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Defining and identifying the aeroacoustic sources in a turbulent flow is a great
challenge especially for noise control strategy. The purpose of the present study
consists in proposing a new methodology to localize regions associated with sound
generation. These regions are associated, in the present work, with those of high
sensitivity of the acoustic field, using the heuristic argument that modifying the flow
in these regions would lead to a very significant change in the radiated noise.
The proposed method relies on the efficient coupling between the time-reversal
theory applied to the Euler equations and the complex differentiation method to
compute the sensitivity variable. To the knowledge of the authors, this is the first
time that the time-reversal technique is applied to vectorial hydrodynamic equations,
in place of the classical scalar wave equation. Subsequently, regions associated with
sound generation are related to spatiotemporal events which exhibit the maximum of
sensitivity to acoustical disturbances measured in far field. The proposed methodology
is then successively tested on three cases for which the nature of the source is
different: injection of mass, vibrating surfaces and flow instabilities arising in a
plane mixing layer flow. For each test case, the two-dimensional Euler equations are
solved using a numerical solver based on a pseudo-characteristics formulation. During
these computations flow, variables are stored only at the computational boundaries.
These variables are time reversed and relevant information concerning the acoustical
disturbances is tagged using complex differentiation in order to lead the sensitivity
analysis. The same numerical solver is used to access the evolution of the time-reversed
variables. In each test case, the proposed methodology allows to localize successfully
zones associated with noise generation.

Key words: aeroacoustics, free shear layers, simulation

1. Introduction
One of the main challenges for the noise control technology deals with the

production of noise in a turbulent flow and how aeroacoustic sources can be defined
and identified. The very definition of what an acoustic source is an open question, even
though this concept is easily understood in a qualitative way and a large amount of
works has been devoted to this issue. One of the difficulties faced when trying to define
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acoustic sources is that there is a fundamental asymmetry in the acoustic problem.
The sound field generated by a source field is unique: once the source is known so
is the sound, while the converse is not true, since different flow configurations may
lead to identical radiated acoustic fields. The purpose of this paper is not to propose
a definition of this concept but to propose a methodology to find the wave origin
related to aeroacoustic sources.

A large number of aeroacoustic source definitions has been proposed in the past,
none of them being fully satisfactory. Their overall consistency, i.e. their ability to
educe the same spatiotemporal events as acoustic sources in a given flow, is still to
be assessed in most cases. Existing definitions can be classified into a few families,
which are briefly discussed below. The reader is referred to the following references
(see Goldstein 1976; Lighthill 1978; Pierce 1989; Dowling & Ffwocs Williams 2000;
Howe 2003; Colonius & Lele 2004; Wang, Freund & Lele 2006; Wagner, Hüttl &
Sagaut 2007) for a more detailed presentation.

A first way to define an acoustic source relies on the analytical models referred
as aeroacoustic analogies. In the early 1950s, Lighthill (1952) developed a theory
which states that the sound generation process by aerodynamic fluctuations and far-
field radiation can be modelled as quadrupole-type sources contained in a bounded
volume V embedded in a homogeneous medium at rest. In practice, the Navier–Stokes
equations are rearranged into a form that separates out the linear terms (treated as a
free-space wave propagation operator of d’Alembertian type) and the nonlinear terms
(treated as sound source terms). The source terms appear as a linear combination of
second-order derivatives of a tensor, referred to as the Lighthill tensor. This tensor is
therefore commonly interpreted as being the theoretical definition of the equivalent
aeroacoustic sources. The resulting radiated acoustic pressure field at position x and
time t is then computed via the following space–time integral:

p′(x, t) =

∫ t

0

∫
V

q(y, τ )G(x, t |y, τ )dydτ + BT, (1.1)

where q(y, τ ), G(x, t |y, τ ) and BT are the nonlinear source term, the relevant
Green’s function and the boundary terms, respectively. Lilley (1974) and many others
then extended the Lighthill source term by taking into account additional physical
phenomena. Based on a dimensional analysis of the terms in the multipole expansion
of the wave equation source term, the physical origin to the noise components can
then be deduced. Even if these analogies are widely used to define aerodynamic noise
sources, some controversies dealing with the physical meaning of the related source
terms have been raised (see Tam 2002; Peake 2004; Spalart 2007). Nevertheless, under
certain flow assumptions, these analogies provide meaningful results in term of sound
source detection, but they require the foreknowledge of the full aerodynamic field
within the source domain. The lack of uniqueness of the associated source definition
mentioned above is illustrated here by the integral nature of the solution: different
hydrodynamic events may lead to the same value of the integral appearing in the
right-hand side of (1.1). The integral nature of the solution also increases the difficulty
in the definition of local sources in space and time, since a high value of q(y, τ ) does
not necessarily means that hydrodynamic events located at position y at time τ will
have an important contribution to the sound received by the listener at location x and
time t , since it can be cancelled by contributions of other events at other locations
and times. In this sense, even the possible use of integral solutions to define local
sources is questionable. Another weakness is that the source term q(y, τ ) appears
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as the sum of a large number of terms, and the cancellation problem arises once
again. Therefore, isolating each term as a physical source term may be misleading.
Consequently, such acoustic analogies may fail to isolate true aeroacoustic sources of
the far field noise. Then, it has been observed that the source term leads to a different
response as a function of the linearization procedure (see Colonius, Lele & Moin
1997). In this sense, Goldstein (2003) proposed a particular flow decomposition where
the sound sources are unambiguously defined on any arbitrary-based ambient flow.
Recently, Goldstein & Leib (2008) underlined that an optimal base flow has to be
chosen in order to properly define the true sound source and a rigorous methodology
has to be followed to minimize approximations and to keep formulas exact.

The second way of defining and detecting the aeroacoustic source consists in
extracting the flow region which exhibits the highest correlation with the acoustic
signal (see Bogey & Bailly 2007; Jordan & Gervais 2008), resulting in a statistical
definition of acoustic sources. The main difficulty relies then in isolating the
aerodynamic event which corresponds to the theoretical noise sources. In this
approach, the only link of the particular physics of sound waves is that a retarded
time is introduced to account for the causality principle. This retarded time is
usually estimated considering that the speed of sound is constant and that the
flow has no effect on sound wave propagation, corresponding to the implicit use of
a free-space wave propagation operator. This statistical analysis can be coupled to
modal decompositions of the flow to bridge between aerodynamic events and sound
generation (see Druault, Yu & Sagaut 2009).

