a bounded Borel
function. Suppose that, for every x ∈ X, the set

Px := {y ∈ K : F(x, y) > 0}

is countable and
6(x) :=

∑
y∈Px

F(x, y) <+∞. (5.8)

Let N (x) := |Px | ∈ [0,+∞]. Then there exists a sequence (t j ) j∈N of Borel maps X→ K
such that, for every x ∈ X, the values t j (x), 1≤ j < 1+ N (x), are pairwise distinct and
Px = {t j (x) : 1≤ j ≤ N (x)}.

Remarks.
• The condition j < 1+ N (x) means that j ≤ N (x) if N (x) <+∞ and j is arbitrary

if N (x)=+∞.
• Note that if Px = ∅, then the values of t j (x) are not determined by the statement.

Proposition 5.6 is a consequence of the next lemma.

LEMMA 5.7. Let F, K , X be as in Proposition 5.6 and, for x ∈ X, let

S(x) := sup
y∈K

F(x, y).

Then there exists a Borel map t : X→ K such that F(x, t (x))= S(x) for every x ∈ X.

Proof of Lemma 5.7. Note that (5.8) implies that this supremum S(x) is attained. Let X
and K be the Borel σ -algebras of the spaces X and K , respectively.

We first claim that the function S is Borel. Indeed, let s ≥ 0. The set {(x, y) ∈
X × K : F(x, y) > s} belongs to X ⊗K and has countable fibers. By Theorem 5.5, its
projection on X belongs to X . Since this projection is the set {x ∈ X : S(x) > s}, the map
S is Borel.

For m ∈ N, let

Am := {(x, y) ∈ X × K : F(x, y)≥ (1− 2−m)S(x)}.

Then Am belongs to X ⊗K, the projection of Am on X is onto and this projection is
countable to one. By Theorem 5.5, for every m ∈ N, there exists a Borel map tm : X→ K
such that (x, tm(x)) ∈ Am for every x ∈ X : that is,

F(x, tm(x))≥ (1− 2−m)S(x) for every x ∈ X.

If x is such that S(x)= 0, then tm(x)= 0 for every m ∈ N. If not, then F(x, tm(x))≥
S(x)/2 for every m ∈ N and thus the set {tm(x) : m ≥ 1} contains at most 26(x)S(x)−1

distinct elements. It follows that, for every x ∈ X , the sequence (tm(x))m∈N is eventually
constant. The limit value t (x) of this sequence is therefore well defined, is a Borel map
from X to K and satisfies F(x, t (x))= S(x). This completes the proof. �
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Proof of Proposition 5.6. We build, by induction, the family of Borel maps t j : X→
K , j ∈ N. Let t1 : X→ K be given by Lemma 5.7. We have that F(x, t1(x))= 0 if and
only if Px is empty, that is, if N (x)= 0. We define

F ′(x, t) :=

{
0 if t = t1(x),

F(x, t) otherwise,

P ′x := {t : F ′(x, t) > 0} for x ∈ X.

The function F ′ is Borel and, for every x ∈ X for which Px is non-empty, this set is the
disjoint union of P ′x and {t1(x)}. We replace the function F with F ′, and Lemma 5.7
provides a map t2 : X→ K . Iterating, we obtain a sequence (t j ) j∈N of Borel maps X→ K
that satisfy

F(x, t1(x))≥ F(x, t2(x))≥ · · · ≥ F(x, t j (x)),

F(x, t j (x))= 0 if and only if j > N (x),

if N (x)≥ j then t j+1(x) /∈ {t1(x), . . . , t j (x)},

F(x, t j+1(x))= sup
{

F(x, t) : t /∈ {t1(x), . . . , t j (x)}
}
.

We have {t j (x) : 1≤ j ≤ N (x)} ⊂ Px and we claim that equality holds. Suppose that
this is not the case and let t ∈ Px \ {t j (x) : 1≤ j ≤ N (x)}. Then, by construction, t j (x)≥
t for j ≤ N (x) and thus σ(x)≥ N (x)t . It follows that N (x) is finite. By construction,
|{t j (x) : 1≤ j ≤ N (x)}| = N (x)= |Px |, which is a contradiction. This completes the
proof. �

5.4. Proof of Theorem 5.2. In this subsection we use a different presentation of the
ergodic decomposition of a system that is more convenient for our purposes†. Recall that
we assume that (X, X , µ) is a Lebesgue space. It is well known (see, for example, [35,
Theorems 8.7 and A.7]) that there exists a Lebesgue space (Y, Y, ν), a measure preserving
map π : X→ Y that satisfies π ◦ T = π , I(T )= π−1(Y) up to µ-null sets and, for y ∈ Y ,
a probability measure µy on X such that the following hold.
(i) The map y 7→ µy is Borel, meaning that, for every bounded Borel function on X , the

function y 7→
∫

f dµy is Borel.
(ii) For every bounded Borel function on X ,

Eµ( f | (I(T ))(x)=
∫

f dµπ(x) for µ-almost every x ∈ X.

(iii) For ν-almost every y ∈ Y , the measure µy on X is concentrated on π−1({y}) and is
invariant and ergodic under T .

Taking the integral in (ii), we obtain

µ=

∫
Y
µy dν(y).

By density,

† The measures µx of the top of §5 are written as µπ(x) here.
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(iv) for f ∈ L1(µ), f ∈ L1(µy) for ν-almost every y ∈ Y , ‖ f ‖L1(µ) =
∫
‖ f ‖L1(µy)

dν(y) and the equality in (ii) remains valid.
Lastly, since our standing assumption, in this section, is that the system (X, µ, T ) has

order one, by Proposition A.1,
(v) for ν-almost every y ∈ Y , the system (X, µy, T ) is an ergodic rotation.

We first prove the following intermediate result.

LEMMA 5.8. Let (X, µ, T ) be a system of order one and f ∈ L2(µ). Then there exists a
relative orthonormal system of eigenfunctions (φ j ) j∈N such that

f =
∑
j∈N

Eµ( f φ j | I(T )) · φ j , (5.9)

where convergence takes place in L2(µ).
Moreover, for every j ∈ N, the eigenfunction φ j belongs to the smallest closed T -

invariant subspace of L2(µ) containing the set { f φ : φ ∈ L∞(µ) is T -invariant}.

Remark. For notational convenience, the orthonormal system we build below is indexed
by Z+ instead of N.

Proof. We can assume that f is a Borel function defined everywhere. The set Y0 of y ∈ Y
such that µy is invariant under T is Borel and has full measure. Since the map y 7→
‖ f ‖L2(µy)

is Borel, and since
∫
‖ f ‖2L2(µy)

dν(y)= ‖ f ‖L2(µ) <+∞, the set Y1 of points

y ∈ Y0 such that f ∈ L2(µy) is Borel and has full measure. Substituting Y1 for Y , we are
reduced to the case where the measure µy is T -invariant and f ∈ L2(µy) for every y ∈ Y .
Since (Y, Y, ν) is a Lebesgue space, we can assume that Y is a Polish space and Y is its
Borel σ -algebra.

For y ∈ Y , we write σy for the spectral measure of f with respect to the system
(X, µy, T ); it is the finite positive measure on T defined by

σ̂y(n) :=
∫

T n f · f dµy, n ∈ Z.

For ν-almost every y ∈ Y this measure is atomic because (X, µy, T ) is a rotation. For
every t ∈ T and every y ∈ Y , the limit

F(y, t) := lim
N→+∞

1
N

N∑
n=1

σ̂y(n) e(−nt)

exists and
F(y, t)= σy({t}).

Since, for every n ∈ N, the function T n f · f is Borel, we get that the map y 7→ σ̂y(n) is
Borel on Y . Thus, the function F satisfies the hypothesis of Proposition 5.6 for the Polish
space Y × T. Henceforth, we use the notation of this proposition and let t j : Y → T, j ∈ N,
be the Borel maps obtained. For j ∈ Z+, let

A j := {y ∈ Y : N (y) > j} = {y ∈ Y : σy({t j (y)}) > 0},

λ j (y) := 1A j (y) e(t j (y)) for y ∈ Y.
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For y ∈ A j , j ∈ Z+, λ j (y) ∈ Py : that is, σy({t j (y)}) > 0. By the Wiener–Wintner
theorem, the limit

ψ j (x) := lim
N→+∞

1
N

N∑
n=1

f (T n x) λ j (π(x))
n

exists in L2(µ) (and for µ-almost every x ∈ X ). We remark that if ν(A j )= 0, then the
function ψ j is equal to zero µ-almost everywhere, and the same holds for the functions θ j

and φ j defined below. For ν-almost every y ∈ A j ,∫
f ψ j dµy = lim

N→+∞

1
N

N∑
n=1

∫
f · T n f dµy · λ j (y)n

= lim
N→+∞

1
N

N∑
n=1

σ̂y(−n) λ j (y)n = σy({t j (y)}). (5.10)

Furthermore, for j ∈ Z+, the function ψ j satisfies

ψ j (T x)= ψ j (x) λ j (π(x)). (5.11)

It follows that |ψ j | is T -invariant. Expressing |ψ j |
2 as

|ψ j |
2
= θ j ◦ π for some θ j ∈ L∞(Y, ν), (5.12)

a similar computation gives

θ j (y)=
∫
|ψ j |

2 dµy = lim
N→+∞

1
N 2

∑
m,n∈[N ]

∫
T n f · T m f dµy · λ j (y)m λ j (y)

n

= σy({t j (y)}) > 0 for ν-almost every y ∈ A j . (5.13)

We let

φ j (x) :=

{
|ψ j (x)|−1ψ j (x) for x ∈ π−1(A j ),

0 for x /∈ π−1(A j ).

It is immediate to check that φ j is an eigenfunction for the eigenvalue λ j . By construction,
for i 6= j , we have λi (x) 6= λ j (x) for µ-almost every x ∈ X , except when λi (x)= λ j (x)=
0: thus λi (x)λ j (x) 6= 1 µ-almost everywhere. On the other hand, Eµ(φiφ j | I(T ))=
λiλ jEµ(φiφ j | I(T )). Therefore,

Eµ(φi · φ j | I(T ))= 0 for all i 6= j, i, j ∈ Z+.
Furthermore, for every j ∈ Z+, by the definition of the φ j , Eµ(|φ j |

2
|I(T )) takes the values

zero or one. Hence (φ j ) j∈Z+ is a relative orthonormal system.
Next, we establish identity (5.9). Arguing as in Part (iii) of Proposition 5.1, it suffices

to show that
‖ f ‖2L2(µ)

=

∑
j∈Z+

‖Eµ( f · φ j | I(T ))‖2L2(µ)
. (5.14)

Using the definition of the function φ j and then (5.12) combined with (5.13), we get∑
j∈Z+

∣∣∣∣∫ f · φ j dµy

∣∣∣∣2 = ∑
j∈Z+

1A j (y)
1
|ψ j |2

∣∣∣∣∫ f · ψ j dµy

∣∣∣∣2

=

∑
j∈Z+

1A j (y)
1

σy({t j (y})

∣∣∣∣∫ f · ψ j dµy

∣∣∣∣2.
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By (5.10), for ν-almost every y ∈ Y , the last sum is equal to∑
j∈Z+

1A j (y) σy({t j (y)})=
∑
j∈Z+

σy({t j (y)})= σy(T)= σ̂y(0)=
∫
| f |2 dµy,

where we used the definition of the set A j to get the first identity and, to get the second
identity, we used the defining property of the maps t j , j ∈ Z+, and that, for ν-almost every
y ∈ Y , the measure σy is atomic. Integrating the established identity over Y with respect
to ν, we obtain (5.14).

Finally, the last claim of the lemma follows by the construction of the functions ψ j and
φ j for j ∈ Z+. This completes the proof. �

We are now ready to complete the proof of Theorem 5.2.

End of proof of Theorem 5.2. Let ( fk)k∈N be a dense sequence in L2(µ). For every k ∈ N,
we build, by induction, a countable family Fk of functions in L2(µ) such that, for every
k ∈ N:
(i) F1 ∪ · · · ∪ Fk is a relative orthonormal system of eigenfunctions; and
(ii) the function fk belongs to the closed subspace Hk of L2(µ) spanned by all functions

of the form φ w, where φ ∈ F1 ∪ · · · ∪ Fk and w ∈ L∞(µ) varies over all T -
invariant functions.

For k = 1, the result is given by Lemma 5.8 with f = f1. Suppose that the result holds
for k ∈ N; we shall show that it holds for k + 1. We can decompose fk+1 as

fk+1 = g + f where g ∈Hk and f ⊥Hk .

