
Network Science 2 (2): 277–297, 2014. c© Cambridge University Press 2014

doi:10.1017/nws.2014.15

277

Subgroup centrality measures

JOCELYN R. BELL

Department of Mathematical Sciences, United State Military Academy, West Point, NY, 10996, USA

(e-mail: jocelyn.bell@usma.edu)

Abstract

In this paper we examine natural generalizations of four widely used centrality measures to

subgroups of nodes in a network. This allows for a division into local and global influence. As

an example, we analyze a classic network and discuss previously hidden features made visible

by these new techniques. Network-wide measures and centralization formulae are derived.
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1 Introduction

Centrality measures are traditionally used to detect important nodes in a network.

In many real world networks, nodes are divided by their attributes into subgroups.

This paper details new methods for locating significant subgroup nodes in both the

local and global sense. In a social network of both sexes, for instance, which women

are most influential over other women, and which women are most influential over

the men?

One potential solution is to examine the subgraph generated by a subgroup.

However, calculating centrality measures on a subgraph ignores relationships outside

the subgroup. When studying the spread of a cold virus through children at a school,

it may be unreasonable to assume children are only infected by other children and

not by adults as well. We explore a framework in which nodal centralities relative

to a subgroup are calculated with no changes to the network. Because the network

is not modified in any way, there is no loss of information.

We define both local measures (within the subgroup) and global measures (outside

the subgroup). In contrast to the combined internal and external score of Everatt &

Borgatti (2012), our approach considers local (internal) and global (external) central-

ity as separate pieces, allowing for rank order comparisons as well as comparisons to

measures calculated on subgraphs. Furthermore we explicitly introduce normalized

versions which take the size of the subgroup under investigation into account. As

an illustrative example, in section 7 the classic dolphin data set (Lusseau et al.,

2003) is analyzed using these new techniques. We discuss information which may

have been missed by using only existing network science tools. Finally, in section 8

network-wide measures are discussed and the necessary theoretical maximums for

centralization are computed.
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2 Centrality

The networks considered in this paper are assumed to be connected, unweighted,

and undirected. Let (V , E) be a network, where V is the set of nodes and E is the

set of edges. We say a network is of size n if |V | = n. If node a is connected to node

b, we write (a, b) ∈ E.

2.1 Centrality measures

A centrality measure assigns numerical values to nodes in a network based on

structural properties. We are interested in the idea of centrality relative to subgroups

of nodes. This is not a measure of the centrality of the subgroup as a whole; for

group centrality see Everett & Borgatti (1999).

Many centrality measures can be described as follows. Suppose a particular

relationship between nodes in a network can be quantified (for example, distance).

This can be represented as a function of two variables

f : V × V → �

where the value of the relationship between node a and node b is f(a, b). For each

node a, we may sum the values of its relationships to other network nodes

c (a) =
∑
x∈V

f (a, x)

This function c is a type of centrality measure. Different relationships yield different

centrality measures, however for this definition to make sense the relationship must

be “node to node”. There are centrality measures which are not of this variety. For

example, betweenness is based on relationships between nodes and pairs of nodes.

This kind of measure is medial (Everett & Borgatti, 2006) while a node to node

type measure is radial. We postpone a discussion of medial centrality measures to

section 6.

2.2 Subgroup centrality measures

Now suppose some subgroup S of nodes in a network (V , E) is of interest. To

calculate measures on the nodes in S , we may form the subgraph generated by

S . However relationships between nodes are redefined: the relationship between

nodes a and b in the whole network may be different than their relationship in the

subgraph. For example, in the subgraph the distance between two nodes may no

longer be defined.

Instead of working with the subgraph, we will define a subgroup measure according

to S as follows: for a ∈ V

cS (a) =
∑
x∈S

f (a, x)

where here the sum is restricted to only those nodes in S . The distinction between

a subgroup measure and a subgraph measure is important. We say a subset S ⊆ V

of nodes is a subgroup of the network; note this is not the subgraph induced by S

as it contains no edge information.
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There are two special cases when a ∈ S . The subgroup measure of a according

to S is a local measure, which measures how central node a is inside the subgroup.

The subgroup measure of a according to Sc (everything except the nodes in S) is a

global measure, which measures the centrality of a with respect to nodes outside the

subgroup. It is evident from the definitions that the sum of a node’s local measure

and its global measure is the original measure.

Centrality measures are often normalized to produce values between 0 and 1. In

the case of subgroup measures, normalization may be especially important as a small

subgroup of a large network will likely have members with tiny subgroup centrality

measures. To remedy this dependence on the size of the subgroup, normalized

subgroup measures are introduced. Additionally, this allows for comparisons: does

a node’s subgroup centrality increase or decrease when the subgroup is changed?

3 Degree

Perhaps the most intuitive of the centrality measures is that of degree centrality.

