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A new, exact Floquet theory is presented for linear waves in two-layer fluids
over a periodic bottom of arbitrary shape and amplitude. A method of conformal
transformation is adapted. The solutions are given, in essentially analytical form, for
the dispersion relation between wave frequency and generalized wavenumber (Floquet
exponent), and for the waveforms of free wave modes. These are the analogues of the
classical Lamb’s solutions for two-layer fluids over a flat bottom. For internal modes
the interfacial wave shows rapid modulation at the scale of its own wavelength that is
comparable to the bottom wavelength, whereas for surface modes it becomes a long
wave carrier for modulating short waves of the bottom wavelength. The approximation
using a rigid lid is given. Sample calculations are shown, including the solutions that
are inside the forbidden bands (i.e. Bragg resonated).
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1. Introduction
Wave propagation over a bottom topography is a mathematically challenging

problem, from small-scale, free-surface waves to large-scale waves in geophysical
fluids (Rhines & Bretherton 1973; Athanessoulis & Belibassakis 1999). Even with
the restriction to linear dynamics, there are few exact analytical solutions but a broad
range of approximated theories, most of which exploit the inhomogeneities of the
medium by considering gentle slopes, small amplitudes or abrupt changes in bottom
topographies. The complexity and difficulty in this type of problems arise in the
intermediate case, where wavelength, depth and bottom variations have comparable
scales, making the inhomogeneity of the medium neither gradual nor small nor
localized (Rhines & Bretherton 1973; Weidman et al. 2015).

In a series of papers (Howard & Yu 2007; Yu & Howard 2010, 2012), a new
and general treatment has been developed for linear free-surface water waves over
arbitrary periodic topographies. The success of the theory rests on two principal
ideas: the construction of an analytical conformal map that transforms the flow

† Email address for correspondence: Jie.Yu.1@stonybrook.edu
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FIGURE 1. Acoustic image showing the internal waves trapped over a series of
approximately periodic bottom ridges in the Rotterdam Waterway, The Netherlands. The
internal wave wavelengths are comparable to that of the topography generating them. The
largest internal wave height is approximately three to four times that of the topography.
Image reproduced from Pietrzak et al. (1990) with the copyright permission from Nature.

domain onto a uniform strip, and the use of Floquet theory to exploit the spatial
periodicity. The theory provides a set of exact linear modes for periodic bottoms
that is analogous to the set of propagating and evanescent waves on a horizontal
flat bed, becoming the second known complete basis for water waves. Applications
have been made, demonstrating that this set of Floquet modes can indeed be used to
construct solutions to various boundary value problems involving finite domains of
an undulating bottom (Yu & Zheng 2012; Weidman et al. 2015).

In this paper, we adapt these ideas to the case of two layers of fluids over periodic
bottoms, focusing on the free wave modes. In stratified fluids, internal wave motion
is an important and ubiquitous component of the dynamics, having strong influence
on the transport and mixing of mass and momentum, with important implications
for chemical, biological and sediment processes in such systems. In coastal oceans
and estuaries, internal waves generated by, and interacting with, topographies and
boundaries are of particular interest. While many studies focus on isolated topographic
features, observations show that there are resonant internal waves over nearly periodic
bottoms (Pietrzak, Kranenburg & Abraham 1990; Pietrzak and Labeur 2004); see
figure 1.

The present study offers a first step towards addressing the impact of bottom
topography on both surface, as well as internal, wave modes allowed by a two-layer
system. For this, a finite-amplitude, periodic bottom, fully submerged in the lower
layer, is considered here. The theory is valid for any given frequency, therefore
allowing spatially varying solutions at both slow and fast scales, meaning that exactly
or quasi-spatially periodic, as well as unstable, resonant waves can all be found.
These solutions show the bottom scale expressed in the interfacial displacements of
the internal and surface wave modes. (In this paper, we shall refer to the solutions
of the Laplace equation and top and bottom boundary conditions as the ‘modes’
or ‘wave modes’. For each mode, the displacements of the upper (free) and lower
(interfacial) surface are synonymously referred to as the waves.)
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702 J. Yu and L. R. M. Maas

The resonant waves mentioned above are analogous to the phenomenon of Bragg
reflections, also called Bragg scattering or Bragg resonances, encountered in X-ray
diffraction in crystals. When the wave frequency falls into a resonance band, the
amplitude of the wave varies exponentially in space. These waves cannot exist in
an open domain of continuous periodic bottom. Thus, these frequency bands are
referred to as the ‘forbidden bands’ in physics. For water waves, resonant reflections
can be well illustrated by considering a linear surface wave incident upon a series
of submerged small sandbars in an otherwise flat seabed. Each bar crest can cause
a little bit of reflection, individually negligible. However, if the incident wave has a
frequency such that its wavelength is close to two times the bar spacing, reflections
from successive crests are in phase and add up to form a strong reflected wave
at the seaward side of the bar field. Due to energy losses to the back-scattered
waves, the incident wave amplitude decreases shorewards over the bar field. This is
the primary Bragg reflection. In general, resonant reflections occur when an integer
number of incident wavelengths λ is close to twice the bottom wavelength λbed,
i.e. λ ' (2/m)λbed, m = 1, 2, . . . (Yu & Howard 2010). Bragg scattering of water
waves by a patch of periodic bed has been extensively studied in the literature,
including a recent perturbation analysis for two-layer fluids over small-amplitude
bottom corrugations (Alam, Liu & Yue 2009). In such wave scattering problems, the
focus is typically on the amplitudes of the reflected and transmitted waves (with
respect to that of the incident wave arriving at the bar patch).