The space Hk is invariant under multiplication by bounded T -invariant functions and thus
Eµ( f · h | I(T ))= 0 for every h ∈Hk . On the other hand, every φ ∈ F1 ∪ · · · ∪ Fk is an
eigenfunction, and thus, by definition, Tφ belongs to the space Hk . It follows that Hk is
invariant under T and thus

Eµ(T n f · h | I(T ))= 0 for every n ∈ N and every h ∈Hk . (5.15)

Applying Lemma 5.8 to the function f , we obtain a relative orthonormal system Fk+1 =

(φ j ) j∈N of eigenfunctions such that f belongs to the closed linear span of all functions
of the form φ jw, where j ∈ N is arbitrary and w ∈ L∞(µ) varies over all T -invariant
functions. Moreover, for every j ∈ N, φ j belongs to the smallest T -invariant subspace
of L2(µ) containing all functions of the form fw, where w varies over all T -invariant
functions in L∞(µ). Hence, by (5.15), for every j ∈ N and every h ∈Hk , Eµ(φ j · h |
I(T ))= 0; this holds, in particular, for all functions h belonging to F1 ∪ · · · ∪ Fk .
Therefore, F1 ∪ · · · ∪ Fk ∪ Fk+1 is a relative orthonormal system.

The closed subspace of L2(µ) spanned by functions of the form φ w, where φ ∈ F1 ∪

· · · ∪ Fk ∪ Fk+1 and w ∈ L∞(µ), varies over all T -invariant functions, contains f and g,
and thus fk+1. This completes the induction.

We choose an enumeration of the countable set F :=
⋃
∞

k=1 Fk and write it as (φ′j ) j∈N;
then (φ′j ) j∈N is a relative orthonormal system. The closed subspace of L2(µ), spanned by
all functions of the form φ′j w, where j ∈ N and w ∈ L∞(µ), varies over all T -invariant
functions, contains the functions fk for every k ∈ N, and thus is equal to L2(µ). Hence,
(φ′j ) j∈N is a relative orthonormal basis of eigenfunctions, which completes the proof. �

https://doi.org/10.1017/etds.2016.19 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2016.19


116 N. Frantzikinakis and B. Host

6. Decomposition of correlation sequences
In this section, we prove the decomposition results stated in §§2.4 and 2.5.

6.1. Anti-uniformity in norm. We start with some preparatory results. The main tool
in verifying anti-uniformity properties is the following inner product space variant of a
well-known estimate of van der Corput (for a proof, see [10]).

VAN DER CORPUT LEMMA Let d ∈ N, H be an inner product space, let ξ : Nd
→H be

a bounded sequence and let I be a Følner sequence in Nd . Then

limsup ‖AvI ξn‖
2
≤ 4 lim sup

H→+∞

1
Hd

∑
h∈[H ]d

limsup |Avn,I 〈ξn+h, ξn〉|.

PROPOSITION 6.1. Let d, `, s, t ∈ N. Then there exists a positive integer k = k(d, `, s, t)
such that, for every system (X, µ, T1, . . . , T`), functions f1, . . . , fs ∈ L∞(µ) bounded
by one, polynomial mappings −→p1, . . . ,

−→ps : Nd
→ Z` of degree at most t and sequence

w ∈ `∞(Nd),

limsup ‖Av w(n) T−→p1(n) f1 · · · · · T−→ps (n) fs‖L2(µ) ≤ 4‖w‖U k+1(Nd ).

Furthermore, if the polynomial mappings are linear, then we can take k = s.

Sketch of the proof. Let I= (Ii ) j∈N be a Følner in Nd . After passing to a subsequence,
we can assume that the sequence w admits correlations along I. It suffices to show that

limsup ‖AvI w(n) · T−→p1(n) f1 · · · · · T−→ps (n) fs‖L2(µ) ≤ 4‖w‖I,k+1

for some k = k(d, `, s, t). To verify this, one applies an inductive argument, often called
PET (polynomial exhaustion technique) induction, introduced by Bergelson in [10]. Each
step uses the van der Corput lemma in L2(µ), invariance of the measure under some of
the transformations and the Cauchy–Schwarz inequality. The details are similar to several
other arguments in the literature (see, for example, the proof of [32, Lemma 3.5]) and so
we do not give the proof.

In the case of linear polynomials, it can be shown, by induction, on s ∈ Z+ that one can
take k = s; for s = 0, the statement is trivial and the inductive step can be carried out as
the inductive step in the proof of Theorem 2.6, below. �

6.2. Proof of Theorem 2.5. By Theorem 3.10, it suffices to show that the sequence
a : Nd

→ C, given by

a(n) :=
∫

f0 · T−→p1(n) f1 · · · · · T−→ps (n) fs dµ, n ∈ Nd ,

is k-regular and (k + 1)-anti-uniform for some k ∈ N that depends only on the integers
d, `, s, t . The regularity is given by Proposition 2.1 and the anti-uniformity by
Proposition 6.1. �
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6.3. Proof of Theorem 2.6. We start with some preparatory results.

LEMMA 6.2. Let d, ` ∈ N and L1, . . . , L` : Nd
→ Z be linearly independent linear

forms. Then there exists a constant C := C(d, L1, . . . , L`) such that the following holds:
if (X, µ, T1, . . . , T`) is a system and f0, . . . , f` ∈ L∞(µ) are functions bounded by one,
then

lim Av
∣∣∣∣∫ f0 · T

L1(n)
1 f1 · · · · · T

L`(n)
` f` dµ

∣∣∣∣2 ≤ C min
1≤i≤`

|‖ fi‖|
2
Ti ,µ,2. (6.1)

Proof. We first note that the limit on the left-hand side of (6.1) can be rewritten as

lim Av
(∫

( f0 ⊗ f0) ·
∏̀
i=1

(Ti × Ti )
L i (n)( fi ⊗ fi ) d(µ× µ)

)
and thus exists, by Theorem 1.1. Therefore, in (6.1), we can restrict to averages taken on
the cubes [N ]d , N ∈ N: that is, it suffices to obtain bounds for the limit

lim
N→+∞

1
N d

∑
n∈[N ]d

∣∣∣∣∫ f0 · T
L1(n)

1 f1 · · · · · T
L`(n)
` f` dµ

∣∣∣∣2. (6.2)

Next, we claim that it suffices to consider the case where d = `. Indeed, since the
linear forms are linearly independent, d ≥ ` and, if d > `, then there exist linear forms
L`+1, . . . , Ld : Nd

→ Z such that the linear forms L1, . . . , Ld are linearly independent.
Then applying the d = ` case of the result for this set of linear forms and the functions
f ′0, . . . , f ′d , defined by f ′i := fi for i = 0, . . . , ` and f ′i := 1 for i = `+ 1, . . . , d, we
get the asserted estimate. Henceforth, we assume that d = `.

Let
−→
L : Nd

→ Nd be defined by
−→
L (n) := (L1(n), . . . , Ld(n)), n ∈ Nd . Since the

linear forms L1, . . . , Ld are linearly independent, the linear map
−→
L is injective.

Furthermore, there exists a positive integer M = M(L1, . . . , Ld) such that
−→
L ([N ]d)⊂

[−M N , M N ]d for every N ∈ N. This easily implies that the limit in (6.2) is bounded by

(3M)d lim
N→+∞

1
(2N + 1)d

∑
n∈[−N ,N ]d

∣∣∣∣∫ f0 · T
n1

1 f1 · · · · · T
nd

d fd dµ
∣∣∣∣2

= (3M)d lim
N→+∞

1
(2N + 1)d

∑
n∈[−N ,N ]d

∫
( f0⊗ f0) ·

d∏
i=1

(Ti ×Ti )
ni ( fi ⊗ fi ) d(µ×µ).

By the ergodic theorem, the last limit is equal to∫
( f0 ⊗ f0) ·

d∏
i=1

Eµ( fi ⊗ fi | (I(Ti × Ti )) d(µ× µ).

For i = 1, . . . , d, this quantity is bounded by∥∥Eµ( fi ⊗ fi | (I(Ti × Ti )
)∥∥

L2(µ)
= |‖ fi ⊗ fi‖|Ti×Ti ,µ×µ,1 ≤ |‖ fi‖|

2
Ti ,µ,2,

where we used that all the functions are bounded by one and the estimate (A.5). This
completes the proof. �
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PROPOSITION 6.3. Let d, ` ∈ N and L1, . . . , L` : Nd
→ Z be linearly independent linear

forms. Then, for every ε > 0, there exists a constant C := C(d, L1, . . . , L`, ε) > 0 such
that the following holds: if (X, µ, T1, . . . , T`) is a system and f0, . . . , f` ∈ L∞(µ) are
functions bounded by one, then, for every sequence w ∈ `∞(Nd),

limsup
∣∣∣∣Av

(
w(n) ·

∫
f0 · T

L1(n)
1 f1 · · · · · T

L`(n)
` f` dµ

)∣∣∣∣≤ C‖w‖U 2(Nd ) + ε‖w‖∞.

(6.3)

Remark. This proves that the correlation sequence defined by the integral is 2-anti-uniform
with constants C that do not depend on the functions f0, . . . , f` as long as they are
bounded by one. This condition is essential in the proof of Theorem 2.6, and Theorem 5.2
is key in establishing the condition.

Proof. Let ε ∈ (0, 1), w ∈ `∞(Nd) and I= (I j ) j∈N be a Følner sequence in Nd . By
passing to a Følner subsequence, we can assume that w admits correlations along I.

By the defining property of the factor Z1 (see §A.2), |‖ fi − Eµ( f |
Z1(X, µ, Ti ))‖|µ,Ti ,2 = 0 for i = 1, . . . , `. Hence, by Lemma 6.2, the lim sup in (6.3)
remains unchanged if we replace each function fi with Eµ( fi | Z1(X, µ, Ti )). Therefore,
we can, and will, assume that for i = 1, . . . , `, the function fi is measurable with respect
to Z1(X, µ, Ti ). For i = 1, . . . , `, let µ=

∫
µi,x dµ(x) be the ergodic decomposition of

the system (X, µ, Ti ).
By Theorem 5.2, for i = 1, . . . , `, the space L2(Z1(X, µ, Ti ), µ) admits a relative

orthonormal basis (φi, j ) j∈N such that φi, j is an eigenfunction of (X, µ, Ti ) with
eigenvalue λi, j for j ∈ N. We write ( fi, j ) j∈N for the coordinates of fi in this base. We
recall that fi, j is invariant under Ti and that

fi, j = Eµ( fi φi, j | I(Ti )).

Then ‖ fi, j‖L∞(µ) ≤ 1 for all i, j ∈ N. Moreover, by part (ii) of Proposition 5.1,

Eµ(| fi |
2
| I(Ti ))=

∑
j∈N
| fi, j |

2, µ-almost everywhere, (6.4)

fi =
∑
j∈N

fi, j φi, j , (6.5)

where convergence in (6.4) is pointwise and in (6.5) is in L2(µ) and in L2(µi,x ) µ-almost
everywhere.

For i = 1, . . . , `, we separate the series (6.5) in two parts. For x ∈ X , we let

Ei (x) := { j ∈ N : | fi, j (x)|2 ≥ ε10i
},

gi (x) :=
∑

j∈Ei (x)

fi, j (x) φi, j (x) and hi := fi − gi .

By (6.4) and since all functions are bounded by one,

|Ei (x)| ≤ ε−10i
µ-almost everywhere, ‖gi‖L∞(µ) ≤ ε

−10i
, i = 1, . . . , `. (6.6)
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Furthermore, since fi, j are Ti -invariant, Ei (Ti x)= Ei (x) µ-almost everywhere and the
set Ai, j = {x ∈ X : j /∈ Ei (x)} is invariant under Ti .

hi =
∑
j∈N

1Ai, j fi, j φi, j

and thus the coordinates of the function hi in the base (φi, j ) j∈N are the functions 1Ai, j fi, j .
By Proposition 5.3, we obtain

|‖hi‖|
4
Ti ,µi,x ,2 =

∑
j∈N
|1Ai, j (x) fi, j (x)|4

=

∑
j /∈Ei (x)

| fi, j (x)|4 µ-almost everywhere, i = 1, . . . , `. (6.7)

Therefore,

|‖hi‖|
4
Ti ,µ,2 =

∫
|‖hi‖|

4
Ti ,µi,x ,2 dµ

=

∫ ∑
j /∈Ei (x)

| fi, j (x)|4 dµ≤ ε10i
∫ ∑

j∈N
| fi, j (x)|2 dµ≤ ε10i

,

where we used (A.3) in the appendix to get the first identity, (6.7) to get the second identity,
the definition of the sets Ei (x) to get the first estimate and (6.4) combined with the fact
that the functions fi are bounded by one to get the last estimate.