None of the approaches mentioned above yields a fully general and unique definition
of what a noise source is. While acoustic analogies are based on the manipulation
of the governing equations of compressible fluid dynamics, the correlation-based
approach is based on the intuition that a high statistical correlation can be
interpreted as a causal interaction. The last and third way is to solve the inverse
problem to identify acoustic sources. This technique has been used for a long
time in post-processing of antenna data. Here, the optimal distribution of a fixed
number of arbitrarily chosen sources (monopoles, dipoles and/or quadrupoles) is
computed solving an inverse problem based on a very simple wave-propagation
operator. The rapid progresses in computational fluid dynamics and computational
aeroacoustics allow for more accurate solutions of the inverse problem, based on
more sophisticated physical models. Putting the emphasis on the computation of
the inverse hydrodynamic problem since the issue of noise generation is addressed,
one must mention the implicit identification of aeroacoustic sources found in adjoint
problem-based control of noise generation. In such an approach, the acoustic source
is defined as a hydrodynamic event with respect to which the acoustic field, or at
least a part of it, exhibits a maximal sensitivity. The high sensitivity is interpreted
here as the signature of a causal process, since a change in the event will result in
a significant change in the acoustic field. The sensitivities of the solution are the
unknowns of the adjoint system, which appears as a linearized problem in which
the information is backward-propagated (see Jameson, Martinelli & Pierce 1998).
The efficiency of adjoint-based noise reduction strategy has been assessed recently
on academic configurations (see Tam & Auriault 1998; Barone & Lele 2005; Wei &
Freund 2006; Spagnoli & Airiau 2008). This approach is considered by some authors
as a possible way to analyse acoustic sources, e.g. Colonius & Lele (2004) who note
that ‘the use of adjoint solutions ... relate source statistics to the statistics of the radiated
sound’. One of the main weaknesses of this approach is that it requires the storage
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of the full direct solution, i.e. the storage of the solution at all time steps and at all
locations.

The goal of the present paper is to propose a new sensitivity analysis of the
aeroacoustic source. We then assume that the acoustic wave origin corresponds to an
event for which the acoustic field is highly sensitive, as in adjoint-based methods, but
which does not require to store the full direct solution. Only the final field and the
boundary values have to be stored. Such sensitivity analysis is based on the coupling
of the time-reversal theory and sensitivity analysis via the complex differentiation
method. It is worth noting that, to the author’s knowledge, this is the first use of the
time-reversal theory for vectorial hydrodynamic equations, previous works dealing
with the scalar wave equation (see Lund & Rojas 1989).

The time-reversal procedure has been widely used in acoustics with the recent
introduction of cavity and mirror for time-reversal (see Fink et al. 2000). Indeed, the
wave equation, which depends only on a single variable (for instance the pressure)
is invariant by the time-reversal operation (by changing t into −t). Let us consider
a wave field inside a volume surrounded by a control surface. If the control surface
can record and emit sound waves, it is called a cavity, if only one portion of the
surface can be used it is referred to a mirror. The basic idea is to record on a cavity
or a mirror the sound waves emanating from the volume. Once the signals have
been recorded, they are time reversed and sent back to the volume to localize source
or focus energy at a given point. Optimal results are obtained in the case of the
cavity because it contains the maximum of information (see Cassereau & Fink 1992).
Nevertheless, in many situations the knowledge of the acoustical field on only one
portion of space, where out-going waves are dominant, is sufficient to obtain very
good results (see Fink et al. 2000). One reason for the success of the time-reversal
mirrors in acoustics is due to the possibility to make such a set-up in practice. It
is not easy to build an apparatus able to record and send signals. In acoustics it is
possible, thanks to piezoelectrical transducers and the recent progress in electronics.
Many applications rely on this principle in medical therapy, in medical imaging, in
telecommunications or in non-destructive evaluation (see Fink et al. 2000) and so on.
In this paper, we extend this procedure to the Euler equations and used it for the
detection of regions associated with sound generation till the work of Squire & Trapp
(1998).

It is chosen to illustrate the proposed method using the two-dimensional Euler
equations for sake of simplicity. There is no loss of generality in considering only
two-dimensional Euler equations, since the extension to the three-dimensional case
is straightforward. The propagation of acoustic fluctuations is computed using a
numerical solver based on a pseudo-characteristics formulation (see Sesterhenn 2001;
Lu & Sagaut 2007b) (see § 2.1 for more details). Once the acoustic fluctuations have
been extracted at the boundaries of the computational domain, one needs to localize
regions associated with sound generation within the computational domain. To this
end, an inverse problem is solved using the time-reversal theory (see § 2.2). The time-
reversal procedure requires applying a mirror symmetry in time and then to operate
backward propagation using the numerical tool used to solve the direct problem. In
addition to the time-reversal procedure, a sensitivity analysis of the time-reversed
field is carried out in order to detect the regions associated with sound generation.
The sensitivity analysis is based on the complex differentiation technique, which is
described in § 2.3. The combination of these two techniques is possible, thanks to the
use of the numerical solver of the Euler equations which is very versatile to treat
boundary conditions. To summarize, the methodology proposed in this paper can be
divided into four steps:
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(a) The direct simulation of the aeroacoustic problem is made by solving the Euler
equations with an efficient code (see § 2.1). At the end of this stage, the evolution of
all the relevant quantities is known in the computation domain and at its boundaries.
Only the information at the boundaries is stored.

(b) All the quantities at the boundaries are time reversed in such a way that the
invariance of the Euler equations is preserved (see § 2.2).

(c) Relevant information concerning the acoustical disturbances is tagged using the
complex differentiation in order to lead the sensitivity analysis (see § 2.3).

(d) The evolution of the various time-reversed quantities is computed with the
numerical solver (see § 2.1). The sensitivity analysis is made automatically during this
step, thanks to the complex differentiation technique.

The method is assessed considering several test flows in the second part of the paper.
First of all, the case of an injection of mass in the domain is treated. Then, the case
of vibrating surfaces is solved with the new methodology. Finally, the methodology
is applied to localize the regions associated with sound generation in a plane mixing
layer.