Although it gives the solutions for resonant frequencies, the present work is
fundamentally different from those studies of wave scattering by a patch of periodic
seabed, nor do we necessarily want to restrict ourselves to any particular frequencies.
Here, we consider a periodic bed extending continuously in a domain of indefinite
length. The question of interest to us is the dispersion relationship determining the
spatial scales (i.e. the eigenvalues or wavenumber equivalent) of the motion for a
given temporal frequency and the corresponding solutions (eigenfunctions) of the
flow field. For a generally periodic bed, these are the analogues of Lamb’s (1932)
solutions for a two-layer fluid over a flat bed. For such eigenmodes, reflection
and transmission are irrelevant (as the domain of periodic bed is indefinitely long
and there is no preference of an incident wave to scattered wave). However, such
eigenmodes can be used to formulate the boundary value problems of wave scattering
in a domain with a finite extent of bottom corrugations, as e.g. in Yu & Zheng (2012)
for one-layer fluids.

Another difference that should be emphasized is the classification and interpretation
of Bragg reflections. In their perturbation analysis, Alam et al. (2009) interpreted the
resonances using the classical wave–wave interaction theory by treating the bottom
(which is fixed) as a wave with zero frequency, following the framework of Liu &
Yue (1998) in the case of one-layer fluids, and referred to such as ‘nonlinear resonant
interaction’. Although different classes of resonant waves are resolved at different
orders of the perturbation analysis, the forcing mechanisms are primarily due to the
linear dynamics of the wave motion interacting with the bottom. This is particularly
clear from the evolution equations for the so-called Class I and II resonances in
Alam et al. (2009). As is pointed out in Yu & Howard (2010), Bragg reflection
is fundamentally a linear wave phenomenon, and does not necessarily follow the
framework of nonlinear wave–wave interaction. Indeed, Yu & Howard (2010) showed
that both primary- and higher-order resonances (referring to the original classification
in X-ray work) can be solved and interpreted using linear theory. This is similarly
seen here for the resonant interfacial waves. Of course, nonlinear convective inertia
can raise interesting effects, but can be addressed separately.
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Two-layer fluids over periodic topography 703

The rest of the paper is organised as follows. In § 2 the mathematical formulation is
presented, arriving at a determinantal equation for the dispersion relation between the
frequency and Floquet exponent (which is related to the wavenumber). Calculations
of the dispersion relation are given in § 3, including the comparison with Lamb’s
equation for a flat bottom. Waveforms for both internal and surface modes are shown
and discussed in § 4, including the cases when the frequencies are Bragg resonant.
Challenges in future research to extend and apply the present theory are discussed
in § 5.

2. Formulation
Consider two layers of inviscid incompressible fluids over a periodic bottom. Let

z point upwards and z= 0 be the undisturbed interface. The bottom is at z=−H` +
Hb(x), where H` is the mean (undisturbed) thickness of the lower-layer fluid of density
ρ` and Hb(x) is the periodic bed profile. In this study, we shall only consider the case
where Hb(x) is submerged in the lower-layer fluid. The undisturbed free surface is at
z=Hu, i.e. Hu is the thickness of the upper-layer fluid of density ρu < ρ`. For small
displacements of the free surface and interface (but not necessarily small amplitude
of bottom undulations), the linearized equations for the velocity potentials φu and φ`
are written, as follows. For the upper-layer fluid,

∇2φu = 0 for 0< z<Hu, (2.1)

φu,tt + gφu,z = 0 at z=Hu, (2.2)

where x, z, t subscripts denote partial derivatives and g is the gravity. For the lower-
layer fluid,

∇2φ` = 0 for −H` +Hb(x) < z< 0, (2.3)

φ`,xHb,x = φ`,z at z=−H` +Hb(x). (2.4)

At the interface, the continuity of pressure and normal velocity lead to

φu,tt + g(1− R)φu,z = Rφ`,tt at z= 0, (2.5)

ζ`,t = φ`,z = φu,z at z= 0, (2.6)

where R = ρ`/ρu > 1 and ζ` is the displacement of the interface. Similarly, the
displacement of the free surface is denoted by ζu and satisfies

ζu,t = φu,z at z=Hu. (2.7)

Let λbed be the spatial period of the seabed profile Hb(x). We shall normalize the
problem to be π-periodic, following the practice in Mathieu’s equation to which the
general idea of Floquet solutions applies (Yu & Howard 2012). For this purpose, we
define a wavenumber

kB =π/λbed, (2.8)

which corresponds to a wavelength 2λbed. Denoting dimensionless variables by primes,
we choose the following normalization.

x′ = kBx, z′ = kBz, t′ = t
√

gkB,(
ζ ′`, ζ

′
u

)= (ζ`, ζu) /a,
(
φ′`, φ

′
u

)= (φ`, φu) kB/(a
√

gkB),

}
(2.9)
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where a characterizes the interfacial wave amplitude, and is assumed to be infini-
tesimal for linear waves. The normalized (mean) depths and bottom profile are,

h′u = kBHu, h′` = kBH`, h′b(x
′)= kBHb(x). (2.10a−c)