This measure has mathematical roots, as it is equivalent to (or proportional to, if

normalized) graph-theoretic degree. The concepts of what we call local and global

degree have appeared previously: see Wasserman & Faust (1994) for local degree

and Arney & Peterson (2010) for global degree. A combination of the two, known

as the E-I index, may be found in Krackhardt (1988).

The function which describes the degree relationship between node a and node

b has value 1 if a and b are connected in the network, otherwise the value is 0.

Symbolically, suppose (V , E) is a network and define h : V × V → � as

h (x, y) =

{
1 if (x, y) ∈ E

0 otherwise
(1)

since then

deg (a) =
∑
x∈V

h (a, x)

More precisely, this is out degree; however we have assumed our networks are

undirected, thus out degree is identical to in degree. Subgroup degree centrality is

as follows.

Definition 1

In a network (V , E) with subgroup S , for a ∈ V the subgroup degree of a according

to S is

degS (a) =
∑
x∈S

h(a, x)

This is the subgroup measure defined by h (as in Equation (1)) and S , and is denoted

by degS (a). To normalize, divide by (|S | − 1) if a ∈ S; otherwise divide by |S |.
This definition states that the subgroup degree (according to a subgroup S) of a

node is the number of nodes, only from inside S , which are adjacent to it; see

Figure 1. Subgroup degree of node a is equivalent to its standard degree in the

subgraph generated by S ∪ {a}.
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(a) Local degree = 2. Normalized: 2
4

a

Sc

(b) Global degree = 3. Normalized: 3
8

Fig. 1. Local and global degree. Node a’s degree is split into two pieces. (color online)

4 Closeness

A node may be considered central if information can travel quickly from it to all

others (Wasserman & Faust, 1994). This is the motivation for defining closeness

centrality, which, as its name suggests, is based on the distance between nodes in a

network. The smaller the total distance from a node to the rest of the network, the

more central it is with respect to this measure.

Unlike degree, subgroup closeness may differ from subgraph closeness. Edge

information is deleted in a subgraph, and so two nodes once reachable from each

other may no longer be so. Let d(x, y) denote the distance between node x and node

y. Any distance function may be used; here we will only consider geodesic distance.

“Farness” is perhaps a better description, since a smaller value means “closer”. This

is addressed by inverting when normalizing.

Definition 2

In a network with subgroup S , subgroup closeness centrality according to S of node

a is

clS (a) =
∑
y∈S

d (a, y)

To normalize, divide into |S | − 1 if a ∈ S; otherwise divide into |S |.
That is, subgroup closeness adds the distances from a only to nodes in S . It does

not matter if a geodesic uses nodes from outside S . This is one possible advantage

versus the subgraph approach; subgroup closeness is always defined (for a connected

network) regardless of whether or not the subgraph is connected.

How does subgroup closeness differ from closeness in the subgraph? Subgraph

paths between nodes can only be longer (if they exist at all) than subgroup paths.

However, rankings may be different. The closest subgraph node need not be the

closest subgroup node; see Figure 2.

5 Eigenvector centrality

In a social network, an individual may be described as influential if she has powerful

friends. Here, the status of one’s connections rather than just the number of ties

is what matters; a node’s rank is proportional to the sum of the ranks of its
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Fig. 2. Subgroup and Subgraph Closeness Centrality. Nodes 2 and 6 are top ranked by the

subgroup closeness measure, whereas node 4 is ranked highest in the subgraph.

neighbors. This circular definition leads to a system of equations and unknowns,

the solution to which is commonly termed eigenvector centrality. This measure is

originally attributed to Seeley (1949), and subsequent generalizations to Katz (1953)

and Bonacich (1987) among others.

Suppose a network (V , E) has adjacency matrix A with leading eigenvalue λ and

corresponding unit eigenvector −→v , and node a’s standard eigenvector centrality is

denoted by e(a). The function required is

g (x, y) =

{
1
λ

· e (y) if (x, y) ∈ E

0 otherwise
(2)

since then

e (a) =
∑
y∈V

g (a, y)

More precisely, this is “left” eigenvector centrality, however we have assumed our

networks are undirected so this is not a concern.

Definition 3

For a subgroup of nodes S in a network, subgroup eigenvector centrality according

to S is

eS (a) =
∑
y∈S

g (a, y)

where g is as in Equation (2).

It may be desirable to rescale the values to take into account the size of the subgroup.

Since eigenvector centrality is traditionally defined by a unit vector, similarly we

ensure the squares of the subgroup measures sum to 1. In this case a distinction

must be made between the local and global cases.

Definition 4

Suppose S is a subset of nodes in a network. For a ∈ S , normalized local eigenvector

centrality according to S is

e′
S (a) =

eS (a)√ ∑
ai∈S

eS (ai)
2

The normalized global eigenvector centrality according to S is

Ge′
S (a) =

eSc (a)√ ∑
ai∈S

eSc (ai)
2
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Does subgroup eigenvector differ from subgraph eigenvector centrality? The answer

is it may, and strikingly so; we will see such an example in section 7 (Figure 6).