2. Numerical methodology for sound generation detection
2.1. Numerical method

A numerical code solving the two-dimensional Navier–Stokes equations was
previously developed for aeroacoustic analysis (see Lu & Sagaut 2007a ,b). Details
on the numerical method used in this computational fluid dynamics (CFD) code can
then be found in previous papers (see Lu & Sagaut 2007a ,b). By restricting the model
to inviscid fluids, one obtains:

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p, (2.2)

∂s

∂t
+ v · ∇s = 0, (2.3)

where ρ(x, t) , v(x, t) = (u(x, t), v(x, t)), p(x, t) , s(x, t) are density, velocity, pressure
and entropy, respectively.

Briefly, the originality of the numerical method lies in the fact that it is based on the
pseudo-characteristic formulation of the convection terms introduced by Sesterhenn
(2001), from which it follows that the equations can be recast as (since acoustic waves
are investigated, the system is restricted to homoentropic solutions for the sake of
simplicity):

∂p

∂t
= −ρc

2
((X+ + X−) + (Y + + Y −)), (2.4)

∂u

∂t
= −

(
1

2
(X+ − X−) + Y u

)
, (2.5)

∂v

∂t
= −

(
Xv +

1

2
(Y + − Y −)

)
, (2.6)

∂s

∂t
= 0 (2.7)
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in which

X± = (u ± c)

(
1

ρc

∂p

∂x
± ∂u

∂x

)
, (2.8)

Y ± = (v ± c)

(
1

ρc

∂p

∂y
± ∂v

∂y

)
, (2.9)

Xv = u
∂v

∂x
, Y u = v

∂u

∂y
, (2.10)

where c denotes the local speed of sound. The perfect gas model is used in the rest of
this paper, leading to c2 = γp/ρ. Fluxes with ± superscripts are related to acoustic
waves while the other ones correspond to fluctuations advected by the fluid.

This new decomposition of the pressure, velocity and entropy fluxes enables a very
simple and natural use of upwind schemes. To enforce both numerical stability
and accuracy for wave propagation problems, a high order upwind dispersion
relation preserving (DRP) scheme is used. In the interior nodes the fourth order
accurate upwind biased DRP scheme is used and this scheme is modified near
the computational domain boundaries (see Lu & Sagaut 2007b). Time integration
is performed using a third-order total variation diminishing (TVD) Runge–Kutta
scheme proposed by Shu & Osher (1989).

One of the main interests of the pseudo-characteristic formulation is that it
enables an easy implementation of efficient boundary conditions separating acoustic
and hydrodynamic disturbances (see Lu & Sagaut 2007a). Two kinds of boundary
conditions are used in the problems considered in the present paper:

(i) Subsonic outflow condition. The outflow condition is equivalent to putting to
zero the values of the incoming disturbances. Thanks to the pseudo-characteristic
formulation, this condition is easily implemented by forcing: (a) for the left boundary
X+ = 0, (b) for the right boundary X− = 0, (c) for the bottom boundary Y + = 0 and
(d ) for the top boundary Y − = 0.

(ii) Subsonic inflow condition. Such a condition allows to prescribe flow variables
and their corresponding fluxes on the computational boundaries. It can be used when
pressure, velocities are known on the whole boundary. For instance, let us assume
that p(x = 0, y, t) and v(x = 0, y, t) are known and must be prescribed on the left
boundary. It is possible to compute the derivatives of p and v with respect to y and
with respect to t . Following the order of computation proposed below, all the fluxes
are then computable on the boundary:

Y ± = (v ± c)

(
1

ρc

∂p

∂y
± ∂v

∂y

)
, (2.11)

Y u = v
∂u

∂y
, (2.12)

Xv =
1

2
(Y − − Y +) − ∂v

∂t
, (2.13)

X± =
−1

2
(Y − + Y + ± 2Y u) − 1

ρc

∂p

∂t
± ∂u

∂t
. (2.14)

This procedure is also valid to compute inflow condition on the right boundary. For
the bottom and top boundaries, only the order of computation of the fluxes has to
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be modified:

X± = (u ± c)

(
1

ρc

∂p

∂x
± ∂u

∂x

)
, (2.15)

Xv = u
∂v

∂x
, (2.16)

Y u =
1

2
(X− − X+) − ∂u

∂t
, (2.17)

Y ± =
−1

2
(X− + X+ ± 2Xv) − 1

ρc

∂p

∂t
± ∂v

∂t
. (2.18)

2.2. The time-reversal procedure

The time-reversal procedure can be applied to the Euler equations. It is based on
the fact that time-reversal is one of the discrete symmetries of the isentropic Euler
equation, i.e. set of equations (2.1)–(2.3) remains unchanged for the following change
of variables: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

t → −t,

ρ(x, t) → ρ(x, −t),
v(x, t) → −v(x, −t),
p(x, t) → p(x, −t),
s(x, t) → s(x, −t).

(2.19)

Note that all the variables are time reversed. Moreover, the direction of the flow
velocity has to be reversed to ensure the invariance of the Euler equations. That
last point is very important. Indeed, as pointed out by Roux & Fink (1995), without
that operation there is a breakdown of the time-reversal invariance. The meaning of
these equations is that, by time reversing all the variables, plus reversing the direction
of flow velocity, the quantities have to satisfy the same equations as the original
ones. As they are time reversed they will evolve as if the original quantities were
read backward in time. Even if the symmetry of the Euler equations with respect
to the time variable has been known for a long time, this property has not been
used in the field of computational aeroacoustics to our knowledge. Previous studies
in hydrodynamics (see Roux & Fink 1995; Roux et al. 1997) focused on the study of
the linear interaction between acoustics and fluid dynamics. Consequently, they relied
on a generalized wave equation which includes the fluid motion (see Lund & Rojas
1989) but not on the full Euler equations.

In practice, to implement the time-reversal procedure, all flow variables are stored at
the four boundaries of the computational domain during the computation of the direct
problem. It is important to note that only storage along boundaries of the domain
is required, instead of the full solution storage in adjoint-based methods, leading to
a drastic reduction in the memory requirement. All flow variables are also stored at
all the grid points of the computational domain at the last time step of the direct
problem to get an initial condition for the reversed problem. Then, the information
at the boundaries is time reversed and the sign of the velocity is inversed accordingly
to (2.19). The computational box is initialized with the quantities stored at the last
iteration with an inversion of sign of the velocity. To impose the reversed boundary
condition, the subsonic inflow conditions are chosen (see § 2.1). The variables imposed
at the boundaries of the computational domain are then: ρ(x, t̄), −v(x, t̄), p(x, t̄) and
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s(x, t̄), where t̄ is equal to T − t with T the total duration of the simulation in the
direct sense.