For time-periodic solutions,(
φ′`, φ

′
u, ζ

′
`, ζ

′
u

)= (φ̂′`(x, z), φ̂′u(x, z), ζ̂ ′`(x), ζ̂
′
u(x)
)

e−iσ t′ + c.c., (2.11)

where
σ =ω/√gkB (2.12)

is the dimensionless frequency. Dropping the primes for clarity, from (2.1)–(2.5) the
dimensionless equations for the amplitudes of solutions are written as follows. For the
upper-layer fluid,

∇2φ̂u = 0 for 0< z< hu, (2.13)

−σ 2φ̂u + φ̂u,z = 0 at z= hu. (2.14)

For the lower-layer fluid,

∇2φ̂` = 0 for −h` + hb(x) < z< 0, (2.15)

φ̂`,xhb,x = φ̂`,z at z=−h` + hb(x). (2.16)

At the interface,

−σ 2φ̂u + (1− R)φ̂u,z =−σ 2Rφ̂` at z= 0. (2.17)

−iσ ζ̂` = φ̂`,z = φ̂u,z at z= 0. (2.18)

We shall note that the scaling implies that the nonlinear terms in the Euler equations
are of O(akB) or smaller. So, the linear theory, requiring ak� 1, where k is the water
wavenumber, is valid when k/kB is small or finite. One might expect nonlinearity to
become important for k/kB� 1, but the waves are so short that the bottom becomes
irrelevant, and thus the typical scaling ak should be restored.

2.1. The conformal transformation and the lower-layer problem
In view of the linearized matching conditions at the interface, (2.17) and (2.18), we
shall apply a conformal transformation only to the lower-layer fluid domain in order
to deal with the topography. In the mapped plane (ξ , η), the bed z=−h` + hb(x) is
transformed into a horizontal flat bottom η=−h and the undisturbed interface z= 0
into η= 0. The transformation functions are

x= ξ − h
∞∑

j=1

(
bj sin 2jξ − cj cos 2jξ

)
cosh 2jη/ sinh (2jh), (2.19)

z= η− h
∞∑

j=1

(
bj cos 2jξ + cj sin 2jξ

)
sinh 2jη/ sinh (2jh), (2.20)
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where the Fourier coefficients bj and cj are determined implicitly from

−h` + hb(x)=−h+ h
∞∑

j=1

(
bj cos 2jξ + cj sin 2jξ

)
, (2.21)

x= ξ − h
∞∑

j=1

(
bj sin 2jξ − cj cos 2jξ

)
coth (2jh), (2.22)

as the result of requiring the corrugated seabed to be mapped onto η = −h. The
transformation functions (2.19) and (2.20) imply that ξ and η are also normalized
using kB. We shall require hb(x) to have zero spatial average in x, so that h` is the
mean depth of the lower layer. As a consequence of this, as well as the fact that the
map preserves the spatial periodicity of the bottom (being periodic in both x and ξ
with the same period π), the water depth h in the mapped plane must be determined
together with the coefficients bj and cj, thus finding the map. Averaging (2.21) over
x, noting that dx= (dx/dξ)dξ with dx/dξ obtained from (2.22), we have,

h` = h+ h2
∞∑

j=1

(
b2

j + c2
j

)
j coth (2jh). (2.23)

It is clear that h < h`. Mathematically this is due to the stretching of conformal
mapping. From the physical point of view, it reflects the fact that the wave is more
affected by the bed crests than by the troughs that are deeper down. Thus, the water
depth ‘seen’ by the wave is shallower than the mean depth h`, effectively being
characterized by the depth h in the mapped plane. This is particularly noticeable
when the bottom amplitude is large. Of course, the choice above is not unique. We
could specify the depth in the mapped plane, but would then have to allow a non-zero
spatial average of hb(x). We cannot over-specify the conditions on the transformation
functions. For details of computing the map, the reader is referred to Yu & Howard
(2012). From this point on, for a given bottom profile hb(x), we consider the map
parameters bj, cj and h to be known.

In the mapped plane, (2.15) and (2.16) become

φ̂`,ξξ + φ̂`,ηη = 0 for − h<η < 0, (2.24)

φ̂`,η = 0 at η=−h. (2.25)

Following the Floquet theory for a one-layer fluid over a periodic bottom (Yu &
Howard 2012), we write the solution in the form

φ̂` = eµξP(ξ , η;µ, σ), (2.26)

where

P(ξ , η;µ, σ)=
∞∑

n=−∞
Dneinξ cosh [(n− iµ)(η+ h)]

cosh [(n− iµ)h]
(2.27)

is the periodic factor corresponding to the Floquet exponent µ for a given frequency
σ . It is readily seen that this satisfies (2.24) and (2.25). The Floquet exponent µ and
the corresponding Fourier coefficients Dn are yet to be determined, by satisfying the
conditions (2.17) and (2.18) at the interface.
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To complete the matching conditions, cf. § 2.3, we need to obtain φ̂`,z|z=0. Under
the transformation,

