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Abstract

Pyrethroid insecticides were intensively used against Cydia pomonella in the Río Negro and
Neuquén valley, main production area of pome fruits in Argentina. Therefore, the first object-
ive was to evaluate lambda-cyhalothrin resistance levels in C. pomonella larvae from orchards
in this area that are currently under pyrethroids treatments. The second objective was to evalu-
ate the frequency of kdr mutation in C. pomonella across Argentina. High levels of resistance
to lambda-cyhalothrin (resistance ratios > 30) were determined in all the populations evalu-
ated. The L1014F (kdr) mutation was evaluated in 355 diapausing larvae collected in 12 orch-
ards from San Juan to Santa Cruz provinces (1690 km away from each other). The highest
frequency of kdr mutation was determined in larvae from the Río Negro and Neuquén valley
(0.61), followed by those from Mendoza (0.36). The kdr allele was absent or present at very
low frequencies in orchards subjected to low pyrethroid pressure. The frequency of detection
of kdr mutation in C. pomonella from Argentina is related to the use of pyrethroids against
this pest in different areas. Target-site insensitivity is, at least, one of the mechanisms involved
in resistance to lambda-cyhalothrin in codling moth from the Río Negro and Neuquén valley.

Introduction

Pyrethroids are a major class of synthetic insecticides which are still used to control agricul-
tural pests (Joseph et al., 2017; Parys et al., 2018) and disease vectors (Smith et al., 2016).
Pyrethroids are fast acting insecticides, with high and low insect and mammalian toxicity,
respectively (Dong et al., 2014). At a cellular level, pyrethroids disrupt nerve function, causing
repetitive discharges, membrane depolarization, and synaptic disturbances (Soderlund 2012;
Dong et al., 2014). The primary target site of pyrethroids is the voltage-gated sodium channel
that underlies the generation of nerve action potential (Soderlund 2012). The decrease in the
sodium channel sensitivity, known as knock-down resistance (kdr) mutation, confers resist-
ance to DDT and pyrethroids. Since its initial report in the house fly (Milani, 1956), kdr
and kdr-like resistance have been documented globally in almost all agriculturally important
arthropod pests and disease vectors (Soderlund, 2005, 2012; Rinkevich et al., 2013). Study
of the mechanism of kdr in the past two decades led to the identification of more than 50
sodium channel mutations or combinations of mutations that were associated with pyrethroid
resistance in arthropod species (Haddi et al., 2012, 2017; Sierra et al., 2016). In the codling
moth Cydia pomonella L. (Lepidoptera: Tortricidae), the kdr mutation reported so far is a sin-
gle nucleotide polymorphism which results in a substitution of leucine for phenylalanine at
position 1014 (L1014F) (Franck et al., 2012).

Codling moth is a severe pest of pome fruits worldwide (Grigg-McGuffin et al., 2015) and
the fruit damage is caused by the larval stage. Neonates excavate tunnels and feed on the seed.
Infested fruit lose their shape and fall prematurely (Danelski et al., 2017; Husain et al., 2018).
Effective C. pomonella management mainly rely on chemical insecticides which has led to the
development of insecticide resistance to most classes of insecticides (Sauphanor and Bouvier,
1995; Knight et al., 2001; Reyes et al., 2009; Rodriguez et al., 2011; Voudouris et al., 2011;
Cichón et al., 2013). Insecticide-resistance in codling moth field populations has been related
mainly to increased enzymatic metabolization and target-site mutations (Reyes et al., 2007,
2011; Voudouris et al., 2011), including the sodium channel mutation (Reyes et al., 2009;
Franck et al., 2012; Bosch et al., 2018).