2.3. Sensitivity analysis based on complex differentiation

Even though the time-reversal procedure allows to know the backward evolution in
time, it is difficult to educe the acoustic disturbances from the aerodynamic ones
and to localize regions associated with sound generation. This is the reason why it
is coupled with a technique of sensitivity analysis. Sensitivity analysis becomes an
important item in CFD methods due to the great development of applications related
to aerodynamic design, stability and control. Several techniques are available for such
sensitivity analysis. In this work, we focus on the complex differentiation method,
which was suggested in 1967 by Lyness & Moler (1967) and was poorly exploited
until the work of Squire & Trapp (1998). The potential of this technique is now
recognized and it has already been used for sensitivity studies in computational fluid
dynamics (see Vatsa 2000; Anderson et al. 2001; Leclerc, Sagaut & Mohammadi
2006; Lu & Sagaut 2007b). It relies on the observation that both the direct and the
tangent problems can be solved at the same time by just extending the governing
equations in the complex domain, the real and the imaginary parts being associated
with the direct and tangent problems, respectively.
Briefly, the complex differentiation relies on the Taylor expansion of a function f ,
which is real on the real axis, and has a small imaginary part denoted ε:

f (x + iε) = f (x) + iεf ′(x) − ε2 f ′′(x)

2
+ O(ε3), (2.20)

where i2 = −1 is the imaginary complex number. Consequently, the first derivative of
the complex function f can be expressed, thanks to the imaginary part of function
f :

f ′(x) =
Im [f (x + iε)]

ε
+ O(ε2). (2.21)

That last expression provides an alternative method to compute the derivative of
f with no numerical derivative, thus no spatial-discretization errors. The truncation
error of the derivative is of the order of the square of ε. The real part of the function
is a second- order approximation of the original function:

f (x) = Re[f (x + iε)] + O(ε2). (2.22)

An elegant implementation of this approach consists in changing real variables into
complex ones in the numerical solver. This is the only thing to do to implement the
complex differentiation method. It has already been done in a previous study (see
Lu & Sagaut 2007a) in which it was shown that complex differentiation permits to
track the hydrodynamic part of a flow as well as the acoustic one.

Let us denote with a tilde the imaginary part of each flow variables : ρ(x, t) →
ρ(x, t)+iερ̃(x, t), v(x, t) → v(x, t)+iεṽ(x, t), p(x, t) → p(x, t)+iεp̃(x, t) and s(x, t) →
s(x, t) + iεs̃(x, t). It is important to note that tilded quantities are the sensitivities of
the physical variables. By inserting these relations into (2.4)–(2.7), one obtains the
complex Euler equations. The real part provides a second-order approximation of the
direct problem:

∂p

∂t
+

ρc

2
((X+ + X−) + (Y + + Y −)) = O(ε2), (2.23)
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∂u

∂t
+

(
1

2
(X+ − X−) + Y u

)
= O(ε2), (2.24)

∂v

∂t
+

(
Xv +

1

2
(Y + − Y −)

)
= O(ε2), (2.25)

while the imaginary part is a second-order approximation of the linear tangent
problem:

∂p̃

∂t
+

(
ρ̃c + ρc̃

2

)
((X++X−)+(Y ++Y −))+

ρc

2
((X̃++X̃−)+(Ỹ ++Ỹ −)) = O(ε2), (2.26)

∂ũ

∂t
+

(
1

2
(X̃+ − X̃−) + Ỹ u

)
= O(ε2), (2.27)

∂ṽ

∂t
+

(
X̃v +

1

2
(Ỹ + − Ỹ −)

)
= O(ε2), (2.28)

in which

X̃± = (ũ ± c̃)

(
1

ρc

∂p

∂x
± ∂u

∂x

)
+ (u ± c)

( ˜(
1

ρc

)
∂p

∂x
+

1

ρc

∂p̃

∂x
± ∂ũ

∂x

)
, (2.29)

Y ± = (ṽ ± c̃)

(
1

ρc

∂p

∂y
± ∂v

∂y

)
+ (v ± c)

( ˜(
1

ρc

)
∂p

∂y
+

1

ρc

∂p̃

∂y
± ∂ṽ

∂y

)
, (2.30)

X̃v = ũ
∂v

∂x
+ u

∂ṽ

∂x
, Ỹ u = ṽ

∂u

∂y
+ v

∂ũ

∂y
(2.31)

and c̃ = ˜√
γp/ρ.

In practice, the acoustical disturbances are extracted at the boundaries of the
computational domain. Complex differentiation is quite versatile and permits to
choose the best set of control parameters in each case. For instance, frequency can
be a good acoustical tag, so can be spatial position (on one or more boundaries).
In all the examples presented in the next section, the set of parameters is given and
the choice is discussed. Once the set of parameters is known, a small complex part
is added to parameters and/or variables (inside the computational domain or at
boundaries) to be monitored.

The equations above must be supplemented by adequate boundary conditions. They
are obtained by applying complex differentiation to the original boundary conditions.
As an example, the real parts of the complex subsonic inflow conditions on left and
right boundaries, which hold for the direct problem, are

Y ± = (v ± c)

(
1

ρc

∂p

∂y
± ∂v

∂y

)
+ O(ε2), (2.32)

Y u = v
∂u

∂y
+ O(ε2), (2.33)
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Xv =
1

2
(Y − − Y +) − ∂v

∂t
+ O(ε2), (2.34)

X± =
−1

2
(Y − + Y + ± 2Y u) − 1

ρc

∂p

∂t
± ∂u

∂t
+ O(ε2). (2.35)

The imaginary parts of the inflow conditions, which hold for the sensitivity variables,
are (the imaginary parts are still denoted with a tilde)

Ỹ ± = (ṽ ± c̃)

(
1

ρc

∂p

∂y
± ∂v

∂y

)
+ (v ± c)

( ˜(
1

ρc

)
∂p

∂y
+

1

ρc

∂p̃

∂y
± ∂ṽ

∂y

)
+ O(ε2), (2.36)

Ỹ u = v
∂ũ

∂y
+ ṽ

∂u

∂y
, (2.37)

X̃v =
1

2
(Ỹ − − Ỹ +) − ∂ṽ

∂t
+ O(ε2), (2.38)

X̃± =
−1

2
(Ỹ − + Ỹ + ± 2Ỹ u) −

˜(
1

ρc

)
∂p

∂t
− 1

ρc

∂p̃

∂t
± ∂ũ

∂t
+ O(ε2). (2.39)

To ensure the coupling between the time-reversal procedure and the complex
differentiation technique, the time-reversal procedure is applied first (defined in (2.19)),
then, the complex inflow conditions are prescribed (defined in (2.11)–(2.14)).