∂

∂z
= ξz

∂

∂ξ
+ ηz

∂

∂η
. (2.28)

Taking the derivative in z, and evaluating at z= 0 (i.e. η= 0), we get from (2.19) and
(2.20) ξz = 0 and ηz = 1/Q(ξ) at z= 0, where

Q(ξ)= 1− h
∞∑

j=1

(
bj cos 2jξ + cj sin 2jξ

)
2j/ sinh (2jh) (2.29)

is related to the Jacobian of transformation, i.e. J1/2 =Q(ξ) at z= 0. Thus,

φ̂`,z|z=0 =Q−1φ̂`,η|η=0. (2.30)

For later convenience, we quote here

φ̂`|z=0 =
∞∑

n=−∞
Dne(µ+in)ξ , (2.31)

φ̂`,η|z=0 =
∞∑

n=−∞
Dne(µ+in)ξZn(µ), (2.32)

where
Zn(µ)≡ (n− iµ) tanh [(n− iµ)h]. (2.33)

Recall that at z= 0, x and ξ are related via (2.19), i.e.

x= ξ + f (ξ), f (ξ)≡−h
∞∑

j=1

(
bj sin 2jξ − cj cos 2jξ

)
/ sinh (2jh). (2.34)

2.2. The upper-layer problem
As can be verified by direct substitution, the solution that satisfies (2.13) and (2.14)
can be written as

φ̂u =
∞∑

n=−∞
e(µ+in)x Bn

cosh [(n− iµ)hu]

×
{

cosh [(n− iµ)(z− hu)]+ σ 2

(n− iµ)
sinh [(n− iµ)(z− hu)]

}
. (2.35)

It must also satisfy the conditions at the interface (2.18) and (2.17). At z= 0,

φ̂u,z =
∞∑

n=−∞
e(µ+in)xBnYn(σ , µ), (2.36)

where
Yn(σ , µ)≡ σ 2 − (n− iµ) tanh [(n− iµ)hu], (2.37)
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and

−σ 2φ̂u + (1− R)φ̂u,z =−
∞∑

n=−∞
e(µ+in)xBnσ

2Ln(σ , µ), (2.38)

where

Ln(σ , µ)≡ R−
{

σ 2

(n− iµ)
+ (R− 1)

(n− iµ)
σ 2

}
tanh [(n− iµ)hu]. (2.39)

These will be needed to complete the matching conditions at z= 0, as follows.

2.3. Matching at the interface and the dispersion relationship

The objective here is to convert e(µ+in)ξ , appearing in (2.31) and (2.32), into a Fourier
series in x. It follows from (2.34),

e(µ+in)ξ = e(µ+in)xe−(µ+in)f (ξ). (2.40)

Since f (ξ) is π-periodic in ξ , hence so in x, the function e−(µ+in)f (ξ) is π-periodic in
x and can be written in a Fourier series, i.e.

e−(µ+in)f (ξ) =
∞∑

j=−∞
An,jei2jx. (2.41)

Since (2.34) depends on the known map parameters bj, cj and h, we now consider
An,j to be known. Applying an index shift, (2.31) and (2.32) can be rewritten as

φ̂`|η=0 =
∞∑

n=−∞
e(µ+in)x

∞∑
j=−∞

Dn−2jAn−2j,j, (2.42)

φ̂`,η|η=0 =
∞∑

n=−∞
e(µ+in)x

∞∑
j=−∞

Dn−2jAn−2j,jZn−2j. (2.43)

Similarly, the function Q(ξ) in (2.29) can be written as

Q(ξ)=
∞∑

j=−∞
Qjei2jx, (2.44)

where Q0 6= 0 is real, and Qj and Q−j are complex conjugates. Note that the Qj’s
depend only on the map, hence the properties of bottom profile, being independent of
σ and µ.

Substituting (2.38) and (2.42) into (2.17), cancelling the common factor eµx and
collecting the coefficients of einx, we find

R
∞∑

j=−∞
Dn−2jAn−2j,j = BnLn(σ , µ). (2.45)

In view of (2.30), we rewrite from (2.18)

φ̂`,η =Qφ̂u,z at z= 0. (2.46)
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Substituting in (2.36), (2.43) and (2.44), shifting the index and again cancelling the
factor eµx, we collect the coefficients of einx, obtaining

∞∑
j=−∞

Dn−2jAn−2j,jZn−2j =
∞∑

j=−∞
Bn−2jQjYn−2j. (2.47)

Equations (2.45) and (2.47) form a homogenous system for determining Dn and Bn.
Define the column vectors

D= [· · ·D−n · · ·Dn · · ·
]
, B= [· · · B−n · · · Bn · · ·

]
. (2.48a,b)

In matrix form, (2.45) and (2.47) can be rewritten as

M1 D=M2 B, M3 D=M4 B. (2.49a,b)

It is readily seen from (2.45) that M2 is diagonal and invertible since the diagonal
elements Ln(σ , µ) 6= 0. (In an even-n representation, L0 = R − σ 2hu 6= 0 for µ = 0.)
Thus, we rewrite from (2.49)

B=M−1
2 M1 D, (2.50)

M D= 0, where M =M3 −M4M−1
2 M1. (2.51)

The determinant det (M) is a function of µ and σ , given the parameters h`, hu and
R, as well as the map parameters h, bj and cj which represent the properties of the
bottom profile. Let us denote ∆(µ, σ ; h`, hu, R,B) ≡ det (M), where B collectively
represents

{
bj, cj, h

}
. For a non-trivial solution Dn, we require

∆(µ, σ ; h`, hu, R,B)= 0. (2.52)

For spatial periodic motions, the Floquet exponent µ is purely imaginary, together
with the period of P(ξ , η; µ, σ) determining the spatial periodicity. In other words,
for general periodic bottoms, (2.52) is the analogue of the dispersion relationship for
two-layer fluids over a flat bottom (Lamb 1932, article 231).