Let C be the constant defined in Lemma 6.2. Combining this lemma with the preceding
estimates we deduce, for m = 1, . . . , `, that

limsup AvI

∣∣∣∣∫ f0 ·

(m−1∏
i=1

T L i (n)
i gi

)
· T Lm (n)

m hm ·

( ∏̀
i=m+1

T L i (n)
i fi

)
dµ
∣∣∣∣2

≤ C
m−1∏
i=1

‖gi‖
2
L∞(µ) · |‖hm‖|

2
Tm ,µ,2 ≤ Cε−2

∑m−1
i=1 10i

ε5·10m−1
≤ Cε2.

Using the Cauchy–Schwarz inequality and telescoping, we obtain

limsup
∣∣∣∣AvI

(
w(n)

∫
f0 ·

∏̀
i=1

T L i (n)
i fi dµ− w(n)

∫
f0 ·

∏̀
i=1

T L i (n)
i gi dµ

)∣∣∣∣
≤ `C1/2ε‖w‖∞.

On the other hand, using the definition of the functions g1, . . . , g` and recalling that,
for i = 1, . . . , ` and j ∈ N, the function φi, j is a Ti -eigenfunction with eigenvalue λi, j ,
we get ∫

f0 ·
∏̀
i=1

T L i (n)
i gi dµ =

∫ ∑
j1∈E1,..., j`∈E`

f0 ·
∏̀
i=1

fi, ji · T
L i (n)

i φi, ji dµ

=

∫ ∑
j1∈E1,..., j`∈E`

g j1,..., j` ·
∏̀
i=1

λ
L i (n)
i, ji dµ,
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where

g j1,..., j` := f0 ·
∏̀
i=1

fi, ji · φi, ji .

Since for µ-almost every x ∈ X we have, by (6.6), that |Ei (x)| ≤ ε−10i
for i = 1, . . . , `,

we deduce that, for µ-almost every x ∈ X , the sum contains at most ε−10`+1
terms.

Moreover, since L1, . . . , L` are linear, using the van der Corput lemma on C and the
fact that the functions g j1,..., j` are bounded by one, we have the pointwise estimate

limsup
∣∣∣∣AvI w(n) ·

∏̀
i=1

λ
L i (n)
i, ji

∣∣∣∣2 ≤ 4 lim sup
H→+∞

1
Hd

∑
h∈[H |d

∣∣∣∣lim Avn,I w(n+ h)w(n)
∣∣∣∣

≤ 4 lim
H→+∞

1
Hd

∑
h∈[H |d

‖σh w · w‖I,1

≤ 4‖w‖2I,2 ≤ 4‖w‖2U 2(Nd )
,

where we used (3.2) and (3.3). Combining the above estimates, we deduce that the left-
hand side of (6.3) is bounded by 2ε−10`+1

‖w‖U 2(Nd ) + `C
1/2ε‖w‖∞. This completes the

proof. �

End of proof of Theorem 2.6. We can assume that the functions f0, . . . , f` are bounded
by one. Furthermore, we can extract a linearly independent subset of r elements of
{L1, . . . , L`}; hence, after reordering the linear forms, we can assume that the first r
ones are linearly independent.

Let k := `− r + 1. In order to prove that the sequence a : Nd
→ C, defined by

a(n) :=
∫

f0 · T
L1(n)

1 f1 · · · · · T
L`(n)
` f` dµ, n ∈ Nd ,

admits a decomposition of the announced type, it suffices, by Theorem 3.10, to show that
it is k-regular and (k + 1)-anti-uniform.

The regularity follows from Proposition 2.1.
Next, we verify (k + 1)-anti-uniformity. Let C = C(d, L1, . . . , Lr , ε) be the constant

defined by Proposition 6.3. We can assume that C > 1. For fixed d ∈ N, we will prove, by
induction on k ∈ N, that if the functions f0, . . . , f` are bounded by one, then, for every
ε > 0 and every w ∈ `∞(Nd) with ‖w‖∞ = 1,

limsup |Av a(n) w(n)| ≤ 4C‖b‖U k+1(Nd ) + 4ε1/2k−1
.

It will then follow that the sequence a is (k + 1)-anti-uniform with anti-uniformity
constant C ′ := 4C(d, L1, . . . , Lr ,

1
4ε

2k−1
).

For k = 1, the statement follows from Proposition 6.3.
Suppose that k ≥ 2 and that the statement holds for k − 1. Let ε > 0 and w ∈ `∞(Nd).

Let also I= (I j ) j∈N be a Følner sequence in Nd . By passing to a Følner subsequence, we
can assume that w admits correlations along I.

Composing with T−L`(n)
` , we rewrite the sequence a : Nd

→ C as†

a(n)=
∫

T−L`(n)
` f0 · T

−L`(n)
` T L1(n)

1 f1 · · · · · T
−L`(n)
` T L`−1(n)

`−1 f`−1 · f` dµ, n ∈ Nd .

† This maneuver is necessary; a direct application of the van der Corput lemma produces a weaker estimate
involving a seminorm of order k + 2.
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Using the Cauchy–Schwarz inequality and that ‖ f`‖L∞(µ) ≤ 1, we get that

limsup |AvI a(n) w(n)|2 ≤ limsup ‖AvI ξn‖
2
L2(µ)

, (6.8)

where ξ : Nd
→ L2(µ) is defined by

ξn := w(n) · T−L`(n)
` f0 · T

−L`(n)
` T L1(n)

1 f1 · · · · · T
−L`(n)
` T−L`−1(n)

`−1 f`−1, n ∈ Nd .

Using van der Corput’s lemma in L2(µ) for the sequence ξ , we obtain that the right-hand
side of (6.8) is bounded by

4 lim sup
H→+∞

1
Hd

∑
h∈[H ]d

limsup |Avn,I 〈ξn+h, ξn〉|. (6.9)

Recall that σhw(n)= w(n+ h) for all h, n ∈ Nd . A simple computation gives that, for
every h ∈ Nd ,

1
|I j |

∑
n∈I j

〈ξn+h, ξn〉 =
1
|I j |

∑
n∈I j

σhw(n) · w(n)

×

∫
f̃0,h · T

L1(n)
1 f̃1,h · · · · · T

L`−1(n)
`−1 f̃`−1 dµ, (6.10)

where f̃ j,h := T−L`(h)
` T

L j (h)
j f j · f j for j = 0, . . . , `− 1 and L0 := 0.

Note that, for every h ∈ Nd , the sequence (w(n+ h) w(n))n∈Nd admits correlations
along I and that ‖ f̃ j,h‖L∞(µ) ≤ 1 for j = 0, . . . , `− 1. The expression on the right-hand
side of (6.10) is thus of the type studied, with (`− 1) in place of `. Hence, the induction
hypothesis applies and gives that, for every h ∈ Nd ,

limsup |Avn,I 〈ξn+h, ξn〉| ≤ 4 C ‖σhw · w‖I,k + 4 ε1/2k−2
.

It is important, for the last part of the argument, that the constant C is independent of the
parameter h. Combining the above, we deduce that the expression (6.9) is bounded by

16 C lim sup
H→+∞

1
Hd

∑
h∈[H ]d

‖σhw · w‖I,k + 16 ε1/2k−2

≤ 16 C lim sup
H→+∞

(
1

Hd

∑
h∈[H ]d

‖σhw · w‖
2k

I,k

)1/2k

+ 16 ε1/2k−2

= 16 C ‖w‖2I,k+1 + 16 ε1/2k−2
,

where the last identity follows from the inductive property (3.3) of the uniformity
seminorms. Putting together the previous estimates and taking square roots, we get the
announced bound. This completes the induction and the proof. �

6.4. Proof of Theorem 2.8. We use the variant of Furstenberg’s correspondence
principle, which we have already used in §3.1 for a single sequence. In the case of several
sequences, it is proved in a similar fashion and gives the following proposition.
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PROPOSITION 6.4. Let `, s ∈ N and a1, . . . , as : Z`→ C be bounded sequences such
that the family F = {a1, . . . , as} admits correlations along the Følner sequence I in
N`. Then there exist a topological dynamical system (X, T1, . . . , T`), where T1, . . . , T`
are commuting homeomorphisms, functions f1, . . . , fs ∈ C(X) and a Borel probability
measure µ on X that is Ti -invariant for i = 1, . . . , `, such that∫

T−→n1
f1 · · · · · T−→ns

fs dµ= lim Avk,I

( s∏
i=1

ai (k+−→ni )

)
for every −→n1 , . . . ,

−→ns ∈ Z`.

Combining this with Theorem 2.5, we immediately deduce Theorem 2.8. �

6.5. Proof of Theorem 2.9. We start by recalling the definition of the Gowers norms
in Zd

N .

Definition. Let d, N ∈ N and f : Zd
N → C be a function. For every h ∈ Zd

N , we write
fh(n) := f (n+ h), n ∈ Zd

N . For s ∈ N, we denote by ‖ f ‖U s (Zd
N )

the Gowers U s(Zd
N )-

norm of f that is defined inductively as follows: we let

‖ f ‖U 1(Zd
N )
:= |En∈Zd

N
f (n)| = (En,h∈Zd

N
f (n) f (n+ h))1/2,

and, for every s ≥ 1, we let

‖ f ‖U s+1(Zd
N )
:= (Eh∈Zd

N
‖ f · f h‖

2s

U s (Zd
N )
)1/2

s+1
.

For d = 1, the next result is deduced in [47, §3.1] from the inverse theorem for the
Gowers norms in ZN [40]. A multidimensional extension of this inverse theorem was
established in [17, 61] (for an alternate proof see [63]) and the argument in [47, §3.1]
allows us to deduce the following result.

PROPOSITION 6.5. ([47, §3.1] for d = 1) Let d, k ∈ N, C > 0 and ε > 0. Then there exists
a k-step nilmanifold X such that the following holds: if N ∈ N and a : Zd

N → C satisfies

|En∈Zd
N

a(n) b(n)| ≤ C‖b‖U k+1(Zd
N )

for every b : ZN → C, (6.11)

then we have the decomposition a = ast + aer where:
(i) ast is a convex combination of k-step nilsequences defined by functions on X with

Lipschitz norm at most one; and
(ii) En∈Zd

N
|aer(n)| ≤ ε.

It follows, from the previous result, that, in order to complete the proof of Theorem 2.9,
it suffices to show that the sequence b : Zd

N → C, defined by (2.9), satisfies the property
(6.11) for some k ∈ N and C > 0 that depend only on the integers d, `, s, t . This can be
verified directly with C = 1 by using a PET-induction argument (as in [32, Lemma 3.5])
and the estimate |En∈Zd

N
a(n)|2 ≤ Eh∈Zd

N
|En∈Zd

N
a(n+ h) a(n)|, but it turns out to be

simpler to deduce (6.11) directly from Proposition 6.1 as follows.
For fixed N ∈ N, we interpret b : Zd

N → C as a periodic sequence in Nd , and note that
b can be represented as

b(n)=
∫

T−→p1(n) f1 · · · · · T−→ps (n) fs dµ, n ∈ Nd ,
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where X := Z`N , µ is the Haar measure on X and, for i = 1, . . . , s, fi := ai and Ti is
the measure preserving transformation on Z`N (with the Haar measure) that shifts the i th
coordinate of an element of Z`N by one and leaves the other coordinates unchanged. Notice,
also, that if the sequence c : Nd

→ N is N -periodic on every coordinate direction, then

lim Av c(n)= En∈Zd
N

c(n) and ‖c‖U k (Zd ) = ‖c‖U k (Zd
N )

for every k ∈ N. Keeping all these in mind and using Proposition 6.1, we deduce that the
estimate (6.11) holds with C = 4 for some k = k(d, `, s, t), and we can take k = s if the
polynomial mappings are linear. This completes the proof of Theorem 2.9. �

6.6. Proof of Theorem 2.7. First, we check that Nd is a linear subspace of `∞(Nd). For
i = 1, 2, let (ψi (n))n∈Nd be a ki -step nilsequence given by ψi (n)=9i (

∏d
j=1 τ

ni
i, j · eX i ),

where X i = Gi/0i is a ki -step nilmanifold and τi ∈ Gi . Then, for k :=max(k1, k2),
their sum is the k-step nilsequence (9(

∏d
i=1 τ

ni
i · eX ))n1,...,nd∈N, where X := X1 ×

X2 = (G1 × G2)/(01 × 02), 9(x1, x2) :=91(x1)+92(x2), eX := (eX1 , eX2) and τ j :=

(τ1, j , τ2, j ) for j = 1, . . . , d .
Next, we show that the space MCd,pol is linear; a similar argument works for the space

MCd,lin. Let a : Nd
→ C be given by

a(n)=
∫

f0 · T−→p1(n) f1 · · · · · T−→ps (n) fs dµ, n ∈ Nd ,

for some system (X, µ, T1, . . . , T`), functions f0, . . . , fs ∈ L∞(µ) and polynomial
mappings −→p1, . . . ,

−→ps : Nd
→ Z`. Also, let a′ : Nd

→ C be defined by a similar formula,
with `′ in place of `, (X ′, µ′, T ′1, . . . , T ′

`′
) in place of (X, µ, T1, . . . , T`), s′ in place of

s,
−→
p′1, . . . ,

−→
p′s′ : Z

d
→ Z`′ in place of −→p1, . . . ,

−→ps and f ′0, . . . , f ′s′ ∈ L∞(µ′) in place of
f0, . . . , fs . We define a system (Y, ν, S1, . . . , S`+`′) by letting Y be the disjoint union
X ] X ′ of X and X ′, ν = 1

2 (µ+ µ
′) and defining the transformations S1, . . . , S`+`′ of Y

by

S j |X := T j and S j |X ′ := Id for 1≤ j ≤ `,
S j |X := Id and S j |X ′ := T ′j for ` < j ≤ `+ `′.