3. Results
To assess the potential of the proposed method, three problems associated to

different sources of sound have been studied. The first one consists in an injection of
mass inside the computational domain. The second one deals with the sound generated
at different frequencies by vibrating surfaces. Finally, the methodology is applied to
detect the regions associated with sound generation in a spatially developing subsonic
plane mixing layer.

3.1. Sound generation due to mass injection

Mass injection is known to yield pressure waves in the general case (see Kovasznay
1953; Sagaut & Cambon 2008). The first test case deals with an initial density
perturbation in a uniform flow and the second one with a initial density perturbation
in a flow with a vortex.

For the first case, the computational domain size is (0, 10; 0, 10) corresponding to
a uniform mesh of (100 × 100) points. An injection of mass is made at t = 0. The
initial density perturbation profile is an axisymmetric Gaussian one (figure 1a) given
by

ρ(x, y, t = 0) = ρ0 + a exp

(
x2 + y2

σ 2

)
, (3.1)

where a = 0.001 and σ = 0.5. A uniform flow is imposed, such as u(x, y, t = 0) =
u0 = 100 and v0 = 0. The associated Mach number is equal to 0.29. All the boundaries
are chosen to be subsonic outflow conditions.

The mass injection initiates an acoustic wave that propagates and expands in time.
An illustration is displayed in figure 1, which represents the pressure evolution at
three different times. As there exists a flow along the X-axis, the pressure wave is
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Figure 1. Direct simulation of the fluctuations of the pressure field (p(x, y, t) − P0) for the
injection of mass (a) t = 0 , (b) t = 150�t and (c) t = 300�t .

advected. During the computation, at each time step, velocity and pressure fields are
stored at the four boundaries. Furthermore, at the end of the computation, the spatial
variables are stored at each point of the domain. The total duration of the simulation,
T = 500�t , where �t is the time step, is chosen to ensure that most of the fluctuating
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energy has left the computational box at the end of the simulation. The time step �t

is fixed to 7.10−5 in order to ensure a Courant–Friedrichs–Lewy (CFL) number of
the computation inferior to 0.6.

The second step consists in performing the time-reversed simulation of the acoustic
pressure pulse. The time-reversal operation is performed on all stored data according
to (2.19), like in time-reversal cavity applications. The boundary conditions are now
chosen to be inflow conditions. For the moment the complex differentiation is not
used. Figure 2 shows the pressure field at three different times (corresponding to
those shown in figure 1 but in inverted order). It is clear that the dynamic of the
evolution is very well recovered. Indeed, figure 2(a) is similar to the last figure of
the simulation in direct sense figure 1(c). The corresponding time is t̄ = 200�t , this
value corresponds to the total duration of the simulation in the direct sense minus
the time of the event presented in figure 1(c): t̄ = 200�t = 500�t − 300�t . It is
in agreement with the formula: t̄ = T − t with t̄ the time of the reversed time
simulation, T the total duration in the direct simulation and t the time in the direct
simulation. In figure 2(b) it can be seen that the pressure waves retropropagate to
the initial position of the spot of mass injection with a very satisfactory accuracy.
Finally, figure 2(c) shows that the time-reversal procedure allows to recover the
initial spot of mass injected in the computational domain at the correct time. In
that example, simulation is stopped at T corresponding to the duration of the direct
simulation. Simulation for a time t > T can not be performed because the historical
boundary data are unavailable. Furthermore in the time-reversed simulation, no
mechanism is implemented to compensate the injection of mass made at t = 0 in
the direct simulation. Figure 4 provides a comparison of the pressure field at the
centre of the computational domain. The differences between the initial distribution
of pressure and the result obtained thanks to the time-reversal procedure are very
small.

To investigate the robustness of the time-reversal procedure with respect to the
completeness of the boundary data, three additional cases have been defined. We
propose to use only three, two and one inflow boundaries in the time-reversed
simulation instead of the four used in the previous case. Such test cases can be
related to time-reversal mirror applications. For the first simulation the time-reversal
procedure is made on the top, the bottom and the right boundaries. The left boundary
is selected to be of subsonic outflow type. Figure 3 displays the pressure field
corresponding to the initial time in the direct sense. Compared to the case in which
four inflow boundaries are used, the results are also of good quality, since they
permit to predict the location of the mass injection. Nevertheless, as it is shown by
figure 4, the amplitude of the pressure field computed by time-reversal procedure
is smaller than the original one. The second and third simulations are performed
respectively with two and one active inflow boundaries (the top, the bottom ones
for the second simulation and only the bottom one for the third simulation). The
quality of the results (see figure 3b,c)) is not as good as in the previous cases.
In particular, the shape and the strength of the pressure profile are changed as
observed in figure 4. The maximum value of the pressure relative error is around
48 % and 73 % for test cases (b) and (c) respectively. Indeed the quantity of energy
that retropropagates to the spot of mass injection is less important than in the case
where four boundaries are considered. Nevertheless, the location of the spot of mass
injection is again satisfactorily predicted. These results show that the time-reversal
procedure is a robust method which permits to localize aeroacoustic event generating
acoustical waves even if the boundary conditions of the time-reversed simulation are
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Figure 2. Fluctuating pressure field (p(x, y, t) − P0) computed using the time-reversal
procedure in the case in which subsonic inlet conditions are enforced on all four boundaries:
(a) t̄ = 200�t , (b) t̄ = 350�t and (c) t̄ = 500�t .

lacunary. Such a result demonstrates the great potential of the methodology when
only a minimal amount of flow information permits to focus on the acoustic region
associated with sound generation.
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Figure 3. Pressure field at t̄ = T for three different simulations using the time-reversal
procedure on (a) three boundaries: the top, the bottom and the right ones; (b) two boundaries:
the top and the right ones and (c) one boundary: the right one.