For some frequencies, (2.52) cannot be satisfied by purely imaginary µ, but
require real µ; thus spatially periodic motion does not exist. This is the case when
Bragg resonances occur. Given the average depths hu and h`, density ratio R and
bottom profile, these frequencies appear as isolated narrow bands, i.e. ‘forbidden
bands’ (since, however small the real µ is, the wave amplitudes will become spatially
unbounded in either positive or negative x direction, unless the flow domain is finite).

We note that µ and −µ are both solutions of (2.52) for the given frequency σ . The
sign signifies the direction of wave propagation in the case of purely imaginary µ, and
the direction of spatial growth of wave amplitude in the case of real µ.

3. Calculation of the dispersion relation
Finding the roots of (2.52) can be done, e.g. by using MatLab. Since we are only

interested in the zeros of the determinant, we can scale the rows and columns by
positive constants to improve the condition of the infinite matrix M (Yu & Howard
2012). Let 1hb be the crest-to-trough height of bottom profile hb(x). When 1hb = 0,
(2.52) reduces to Lamb’s dispersion relation for a flat bottom; see appendix A. Lamb’s
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FIGURE 2. (a) Graph of ∆(σ,µ) versus µ2 for σ =0.04 with 1hb=0. The inset gives the
close up for −1<µ2 <−0.85, showing the root.@: real(∆); – – –: imag(∆). (b) Lamb’s
dispersion function D(σ , µf ) versus µf = k/kB for σ = 0.04. Parameters are h` = 0.5,
hu = 0.3, R= 1.02.

equation (A 4) is quadratic in ω2. For a given frequency, it has two wavenumbers:
one for the internal mode where the interfacial and free-surface waves are out of
phase, and the other for the surface mode (much smaller k, hence longer wavelength)
where the two waves are in phase. In figure 2(a), determinant ∆(σ, µ) is plotted
as a function of µ2 (covering the range for real and imaginary µ) for 1hb = 0,
showing the two roots for σ = 0.04, given h` = 0.5, hu = 0.3 and R= 1.02. The root
µ = 0.3347i (µ2 = −0.1120) gives the internal mode and the other µ = 0.9552i
(µ2=−0.9123) gives the surface mode; see the corresponding waveforms in figure 5.
The periodic factor P(ξ , η; σ , µ) is 2π-periodic (for an odd-n representation) and
reduces to a simple harmonic function as 1hb→ 0. Thus, for purely imaginary µ= iν,
the wavenumber given by the Floquet solution is k/kB= 1− ν. For σ = 0.04, Lamb’s
equation (A 4) gives k/kB = 0.6653 (= 1− 0.3347) and k/kB = 0.0448 (= 1− 0.9552),
cf. figure 2(b), confirming the results given by the Floquet solution.

With a sinusoidal bottom hb/h`= 0.6 cos 2x (1hb= 1.2h`), we solve (2.52) and get
µ= 0.2947i (µ2 =−0.0869) and µ= 0.9513i (µ2 =−0.9049) for σ = 0.04, keeping
other parameters the same; see figure 3(a). The decrease of ν, hence the decrease of
wavelength (cf. figures 5 and 6), reflects the fact that the effective water depth of the
lower layer is reduced due to the presence of bottom topography, being h= 0.3819 in
the mapped plane compared with the mean depth h` = 0.5 in the physical plane.

For internal modes, the free-surface displacement is much smaller compared with
that at the interface. When the focus is on internal waves, it is common to make
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FIGURE 3. Graphs of ∆(σ,µ) versus µ2 for σ =0.04 and a sinusoidal bottom with height
1hb = 1.2h`.@: real(∆); – – –: imag(∆). (a) Full calculation of M as defined in (2.51);
(b) with the rigid-lid approximation. Parameters are h` = 0.5, hu = 0.3, R= 1.02.

the rigid-lid approximation, assuming ζu ≡ 0, hence suppressing the surface mode.
The formulation in § 2 can be modified to incorporate the rigid-lid assumption; see
appendix B. The calculation of the dispersion relation using (B 3) and (B 5) is shown
in figure 3(b). It is seen that the internal mode is retained, µ=0.2968i (µ2=−0.0881)
for σ = 0.04, and compares well with the full calculation in figure 3(a), while the root
for the surface mode disappears.