We also define the polynomial mappings −→q1 , . . . ,
−→qs : Nd

→ Z`+`′ and
−→
q ′1 , . . . ,

−→
q ′s′ : N

d
→ Z`+`′ as
−→qi (n) := (pi,1(n), . . . , pi,`(n), 0, . . . , 0) for 1≤ i ≤ s,
−→
q ′i (n) := (0, . . . , 0, p′i,1(n), . . . , p′i,`′(n)) for 1≤ i ≤ s′.

We also let −→q0 =
−→
q ′0 := 0. Finally, we define the functions gi ∈ L∞(ν), 0≤ i ≤ s, and

g′i ∈ L∞(ν), 0≤ i ≤ s′ by

gi := 1X fi + 1X ′ and g′i := 1X + 1X ′ f ′i .

Then ∫
Y

s∏
i=0

S−→qi (n)gi ·

s′∏
i=0

S−→
q ′i (n)

g′i dν =
1
2
(a(n)+ a′(n)), n ∈ Nd .

This completes the proof of the linearity of the space MCd,pol.
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The inclusion Nd ⊂MCd,lin follows from Proposition 4.2. The inclusion MCd,lin ⊂

MCd,pol is obvious. The inclusion MCd,pol ⊂Nd follows from Theorem 2.5. This
completes the proof of Theorem 2.7. �

7. Convergence criteria for weighted averages
In this short section, we use the machinery developed in the previous sections in order to
prove the convergence criteria stated in §§2.2 and 2.3.

7.1. Proof of Theorem 2.2. Let d, `, s, t ∈ N, (X, µ, T1, . . . , T`) be a system,
f1, . . . , fs be functions in L∞(µ) and −→pi : Nd

→ Z`, i = 1, . . . , s be polynomial
mappings of degree at most t . We can assume that ‖ fi‖L∞(µ) ≤ 1 for i = 1, . . . , s.

Let δ > 0 and k = k(d, `, s, t) be given by Proposition 6.1 and suppose that the bounded
sequence w : Nd

→ C is k-regular. As remarked there, if all the polynomials are linear,
then we can take k = s. By Theorem 3.9, the sequence w can be written as w = ψ + u,
where ψ is a k-step nilsequence in d variables and u ∈ `∞(Nd) satisfies ‖u‖U k+1(Nd ) < δ.
By Proposition 2.1, the limit

lim Av ψ(n) · T−→p1(n) f1 · · · · · T−→ps (n) fs

exists in L2(µ) and, by Proposition 6.1, for every Følner sequence I= (I j ) j∈N,

lim‖AvI u(n) · T−→p1(n) f1 · · · · · T−→ps (n) fs‖L2(µ) ≤ 4δ.

It follows that, for all sufficiently large j, j ′ ∈ N, the difference between

1
|I j |

∑
n∈I j

u(n) T−→p1(n) f1 · · · · · T−→ps (n) fs (7.1)

and the similar average on I j ′ has a norm in L2(µ) bounded by 8δ. Therefore, the
averages (7.1) form a Cauchy sequence and thus converge in L2(µ).

Furthermore, if we assume that the averages of w(n)ψ(n) converge to zero for every
k-step nilsequence ψ in d variables, then, by Corollary 3.8, ‖w‖U k (Nd ) = 0 and the
averages (7.1) converge to zero in L2(µ), by Proposition 6.1. This completes the proof. �

7.2. Proof of Theorem 2.4. Let k = k(d, `, s, t) be as in Theorem 2.5 and the sequence
a : Nd

→ C be defined by

a(n) :=
∫

f0 · T−→p1(n) f1 · · · · · T−→ps (n) fs dµ, n ∈ Nd .

By Theorem 2.5, a is an approximate k-step nilsequence in d variables and, by
hypothesis (2.3), the averages (2.4) converge. This proves Part (i) of Theorem 2.4.
Furthermore, we deduce that if the averages (2.3) converge to zero for every nilsequence
ψ in d variables, then the averages (2.4) converge to zero.

Next, we prove Part (ii). Let k = k(2d, `, 2s − 1, t) be as in Theorem 2.5 and let the
sequence b : Nd

× Nd
→ C be defined by

b(n, n′) :=
∫

T−→p1(n) f1 · · · · · T−→ps (n) fs · T−→p1(n′) f 1 · · · · · T−→ps (n′) f s dµ, n, n′ ∈ Nd .
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By Theorem 2.5, the sequence b is an approximate k-step nilsequence in 2d variables.
Hence, by hypothesis (2.5), the averages

1
N d N ′d

∑
n∈[N ]d

∑
n′∈[N ′]d

w(n) w(n′) b(n, n′)

converge to some limit L when N and N ′ tend to +∞. Let N0 be such that the difference
between this average and L is bounded in absolute value by ε for all N , N ′ > N0.
Expanding the square∥∥∥∥ 1

N d

∑
n∈[N ]d

w(n) · T−→p1(n) f1 · · · · · T−→ps (n) fs

−
1

N ′d
∑

n′∈[N ′]d
w(n′) · T−→p1(n′) f1 · · · · · T−→ps (n′) fs

∥∥∥∥2

L2(µ)

we obtain four terms of this form with alternate signs, and thus this square is bounded by
4ε. Hence, the averages in (2.6) form a Cauchy sequence in L2(µ) and thus converge.
This proves Part (ii) of Theorem 2.4. As above, if the limit (2.5) is zero for all k-step
nilsequences ψ in 2d variables, then the limit (2.6) is equal to zero.

In order to get the last part of Theorem 2.4, we argue as before and use the last parts of
Theorems 2.5 and 2.6. �

8. Applications to arithmetic weights
In this section we prove the main results stated in §2.6.

8.1. Proof of Theorem 2.11. Theorem 2.11 follows immediately using the next result,
which shows that hypothesis (ii) of Theorem 2.4 is satisfied.

THEOREM 8.1. Let d ∈ N and let φ : Nd
→ C be a good multiplicative function. Then, for

every nilsequence ψ : Nd
→ C, the limit

lim
N1,...,Nd→+∞

1
N1 · · · Nd

∑
n∈[N1]×···×[Nd ]

φ(n) ψ(n) (8.1)

exists. Moreover, if the multiplicative function φ is aperiodic, then the limit is equal to zero
for all nilsequences ψ in d variables.

Remarks.
• One can also deduce variants of the previous result that deal with polynomial

sequences on nilmanifolds; indeed, any such sequence can be represented as a linear
sequence on a different nilmanifold [51, §2.11].

• The case where d = 1 can be deduced from [30, Theorem 6.1] but, due to the finitary
nature of the statement in [30], the argument used there is vastly more complicated.

We prove Theorem 8.1 in §8.3.
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8.2. Proof of Theorems 2.12 and 2.13. For b ∈ N, we let ζ be a root of unity of order
b and let fb be the multiplicative function defined by fb(pk)= ζ for all primes p and all
k ∈ N†. Note that

1Sa,b (n)=
1
b

b−1∑
j=0

ζ−aj ( fb(n)) j , n ∈ N. (8.2)

It can be seen, using Theorem 2.10 (see [31, Proposition 2.10]), that, for j = 1, . . . , b − 1,
the multiplicative function f j is aperiodic.

Let
Vn := T−→p1(n) f1 · · · · · T−→ps (n) fs, n ∈ Nd .

Recall that S := (Sa1,b1 + c1)× · · · × (Sad ,bd + cd). Using (8.2), we get that the averages

1
N d

∑
n∈S∩[N ]d

Vn

are asymptotically equal (meaning that the relevant difference converges to zero in L2(µ))
to the averages

1
N d

∑
n∈[N ]d

d∏
i=1

1
bi

bi−1∑
j=0

ζ−ai j ( fbi (ni ))
j
· Vn+c, (8.3)

where c := (c1, . . . , cd) and, as usual, n1, . . . , nd denote the coordinates of the vector
n ∈ Nd . Since, for i = 1, . . . , d and j = 1, . . . , bi − 1, the multiplicative function f j

bi
is

aperiodic, we get that, for ji ∈ {0, . . . , bi − 1}, i = 1, . . . , d, the multiplicative function
(n1, . . . , nd) 7→

∏d
i=1( fbi (ni ))

ji is aperiodic unless j1 = · · · = jd = 0. Keeping this in
mind, expanding the product in (8.3) and using the second part of Theorem 2.11, we
deduce that the averages (8.3) are asymptotically equal in L2(µ) to the averages

d∏
i=1

1
bi
·

1
N d

∑
n∈[N ]d

Vn.

Furthermore, the previous argument, applied for Vn := 1, n ∈ [N ]d , gives that

lim
N→+∞

|S ∩ [N ]d |
N d =

d∏
i=1

1
bi
.

Combining the above, we deduce that the difference

1
|S ∩ [N ]d |

∑
n∈S∩[N ]d

Vn −
1

N d

∑
n∈[N ]d

Vn

converges to zero in L2(µ). Using this, in conjunction with Theorem 1.1, completes the
proof of Theorem 2.12.

† In order to get results when the set Sa,b is defined by counting prime factors with multiplicity, we define the
completely multiplicative function fb by fb(pk )= ζ k for all primes p and all k ∈ N.
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Using the previously established identity for fi := 1A, i = 1, . . . , d, where A ∈ X is a
set of positive measure, we deduce that

lim
N→+∞

1
|S ∩ [N ]d |

∑
n∈S∩[N ]d

µ(A ∩ T
−
−→p1(n)A ∩ · · · ∩ T

−
−→ps (n)A)

= lim
N→+∞

1
N d

∑
n∈[N ]d

µ(A ∩ T
−
−→p1(n)A ∩ · · · ∩ T

−
−→ps (n)A) > 0,

where the positiveness of the last limit follows from the multiparameter polynomial
Szemerédi theorem [13, Theorem 0.9]. This proves Theorem 2.13. �

8.3. Correlations of multiplicative functions with nilsequences. In this subsection, we
prove Theorem 8.1 for d = 2; the general case is identical to this one modulo changes in
notation. We begin with some preliminaries.

8.3.1. Some classical facts about commutators.

LEMMA 8.2. Let G be a group and i, j ∈ N. Then the commutator map (g, h)→ [g, h]
maps Gi × G j to Gi+ j . Moreover, it induces a bi-homomorphism from (Gi/Gi+1)×

(G j/G j+1) to Gi+ j/Gi+ j+1.

Sketch of the proof. The first statement follows by induction from the classical three
subgroups lemma.

Let H, K , L ⊂ G and N be a normal subgroup of G. If [[H, K ], L] ⊂ N and
[[L , H ], K ] ⊂ N , then [[K , L], H ] ⊂ N .

The second statement follows from the identity

[xy, z] = x[y, z]x−1
· [x, z] = [x, [y, z]] · [y, z] · [x, z] for all x, y, z ∈ G. (8.4)

�

LEMMA 8.3. Let G be a group, H (1), . . . , H (k) and Q(1), . . . , Q(`) be normal subgroups
of G, H = H (1)

· · · · · H (k) and Q = Q(1)
· · · · · Q(`). Then the commutator group [H, Q]

is the product of the groups [H (i), Q( j)
] for i = 1, . . . , k and j = 1, . . . , `.