Codling moth is widely distributed in Argentina where climate conditions are favorable to
apple and pear tree development (commercial and wild varieties). The region of Río Negro
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and Neuquén valley, located in northern Patagonia (Argentina),
contributes with almost 85% of the country pome-fruit produc-
tion (especially Río Negro province with 78%), followed by the
Uco (Mendoza province) and Calingasta (San Juan province) val-
leys, among others https://inta.gob.ar/sites/default/files/script-
tmp-inta_programa_nacional_frutales_cadena_frutales_de_pe.
pdf. Pyrethroids have been used to control C. pomonella in the
USA (Mota-Sanchez et al., 2008), France (Bouvier et al., 1998),
Greece (Voudouris et al., 2011), Chile (Fuentes-Contreras et al.,
2008), etc. In the Río Negro and Neuquén valley, pyrethroids
were introduced in 1982 and have been used for almost 20
years against C. pomonella. Late 90s, many farmers reported con-
trol failures to pyrethroid applications, and its use was discontin-
ued (Soleño et al., 2008). Fruit production area from Mendoza
and San Juan provinces has a similar application history but
because the pome area is smaller the pesticide pressure is lower.
On the other hand, although there are other provinces with
pome production, these are of much smaller area and their pro-
duction is for domestic or family market.

Reyes et al. (2009) reported the kdr mutation in codling moth
obtained in 2005 from two orchards in Argentina. However, these
orchards were not georeferenced by the authors and no toxico-
logical data were provided.

Recently, the economic crisis of small farmers has led again to
the use of lambda- cyhalothrin in C. pomonella control.
Therefore, the first objective of the present study was to evaluate
the levels of pyrethroid resistance in C. pomonella larvae from
three orchards that are currently under pyrethroid treatments.
The second objective was to evaluate the frequency of kdr muta-
tion in C. pomonella from the Río Negro and Neuquén valley as
well as from other Argentinean areas of pome fruit production.

Material and methods

Study area and insect collection

Field populations of diapausing larvae (FCL) were collected in
orchards from 31°27′29′′ N to 46°32′60′′ S latitudes (1690 km
away from each other) (table 1) in 2012. Diapausing larvae were
collected from 12 orchards using corrugated cardboards attached
to the main branches and trunk trees. Larvae were then

transferred to clean corrugated papers and stored at 4° ± 1°C
with 12:12 h L:D regime for three months in order to satisfy chil-
ling requirements (Soleño et al., 2012). The laboratory susceptible
strain (LSS) was obtained from INTA Alto Valle (Argentina),
which has been reared in the laboratory since 1991 without expos-
ure to any insecticide. From the 12 orchards, FCL for bioassays
were from Cinco Saltos (CSA), Guerrico (GUE), and Villa
Regina (VRG3) orchards, where pyrethroids are currently used.
Both LSS and FCL were transferred to post chilling conditions
(25°C, 70% relative humidity and 16:8 L:D) for 48 h before bioas-
says were performed (Soleño et al., 2008).

Bioassays

Topical concentration–response assays on diapausing larvae were
performed by the application of 1 µl of lambda-cyhalothrin
(AccuStandard Inc., New Heaven, USA, 98% purity) to the dor-
sum of each larva using a Hamilton microsyringe. The insecticide
was dissolved in acetone and the concentration range assayed was
from 1 to 50,000 mg/l (8–10 concentrations). Bioassays were con-
ducted on 3–5 groups of 20 larvae placed in petri dishes according
to the available insects. Batches of larvae treated with acetone were
used as control. Larvae were subsequently placed under controlled
conditions (25°C, 70% RH and 16:8 h L:D photoperiod) for 48 h.
Before scoring mortality, larvae were removed and placed in the
cap of the corresponding petri dish. Larvae were considered mori-
bund if, after a brush touch, they presented one of the following:
they continued lying on their side or in the dorsal position or
were unable to move in a coordinated manner. Categories of
dead and moribund were combined to assess the percentage of
mortality (Soleño et al., 2008).

Detection of the kdr mutation

Total DNA was individually extracted from half of the diapausing
larvae with 150 µl of Chelex 100 (Bio Rad, California, USA).
Briefly, tissues were digested 30 min at 56°C and, after boiling
for 8 min they were centrifuged at 12,000 rpm during 5 min.
The supernatants were used as DNA templates for PCR reaction.
DNA concentration was spectrophotometrically determined at

Table 1. Orchards names and locations.