In the case of a flat bottom, the length scale of the medium in which waves
propagate is indefinite. Thus, a wave with arbitrary wavelength (horizontal distance
between two adjacent wave crests or troughs) is possible – this manifests the
one-to-one relationship between wavenumber k and ω in the case of surface waves
in a one-layer homogeneous fluid, and the relation between one k and two ω’s in the
case of two-layer fluids (one ω for the surface mode and the other for the internal
mode). With a periodic seabed, the spatial periodicity of the bottom sets an intrinsic
length scale for the wave motion. If the water wavelength is not an integer multiple
of the bottom period, the two adjacent wave crests (or troughs) cannot be identical
as they see different parts of the topography; therefore the wave must modulate
(i.e. slowly vary) in space. When the frequency is outside the forbidden bands,
the Floquet exponent is imaginary, µ = iν, and the wave becomes quasi-periodic,
with its amplitude oscillating in space. (These are analogous to Bloch waves in a
crystal which can exist in an open domain of continuous periodic medium.) If ν is
a rational number, the wave field can exactly repeat itself over an integer number
of wavelengths, giving a spatially periodic fluid motion. Waves with wavelength
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FIGURE 4. Graph of ∆(σ, µ) versus σ for µ= 0.2947i over the sinusoidal bottom with
1hb = 1.2h`. The inset gives close up for 0.25< σ < 0.4, showing the multiple roots.@:
real(∆); – – –: imag(∆). Parameters are h` = 0.5, hu = 0.3, R= 1.02.

shorter than the bottom wavelength must always modulate. The longer the water
wavelength is, the greater the modulation length is, hence the weaker the amplitude
variation becomes. Periodic waves, with identical adjacent crests and troughs, occur
when µ = (1 − 2/m)i, where integer m > 2, having wavelengths λ = mλbed. Bragg
resonances occur when λ' (2/m′)λbed, m′ = 1, 2, . . . .

Adding an integer to the imaginary part of µ is equivalent to shifting the index n
in the Fourier series of the periodic factor P, effectively changing the period of the
dominating Fourier components. This means that given a value of µ, we expect to find
more than two σ ’s that satisfy the dispersion relation (2.52), including short waves that
can fit into, or modulate in, the length corresponding to µ. This is seen in figure 4
for µ = 0.2947i over the sinusoidal bottom. The first root σ = 0.04 is the internal
mode (wavelength close to 3π) seen in figure 3(a); the second and third roots σ =
0.0729, 0.1383 correspond, respectively, to the internal modes of wavelengths slightly
shorter than 2π and π, having the same modulation length, followed by more roots for
even shorter waves. For the convenience of interpreting results, it seems to be better
to choose a frequency σ , finding µ, as in figure 3.

4. The waveforms
Once the dispersion relation (2.52) is solved, the vector in the null space of M gives

the solution for Dn, and Bn which follows from (2.50). At the interface, the waveform
is written from (2.18) as

ζ̂`(x)= iσ−1φ̂u,z|z=0 = iσ−1
∞∑

n=−∞
e(µ+in)xBnYn. (4.1)

From the normalized (2.7), the waveform at the free surface is

ζ̂u(x)= iσ−1φ̂u,z|z=hu = iσ
∞∑

n=−∞
e(µ+in)x Bn

cosh [(n− iµ)hu] . (4.2)
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FIGURE 5. Waveforms at t= 0 for 1hb = 0 (flat bed). ——: ζ`; · · · · · · : ζu. (a) Internal
mode: σ = 0.04, µ = 0.3347i. (b) Surface mode: σ = 0.04, µ = 0.9552i. Parameters are
h` = 0.5, hu = 0.3, R= 1.02.

We first check the calculation of (4.1) and (4.2) against the known results for a
flat bottom (Lamb 1932), by setting 1hb = 0. For the two roots in figure 2(a), the
waveforms are shown in figure 5. For the internal mode, ζu and ζ` are out of phase,
with an amplitude ratio au/a`= 0.0121; for the surface mode, ζu and ζ` are in phase,
with au/a` = 1.6047. These exactly agree with Lamb’s results, cf. (A 5).

Over the sinusoidal bottom, ζ` of the internal mode becomes less sinusoidal in
x, clearly modulating at the scale comparable to the wavelength, whereas ζ` of the
surface mode becomes a long wave with short waves riding on it; see figure 6. These
short waves have a wavelength π, equal to that of the bottom. They are stationary
relative to the long wave. Their amplitudes are comparable to that of the long wave,
modulating along it and vanishing at the long wave crests and troughs. An example for
a more complex and less smooth bottom profile is shown in figure 7. It is interesting
to note that the short waves become out of phase passing a long wave crest or trough.
These short waves are not simply copies, or rescaled versions, of the bottom shapes.
This is clear from the nonlinear dependence on the Jacobian of transformation J in
the boundary condition at the interface, cf. (2.30).