Nevertheless, to ensure a maximal quality, the time-reversal procedure is applied
with complete boundary information in all simulations presented hereafter.

The sensitivity analysis is now carried out using the complex differentiation method
explained in § 2.3. The goal of the sensitivity analysis is to compute the sensitivity of
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Figure 4. (a) Fluctuations of the pressure field (p(x, y = Ly/2, t) − P0) at the centre of the
computational domain for the direct simulation (t = 0) black line and for the time-reversal
procedure applied to respectively to 4 (̄t = T , thin black line), 3 (̄t = T ,dash line), 2 (̄t = T ,
dot line) and 1 (̄t = T , dash-dot line) boundaries. (b) Relative error between the time- reversed
simulations and the direct simulation.

the acoustic disturbances. First, the time-reversal procedure is applied on the variables
stored on each boundary. Then, an imaginary part is added to the acoustical pressure
(already reversed). The magnitude of the imaginary part is taken equal ε = 1.10−6,
which was shown to ensure an accurate and robust solution (see Lu & Sagaut 2007a).
At each time step, it is possible to compute the sensibility to the acoustic disturbances
by simply monitoring the imaginary part of the pressure field. Figure 5 displays the
imaginary part of the pressure field for three different times of the simulation. The
chosen times correspond to those of figure 5. It is clear that the maximum of sensitivity
corresponds to the acoustic wave at each time. For instance, figure 5(b) shows the
wavefront responsible of the waves recorded on the boundary of the computational
domain. At this time (̄t = 350�t), we consider that wavefront is the origin of the
sound. We introduce here a distinction between acoustic source and origin of sound.
The sensitivity analysis allows us to determine the sensitive areas at a given time and
not to provide the physical mechanisms intrinsic to an acoustic source. For the last
time, the maximum sensitivity is associated to the spot of mass injected in the direct
simulation. This corresponds to the intuitive detection of the origin of the sound
wave.

We now assess the robustness of the proposed method in cases exhibiting strong
scattering effects. To this end, we consider injection of mass interacting with a steady
vortex. This vortex is defined following Taylor’s model with an exponentially decaying
velocity profile leading to a zero circulation vortex (see Colonius et al. 1994). This
vortex has a core size of 10 and a Mach number of 0.2. It is generated at the centre
of the computational domain. The computational domain size is (−40, 40; −40, 40)
corresponding to a uniform mesh of (800 × 800) points. An injection of mass is made
at t = 0. The initial density perturbation profile is the same than in the first example
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Figure 5. Imaginary part of the pressure field for three different times (a) t̄ = 200�t ,
(b) t̄ = 350�t and (c) t̄ = 500�t .

(defined in 3.1) except it is located in (X = −12, Y = 0). All the boundaries are chosen
to be subsonic outflow conditions.

Again, the mass injection initiates an acoustic wave that propagates and expands
in time (see figure 6). The wavefront propagating through the vortex is dislocated (see
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Figure 6. Direct simulation of the fluctuating pressure field (p(x, y, t)−P0) for the interaction
of a spot of mass injection and a Taylor vortex: (a) t = 0, (b) t = 500�t and (c) t = 900�t .

figure 6b,c)). During the flow simulation, at each time step, �t , velocity and pressure
fields are stored at the four boundaries. Furthermore, at the end of the computation,
the spatial variables are stored at each point of the domain. The total duration of the
simulation, T = 1700�t .
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The time-reversal procedure is applied on the data recorded at the four boundaries
and at the last time step. The time-reversal simulation of the mass injection in
interaction with a steady vortex is now performed. Figure 7 shows three instantaneous
fluctuating pressure fields obtained at the same instants than those presented in the
last figure deduced from the direct numerical simulation. The procedure is able to
localize accurately the position of the initial spot of mass injection even in presence
of vorticity. No spurious waves or artefacts are visible from the visualization of the
time-reversed data. When comparing the amplitude of the pressure field obtained at
the end of the time-reversal simulation to the one of the initial pressure field of the
direct simulation, a difference of less than 0.2 % is observed. This test case emphasizes
that the methodology is robust for the refraction or scattering problems.

Finally, the complex differentiation technique is used to study the sensitivity with
respect to acoustical variables. It then consists in computing the sensitivity analysis of
the acoustic wave related to the initial spot of mass injection. Then, before performing
the time-reversal simulation, at each computational boundary, a small imaginary part
is only added to the acoustic disturbance related to the initial spot of mass injection.
Figure 8 shows the imaginary part of the pressure field for the same three different
times as in figure 7. On this figure, the contribution of the aerodynamic part of the
pressure field, namely the pressure due to the vortex, is not visible. This is because
this part of the field is not sensitive to the acoustical variables. The evolution of
the imaginary part shows that the maximum coincides with the wavefront, and the
retropropagation allows to find the location of the original position of the spot of
mass injection. Such sensitivity analysis based on the complex differentiation is then
robust even in presence of strong scattering effects.

3.2. Acoustic wave generation by vibrating surfaces

Another important kind of acoustic sources deals with the sound produced by
vibrating surfaces. In that example, we consider two pistons located on the left
boundary of the computational domain with a non-dimensional width taken equal
to 2. They emit sinusoidal waves at frequencies f1 for the first piston and f1 and
f2 for the second one, so they have one common frequency. It is assumed that
the normal velocity between the vibrating surfaces and the fluid is continuous.
Consequently the following conditions are imposed (inflow condition) on the left
boundary:

u(x = 0, y, t) =

⎧⎪⎨⎪⎩
U0(sin(2πf1t) , if y ∈ [2 : 4],

U0(sin(2πf1t) + sin(2πf2t)) , if y ∈ [6 : 8],

0, otherwise,

(3.2)

with amplitude U0 = 2.5×10−3. Moreover, a linear increasing shear flow in the vertical
direction: u(x, y) = 100+10y is considered. The computational domain size is 2.5×10.
A uniform grid with 100 × 400 grid points is used. The Mach number is taken equal
to 0.29. The CFL number is equal to 0.6, ensuring an accurate representation of
physical phenomena.