6 Betweenness

Betweenness centrality is fundamentally different in its calculation than degree,

closeness or eigenvector. It measures to what extent a particular node impacts

connections between other pairs of nodes. This concept is generally attributed to

L.C. Freeman, whose work on this type of measure may be found in Freeman (1977).

Because betweenness is a medial centrality measure (Everett & Borgatti, 2006), it

cannot be described using a node to node relationship, but rather requires a node

to pair of nodes relationship. How is a node a in a network (V , E) related to a pair

of nodes {b, c}? Let P (b, c) be the list of all shortest paths between nodes b and c.

For a path p ∈ P (b, c) and node a ∈ V let

Q (a, p) =

{
1 if a is on p and a �= b and a �= c

0 otherwise

and

B(a, {b, c}) =
∑

p∈P (b,c)

Q (a, p)

|P (b, c)|
Then betweenness centrality of node a is

b(a) =
1

2

∑
(b,c)∈V×V

B(a, {b, c})

where the factor of 1
2

appears due to counting each path twice.

6.1 Subgroup betweenness

Subgroup betweenness is defined by only summing over pairs of nodes which are

both members of the subgroup.

Definition 5

In a network with a subgroup S , the subgroup betweenness of a according to S is

given by

bS (a) =
1

2

∑
(b,c)∈S×S

B(a, {b, c})

To normalize, divide into the total number of such possible pairs, which is
1
2
(|S | − 1)(|S | − 2) if a ∈ S and 1

2
(|S |)(|S | − 1) if a /∈ S .

If a ∈ S , the local betweenness of a is subgroup betweenness according to S , while

global betweenness is subgroup betweenness according to Sc. However, the local and

global versions of betweenness do not tell the whole story, as they do not account for

pairs of nodes for which one is within the subgroup and one is outside. To this end,

we introduce a third subgroup betweenness measure we call boundary betweenness,

as the paths must cross the “boundary” of S . See Figure 3.
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Fig. 3. Boundary Betweenness. Node a has zero local and global betweenness, but every path

starting inside S and ending outside must pass through a, making a’s normalized boundary

betweenness equal to 1. (color online)

Definition 6

In a network (V , E) with subgroup S , the boundary betweenness of a according to S

is

BbS (a) =
∑

(b,c)∈S×Sc

B(a, {b, c})

To normalize, divide by the total number of such pairs, which is (|S | − 1)(|V | − |S |)
if a ∈ S and (|S |)(|V | − |S | − 1) if a /∈ S .

If S is the entire network or a single point, boundary betweenness is zero. Notice

for any node a and any subgroup S ,

bS (a) + bSc (a) + BbS (a) = b (a)

This equation may fail to hold if normalized versions are used instead.

6.2 Local clustering coefficient

In classic social network analysis, the local clustering coefficient of a node is a

measurement of the likelihood that any two of its neighbors are connected (Newman,

2010). It can be used to locate structural holes. For a node a in a network, the local

clustering coefficient Ca of a is the ratio

Ca =
# of pairs of connected neighbors of a

# of pairs of neighbors of a

There is a relationship to local betweenness. For each node a in a network, let Sa
be the subgroup containing the node a and all of its neighbors. Then

b′
Sa

(a) = 1 − Ca

where the prime indicates normalization. Thus, local betweenness is a generalization

of local clustering.

7 Example analysis: Dolphin network

To illustrate the ideas put forth in this paper, we will analyze the classic dolphin

network in Lusseau et al. (2003). This network consists of what we will call

“friendship” ties between 62 bottle-nose dolphins in Doubtful Sound. This network

was chosen due to its small size and low density and our analysis is not intended to

draw conclusions about dolphin relationships.
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7.1 Attribute subgroups

In this section, our subgroup of interest will be the group of male dolphins; see

Figure 4. This represents a division according to node attribute data, in contrast to

divisions based on structural communities. Tables including rankings by centrality

measure are located in Appendix B while the algorithms used may be found in

Appendix A.

A visual inspection of Figure 4 reveals a few immediate concerns. There are

male dolphins who have become isolates in the subgraph (Cross, Fork, and Zig).

Furthermore, it would appear that SN96 should be quite important, as his removal

would split the subgraph network into three disjoint pieces: the Topless group, the

Beescratch group and the Bumper group. However, looking at the network as a

whole, female dolphins hold these three groups of males together; SN96’s removal

no longer causes the network to splinter.

The top four dolphins by subgroup and subgraph betweenness are represented

in Figure 5. The subgraph overestimates the importance of SN96, PL, Beak and

Haecksel due to deleting relationships to female dolphins. What might this mean?

For studying rumor spread among male dolphins, the subgroup rather than subgraph

approach to betweenness would be appropriate, assuming communications may

spread through female dolphins as well. All gossip need not go through SN96;

in fact Beescratch is more important in this regard. For a communicable disease

affecting and carried solely by male dolphins the subgraph approach is preferable;

vaccinating SN96 is indeed a good idea. However, if females are also carriers then

Beescratch is a better choice.