The presence of short waves in ζ` of a surface mode is a striking new feature, and
can be understood by examining the case of small bottom amplitude, denoted by εb.
When εb� 1, we can solve the lower-layer problem in the (x, z) plane, seeking for
the perturbation solution φ̂`= φ̂`0+ εbφ̂`1+ · · · . The boundary condition (2.16) at the
seabed can be approximated using the Taylor expansion at z=−h`, yielding

φ̂`0,z = 0 at z=−h`, (4.3)

φ̂`1,z = hb,xφ̂`0,x − hbφ̂`0,zz at z=−h`. (4.4)

The leading-order solution is that of a two-layer fluid over a flat bottom, i.e. the free
wave φ`0 ∼ ei(µf x−σ t), where µf = k/kB� 1 for the surface mode and satisfies Lamb’s
dispersion relation (A 4). At the next order, we have a forced problem, with φ̂`1 being
generated due to the interaction of φ`0 and bottom hb(x)∼ ei2x + c.c. (Effects due to
nonlinear convective inertia are not considered.) It follows from (4.4) that φ̂`1 must
consist of harmonics ei(µf+2)x, ei(µf−2)x and their complex conjugates. This leads to
a waveform ζ` ∼

[
a0 + εb(a1ei2x + b1e−i2x)

]
ei(µf x−σ t) + c.c., explaining the short wave
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FIGURE 6. Waveforms at t = 0 over the sinusoidal bottom with 1hb = 1.2h` for σ =
0.04. ——: ζ`; · · · · · · : ζu. (a) Internal mode: µ= 0.2947i. (b) Surface mode: µ= 0.9513i.
Parameters are h`= 0.5, hu= 0.3, R= 1.02. (c) A section of graph (b) in −6.28< x< 6.28,
comparing the short wavelength variations in ζ` with the bottom profile in (d): hb/h` =
0.6 cos 2x. The undisturbed interface is at z= 0.

variations at the scale of the bottom wavelength. The amplitude modulation and phase
changes of short waves are due to the dependence on the derivatives of φ̂`0. For
large-amplitude bottoms, this essential physics of fluid–bottom interaction remains, but
the short waves are no longer simple harmonics in x but general periodic functions.

When the frequencies are inside the forbidden bands, the internal modes are strongly
affected by the bottom due to Bragg resonance. For the internal mode, the resonant
interfacial wave ζ` has an amplitude that grows exponentially in x (or decay in −x, as
±µ are now real), whereas for the surface mode, the amplitude of short waves can
exceed that of the long wave carrier. figure 8 shows the resonant interfacial waves
with wavelengths close to 2π and 2π/3 (i.e. the primary m = 1 and tertiary m = 3
Bragg reflections), and the corresponding surface modes.

In the examples above, the waveforms ζu of the surface modes are virtually
unaffected. The short wave variations in ζ`, though having amplitudes comparable
to the long wave carrier, are nevertheless of small amplitude because of the linear
wave theory. (They are of course also small because the surface displacement of the
surface mode, and hence its interface displacement, is much smaller than the interface
displacement due to the internal mode.) Thus, the short waves in ζ` are not much
felt by the long waves at the upper surface. However, when the surface modes have
wavelengths comparable to that of the bottom, ζu can be noticeably affected, since
the interface is seen by ζu to be sufficiently ‘rough’.
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FIGURE 7. Waveforms at t = 0 over a doubly sinusoidal bottom for σ = 0.04. ——: ζ`;
· · · · · · : ζu. (a) Internal mode: µ = 0.3023i. (b) Surface mode: µ = 0.9518i. Parameters
are h` = 0.5, hu = 0.3, R = 1.02. (c) A section of graph (b) in −26.28 < x < −13.72,
comparing the short wavelength variation in ζ` with the bottom profile in (d): hb/h` =
0.3154(sin 4x+ sin 6x), i.e. 1hb = 1.20h`. The undisturbed interface is at z= 0.

While the presence of small amplitude, ‘fast’ (short scale) variations at the interface
due to a long surface wave may have gone unnoticed, the gradient due to the
short-scale waves and the associated velocity field, are much larger than those due to
the carrier long wave. And necessarily so, as the velocity field is forced to respond
at the scale at which the topographic variations occur. All this is particularly relevant
in shallow seas, where the top and bottom layers are mixed by winds and tides,
respectively, and the density interface (pycnocline) often is close to the bottom. In
the deep ocean, however, the bottom layer is much thicker and the influence of bed
corrugations may not be strongly felt at the pycnocline, and the short-scale variations
are thus lacking in that case.

5. Future challenges
The consideration of linear waves over a periodic bottom undulation, of arbitrary

amplitude and shape but fully submerged in the lower layer of a two-layer fluid, is
a first step towards bridging the gap with the linear, 2-D internal waves arising in
continuously stratified fluids confined to enclosed domains. In applying this work
to a confined, continuously stratified sea, the present two-layer problem requires
modification by adding (1) vertical sidewalls, as for the surface wave problem in
Howard & Yu (2007) and Weidman et al. (2015), (2) slopes to these sidewalls and
(3) multiple layers. Three comments can be made regarding these additions.
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FIGURE 8. Resonant waveforms at t = 0 over the sinusoidal bottom with 1hb = 1.2h`.
——: ζ`; · · · · · ·: ζu. For σ = 0.055 (λ close to 2π, i.e. the primary m = 1 resonance):
(a) internal mode, µ= 0.0603; (b) surface mode, µ= 0.9328i. For σ = 0.15 (λ close to
2π/3, i.e. the tertiary m= 3 resonance): (c) internal mode, µ= 0.0076; (d) surface mode,
µ= 0.8242i. Parameters are h` = 0.5, hu = 0.3, R= 1.02.