The pistons emit waves from t = 0 to t = 500�t . The total duration of the
simulation is T = 1000�t . Figure 9 shows the instantaneous pressure field issued
from the piston at three different times. The fluctuating pressure field is made of two
wave packets with partial spatial overlap. As previously described, the variables are
stored on each boundary of the computational domain.
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Figure 7. Fluctuating pressure field (p(x, y, t) − P0) computed from the time reversal
simulation where subsonic inlet conditions are enforced on all four boundaries: (a) t̄ = 800,
(b) t̄ = 1200�t and (c) t̄ = 1700�t .

The time-reversal procedure is applied to the variables at the boundaries and to the
last fields recorded in the direct simulation. Then, an imaginary part is associated to
acoustical pressure on the top, the bottom and the right boundaries. These boundaries
are now of subsonic inflow type. The left boundary is of subsonic outflow type.
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Figure 8. Imaginary part of the pressure field for three different times: (a) t̄ = 800,
(b) t̄ = 1200�t and (c) t̄ = 1700�t .

Figure 10 shows the imaginary part of the pressure field computed by the proposed
method at three different times t̄ = 400, 700 and 900�t . The backward propagation
of the pressure waves towards the locations of the pistons is clearly visible. Therefore,
both the position and the width of the pistons can be recovered from the sensitivity
analysis. Moreover, the sensitivity analysis can be made on the different parts of
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Figure 9. Direct simulation of the fluctuations of the pressure field (p(x, y, t) − p0) at three
different times: (a) t = 100�t , (b) t = 300�t and (c) t = 600�t .

the spectrum of the acoustic disturbances. Figure 11 presents the imaginary part
of the pressure field for the same three different times as in figure 10 but complex
differentiation has been applied only to the frequency f2 on the boundary. This
is done in practice by filtering the signal stored on each boundary at the selected
frequency. It is clearly observed that the sensitivity variable focuses on the only piston
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Figure 10. Imaginary part of the pressure field at three different times: (a) t̄ = 400�t ,
(b) t̄ = 700�t and (c) t̄ = 900�t .

which emits the frequency f2. Therefore, it is shown that the present method allows
to distinguish each contribution in the radiated acoustic spectrum and to localize
the pistons locations accurately at each instant independently. That last ability is
extensively used in the next section.
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Figure 11. Imaginary part of the pressure field at three different times (a) t̄ = 400�t ,
(b) t̄ = 700�t and (c) t̄ = 900�t . The complex differentiation is used only on the
frequency f2.

3.3. Sound generated by compressible plane mixing layer flow

The purpose of this section is to apply the proposed methodology to localize regions
associated with sound generation in a spatially developing shear flow in which
the sound is generated by flow instabilities. The selected flow configuration is the
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Figure 12. (a) First stage corresponding to the numerical simulation of the plane mixing
layer. (b) Second stage corresponding to the time-reversed simulation using data stored at
outflow boundaries in the first stage as inflow conditions. Black arrows indicate the mean
streamwise flow direction. White arrows indicate the nature of the boundary conditions (inflow
or outflow). Hachured zones correspond to the physical computational domain.

well-known subsonic two-dimensional plane mixing layer flow already analysed by
Colonius et al. (1997). Such a flow that forms between merging fluid streams of
different velocities is often regarded as the simplest form of free shear flows and the
noise source mechanisms in such a flow have been intensively studied in the past (see
Colonius et al. 1997; Bogey, Bailly & Juve 2000; Kleinman & Freund 2008; Druault
et al. 2009).
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Figure 13. Instantaneous vorticity field in the near field mixing region.

The flow consists in two uniform streams with Mach numbers 0.5 and 0.25,
respectively, for the upper and lower parts. The two regions are matched by a
hyperbolic tangent profile for the streamwise velocity. Outflow conditions are specified
at the top, the bottom and the left boundaries (see figure 12).

The physical domain (excluding the sponge region) is (LX, LY ) = (350δω0
, 350δω0

),
where δω0

is the inlet vorticity thickness. A uniform mesh with 1401×1401 grid points
is used. A sponge layer zone is added to the computational domain in the streamwise
direction to prevent spurious reflections (see figure 12). It ranges from X = 350δω0

to
X = 2500δω0

. In this zone, 200 grid points are used in the streamwise direction and
the grid is stretched to damp fluctuations.

The numerical simulation is performed until a statistically stationary state is
obtained. Once this state is obtained, the flow simulation is performed for 10 000
time steps, corresponding to more than one hundred periods of the fundamental
frequency associated to the linearly most amplified mode predicted by the linear
stability theory. The Strouhal number based on the fundamental frequency, the initial
vorticity thickness and the convection velocity is 0.18.

The solution is recorded at each time step on all boundaries of the computational
domain and at X = 350δω0

which is the exit boundary of the physical domain.
The flow is forced at the fundamental frequency predicted by the linear stability

theory, f0 and its first, second and third subharmonics. The inflow condition used on
the left boundary (X = 0, ∀Y ) is similar to the one used in Colonius et al. (1997).
With such deterministic inflow perturbations, two quasi-stationary vortex pairings
are observed within the computational domain. Moreover, to minimize the distance
between both vortex pairings, the phase of the first subharmonics relative to the
fundamental is imposed as it has previously been done (see Colonius et al. 1997).

An illustration of an instantaneous vorticity field is displayed in figure 13. Two
pairing processes occur at X ≈ 75δω0

and X ≈ 150δω0
, respectively. These locations

are identical to those in Colonius et al. (1997) in a similar flow configuration. The
corresponding pressure field is presented in figure 14, along with the acoustic pressure
spectrum computed at the point (275δω0

, 175δω0
). Similar spectra are obtained at

all boundaries. From the spectrum, various frequencies associated with the flow
instabilities are clearly visible, but it is difficult to localize regions associated with
sound generation at these frequencies just by looking at instantaneous fields.