Proof. All the groups [H (i), Q( j)
] are normal and included in [H, Q], and thus it suffices

to prove that [H, Q] is contained in the product of these groups. If hi ∈ H (i) for
i = 1, 2 and q ∈ Q(1), it follows, from (8.4) and from the normality of [H (1), Q(1)

], that
[h1h2, q] ∈ [H (1), Q(1)

] · [H (2), Q(1)
]. This proves the result in the case k = 2, `= 1.

The result for k arbitrary and `= 1 follows by induction on k. The result for k, ` arbitrary
follows by exchanging the roles of H and Q. �

8.3.2. Some reductions. We prove Theorem 8.1 for d = 2. Recall that ψ is an s-step
nilsequence in two variables defined by

ψ(n1, n2) :=9(τ
n1
1 τ

n2
2 · eX ), n1, n2 ∈ N,
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where X = G/0 is a nilmanifold, 9 ∈ C(X) and τ1, τ2 are two commuting elements of
G. It is known [51, 56] that the closure X ′ of {τ n1

1 τ
n2
2 · eX : n1, n2 ∈ N} in X is a sub-

nilmanifold of X . Substituting X ′ for X , we can assume that {τ n1
1 τ

n2
2 · eX : n1, n2 ∈ N} is

dense in X ; it then follows, by [51, Theorem 1.4], that it is equidistributed in X .
We can assume, without loss of generality, that G is spanned by the connected

component of the unit element and the elements τ1 and τ2. This implies that all commutator
subgroups Gi , i ≥ 2 are connected (see, for example [11, Theorem 4.1]).

Suppose that s ≥ 2 and that G is s-step but not (s − 1)-step nilpotent. Then the group
Ks := Gs/(Gs ∩ 0) is a finite dimensional torus, sometimes called the vertical torus [38],
and acts freely on X . We denote this action by (u, x) 7→ u · x for u ∈ Ks and x ∈ X .
Let K̂s be the dual group of Ks , that is, the group of continuous group homomorphisms
from Ks to the circle group S1. If, for some χ ∈ K̂s , the function 9 ∈ C(X) satisfies
9(u · x)= χ(u)9(x) for every u ∈ Ks and x ∈ X , then it is called a nilcharacter of X
with vertical frequency χ . The linear span of nilcharacters is dense in C(X) for the uniform
norm. Therefore, it suffices to prove (8.1) when the function 9 defining the nilsequence
ψ is a nilcharacter.

If the vertical frequency χ of 9 is the trivial character of Ks , then the function 9
factorizes through the quotient of X under the action of this group. This quotient is the
(s − 1)-step nilmanifold X ′ = G/(Gs0)= (G/Gs)/((0 ∩ Gs)/Gs). Writing τ ′1, τ

′

2 for
the images of τ1, τ2 in G/Gs , ψ(n1, n2)=9

′(τ
′n1
1 τ

′n2
2 · eX ′) for some 9 ′ ∈ C(X ′).

Iterating this procedure, we reduce matters to considering the following two cases: (i)
X is a 1-step nilmanifold, and (ii) X is an s-step nilmanifold for some s ≥ 2 and 9 is a
nilcharacter with vertical frequency χ 6= 1.

If (i) holds, then X is a compact Abelian group and we can further reduce matters to the
case where 9 is a character of X . Then the average in (8.1) can be rewritten as(

1
N1

N1∑
n1=1

φ1(n1) e(n1t1)
)
·

(
1

N2

N2∑
n2=1

φ2(n2) e(n2t2)
)

(8.5)

for some t1, t2 ∈ R and good multiplicative functions φ1, φ2 : N→ C. If t1 or t2 is
irrational, then the limit is equal to zero, by a Theorem of Daboussi [22] (see also [23, 24]).
If both t1 and t2 are rational, then the limit exists since, by hypothesis, the multiplicative
functions φ1 and φ2 are good. Furthermore, this limit is equal to zero if either φ1 or φ2 is
aperiodic, that is, if φ is aperiodic.

Hence, it suffices to consider case (ii): that is, we can assume that X is an s-
step nilmanifold for some s ≥ 2 and 9 is a nilcharacter with vertical frequency χ 6= 1.
Replacing X with its quotient by the kernel of χ , we are reduced to the case where Gs = S1

and 9 has vertical frequency one: that is,

9(u · x)= u 9(x) for every x ∈ X and u ∈ Gs = S1. (8.6)

Therefore, it suffices to prove the following proposition.

PROPOSITION 8.4. (Theorem 8.1-nilcharacter form) Let X = G/0 be an s-step
nilmanifold for some s ≥ 2. Suppose that Gs = S1, 9 ∈ C(X) satisfies (8.6) and that
τ1, τ2 are two commuting elements of G such that the sequence (τ n1

1 τ
n2
2 · eX )n1,n2∈N
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is equidistributed in X. Then, for all multiplicative functions φ1, φ2 : N→ C that are
bounded by one,

lim
N1,N2→+∞

1
N1 N2

∑
n1∈[N1], n2∈[N2]

φ1(n1) φ2(n2) 9(τ
n1
1 τ

n2
2 · eX )= 0. (8.7)

We proceed now to establish Proposition 8.4.

8.3.3. A variant of Katái’s lemma. We use a two-dimensional variant of a result of
Katái ([48], see also [22]); we omit its proof since it is identical to its one-dimensional
version modulo changes in notation.

PROPOSITION 8.5. Let P0 ∈ N, φ1, φ2 : N→ C be multiplicative functions bounded by
one and let a ∈ `∞(N2). Suppose that

lim
N1,N2→+∞

1
N1 N2

∑
n1∈[N1], n2∈[N2]

a(p1n1, p2n2) a(p′1n1, p′2n2)= 0

for all distinct primes p1, p2, p′1, p′2 ≥ P0. Then

lim
N1,N2→+∞

sup
φ1,φ2

∣∣∣ 1
N1 N2

∑
n1∈[N1], n2∈[N2]

φ1(n1) φ2(n2) a(n1, n2)

∣∣∣= 0,

where the sup is taken over all φ1, φ2 : N→ C that are multiplicative and bounded by one.

8.3.4. The nilmanifold Y . In the subsequent work, p1, p2, p′1, p′2 are fixed distinct
primes. By Proposition 8.5, in order to prove Proposition 8.4, it suffices to show that

lim
N1,N2→+∞

1
N1 N2

∑
n1∈[N1],n2∈[N2]

9(τ
p1n1

1 τ
p2n2

2 · eX ) 9(τ
p′1n1

1 τ
p′2n2

2 · eX )= 0, (8.8)

where 9 satisfies (8.6). We let

Y := {(τ p1n1
1 τ

p2n2
2 · eX , τ

p′1n1
1 τ

p′2n2
2 · eX ) : n1, n2 ∈ N

}
⊂ X × X.

Then Y is a sub-nilmanifold of X × X and, by [51, Theorem 1.4], the 2-variable sequence
above is equidistributed in Y . Writing mY for the Haar measure of Y , the limit in (8.8) is
equal to ∫

Y
9(x) 9(x ′) dmY (x, x ′). (8.9)

Hence, it remains to show that this integral is zero.
Let H be the smallest closed subgroup of G containing 0 × 0 and the shift elements

(τ
p1

1 , τ
p′1

1 ) and (τ p2
2 , τ

p′2
2 ). We claim that

Y = H/(0 × 0).

Indeed, by the definition of H and Y , H · (eX , eX )⊃ Y . Furthermore, by the remark
following [50, Theorem 2.21], Y = H1 · (eX , eX ) for some closed subgroup H1 of G × G

containing the shift elements (τ p1
1 , τ

p′1
1 ) and (τ p2

2 , τ
p′2

2 ). Since Y is compact, H1 ∩ (0 ×

0) is cocompact in H1 and thus H2 := H1 · (0 × 0) is a closed subgroup of G. Since
H2 is a closed subgroup that contains the shift elements and 0 × 0, H2 ⊃ H , and hence
H · (eX , eX )⊂ H2 · (eX , eX )= H1 · (eX , eX )= Y . Therefore, H · (eX , eX )= Y , which
implies that Y = H/(0 × 0). This proves the claim.
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8.3.5. Projection on the Kronecker factor. We denote by Z the compact Abelian group
G/(G20) and let π : X→ Z and p : G→ Z be the natural projections. For i = 1, 2,
let αi := p(τi ) and let Zi be the closed subgroup of Z spanned by αi . Since {τ n1

1 τ
n2
2 ·

eX : n1, n2 ∈ N} is dense in X , {αn1
1 α

n2
2 · eX : n1, n2 ∈ N} is dense in Z and Z = Z1 Z2.

For i = 1, 2, we let
G(i)
:= p−1(Zi ).

Then G(i) is a closed subgroup of G containing 0 and G2, and hence is normal in G, and

G = G(1)G(2).

Let
W := (p × p)(H)= (π × π)(Y ).

By the definition of Y , W is the closure in Z × Z of

{(α
p1n1
1 α

p2n2
2 · eX , α

p′1n1
1 α

p′2n2
2 · eX ) : n1, n2 ∈ N}

and thus
W = {(z p1

1 z p2
2 , z

p′1
1 z

p′2
2 ) : z1 ∈ Z1, z2 ∈ Z2}. (8.10)

8.3.6. Starting the induction. For i = 1, 2, let gi ∈ G(i). Then, by (8.10),

(p × p)(g p1
1 , g

p′1
1 ) ∈W and (p × p)(g p2

2 , g
p′2
2 ) ∈W.

We have (p × p)(H)=W , the kernel of p × p is (G2 × G2)(0 × 0) and 0 × 0 ⊂ H .
Thus

(g p1
1 , g

p′1
1 ) ∈ H(G2 × G2) and (g p2

2 , g
p′2
2 ) ∈ H(G2 × G2).

For i = 1, 2, let hi ∈ G(i). By (8.4),

(H(G2 × G2))2 ⊂ H2(G3 × G3)

and thus

[(g p1
1 , g

p′1
1 ), (h

p1
1 , h

p′1
1 )], [(g p1

1 , g
p′1
1 ), (h

p2
2 , h

p′2
2 )] and [(g p2

2 , g
p′2
2 ), (h

p2
2 , h

p′2
2 )]

belong to H2(G3 × G3). By Lemma 8.2, these elements are equal modulo G3 × G3 to

([g1, h1]
p2

1 , [g1, h1]
p′21 ), ([g1, h2]

p1 p2 , [g1, h2]
p′1 p′2) and ([g2, h2]

p2
2 , [g2, h2]

p′22 ),

respectively.
Henceforth, for i = 1, 2, we denote (G(i))2 by G(i)

2 . For u, v ∈ G2, (uv)p2
1 = u p2

1v p2
1

mod G3 and (uv)p′21 = u p′21 v p′21 mod G3 and thus the set

L := {u ∈ G(1)
2 : (u

p2
1 , u p′21 ) ∈ H2(G3 × G3)}

is a subgroup of G(1)
2 . By the previous discussion, for g1, h1 ∈ G(1), the set L contains

[g1, h1] and thus it is equal to G(1)
2 . Hence,

(u p2
1 , u p′21 ) ∈ H2(G3 × G3) for every u ∈ G(1)

2 .

In the same way,

(u p2
2 , u p′22 ) ∈ H2(G3 × G3) for every u ∈ G(2)

2 ,

(u p1 p2 , u p′1 p′2) ∈ H2(G3 × G3) for every u ∈ [G(1), G(2)
].
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8.3.7. The induction. By induction on r , we show the following lemma.

LEMMA 8.6. For 2≤ r ≤ s and i1, . . . , ir ∈ {1, 2}, let

si := |{ j : 1≤ j ≤ r, i j = i}| for i = 1, 2,

G(i1,...,ir ) := [G(i1), [G(i2), . . . , [G(ir−1), G(ir )] . . . ]] ⊂ Gr .

Then, for every u ∈ G(i1,...,ir ), (u p
s1
1 p

s2
2 , u p

′s1
1 p
′s2
2 ) ∈ Hr (Gr+1 × Gr+1).

Proof. For r = 2, this was proved in the preceding subsection and the inductive step is
proved by the same method. �

In the subsequent work, we only use this lemma for r = s.

8.3.8. Conclusion of the proof. We argue by contradiction. Suppose that

I :=
∫
9(x) 9(x ′) dmY (x, x ′) 6= 0.