There are less obvious differences between subgraph and subgroup measures. The

most striking of these is eigenvector centrality (Figure 6). In the subgraph of male

dolphins (Figure 6(a)), members of the Beescratch group have higher eigenvector

centrality than the members of the Topless group. However the subgroup measures

display the opposite trend: the Topless group members are ranked higher than the

Beescratch group (Figure 6(b)). The power structure is vastly different for these

two measures. How can this be interpreted? As eigenvector centrality measures a

node’s value based on the value of its neighbors, in the subgraph case the values

of a node’s neighbors are due exclusively to relationships with other males; in the

subgroup case, the values of neighbors include relationships with females as well.

For example, Topless has six male and five female friends. His high importance in

turn impacts each of his male neighbors, increasing their eigenvector centrality in

the subgroup sense. However in the subgraph sense, only his six male friends are

considered, so there his influence is less. In Jet we see the complementary situation:

all of Jet’s nine friends are male, so his initial value in the subgraph is high and

does not increase by examining the total network.

Some general information may be found by computing correlation coefficients.

For subgroup versus subgraph eigenvector this coefficient is −.36457, indicating

(not surprisingly, in light of Figure 6) the lack of a clear linear relationship

between the two. Subgroup and subgraph betweenness are also poorly correlated

(.321381), consistent with Figure 5. Normalized closeness is better, with a subgroup

to subgraph coefficient of .803556. Interestingly, boundary betweenness very closely
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Fig. 4. Dolphin Network. The top graph is the entire dolphin network. Males are represented

by squares, females by solid circles, and those of unknown gender by triangles. The bottom

graph is the subgraph generated by only male dolphins. In the subgraph, Fork, Cross and Zig

have become isolates, while SN96 appears to hold the Topless (lower left), Beescratch (upper

right) and Bumper (middle) groups together.
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Fig. 5. Subgraph and Subgroup Betweenness, Top Four. Subgraph betweenness is represented

by solid squares and subgroup by solid disks, sized according to rank. The values indicate

the rank in the other measure.

follows overall betweenness with a correlation coefficient of .995942. It is unclear

whether or not this is to be expected or an artifact of this network.

How do local and global measures compare? A dramatic difference exists for

closeness. Figure 7 is a visual representation of top ranked dolphins by local and

global closeness. The dolphins in the Topless group are generally closer in a global

sense, while those in the Beescratch group are closer in a local sense. As a possible

interpretation, a communication from Topless will spread through the female dolphin

community quickly, while one from Beescratch will spread rapidly through the male

community. If a particular message is highly important to female dolphins but not

to males, Topless is an ideal messenger.

The top five ranked males in each type of closeness measure is given in Table 1.

There are interesting individuals listed in this table. Patchback is only close in the

global sense (to female dolphins- a sort of “ladies’ man”); neither subgroup nor

subgraph nor overall closeness ranks him among the top ten. Number 1 is only close

to other males; he is ranked 20th globally and 14th overall. Without this subgroup

analysis, the importance of these two may have been overlooked.

7.2 Structural subgroups

In the first example, the dolphin network was divided by nodal attributes into

subgroups. What happens if divisions are made based on network structure?

In Lusseau & Newman (2004), two distinct communities are identified using a

betweenness-based algorithm. These communities are depicted in Figure 8.

As might be expected, there is much less difference between the subgroup and

subgraph measures when divisions are made based on structure. In fact, for
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Fig. 6. Eigenvector Measures. Nodes are sized according to their eigenvector centrality. In

figure (a), the members of the Beescratch group are ranked higher than the Topless group,

whereas in figure (b) the Topless group is higher ranked.
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Table 1. Closeness. Top five ranked, listed in decreasing order.

An asterisk or double asterisk indicates a tie.

Local Subgraph Global Overall

Beescratch PL Beak∗ Beescratch

DN63 DN63 Topless∗ DN63∗
Oscar Knit MN105 Oscar∗
Number 1∗ SN96 Jonah∗ Beak∗∗
Upbang∗ Oscar Patchback∗ Topless∗∗

Fig. 7. Local and Global Closeness: Top Five. Local closeness is represented by solid disks

and global by solid squares, sized according to rank. The values indicate the node’s rank in

the other measure.

Community 1 in Figure 8, there is a perfect correlation between both subgroup

versus subgraph closeness and subgroup versus subgraph betweenness. This is

because there are no shortest paths between Community 1 members which pass

through Community 2 members. For Community 2, the respective correlations are

.9998 and .9993.