Province Locality Population code Longitude Latitude

San Juan San Juan SJN 69°25′18′′W 31°27′29′′S

Mendoza Mendoza MZA 68°49′0′′W 32°52′60′′S

Rio Negro Cinco Saltos CSA 68°4′0′′W 38°49′0′′S

Rio Negro Guerrico GUE 67°43′60′′W 39°1′0′′S

Rio Negro General Roca GRC 67°31′60′′W 39°2′60′′S

Rio Negro Villa Regina VRG1 67°04′45.84′′W 39°09′41.09′′S

Rio Negro Villa Regina VRG2 67°03′03.86′′W 39°02′42.91′′S

Rio Negro Villa Regina VRG3 67°10′08.72′′W 39 05′50.79′′S

Neuquen San Martin de los Andes SMA 71°21′15.1′′W 40°9′18.32′′S

Chubut Trelew TRW 65°18′18′′W 43°14′56′′S

Chubut Sarmiento SAR 69°1′21.62′′W 45°36′2.21′′S

Santa Cruz Los Antiguos ANT 71°37′0′′W 46°32′60′′S
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260/280 nm. The genetic variability was analyzed in a 169-bp
fragment of the sodium channel gene by polymerase chain
reaction-restriction fragment-length polymorphism (PCR-RFLP)
from 351 larvae. This fragment encompasses the molecular target
linked to pyrethroid resistance (leucine-to-phenylalanine
replacement at position 1014 in trans-membrane segment IIS in
the amino acid sequence) (Brun-Barale et al., 2005). PCR
amplifications were carried out in a 25 µl reaction volume with
concentrations according to the manufacturer (Thermo
Fisher Scientific, Massachusetts, USA). Specific primers were
CpNaF (5′ TAGAGAGCATGTGGGATTGC 3′) and CpNaR
(5′ AATTTCGTAGCCCTTGATCG 3′) (Franck et al., 2007).
The sequence of the voltage-gated sodium channel from
C. pomonella Rv strain is noted in the GenBank database under
the reference AY763097. DNA amplification product was then
subjected to overnight treatment with MluCI enzyme (New
England BioLabs, Massachusetts, USA). Restriction enzyme
MluCI cuts specifically at the AATT site, which is specific
for the kdr allele associated with pyrethroid resistance in C. pomo-
nella (Brun-Barale et al., 2005). After digestion, DNA fragments
of 77 and 112 bp identified kdr and the susceptible alleles, R y
S respectively. DNA fragments were visualized in a 4% agarose
gel with GelRed™ (Biotium, Fremont, California, USA).

DNA was extracted from 351 larvae from 12 orchards distrib-
uted through Argentina along with laboratory susceptible indivi-
duals. The assay allowed homozygous resistant (R/R),
heterozygous (R/S), and homozygous susceptible individuals (S/
S) to be distinguished. Samples with known genotypes were pro-
cessed in all assays as controls. Codling moth positive controls of
kdr mutation were gently donated by Eduardo Fuentes-Contreras
of the Molecular Ecology and Evolutionary Applications Center
in Agroecosystems of the University of Talca, Chile.

Data analyses

Data from concentration–response bioassays were subjected to
PROBIT analysis and the regression lines were compared by
Likelihood Ratio χ2 Test. LC50 and LC95 values and their 95%
confidence limits (CL) were calculated with Dr Sakuma’s
PriProbit NM software (USDA, 2019). LC50 and LC95 values for
LSS and FCL were significantly different if their 95% CL did
not overlap. Resistance ratios (RR) were calculated as the ratio
of LC50 FCL/LC50 LSS.

Deviations from Hardy–Weinberg equilibrium (HWE) at each
sampling site were analyzed with the χ2 test (P < 0.05) according
to the methodology described in Freeland (2005).

Table 2. Toxicity of lambda-cyhalothrin in field populations and a laboratory susceptible strain of diapausing larvae of C. pomonella.

Population N LC50 (μg a.i./larva) (95% CL) Slope (± SE) χ2 Pa df RR

LSS 473 0.197 (0.137–0.282) 1.02 (±0.086) 5.78 0.055 2 1

CSA 542 6.000 (3.981–8.836) 1.04 (±0.13) 3.81 0.80 7 30.55

GUE 378 7.381 (4.516–12.739) 0.82 (±0.12) 3.95 0.41 4 37.54

VRG3 408 7.217 (4.943–10.678) 0.87 (±0.10) 3.14 0.79 6 36.70

RR, resistance ratio = LC50 field population/LC50 laboratory susceptible strain.
aGoodness of fit (P < 0.05)

Table 3. Distribution of genotypes and kdr frequency in C. pomonella samples from different orchards throughout Argentina.