The methodology presented above is now used. The time-reversal procedure is
applied to all the variables stored on the top, the bottom and the right physical

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

17
04

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009991704


206 A. Deneuve, P. Druault, R. Marchiano and P. Sagaut

f0f0/2f0/4f0/8
0

0.2

0.4

0.6

0.8

1.0

150

(a)

(b)

100

50

0

–50

–100

–150

0 100 200
x/δω0

y/
δ

ω
0

300

20

15

10

5

0

–5

–10

–15

–20

Figure 14. (a) Instantaneous far acoustic fluctuating pressure field. (b) Normalized pressure
spectrum saved at the top boundary (X = 275δω0

, Y = 175δω0
).

boundaries. Data stored at the outlet of the sponge layer zone are not used since they
are unphysical. Flow variables are then used as inflow conditions for the time-reversed
simulation (see figure 12b). It is important to note that inflow conditions are now
imposed on the top, the bottom and the right boundaries. A sponge zone is added on
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Figure 15. Instantaneous flow visualization of the imaginary part of the fluctuating pressure
field associated with a filtering of f0/2 superimposed onto the real vorticity field.

the left side of the physical domain, which is an outflow boundary for the time-reversed
problem, to prevent any spurious reflection on this boundary. The computational grid
is exactly the same as in the direct simulation. Contrary to the previous test cases,
the localization of the regions associated with sound generation cannot be deduced
directly from the information given by the time-reversed simulation, because of
the strong coupling between aerodynamics and acoustics variables. Therefore, the
complex differentiation technique is coupled to the time-reversal procedure to localize
the area exhibiting the maximum sensitivity with respect to acoustical variables at a
selected frequency. That frequency is identified from the spectrum measured at the
boundaries of the computational domain. Thus, a small imaginary part is added to
the acoustic pressure used in the inflow condition of the time-reversed simulations at
the frequency under consideration. This is simply done by filtering the acoustic
pressure stored on the computational boundaries during the direct simulation and
filtering it at the target frequency using Fourier transform. The resulting filtered
signal is then multiplied by iε and added to the original signal used to define inflow
conditions for the time-reversed simulation.

Two time-reversed simulations are performed to extract the zones with the
maximum sensitivity with respect to acoustical variables at the subharmonic
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Figure 16. Instantaneous flow visualization of the imaginary part of the fluctuating pressure
field associated with a filtering of f0/4 superimposed onto the real vorticity field.

frequencies f0/2 and f0/4. These zones correspond directly to the maximum of
the imaginary part of the different fields. Figures 15 and 16 display the imaginary
part of the pressure field (i.e. the sensitivity of the acoustic pressure) associated
with these two frequencies, at the same time. In these figures, the corresponding
instantaneous vorticity field coming from the direct simulation is also provided. It can
be observed that imaginary part of the pressure waves associated with f0/2 and f0/4
frequencies converge towards the first and second pairing locations, respectively (see
figure 13). According to the complex differentiation technique, the imaginary part can
be associated to the sensitivity with respect to acoustical variables. Thus, the area the
more sensitive in the time-reversed simulation correspond to regions associated with
sound generation in the direct computation.

Such a visual localization procedure is useful but may be inefficient in more complex
flows. To obtain a more systematic localization the root mean square (r.m.s.) of the
pressure sensitivity is computed (see figures 17 and 18), leading to a hybrid statistical-
sensitivity identification procedure of the regions associated with sound generation,
in the spirit of previous works based on the adjoint solution (see Colonius & Lele
2004 for a general discussion). Maxima of the r.m.s. sensitivity of acoustic pressure
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Figure 17. Root mean square of the first derivative of the complex pressure field associated
with a filtering of f0/2.

are clearly seen in the mixing layer near X = 75δω0
and X = 150δω0

. These locations
correspond to the locations of the first and second pairings (figure 13). Beyond
the localization of the regions associated with sound generation, figures 17 and 18
provide additional information. In both cases, the repartition of the pressure field
looks like a longitudinal quadrupole. The axis of the quadrupole is perpendicular to
the flow direction. Indeed, on each figure, four distinct spots of r.m.s. pressure are
higher than the others. The size of the quadrupoles in the Y direction corresponds
approximatively to two wavelengths (about 50 for f0/2 and 100 for f0/4) and is
approximately one wavelength in the Xdirection. This size is important compared
to the vorticity thickness which is the characteristic size of the plane mixing layer.
Nevertheless, the characteristic scale of the acoustic problem is the wavelength. It is
well known that the resolution for the retrofocusing, in medical-imaging for instance,
is given by the wavelength (a subwavelength resolution can be reach only under
certain circumstances). Consequently, the observed sizes of the regions of maximum
sensitivity are consistent compared to classical sizes of regions associated with the
generation of sound at frequencies f0/2 and f0/4. Moreover, these results are in
agreement with the quadripolar nature of aeroacoustic sources predicted by the
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Figure 18. Root mean square of the first derivative of the complex pressure field associated
with a filtering of f0/4.

Lighthill’s analogy (Lighthill 1952). Of course, that observation is not a formal proof
of the equivalence between the Lighthill’s analogy and the resolution of the inverse
problem but from our point of view it is important to outline that similar conclusion
between both approaches. Note that in the proposed methodology, those results are
obtained from the resolution of the inverse problem and do not originate in an a
priori model. Moreover, they are no assumptions on the nature of the flow. All the
methodology is systematic without any adjustable parameters.

4. Concluding remarks
An original methodology for the detection of regions associated with high sensitivity

of the radiated noise has been proposed and assessed. It relies on the efficient coupling
between the time-reversal theory applied to the Euler equations and the complex
differentiation method to compute the sensitivity variables. This methodology has
been validated by various test cases. First of all, it has been demonstrated that it is
possible to localize accurately the wavefront up to the initial position of the sound
generated by an injection of mass, even in the presence of strong scattering effects.
Then, the methodology has been applied to the detection of vibrating surfaces. In

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

17
04

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009991704


Aeroacoustic sensivity analysis 211

this case, it is possible to localize easily the position of the piston responsible of the
radiation of sound at a particular frequency thanks to the complex differentiation.
Finally, the methodology has been used to find the regions associated with sound
generation in a plane mixing layer.

The proposed methodology is observed to be a robust and accurate process to detect
regions associated with sound generation. No assumptions on the nature of the flow
are needed. The methodology is systematic and without any adjustable parameters.
Thus, results are computed only from the resolution of the inverse problem without
any assumption. The methodology can be extended to more complex geometries such
as curvilinear grids or three-dimensional flow configurations.
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