Interestingly, however, there is still a difference for Community 1 with respect to

eigenvector centrality, with a correlation coefficient of .7342. Such a distinction is not

present in Community 2, where this coefficient is .9999. In Community 1, Gallatin

is ranked 1st in subgraph eigenvector and 6th in subgroup, while Upbang is ranked

6th in subgraph eigenvector and 1st in subgroup. This is likely due to the fact that

Upbang is connected to Knit, Beescratch and DN64, who in turn are connected to

Community 2. Gallatin has no neighbors with connections outside Community 1.
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Fig. 8. Structural Dolphin Communities. Shape indicates gender: Males are square, females

circles, and unknowns are triangles. Community 1 appears in white, Community 2 in black.

8 Network-wide measures

We define average subgroup degree and other standard network-wide measures

in the obvious way. Because some information may be gleaned from examining

correlation coefficients between subgroup and subgraph or global to overall mea-

sures, these could be considered network-wide measures as well. For instance, a

perfect correlation between subgroup and subgraph closeness means not only is the

subgraph connected, but also for every pair of nodes in the subgroup there is a

shortest path between them which passes through only subgroup nodes.

The remainder of this section deals with centralization. Network centralization

is a way to measure how much variation in centrality is present in the network.

We use the classic Freeman definition (see Freeman, 1979). In order to calculate it,

the maximum possible variation must be known. This maximum is calculated over

all possible networks of the same size and is the denominator in the centralization

formula. We calculate this quantity for local as well as global measures.

Proposition 1

In a network with subgroup S , maximum local degree centralization occurs when

the subgraph induced by S is a star graph, and this maximum is (|S | − 1)(|S | − 2).

Proof

If every node in S has non-zero local degree, the result follows. Suppose S contains m

many nodes with zero local degree, and let b be a node with maximum local degree.

Then degS (b) � |S | − m − 1 and the remaining |S | − m − 1 many nodes have local

degree at least 1. So
∑|S |

i=1 degS (b) � |S |·(|S |−m−1) and
∑

v∈S degS (v) � 2(|S |−m−1)

and therefore the maximum difference is at most (|S | − m − 1)(|S | − 2). Clearly this

is less than (|S | − 1)(|S | − 2) if m > 0. �
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Fig. 9. Maximum Global Degree Centralization. It does not matter how the nodes in S are

connected to each other, so long as none of them except the highlighted node are connected

to any nodes outside of S . (color online)

(a) Local: .1905, Global: .5476 (b) Local: .7619, Global: .0952

Fig. 10. Local and Global Degree Centralization. Figure (a) has a clear global leader with

no local leaders, while Figure (b) depicts the opposite situation. (color online)

If using normalized local degree centrality, this value becomes |S | − 2. The global

argument is obvious; see Figure 9.

Proposition 2

In a network (V , E) with subgroup S , the theoretical maximum for global degree

centralization is (|V | − |S |)(|S | − 1). Normalized, this becomes |S | − 1.

If S is the entire network, then local degree centralization is the same as degree

centralization for the whole network in the usual sense. It is possible to have high

local degree centralization and low global degree centralization or vice versa. For

example, high global and low local degree centralization could mean the network

has a small number of powerful liaisons between the group and the rest of the

network, yet within the group there are no local leaders. See Figure 10.

It is easy to see that maximum subgroup betweenness centralization occurs when

the subgroup betweenness of one subgroup node is maximal and all other subgroup

nodes have zero subgroup betweenness. This happens, for example, in a network

which is a star graph and the subgroup contains the center of the star.

Proposition 3

In a network (V , E) with subgroup S , the local betweenness centralization maximum

is 1
2
(|S |−1)2(|S |−2), the global maximum is 1

2
(|S |−1)(|V |−|S |)(|V |−|S |−1) and the

boundary maximum is (|S | − 1)2(|V | − |S |). Normalized, all three become (|S | − 1).

Global betweenness centralization is zero if there is only one connection between

the subgroup S and the rest of the network (a bridge).
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Fig. 11. Maximum Global Closeness Centralization. It does not matter how the nodes outside

S are connected, as long as the only element of S they are connected to is the highlighted

node. (color online)

For local closeness centralization, the argument in Everett et. al. (2004) goes

through using normalized local closeness, and hence this maximum is(|S | − 1
) (|S | − 2

)
2 |S | − 3

Unfortunately, this trick does not work for normalized global closeness centraliza-

tion. Instead, we work with non-normalized global closeness, in which case a smaller

value means “closer”. Thus instead of summing the difference from the maximum,

we sum the difference to the minimum. Also we add an additional assumption.

A subgroup is locally connected provided the subgraph it induces is connected.

Proposition 4

The maximum global closeness centralization for a locally connected subgroup S in

a network (V , E) is 1
2
(|V | − |S |)(|S | · (|S | − 1)).