Population code N

Observed genotype

kdr frequency H.W. χ2 PR/R R/S S/S

LSS 16 0 0 16 0 – –

SJN 21 0 0 21 0 – –

MZA 38 3 21 14 0.36 1.62 0.20

CSA 17 0 17 0 0.50 17.00 < 0.001

GUE 28 7 16 5 0.54 0.62 0.43

GRC 28 3 13 12 0.34 0.04 0.85

VRG1 31 10 18 3 0.61 1.55 0.21

VRG2 16 2 7 7 0.34 0.015 0.90

VRG3 34 3 14 17 0.24 0.0024 0.96

SMA 40 0 5 35 0.063 0.18 0.67

TRW 16 2 12 2 0.50 4.00 0.046

SAR 32 0 0 32 0 – –

ANT 34 0 3 31 0.044 0.072 0.79

N, diapausing larvae number; R/R, homozygous for kdr; R/S, heterozygous for kdr; S/S, homozygous wild-type; H.W. χ2; P: values for χ2 tests for deviation from Hardy–Weinberg equilibrium
(P < 0.05)
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Results

Bioassay

Diapausing larvae were exposed to lambda-cyhalothrin from 1 to
50,000 mg/l for 48 h. The LC50 values obtained from the PROBIT
analysis are presented in table 2. The LC50 between the LSS and
each FCL was significantly different based on their 95% CL.
Diapausing larvae from CSA, GUE, and VRG3 populations
showed a high level of resistance to lambda-cyhalothrin, espe-
cially GUE (LC50 7.381 µg/larva) and VRG3 (LC50 7.217 µg/
larva) compared to susceptible strain (LC50 0.197 µg/larva). The
resistance ratios at LC50 level from CSA, GUE, and VRG3 popu-
lations ranged from 30 to 37. Moreover, both GUE and VRG3
showed not only the highest LC50 values, but also the lowest
slope values. Population genetic heterogeneity is evidenced by
low slope values showing an increase of resistant genotypes.

Lambda-cyhalothrin concentration-mortality data from the LSS
and all three FCL fitted the PROBIT model as indicated by the
goodness-of-fit test (P > 0.05).

Detection and frequency of kdr mutation in C. pomonella

The L1014F (kdr) mutation was detected in ten out of the twelve
samples analyzed (table 3) as homozygous resistant (R/R), hetero-
zygous (R/S) and homozygous susceptible individuals (S/S).
Larvae from SJN and SAR were homozygous wild type. All sam-
ples from the Río Negro and Neuquén valley carried the kdr allele
with frequencies ranging between 0.24–0.61, although the propor-
tion of homozygotes for kdr alleles within each sample was gen-
erally low (fig. 1). The frequency of homozygous kdr genotypes
from all samples in this production region was 0.16. The highest
frequency of kdr alleles (0.61) was found in VRG1 sample, where

Figure 1. Sampling sites of the field populations and kdr percentages throughout Argentina. Samples inside the circle belong to the Río Negro and Neuquén upper
valley.
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almost 30 and 60% of the sampled individuals were homozygotes
and heterozygotes for kdr mutation, respectively.

Samples from CSA and TRW showed a significant departure
from Hardy–Weinberg equilibrium, and the 100 and 75% of
the individuals were heterozygotes, respectively.