Recall that Gs = S1 and that 9 satisfies (8.6).
Let i1, . . . , is ∈ {1, 2} and si = |{ j : 1≤ j ≤ s, i j = i}| for i = 1, 2. Since G is s-step

nilpotent, the subgroup Gs+1 is trivial. Hence, by Lemma 8.6, for every u ∈ G(i1,...,is ),
(u p

s1
1 p

s2
2 , u p

′s1
1 p
′s2
2 ) ∈ Hs . Therefore, the measure mY is invariant under translation by

(u p
s1
1 p

s2
2 , u p

′s1
1 p
′s2
2 ). Hence,

I =
∫
9(u p

s1
1 p

s2
2 · x) 9(u p

′s1
1 p
′s2
2 · x ′) dmY (x, x ′)= u p

s1
1 p

s2
2 −p

′s1
1 p
′s2
2 · I.

Thus u p
s1
1 p

s2
2 −p

′s1
1 p
′s2
2 = 1 for every g ∈ G(i1,...,is ) . Since G(i1,...,is ) is a subgroup of the

torus Gs and p1, p′1, p2, p′2 are distinct primes, it follows that the group G(i1,...,is ) is finite.
Furthermore, since G = G(1)G(2), using Lemma 8.3 and induction, we have that the

group Gs is the product of the groups G(i1,...,is ) for i1, . . . , is ∈ {1, 2} and thus is finite,
which is a contradiction since Gs = S1. This completes the proof of Proposition 8.4 and
hence of Theorem 8.1. �

9. Applications to Hardy field weights
9.1. Hardy field functions. Let B be the collection of equivalence classes of real-valued
functions defined on some half-line [c,+∞), where we identify two functions if they agree
on some half-line. A Hardy field H is a subfield of the ring (B,+, ·) that is closed under
differentiation. A Hardy field function is a function that belongs to some Hardy field.
An example of a Hardy field consists of all logarithmic-exponential functions, that is,
all functions defined on some half-line [c,+∞) by a finite combination of the symbols
+,−,×, :, log, exp operating on the real variable t and on real constants. Examples
include functions of the form ta(log t)b for every a, b ∈ R. An important property of
Hardy field functions is that we can relate their growth rates with the growth rates of their
derivatives. The reader can find further discussion about Hardy fields in [14–16, 28] and
the references therein.
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Let f be a Hardy field function. We say that it:
(i) has at most polynomial growth if f (t)/tm

→ 0 for some m ∈ N;
(ii) stays away from polynomials if | f (t)− p(t)|/ log t→+∞ for every p ∈ R[t]; and
(iii) is asymptotically polynomial if f (t)− p(t)→ 0 for some p ∈ R[t].

For our purposes, the key property of Hardy field functions that stay away from
polynomials is that they satisfy Lemma 9.6, below. Examples of such functions include:
• ta where a is a positive non-integer;
• ta(log t)b, where a > 0 and b ∈ R \ {0}; and
• ta

+ (log t)b, where a ∈ R and b > 1.

9.2. Convergence and recurrence results. The main result of this section is the
following theorem.

THEOREM 9.1. Let d ∈ N and let f1, . . . , fd be Hardy field functions with at most
polynomial growth that stay away from polynomials. We define the sequence w : Nd

→ C
by

w(n) := e
( d∑

i=1

fi (ni )

)
, n= (n1, . . . , nd) ∈ Nd .

Then for every system (X, µ, T1, . . . , T`), functions F1, . . . , Fs ∈ L∞(µ) and
polynomial mappings −→pi : Nd

→ Z`, i = 1, . . . , s,

lim
N→+∞

1
N d

∑
n∈[N ]d

w(n) · T−→p1(n)F1 · · · · · T−→ps (n)Fs = 0,

where the limit is taken in L2(µ).

Remark. Related work for pointwise convergence when d = `= s = 1 appears in [26].

Using the d = 1 case of the previous result, we deduce, in §9.3, the following corollary.

COROLLARY 9.2. Let f be a Hardy field function with at most polynomial growth. Then
the sequence w : N→ C, defined by w(n) := e( f (n)), n ∈ N, is a good universal weight
for mean convergence of the averages (2.6) if and only if either f is asymptotically
polynomial or f stays away from polynomials.

Theorem 9.1 follows, immediately, from Part (ii) of Theorem 2.4 and the next result.

PROPOSITION 9.3. Let d ∈ N and let f1, . . . , fd be Hardy field functions with at most
polynomial growth that stay away from polynomials. Then, for every nilsequence
ψ : Nd

→ C,

lim
N1,...,Nd→+∞

1
N1 · · · Nd

∑
n∈[N1]×···×[Nd ]

e
( d∑

i=1

fi (ni )

)
ψ(n)= 0.

We prove Proposition 9.3 in §9.3.
Next, we give some applications. Note that, for 0< a < b < 1/2 and t ∈ [0, 1),

1[a,b](‖t‖)= 1[a,b](t)+ 1[1−b,1−a](t).
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Since 1[c,d](t) is Riemann integrable for all c, d ∈ R with 0≤ c < d < 1, for every ε > 0,
there exist (1-periodic) trigonometric polynomials P1, P2 with zero constant terms such
that

P1(t)− ε ≤ 1[c,d](t)− (d − c)≤ P2(t)+ ε, t ∈ [0, 1]. (9.1)

Using Proposition 9.3, with 2πki fi in place of fi for ki ∈ Z not all of them zero, for
i = 1, . . . , d , we deduce the following corollary, using the estimate (9.1).

COROLLARY 9.4. Let d ∈ N and let f1, . . . , fd be Hardy field functions with at most
polynomial growth that stay away from polynomials. Let ai , bi ∈ R with 0≤ ai < bi ≤

1/2, i = 1, . . . , d, and

S := {(n1, . . . , nd) ∈ Nd
: ‖ f1(n1)‖ ∈ [a1, b1], . . . , ‖ fd(nd)‖ ∈ [ad , bd ]}.

Then, for every nilsequence ψ : Nd
→ C,

lim
N→+∞

1
|S ∩ [N ]d |

∑
n∈S∩[N ]d

ψ(n)= lim
N→+∞

1
N d

∑
n∈[N ]d

ψ(n).

We also deduce the following mean convergence and multiple recurrence result.

THEOREM 9.5. Let S ⊂ Nd be as in Corollary 9.4. Then the density d(S) of S is
(
∏d

i=1 2(bi − ai ))
−1 and:

(i) the sequence w := 1S is a good universal weight for mean convergence of the
averages (2.6) and the limit of these averages is equal to the limit obtained when
w := d(S); and

(ii) for every d, `, s ∈ N, polynomial mappings −→p1, . . . ,
−→ps : Nd

→ Z` with zero
constant term, system (X, µ, T1, . . . , T`) and set A ∈ X with µ(A) > 0,

lim
N→+∞

1
N d

∑
n∈[N ]d

1S(n) µ(A ∩ T
−
−→p1(n)A ∩ · · · ∩ T

−
−→ps (n)A) > 0. (9.2)

Proof. If f is a Hardy field function of at most polynomial growth that stays away from
polynomials, then the sequence ( f (n))n∈N is uniformly distributed mod 1 (see [15]). The
statement about the density of S follows from this fact.

Using Theorem 9.1, with 2πki fi in place of fi for ki ∈ Z not all of them zero, for
i = 1, . . . , d, and the estimate (9.1), we deduce Part (i).

To prove Part (ii) we use Part (i) for f1 = · · · = fs = 1A, multiply by 1A and integrate
with respect to µ. We deduce that the limit in (9.2) is the same as the one obtained when
the constant sequence d(S) takes the place of 1S . The asserted positiveness then follows
from the multiparameter polynomial Szemerédi theorem [13, Theorem 0.9]. �

9.3. Proof of Proposition 9.3 and Corollary 9.2. We start with some preliminary facts.
Our assumptions on the functions f1, . . . , fd are used via the following lemma.

LEMMA 9.6. Let f be a Hardy field function that stays away from polynomials and
satisfies f (t)/tm

→ 0 as t→+∞ for some m ∈ N. Let k ≥ m be an integer. Then there
exist real numbers αN with αN → 0, polynomials qN ∈ R[t] with deg(qN ) < k, positive
integers L N with L N/N → 0 and Lk

N |αN | → +∞, such that

f (N + n)= nkαN + qN (n)+ oN→+∞(1), n ∈ [L N ].
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Proof. This follows by noticing that the proof of [28, Lemma 3.5] applies to all k ∈ N with
k ≥ m and then following the argument in the proof of [28, Lemma 3.4]. �

In the proof of Proposition 9.3, we use some quantitative equidistribution results from
[38]. We record here some relevant notions.
• If G is a nilpotent group, then g : Nd

→ G is a polynomial sequence if it has the
form g(n)=

∏s
i=1 τ

pi (n)
i , where, for i = 1, . . . , s, τi ∈ G and pi : Nd

→ Z are
polynomials. The degree of the polynomial sequence (with a given representation)
is the maximum of the degrees of the polynomials p1, . . . , ps .

• For N1, . . . , Nd ∈ N, we say that the finite sequence (g(n) · eX )n∈[N1]×···×[Nd ] is
δ-equidistributed in the nilmanifold X if, for every Lipschitz function 9 : X→ C
with ‖9‖Lip(X) ≤ 1 and

∫
X 9 dm X = 0,∣∣∣ 1

N1 · · · Nd

∑
n∈[N1]×···×[Nd ]

9(g(n) · eX )

∣∣∣≤ δ.
• An infinite sequence (g(n) · eX )n∈Nd is equidistributed in X if, for all 9 ∈ C(X)

with
∫

X 9 dm X = 0, (note that the averages below are uniform)

lim Av9(g(n) · eX )= 0.

It is totally equidistributed in X if the sequence (1P1×···×Pd (n) · g(n) · eX )n∈N is
equidistributed in X for all infinite arithmetic progressions P1, . . . , Pd ⊂ N.

• The horizontal torus of the nilmanifold X = G/0 is the compact Abelian group Z :=
G/(G20). If G is connected, it is a finite dimensional torus. A horizontal character
is a continuous group homomorphism G→ T. It factors through the horizontal torus
and induces a character η : Z→ T; when G is connected, it is of the form t 7→ k · t,
where k ∈ Zs, t ∈ Ts , s := dim(Z). In this case, we define ‖η‖ := ‖k‖1: that is, the
sum of the absolute values of the coordinates of k.

• If p : Nd
→ T has the form p(n1, . . . , nd)=

∑
j1,..., jd α j1,..., jd n j1

1 · · · n
jd
d ,, we

define

‖p‖C∞[N1]×···×[Nd ] := max
( j1,..., jd )6=(0,...,0)

N j1
1 · · · N

jd
d ‖α j1,..., jd‖.

• If X = G/0 is a nilmanifold, then γ is a rational element of G if γ k
∈ 0 for some

k ∈ N.
We will use the following quantitative equidistribution result.

THEOREM 9.7. ([38, Theorem 8.6] and [39]) Let X := G/0 be a nilmanifold with G
connected and simply connected, d, t ∈ N and ε > 0. There exists M := M(X, d, t, ε) > 0
such that the following holds: for all N1, . . . , Nd ∈ N greater than M, if g : Nd

→ G is a
polynomial sequence of degree t and (g(n) · eX )n∈[N1]×···×[Nd ] is not ε-equidistributed in
X, then there exists a non-trivial horizontal character η such that

0< ‖η‖ ≤ M and ‖η ◦ g‖C∞[N1]×···×[Nd ] ≤ M.

Remark. For every horizontal character η, the sequence η ◦ g is a polynomial sequence in
T of degree at most t .
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We will use the following elementary result which is a two-dimensional variant of [28,
Lemma 3.3].

LEMMA 9.8. Let a ∈ `∞(N2) be such that

lim
N ,N ′→+∞

1
L N L ′N ′

∑
n∈(N+[L N ])×(N ′+[L ′N ′ ])

a(n)= 0 (9.3)

for some sequences of positive integers (L N )N∈N, (L ′N )N∈N that satisfy L N/N → 0 and
L ′N/N → 0 as N →+∞. Then

lim
N ,N ′→+∞

1
N N ′

∑
n∈[N ]×[N ′]

a(n)= 0.