Proof

Denote global closeness by GclS . Suppose a ∈ S is such that
∑

y/∈S d(a, y) is as small

as possible and b ∈ S and y /∈ S . Then d(b, y) − d(a, y) � d(a, b) and there are

(|V | − |S |) many such y’s, hence∑
y/∈S

(d (b, y) − d (a, y)) �
(|V | − |S |) · d (a, b)

from which we see GclS (a) − GclS (b) � (|V | − |S |) · d(a, b). Now sum over all b ∈ S

to get ∑
b∈S

(GclS (b) − GclS (a)) �
(|V | − |S |) ∑

b∈S
d (a, b) =

(|V | − |S |) · clS (a)

The maximum for the right hand side is attained when clS (a) is as large as possible;

in a locally connected subgroup this is
∑|S |−1

i=1 i = 1
2

·(|S |·(|S |−1)), when the subgraph

is a line graph. Equality is attained by a network as in Figure 11. �

A schematic of maximum global closeness centralization is given in Figure 11. The

assumption of local connectedness is necessary; see Figure 12.

To complete the analysis of the male subgroup of the dolphin network, centraliza-

tion values appear in Table 2. Notably, local and global closeness centralization are

quite low, indicating little variation in these measures, while the local and boundary

betweenness measures display the most variation.
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Table 2. Centralization: Male Dolphin Network. Global closeness centralization

is calculated using the denominator for locally connected subgroups.

Degree Closeness Betweenness

Local .1825 .02540 .2519

Global .1228 .05414 .1283

Boundary N/A N/A .2096

Fig. 12. Locally Disconnected: Global Closeness Centralization. Suppose the box on the right

contains l many nodes and the total number of nodes is n. The global closeness centralization

is (n − l − 2)(l + 1), which is larger than the theoretical maximum for locally connected

subgroups, in this case (n − 2), provided l > 0 and n > l + 3. (color online)

9 Conclusion

We have proposed straightforward methods for calculating the local and global

influence of a node relative to a subgroup of a network. The subgroup measures

defined are natural generalizations of degree, closeness, betweenness, and eigenvector

centrality. These new measures have the potential to uncover important information

regarding network subgroup properties not visible in the total graph nor in the

subgraph. Our analysis of male dolphins in the classic dolphin network has revealed

such information.

We have focused exclusively on unweighted and undirected networks however this

restriction is not necessary. Our flexible definitions also create subgroup versions of

many other commonly used centrality measures. Alternatives in place of geodesic

distance for closeness and only counting certain paths for betweenness will yield

such measures. For example, subgroup decay and subgroup k-path centrality may

be defined this way.

We have assumed all edges carry the same weight, however simple modifications

may be made to, for example, weight edges so that communications “prefer” to

travel within the subgroup if possible. This may be accomplished by using the

subgroup to establish weights on the entire network and then computing subgroup

measures. A natural weighting system would be to give highest weight to edges

within the group, less weight to those between the group and its complement, and

least weight to edges entirely outside the group.
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Appendix A: Algorithms

Since subgroup degree is simply subgraph degree we do not include an algorithm.

All algorithms are written in python and require networkx. G is a connected graph

and S is a subgroup of network nodes. The measures are normalized by default but

this is optional.

Algorithm 1 Closeness

import networkx as nx

def subgroup_closeness(G, S, normalized=True):

subgroup_closeness = {}

for b in nx.nodes(G):

sum = 0

for a in S:

sum += nx.shortest_path_length(G, a, b)

subgroup_closeness[b] = sum

if normalized:

if sum > 0.0 and b in S:

subgroup_closeness[b] = (len(S)-1.0)/sum

if sum > 0.0 and b not in S:

subgroup_closeness[b] = (len(S))/sum

return subgroup_closeness
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Algorithm 2 Betweenness

import networkx as nx

def subgroup_betweenness(G, S, normalized=True):

subgroup_betweenness = {}

npairs = (len(S)-1)*(len(S)-2)

npairs2 = (len(S))*(len(S)-1)

for c in nx.nodes(G):

sum = 0

for a in S:

for b in S:

Pab = list(nx.all_shortest_paths(G, a, b))

Pabc = [p for p in Pab if c in p and a!=c and b!=c]

sum += len(Pabc) / len(Pab)

subgroup_betweenness[c] = sum / 2

if normalized and c in S and npairs > 0:

subgroup_betweenness[c] = sum / npairs

if normalized and c not in S and npairs2 > 0:

subgroup_betweenness[c] = sum / npairs2

return subgroup_betweenness

Algorithm 3 Boundary Betweenness

import networkx as nx

def boundary_betweenness(G, S, normalized=True):

boundary_betweenness = {}

B = [i for i in nx.nodes(G) if i not in S]

denom = (len(S)-1)*(len(B))

denom2 = (len(S))*(len(B)-1)

for c in nx.nodes(G):

sum = 0

for a in S:

for b in B:

Pab = list(nx.all_shortest_paths(G, a, b))