Discussion

Pyrethroid insecticides were intensively used during the 90s decade
against codling moth in apple and pear orchards from the Río
Negro and Neuquén valley (Soleño et al., 2008). The intense use
of chemical insecticides produced a severe selection pressure on
insects, favoring the increase in pesticide resistance genotypes. In
fact, non-target Simulium spp larvae from irrigation channels in
this area developed extremely high levels of fenvalerate resistance
(400-fold) (Montagna et al., 2012). Results from the present
study showed high levels of resistance to lambda-cyhalothrin in
the three populations evaluated (RR > 30). Previously, low levels
of resistance to the organophosphate azinphos methyl and the neo-
nicotinoids acetamiprid and thiacloprid have been observed on
field populations from the Río Negro province and resistance to
these two insecticide families was highly correlated to esterase
and ECOD activities, respectively (Soleño et al., 2008, 2012;
Cichón et al., 2013). The increased activities of both enzymes
might confer cross-resistance to pyrethroids. Indeed, increased
activity of CYP450 and esterase has been related to pyrethroids
resistance in codling moth (Sauphanor et al., 1997) as well as in
other several lepidopteran species (Gunning et al., 1996; Kranthi
et al., 2001; Chen et al., 2005; Yang et al., 2006; Sonoda, 2010).

Besides metabolic resistance, the kdr mutation in the voltage-
gated sodium channel has been also linked to pyrethroid resist-
ance in codling moth (Brun-Barale et al., 2005; Franck et al.,
2012) and in other insect species (Kasai et al., 2017; Zibaee
et al., 2018).

The single point substitution L1014F in the voltage-gated
sodium channels was analyzed in 12 samples of C. pomonella
from apple and pear orchards throughout Argentina. All samples
from the Río Negro and Neuquén valley (CSA, GUE, GRC,
VRG1, VRG2, and VRG3) and the one from MZA showed the
kdr allele with frequencies varying between 0.29–0.61. The fre-
quencies of the homozygous kdr genotypes from larvae collected
in Río Negro and Neuquén valley were generally low, with the
exception of the sample from VRG1 (0.61). The discontinuation
for many years of pyrethroid applications, and the immigration
of susceptible individuals from surrounding abandoned and
organic orchards could explain the low of kdr frequency in this
region. Since the kdr-type resistance allele is partially or com-
pletely recessive (Bouvier et al., 2001; Gomes et al., 2017), results
from this study suggest that kdr mutation in populations from Río
Negro and Neuquén valley may not explain by itself the lambda-
cyhalothrin resistance levels. The present and previous studies
(Soleño et al., 2008; Cichón et al., 2013) would indicate that
lambda-cyhalothrin resistance in C. pomonella from CSA, GUE,
and VRG3 is conferred by multiple-resistance mechanisms
including kdr mutation in the sodium channel and increased
activities of CYP450 and esterases. In French C. pomonella popu-
lations, a negative correlation between CYP450 activity and the
proportion of homozygous kdr genotypes was found (Franck
et al., 2012). The authors hypothesized that metabolic resistance
should be sufficient for the codling moth to resist pyrethroid
treatments, limiting the selection of sodium channel target muta-
tions in the absence of strong pyrethroid selection.

CSA population showed a significant deviation from HWE,
evidencing violation for at least one of the HWE assumptions.
We consider that because CSA is the population that showed
one of the highest R/S frequencies and no S/S genotype is
under mutation and has an effect on allele frequencies.

The kdr mutation was not identified in samples from SJN and
SAR and its frequency was very low in ANT (0.044) and SMA
(0.063). Neither ANT nor SMA showed the homozygous kdr
genotype. Fruit production, including apples and pears, from
the irrigated valleys in Chubut (TRW and SAR) and Santa Cruz
(ANT) provinces is characterized by family orchards, and the
control of C. pomonella usually involve pyrethroids and low
toxic pesticides such diatomaceous earth. The sample of C. pomo-
nella from SMA was collected from wild apple trees non-treated
with pesticides. According to the low or null pyrethroid selection
pressure at these sites (ANT and SMA), it was not expected to
found the kdr mutation. Since this pest has low dispersal range
(150–300 m) (Basoalto et al., 2010), it is possible that resistant
alleles from codling moths from the Río Negro and Neuquén val-
ley had spread to distant sites by the transport of fruits in wooden
packages infested with diapausing larvae.

Conclusions

The kdr mutation in C. pomonella is detected in a geographical
wide spectrum in Argentina. Moreover, kdr frequency mutations
in the Rio Negro valley area are higher than in other tested areas.
The kdr frequency is possibly related to the use of pyrethroids
against this pest. Target-site insensitivity is, at least, one of the
mechanisms involved in resistance to lambda-cyhalothrin in
codling moth from the Río Negro and Neuquén valley.
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