Proof. Let the sequence of positive integers (ki )i∈N be defined by k1 := 1, ki+1 := ki +

Lki , i ∈ N and, similarly, let the sequence (k′i )i∈N be defined by k′1 := 1, k′i+1 := k′i + L ′k′i
,

i ∈ N. For N ∈ N, let iN :=max{i ∈ N : ki ≤ N } and i ′N :=max{i ∈ N : k′i ≤ N }. Then the
rectangles (ki , ki+1] × (k′i ′ , k′i ′+1], where i ∈ [iN − 1] and i ′ ∈ [i ′N ′ − 1], have the form
(k, k + Lk] × (k′, k′ + L ′k′ ] and, together with a leftover set EN ,N ′ , form a partition of the
rectangle [N ] × [N ′]. The set EN ,N ′ is contained in the union of the rectangles [N ] ×
(N ′ − L ′k′iN ′

, N ′] and (N − LkiN
, N ] × [N ′] and, since kiN ≤ N and k′i ′N

≤ N ′,,

|EN ,N ′ | ≤ N max
k≤N ′

(L ′k)+ N ′ max
k≤N

(Lk).

Since L N/N , L ′N/N → 0 as N →+∞, we get that |EN ,N ′ |/(N N ′)→ 0 as N , N ′→
+∞. Using this, the fact that a : N2

→ C is bounded and our assumption (9.3), we deduce
that

lim
N ,N ′→+∞

1
N N ′

∑
n∈[N ]×[N ′]

a(n)= lim
k,k′→+∞

1
Lk L ′k′

∑
n∈(k,k+Lk ]×(k′,k′+L ′k′ ]

a(n)= 0.

This completes the proof. �

Proof of Proposition 9.3. We give the proof for d = 2; the proof in the general case is
analogous.

Suppose that the nilsequence ψ has the form

ψ(n, n′)=9(τ nτ ′n
′

eX ), n, n′ ∈ N,

for some nilmanifold X = G/0, commuting elements τ, τ ′ ∈ G and function 9 ∈ C(X).
By a remark made in §2.1.2, we can assume that the group G is connected and simply
connected. Moreover, we can assume that 9 is a Lipschitz function with ‖9‖Lip(X) ≤ 1.

By the infinitary factorization theorem [38, Corollary 1.12] (the same argument works
for sequences in several variables), the sequence g : N2

→ G, defined by g(n, n′) :=
τ nτ ′n

′

, n, n′ ∈ N, can be factorized as

g(n, n′)= g′(n, n′) γ (n, n′), n, n′ ∈ N,

where:
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• g′ : N2
→ G ′ is a polynomial sequence on a closed, connected and simply connected

subgroup G ′ of G such that X ′ := G ′/(G ′ ∩ 0) is a nilmanifold;
• the sequence (g′(n, n′) · eX ′)n,n′∈N is totally equidistributed on X ′; and
• the sequence (γ (n, n′) · eX )n,n′∈N is periodic and γ (n, n′) is a rational element of G

for every n, n′ ∈ N.
Then, for some r ∈ N and all (i1, i2) ∈ {0, . . . , r − 1}2, the sequence (γ (n, n′) · eX )n,n′∈N
is constant in the set rN2

+ (i1, i2); say that it is equal to γi1,i2 · eX for some rational
element γi1,i2 in G. After partitioning N2 as a union of such sets, we are reduced to
showing that

lim
N ,N ′→+∞

1
N N ′

∑
n∈[N ],n′∈[N ′]

e( f (rn + i1)+ f ′(rn′ + i2))

×9(g′(rn + i1, rn′ + i2)γi1,i2 · eX )= 0

for all (i1, i2) ∈ {0, . . . , r − 1}2. Notice that, if h is a Hardy field function of at most
polynomial growth that stays away from polynomials, then, also, t 7→ h(kt + l) has the
same property for all k ∈ N and l ∈ Z. Hence, it suffices to show that if f, f ′ satisfy the
assumptions of Proposition 9.3, then

lim
N ,N ′→+∞

1
N N ′

∑
n∈[N ],n′∈[N ′]

e( f (n)+ f ′(n′)) 9(g′(n, n′)γ · eX )= 0, (9.4)

where g′ : N2
→ G ′ is such that the infinite polynomial sequence (g′(n, n′) · eX )n,n′∈N is

equidistributed on X ′ and γ is a rational element of G.
Let (L N )N∈N, (L ′N )N∈N be sequences of positive integers that will be specified later;

for the moment we only assume that L N , L ′N →+∞ and L N/N , L ′N/N → 0 (we will
also impose condition (9.8) later). Using Lemma 9.8, we see that it suffices to show that

lim
N ,N ′→+∞

1
L N L N ′

∑
n∈[L N ],n′∈[L N ′ ]

e( f (N + n)+ f (N ′ + n′))

×9γ (g′γ (N + n, N ′ + n′) · eX )= 0, (9.5)

where g′γ := γ
−1g′γ is a polynomial sequence on G ′γ := γ

−1Gγ and 9γ ∈ Lip(X) is
defined by 9γ (g · eX ) :=9(γ g · eX ) for g ∈ G.

In order to prove (9.5), we need to first gather some data. First, we claim that, for
N , N ′ ∈ N, the finite sequence

(g′(N + n, N ′ + n′) · eX )n∈[L N ],n′∈[L N ′ ]

is δN ,N ′ -equidistributed on X ′ for some δN ,N ′ > 0 that satisfy δN ,N ′→ 0 as N , N ′→+∞.
Indeed, if this is not the case, then there exists δ > 0, Nm, N ′m→+∞ and 9m ∈ Lip(X ′)
with ‖9m‖Lip(X ′) ≤ 1 and

∫
X ′ 9m dm X ′ = 0, such that∣∣∣∣ 1

L Nm L N ′m

∑
(n,n′)∈(Nm+[L Nm ])×(N ′m+[L N ′m

])

9m(g(n, n′) · eX ′)

∣∣∣∣≥ δ for all m ∈ N. (9.6)

By the Arzelá–Ascoli theorem, a subsequence of 9m converges uniformly to some 90 ∈

Lip(X ′) with ‖90‖Lip(X ′) ≤ 1 and
∫

X ′ 90 dm X ′ = 0. Then (9.6) is satisfied for an infinite
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number of m ∈ N with 90 in place of 9m and δ/2 in place of δ. Since L Nm , L N ′m →+∞,
((Nm + [L Nm ])× (N

′
m + [L N ′m ]))m∈N is a Følner sequence in N2 and we deduce that

lim Av90(g′(n, n′) · eX ) 6= 0.

This contradicts our assumption that (g′(n, n′) · eX )n,n′∈N is equidistributed in X ′.
From the aforementioned equidistribution property, we deduce, using [30,

Corollary 5.5], that the finite sequence

(g′γ (N + n, N ′ + n′) · eX )n∈[L N ],n′∈[L N ′ ]

is δ′N ,N ′ -equidistributed, where δ′N ,N ′→ 0 as N , N ′→+∞, on the nilmanifold X ′γ :=
G ′γ /0

′
γ , where 0′γ := 0 ∩ G ′γ .

We move now to the proof of (9.5). We apply Lemma 9.6 for the functions f, f ′ and
we get sequences (L N )N∈N, (L ′N )N∈N satisfying the conditions in the lemma for some
k, k′ ∈ N such that k, k′ > deg(g′γ ). After ignoring negligible errors, we deduce that, in
(9.5), we can replace the finite sequences ( f (N + n))n∈[L N ] and ( f ′(N ′ + n′))n′∈[L ′N ′ ] by
finite polynomial sequences (pN (n))n∈[L N ] and (p′N ′(n

′))n′∈[L ′N ′ ]
, where

pN (n)= nkαN + qN (n), p′N ′(n
′)= n′k

′

α′N ′ + q ′N ′(n
′), n, n′, N , N ′ ∈ N, (9.7)

for some real numbers αN , α
′

N satisfying αN → 0 and α′N → 0, and polynomials qN , q ′N ∈
R[t], N ∈ N, that satisfy

deg(qN ) < k, deg(q ′N ) < k′, and Lk
N |αN |, L ′k

′

N |α
′

N | → +∞. (9.8)

We claim that the finite polynomial sequence

(pN (n), pN ′(n′), g′γ (N + n, N ′ + n′) · eX )n∈[L N ],n′∈[L ′N ′ ]
(9.9)

is δ′′N ,N ′ -equidistributed in the nilmanifold T2
× X ′γ , where δ′′N ,N ′→ 0 as N , N ′→+∞.

Arguing by contradiction, suppose that this is not true. Then there exists δ > 0 such that

the sequence (9.9) is not δ-equidistributed in T2
× X ′γ for some Nm, N ′m→+∞.

(9.10)
The horizontal torus of the nilmanifold X ′γ has the form Ts for some s ∈ N. Then the
horizontal torus of the nilmanifold T2

× X ′γ is T2
× Ts . Let π : G→ Ts be the natural

projection on the horizontal torus of X ′γ and let rN ,N ′ : N2
→ Ts be the polynomial

sequence defined by rN ,N ′(n, n′) := π(g′γ (N + n, N ′ + n′)). Then

deg(rN ,N ′) <min(k, k′) for every N , N ′ ∈ N. (9.11)

By Theorem 9.7, we deduce that there exists M > 0 and km, k′m ∈ Z, k′′m ∈ Zs such that,
for those Nm, N ′m for which (9.10) holds and are greater than M ,

0< |km | + |k′m | + ‖k
′′
m‖1 ≤ M (9.12)

and

‖km pNm (n)+ k′m p′N ′m (n
′)+ k′′m · rNm ,N ′m (n, n′)‖C∞([L Nm ]×[L

′

N ′m
]) ≤ M. (9.13)
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If km = k′m = 0 for an infinite number of m ∈ N, then k′′m is non-zero for an infinite
number of m ∈ N and, using [30, Lemma 5.3], we get a contradiction from the fact
that the sequence (g′γ (N + n, N ′ + n′) · eX )n∈[L N ],n′∈[L ′N ′ ]

is δ′N ,N ′ -equidistributed on the
nilmanifold X ′γ , where δ′N ,N ′→ 0 as N , N ′→+∞.

Suppose, next, that km 6= 0 for a infinite number of m ∈ N. Using (9.13) (note that the
polynomials pN and pN ′ depend on different variables) in conjunction with (9.7), (9.8),
(9.11), we obtain that

Lk
Nm
‖kmαNm‖ ≤ M for an infinite number of m ∈ N.

Since αN → 0 and 1≤ |km | ≤ M , we get that ‖kmαNm‖ = |kmαNm | ≥ |αNm | for an infinite
number of m ∈ N. We deduce that

Lk
Nm
|αNm | ≤ M for infinitely many m ∈ N.

This contradicts (9.8). The argument is similar if k′m 6= 0 for an infinite number of m ∈ N.
Hence, the finite polynomial sequence (9.9) is δ′′N ,N ′ -equidistributed in the nilmanifold

T2
× X ′γ , where δ′′N ,N ′→ 0 as N , N ′→+∞. We deduce that the limit in the left-hand

side of (9.5) is equal to ∫
e(t) · e(t ′) · Fγ (x) dmT2×X ′γ

= 0,

where the last identity follows because mT2×X ′γ
= mT2 × m X ′γ . This completes

the proof. �

Proof of Corollary 9.2. Let f be a Hardy field function of polynomial growth. We
consider the following three cases.

If f stays away from polynomials, then the conclusion follows from the d = 1 case of
Theorem 9.1 and the corresponding averages converge to zero in L2(µ).

Suppose, next, that f is asymptotically polynomial, that is, f (t)− p(t)→ 0 for
some p ∈ R[t]. In this case, the mean convergence of the averages (2.6) follows from
Proposition 2.1 and the well-known fact that sequences of the form n 7→ e(p(n)) are
nilsequences.

Lastly, suppose that f = p + g for some polynomial p ∈ R[t] and Hardy field function
g that satisfies |g(t)| → +∞ and |g(t)| ≤ C log t for some C > 0 and all sufficiently
large t ∈ R+. Let p(t)=

∑`
i=0 αi t i , t ∈ R, for some ` ∈ N and α1, . . . , α` ∈ R. For i =

1, . . . , `, we consider the commuting transformations Ti t := t + αi , t ∈ T, acting on T
with the Haar measure mT, and the function h ∈ L∞(mT) defined by h(t) := e(−t), t ∈ T.
Then

1
N

N∑
n=1

e( f (n)) h
(∏̀

i=1

T ni

i t
)
= e(−t + α0)

1
N

N∑
n=1

e(g(n)) for every N ∈ N, t ∈ T.

By [28, Proof of Theorem 3.1] (see, also, [16, Proof of Theorem 3.3]), we get that the last
averages do not converge as N →+∞. Hence, the sequence n 7→ e( f (n)) is not a good
universal weight for weak convergence of averages of the form (2.6), even when s = 1.