Pabc = [p for p in Pab if c in p and a!=c and b!=c]

sum += len(Pabc)/len(Pab)

boundary_betweenness[c] = sum

if normalized and c in S:

boundary_betweenness[c] = sum / denom

if normalized and c not in S:

boundary_betweenness[c] = sum / denom2

return boundary_betweenness
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Algorithm 4 Eigenvector

import networkx as nx

from math import sqrt

import numpy as np

def subgroup_eigenvector(G, S):

subgroup_eigenvector = {}

A = nx.adj_matrix(G,nodelist=G.nodes())

eigenvalues = np.linalg.eigvals(A)

lead = max(eigenvalues).real

eig = nx.eigenvector_centrality_numpy(G)

for a in nx.nodes(G):

sum = 0

for b in nx.neighbors(G, a):

if b in S:

sum += eig[b]

subgroup_eigenvector[a] = sum / lead

return subgroup_eigenvector

def local_eigenvector(G, S, normalized=True):

local_eigenvector = {}

C = subgroup_eigenvector(G, S)

V = {k: C[k]*C[k] for k in S}

denom = sqrt(sum(V.values()))

for a in S:

local_eigenvector[a] = C[a]

if normalized:

local_eigenvector[a] = C[a] / denom

return local_eigenvector

def global_eigenvector(G, S, normalized=True):

global_eigenvector = {}

B = [i for i in nx.nodes(G) if i not in S]

C = subgroup_eigenvector(G, B)

V = {k: C[k]*C[k] for k in S}

denom = sqrt(sum(V.values()))

for a in S:

global_eigenvector[a] = C[a]

if normalized:

global_eigenvector[a] = C[a] / denom

return global_eigenvector
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Appendix B: Data tables

DEGREE CLOSENESS BETWEENNESS EIGENVECTOR

ID NAME L G O L S G O L S G B O L S G O

0 Beak 23 2 11 14 9 1 4 21 3 9 19 18 8 20 3 7

1 Beescratch 2 16 5 1 6 10 1 1 6 4 1 1 13 8 16 14

2 Bumper 14 16 21 27 14 17 22 19 11 23 25 24 11 19 18 16

4 Cross 31 16 28 31 31 25 29 28 23 25 28 28 31 31 14 19

6 DN21 7 16 11 18 13 28 26 25 20 5 12 13 22 5 23 28

7 DN63 13 16 16 2 2 12 2 3 5 6 2 2 19 11 15 13

9 Feather 7 10 7 25 19 29 28 18 23 14 17 17 24 6 20 27

12 Fork 31 16 28 30 31 15 25 28 23 25 28 28 31 31 13 17

13 Gallatin 4 10 5 17 11 27 24 9 18 7 8 8 20 2 20 26

15 Haecksel 13 4 7 11 16 8 6 13 4 8 11 11 5 21 9 6

17 Jet 1 24 2 7 10 20 18 2 7 13 3 3 16 1 24 22

18 Jonah 7 10 7 16 21 4 7 17 15 22 21 19 2 25 8 4

19 Knit 13 24 21 6 3 19 14 15 9 24 23 21 15 10 24 21

21 MN105 14 4 11 19 28 3 8 20 23 17 22 22 6 28 2 3

22 MN23 25 24 28 28 21 31 31 28 23 25 28 28 29 14 24 31

23 MN60 25 10 24 11 29 10 8 11 23 11 9 9 7 29 11 8

24 MN83 13 10 11 23 24 6 16 27 16 20 24 25 4 26 5 5

25 Mus 14 24 24 21 17 30 27 26 21 25 27 27 26 12 24 30

26 Notch 14 24 24 19 18 26 23 23 22 25 26 26 25 13 24 29

27 Number1 7 24 16 4 7 20 14 8 12 25 15 14 17 9 24 24

28 Oscar 23 4 16 3 5 9 2 6 13 12 6 6 23 17 7 11

29 Patchback 7 2 2 21 27 4 12 5 14 3 7 7 3 27 4 2

30 PL 13 16 16 8 1 15 12 7 2 21 13 12 9 16 17 15

31 Quasi 25 24 28 28 21 31 31 28 23 25 28 28 29 14 24 31

35 SMN5 25 24 28 32 30 24 30 28 23 25 28 28 10 30 24 18

41 SN90 7 24 16 13 14 23 21 14 17 15 16 16 18 7 24 25

42 SN96 14 4 11 9 4 13 10 10 1 19 14 15 12 18 9 9

44 Thumper 25 4 21 25 25 6 17 22 23 18 20 23 27 22 6 10

45 Topless 4 1 1 14 20 1 4 12 10 10 10 10 1 24 1 1

54 Upbang 2 24 7 5 8 18 11 4 8 2 4 4 14 4 24 20

57 Web 4 4 2 9 11 20 19 16 19 1 5 5 21 2 19 23

60 Zig 31 16 28 33 31 33 33 28 23 25 28 28 31 31 22 33

61 Zipfel 25 10 24 23 25 13 19 24 23 16 18 20 27 22 12 12

Subgroup measures: by ranking. L stands for local, G for global, S for subgraph, O for overall and

B for boundary. In the event of a tie, identical ranks are awarded and the next rank is skipped.

DEGREE CLOSENESS BETWEENNESS EIGENVECTOR

ID NAME L G O L S G O L S G B O L S G O

0 Beak 2 4 6 101 105 75 176 3.702 168.000 15.003 16.216 34.921 0.034 0.002 0.094 0.129

1 Beescratch 7 1 8 80 98 84 164 142.494 76.353 24.188 223.702 390.384 0.024 0.274 0.018 0.042

2 Bumper 3 1 4 120 117 96 216 6.767 55.000 2.300 7.537 16.603 0.029 0.002 0.010 0.040

4 Cross 0 1 1 137 0 108 245 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.029 0.029

6 DN21 5 1 6 106 116 122 228 2.264 3.663 22.776 28.711 53.752 0.012 0.318 0.000 0.012

7 DN63 4 1 5 81 91 86 167 78.645 84.944 22.628 115.104 216.377 0.014 0.133 0.029 0.043

9 Feather 5 2 7 116 132 126 242 9.171 1.167 9.088 19.978 38.237 0.011 0.311 0.001 0.012

12 Fork 0 1 1 132 0 95 227 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.039 0.039

13 Gallatin 6 2 8 104 115 121 225 25.427 4.830 21.772 49.510 96.709 0.014 0.364 0.001 0.015

15 Haecksel 4 3 7 99 119 81 180 14.097 154.000 16.370 30.458 60.925 0.112 0.001 0.052 0.164

17 Jet 9 0 9 93 110 104 197 93.971 74.786 10.410 104.788 209.169 0.018 0.374 0.000 0.018

18 Jonah 5 2 7 103 138 78 181 10.955 27.167 3.044 13.185 27.184 0.148 0.000 0.055 0.202

19 Knit 4 0 4 92 92 101 193 13.742 67.462 1.762 8.862 24.365 0.021 0.147 0.000 0.021

21 MN105 3 3 6 107 162 76 183 6.082 0.000 5.545 11.616 23.242 0.097 0.000 0.110 0.207

22 MN23 1 0 1 124 138 133 257 0.000 0.000 0.000 0.000 0.000 0.002 0.068 0.000 0.002

23 MN60 1 2 3 99 165 84 183 22.168 0.000 13.283 41.743 77.194 0.040 0.000 0.048 0.087

24 MN83 4 2 6 115 139 80 195 1.321 15.333 3.884 8.306 13.511 0.120 0.000 0.073 0.193

25 Mus 3 0 3 111 120 128 239 2.122 1.900 0.000 0.887 3.009 0.006 0.119 0.000 0.006
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DEGREE CLOSENESS BETWEENNESS EIGENVECTOR

ID NAME L G O L S G O L S G B O L S G O

26 Notch 3 0 3 107 122 113 220 3.248 1.226 0.000 4.736 7.983 0.009 0.104 0.000 0.009

27 Number1 5 0 5 89 100 104 193 29.918 42.796 0.000 23.585 53.503 0.016 0.182 0.000 0.016

28 Oscar 2 3 5 85 97 82 167 33.456 31.321 12.051 76.659 122.165 0.012 0.061 0.057 0.068

29 Patchback 5 4 9 111 160 78 189 35.622 28.333 25.643 58.654 119.919 0.128 0.000 0.084 0.212

30 PL 4 1 5 94 89 95 189 32.294 209.500 3.523 24.665 60.482 0.030 0.064 0.011 0.041

31 Quasi 1 0 1 124 138 133 257 0.000 0.000 0.000 0.000 0.000 0.002 0.068 0.000 0.002

35 SMN5 1 0 1 142 188 107 249 0.000 0.000 0.000 0.000 0.000 0.029 0.000 0.000 0.029

41 SN90 5 0 5 100 117 105 205 13.743 8.074 6.085 22.723 42.550 0.015 0.300 0.000 0.015

42 SN96 3 3 6 98 93 87 185 25.072 231.000 4.111 24.176 53.359 0.029 0.012 0.052 0.081

44 Thumper 1 3 4 116 145 80 196 3.351 0.000 5.400 13.278 22.029 0.006 0.000 0.072 0.078

45 Topless 6 5 11 101 137 75 176 21.719 55.167 14.309 38.399 74.427 0.148 0.000 0.137 0.285

54 Upbang 7 0 7 89 101 99 188 58.600 70.149 32.083 90.710 181.393 0.023 0.344 0.000 0.023

57 Web 6 3 9 98 115 104 202 11.261 4.830 60.897 81.937 154.095 0.013 0.364 0.004 0.017

60 Zig 0 1 1 165 0 177 342 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001

61 Zipfel 1 2 3 115 145 87 202 2.493 0.000 6.003 17.481 25.977 0.006 0.000 0.046 0.052

Subgroup measures: Non-normalized values. L stands for local, G for global, S for subgraph, O for overall, and B for

boundary.
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