If f is any Hardy field function and p ∈ R[t] is any polynomial, then it is known that
the limit limt→+∞( f (t)− p(t))/ log t either exists or else is ±∞. Hence, every Hardy
field function with at most polynomial growth is covered in one of the previous three cases
and the proof is complete. �
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A. Appendix. Seminorms on L∞(µ) and related factors
Let (X, µ, T1, . . . , T`) be a system. We recall, here, the definition and some properties
of the seminorms |‖ · ‖|k on L∞(µ) and of the factors Zk defined in [44] for the ergodic
case and in [19] for the general case. These two papers deal only with the case of a
single transformation, the generalization to the case of several commuting transformations
is analogous and is given below.

A.1. The seminorms |‖ · ‖|k . We write I(−→T ) for the σ -algebra of sets invariant under
all transformations T1, . . . , T`. For f ∈ L∞(µ), we define

|‖ f ‖|1 := ‖Eµ( f | I(−→T ))‖L2(µ) (A.1)

and, for k ∈ N, we let

|‖ f ‖|k+1 := (Lim Av−→n |‖ f · T−→n f ‖|2
k

k )
1/2k+1

, (A.2)

where, as usual, we use the notation T−→n =
∏`

i=1 T ni
i for−→n = (n1, . . . , n`). By induction,

|‖ f ‖|k ≤ ‖ f ‖L∞(µ) for every k ∈ N.

In case of ambiguity, we write |‖ f ‖|µ,k or |‖ f ‖|−→T ,µ,k . If µ=
∫
µx dµ(x) is the ergodic

decomposition of µ under
−→
T , then, for every f ∈ L∞(µ) and every k ∈ N,

|‖ f ‖|2
k

µ,k =

∫
|‖ f ‖|2

k

µx ,k dµ(x). (A.3)

For f ∈ L∞(µ), by (A.1), ∣∣∣∫ f dµ
∣∣∣≤ |‖ f ‖|1. (A.4)

Writing
−→
T ×
−→
T for the Z`-action on X × X induced by T1 × T1, . . . , T` × T`,

|‖ f ⊗ f ‖|2−→
T ×
−→
T ,µ×µ,1

= ‖Eµ×µ( f ⊗ f | I(−→T ×−→T ))‖2L2(µ×µ)

= lim Av−→n

∣∣∣∣∫ f · T−→n f dµ
∣∣∣∣2 by the ergodic theorem

≤ limsup Av−→n ‖Eµ( f · T−→n f | I(−→T ))‖2L2(µ)

= limsup Av−→n |‖ f · T−→n f ‖|2−→
T ,µ,1

= |‖ f ‖|4−→
T ,µ,2

by (A.1) and (A.2).

By induction, using the relation (A.2) for the measures µ× µ and µ, we deduce that, for
every k ∈ N,

|‖ f ⊗ f ‖|−→T ×−→T ,µ×µ,k ≤ |‖ f ‖|2−→
T ,µ,k+1

. (A.5)
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A.2. The factors Zk . For k ∈ Z+, the factor Zk of X is characterized by the property

for f ∈ L∞(µ), Eµ( f |Zk)= 0 if and only if |‖ f ‖|k+1 = 0.

Equivalently,

L∞(Zk, µ)=

{
f ∈ L∞(µ) :

∫
f · g dµ= 0 for every g ∈ L∞(µ) with |‖g‖|k+1 = 0

}
.

In case of ambiguity, we write Zk(X, µ,
−→
T ).

We say that (X, µ,
−→
T ) is a system of order k if the σ -algebra Zk coincides with the

σ -algebra X , or, equivalently, if |‖ · ‖|k+1 is a norm on L∞(µ).

PROPOSITION A.1. Let (X, µ,
−→
T ) be a system of order one and let µ=

∫
µx dµ(x) be

the ergodic decomposition of µ under
−→
T . Then for µ-almost every x ∈ X, the system

(X, µx ,
−→
T ) is isomorphic to an ergodic rotation on a compact Abelian group.

Remark. It is not hard to show that the converse also holds.

Proof. Since (X, X , µ) is a Lebesgue space, there exists a countable sequence ( fn)n∈N
of bounded Borel functions (defined everywhere) that is dense in L1(µ) and in L1(µx )

for every x ∈ X . By [19, Corollary 3.3], there exists a Borel set X1 ⊂ X with
µ(X1)= 1, such that, for every x ∈ X1 and every n ∈ N, the function fn belongs to
L∞(Z1(X, µx ,

−→
T )). For x ∈ X1, it follows, by density, that every f ∈ L1(µx ) belongs to

L1(X, Z1(X, µx ,
−→
T )). The σ -algebras X and Z1(X, µx ,

−→
T ) coincide up to µx -null sets

and (X, µx ,
−→
T ) is a system of order one for µ-almost every x ∈ X . It is well known that

an ergodic system of order one is isomorphic to an ergodic rotation on a compact Abelian
group, and the proof is complete. �
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[22] H. Daboussi. Fonctions multiplicatives presque périodiques B. D’après un travail commun avec Hubert

Delange. Journées Arithmétiques de Bordeaux (Conference, Université Bordeaux, Bordeaux, 1974)
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ergodiques. Ergod. Th. & Dynam. Sys. 11(2) (1991), 379–391.
[57] D. Meiri. Generalized correlation sequences, Master’s thesis, Tel Aviv University, 1990. Available at:

http://taalul.com/David/Math/ma.pdf.
[58] W. Parry. Ergodic properties of affine transformations and flows on nilmanifolds. Amer. J. Math. 91 (1969),

757–771.
[59] W. Parry. Dynamical systems on nilmanifolds. Bull. Lond. Math. Soc. 2 (1970), 37–40.
[60] D. Rudolph. Eigenfunctions of T × S and the Conze–Lesigne algebra. Ergodic Theory and its

Connections with Harmonic Analysis (Alexandria, 1993). (London Mathematical Society Lecture Note
Series, 205). Cambridge University Press, Cambridge, 1995, pp. 369–432.

[61] B. Szegedy. On higher order Fourier analysis. Preprint, 2012, arXiv:1203.2260v1.
[62] T. Tao. Norm convergence of multiple ergodic averages for commuting transformations. Ergod. Th. &

Dynam. Sys. 28(2) (2008), 657–688.
[63] T. Tao. Deducing the inverse theorem for the multidimensional Gowers norms from the one-dimensional

version, Blog entry, https://terrytao.wordpress.com/2015/07/24.
[64] M. Walsh. Norm convergence of nilpotent ergodic averages. Ann. of Math. (2) 175(3) (2012), 1667–1688.
[65] E. Wirsing. Das asymptotische Verhalten von Summen uber multiplikative Funktionen, II. Acta Math.

Acad. Sci. Hungar 18 (1967), 411–467.
[66] T. Ziegler. Universal characteristic factors and Furstenberg averages. J. Amer. Math. Soc. 20 (2007), 53–97.
[67] P. Zorin-Kranich. Norm convergence of multiple ergodic averages on amenable groups. J. Anal. Math. to

appear. Preprint, 2011, arXiv:1111.7292.
[68] P. Zorin-Kranich. A uniform nilsequence Wiener–Wintner theorem for bilinear ergodic averages. Preprint,

2015, arXiv:1504.04647.

https://doi.org/10.1017/etds.2016.19 Published online by Cambridge University Press

http://www.arxiv.org/abs/1205.4004
http://www.arxiv.org/abs/1205.4004
http://www.arxiv.org/abs/1205.4004
http://www.arxiv.org/abs/1205.4004
http://www.arxiv.org/abs/1205.4004
http://www.arxiv.org/abs/1205.4004
http://www.arxiv.org/abs/1205.4004
http://www.arxiv.org/abs/1205.4004
http://www.arxiv.org/abs/1205.4004
http://www.arxiv.org/abs/1205.4004
http://www.arxiv.org/abs/1205.4004
http://www.arxiv.org/abs/1205.4004
http://www.arxiv.org/abs/1205.4004
http://www.arxiv.org/abs/1205.4004
http://www.arxiv.org/abs/1205.4004
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://taalul.com/David/Math/ma.pdf
http://www.arxiv.org/abs/1203.2260v1
http://www.arxiv.org/abs/1203.2260v1
http://www.arxiv.org/abs/1203.2260v1
http://www.arxiv.org/abs/1203.2260v1
http://www.arxiv.org/abs/1203.2260v1
http://www.arxiv.org/abs/1203.2260v1
http://www.arxiv.org/abs/1203.2260v1
http://www.arxiv.org/abs/1203.2260v1
http://www.arxiv.org/abs/1203.2260v1
http://www.arxiv.org/abs/1203.2260v1
http://www.arxiv.org/abs/1203.2260v1
http://www.arxiv.org/abs/1203.2260v1
http://www.arxiv.org/abs/1203.2260v1
http://www.arxiv.org/abs/1203.2260v1
http://www.arxiv.org/abs/1203.2260v1
http://www.arxiv.org/abs/1203.2260v1
http://www.arxiv.org/abs/1203.2260v1
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
https://terrytao.wordpress.com/2015/07/24
http://www.arxiv.org/abs/1111.7292
http://www.arxiv.org/abs/1111.7292
http://www.arxiv.org/abs/1111.7292
http://www.arxiv.org/abs/1111.7292
http://www.arxiv.org/abs/1111.7292
http://www.arxiv.org/abs/1111.7292
http://www.arxiv.org/abs/1111.7292
http://www.arxiv.org/abs/1111.7292
http://www.arxiv.org/abs/1111.7292
http://www.arxiv.org/abs/1111.7292
http://www.arxiv.org/abs/1111.7292
http://www.arxiv.org/abs/1111.7292
http://www.arxiv.org/abs/1111.7292
http://www.arxiv.org/abs/1111.7292
http://www.arxiv.org/abs/1111.7292
http://www.arxiv.org/abs/1504.04647
http://www.arxiv.org/abs/1504.04647
http://www.arxiv.org/abs/1504.04647
http://www.arxiv.org/abs/1504.04647
http://www.arxiv.org/abs/1504.04647
http://www.arxiv.org/abs/1504.04647
http://www.arxiv.org/abs/1504.04647
http://www.arxiv.org/abs/1504.04647
http://www.arxiv.org/abs/1504.04647
http://www.arxiv.org/abs/1504.04647
http://www.arxiv.org/abs/1504.04647
http://www.arxiv.org/abs/1504.04647
http://www.arxiv.org/abs/1504.04647
http://www.arxiv.org/abs/1504.04647
http://www.arxiv.org/abs/1504.04647
http://www.arxiv.org/abs/1504.04647
https://doi.org/10.1017/etds.2016.19

	Introduction
	Precise statement of main results
	Notation and definitions
	Ergodic theory
	Nilmanifolds and nilsequences
	Følner sequences and related averages

	Convergence results for uniform averages
	Convergence results for Cesàro averages
	Multiple correlations in ergodic theory
	Multiple correlations for sequences in Nd and ZNd
	Applications to arithmetic
	Open problems
	Notation and conventions

	Uniformity seminorms and decomposition results
	The definition of the seminorms
	Interpretation
	Tools
	Anti-uniformity
	Regular sequences and their structure
	The structure of regular anti-uniform sequences

	Correlations are regular sequences
	Producing nilsequences as correlations
	Proof of Proposition 2.3
	Proof of Proposition 2.1

	The structure of systems of order one
	Relative orthonormal basis
	Relative orthonormal basis of eigenfunctions
	A Borel selection result
	Proof of Theorem 5.2

	Decomposition of correlation sequences
	Anti-uniformity in norm
	Proof of Theorem 2.5
	Proof of Theorem 2.6
	Proof of Theorem 2.8
	Proof of Theorem 2.9
	Proof of Theorem 2.7

	Convergence criteria for weighted averages
	Proof of Theorem 2.2
	Proof of Theorem 2.4

	Applications to arithmetic weights
	Proof of Theorem 2.11
	Proof of Theorems 2.12 and 2.13
	Correlations of multiplicative functions with nilsequences
	Some classical facts about commutators
	Some reductions
	A variant of Katái's lemma
	The nilmanifold Y
	Projection on the Kronecker factor
	Starting the induction
	The induction
	Conclusion of the proof


	Applications to Hardy field weights
	Hardy field functions
	Convergence and recurrence results
	Proof of Proposition 9.3 and Corollary 9.2

	Acknowledgement
	Appendix. Seminorms on L∞(µ) and related factors
	The seminorms "026A30C "026B30D "026B30D "026A30C k
	The factors Z k

	References