First, the addition of a sloping side wall has been solved for surface waves in
an infinite wedge (see Whitham (1979)). Application to confined fluid domains is,
even for the surface wave problem, non-trivial. It requires finding an appropriate
combination of wave and evanescent modes (which together constitute a complete
basis and are provided by Yu & Howard (2012) for a generally periodic bed),
such that the impermeability at the side walls (lateral boundaries) can be satisfied
(Weidman et al. 2015). Before addressing this issue in layered systems, the existence
of a similar, complete basis needs to be investigated. So far, this has not even been
discussed for the two-layer case.

Second, in a confined basin, the surface wave spectrum is discrete, while in
continuously stratified fluids, the internal wave spectrum is continuous. This transition
is brought about by a proliferation of internal wave modes upon increase of the
number of layers.

Third, sloping walls provide a coupling between these modes. One needs to find out
how interfacial displacements of these modes (i.e. modal amplitudes) organize such
as to progressively mimic the oblique propagation of internal waves when increasing
the number of layers. This paves the way for discussion of internal wave attractors
in multi-layer systems. Internal wave localization on so-called wave attractors occurs
in continuously stratified fluids that are confined to containers possessing one or
more sloping boundaries (Maas & Lam 1995). Internal waves of frequency less
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than the fluid’s stability frequency approach these attractors regardless of where they
are forced, and, because of geometric focusing, amplify until checked by viscous
damping (Hazewinkel et al. 2008) or nonlinearity (Scolan, Ermanyuk & Dauxios
2013). Localization of internal waves has been confirmed in laboratory experiments
(Maas et al. 1997; Hazewinkel et al. 2010; Hazewinkel, Grisouard & Dalziel 2011)
and numerical experiments (Drijfhout & Maas 2007; Grisouard, Staquet & Pairaud
2008; Echeverri et al. 2011).

The mapping method presented in this study requires the bed corrugations to
remain in the bottom layer. This could set a limitation to the maximum corrugation
height, when extending to multiple layers. On the other hand, in our formulation,
the layer thickness is independent, as well as the density within each layer. This can
be manipulated to advantage, offsetting the limitation just mentioned and effectively
dealing with various density profiles. Still it remains a limitation, in particular in the
case of uniformly stratified fluids or, if the number of layers below the pycnocline
(assuming it sits above the bottom topography) is important.
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Appendix A. The flat-bottom limit
In the limit 1hb→ 0, i.e. hb= 0, bj= cj= 0 and h= h`. It follows from (2.34) that

f (ξ)= 0 and x= ξ . From (2.41), An,0= 1 and An,j= 0 for j=±1,±2, . . . . From (2.29),
Q= 1, hence Q0= 1 and Qj= 0 for j=±1,±2, . . . , following (2.44). Equations (2.45)
and (2.47) reduce to

Dn = Bn

{
1−

[
σ 2R−1

(n− iµ)
+ (1− R−1)

(n− iµ)
σ 2

]
tanh [(n− iµ)hu]

}
, (A 1)

Dn(n− iµ) tanh [(n− iµ)h] = Bn
{
σ 2 − (n− iµ) tanh [(n− iµ)hu]

}
. (A 2)

Clearly, Dn and Dn′ are not coupled, nor are Bn and Bn′ for n 6= n′. Thus, we can set
Dn = Bn = 0, for n 6= −1, looking for a non-trivial solution with just one term. For
µ= iν, let us write 1− ν =µf . From (A 1) and (A 2), for n=−1 we obtain

σ 2 −µf tanh (µf hu)

=
{

1−
[
σ 2

Rµf
+ (1− R−1)

µf

σ 2

]
tanh (µf hu)

}
µf tanh (µf h`). (A 3)

After some algebra, it can be rewritten as

σ 4
[
R coth (µf h`) coth (µf hu)+ 1

]
− σ 2Rµf

[
coth (µf hu)+ coth (µf h`)

]+ (R− 1)µ2
f = 0. (A 4)

This is Lamb’s dispersion relation for two-layer fluids over a flat bottom, written
using µf = k/kB and σ = ω/√gkB by adapting the normalization in the present study.
Denoting the left-hand side by D , we write (A 4) as D(σ ,µf ;hu,h`,R)=0. For simple
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sinusoidal waves over a flat bottom, (Lamb 1932) also gave the ratio of amplitudes
of the displacements of the upper and lower surface rewritten here in dimensionless
form as

au

a`
= 1

cosh (µf hu)−µfσ−2 sinh (µf hu)
. (A 5)

Appendix B. The rigid-lid approximation

Suppose the displacement of the free (upper) surface is negligible, i.e. ζ̂u ≡ 0. The
appropriate boundary condition is

φ̂u,z = 0 at z= hu. (B 1)

The matching conditions at the interface z= 0 remain unchanged, cf. (2.17) and (2.18).
Instead of (2.35), the solution for the upper-layer problem, that satisfies the Laplace
equation (2.13) and condition (B 1), can now be written as

φ̂u =
∞∑

n=−∞
e(µ+in)x Bn

cosh [(n− iµ)hu]
cosh [(n− iµ)(z− hu)]. (B 2)

Using this solution, we redo the matching conditions at z= 0, following the algebra
in (2.3). The pressure condition (2.17) leads to

R
∞∑

j=−∞
Dn−2jAn−2j,j = BnL̃n(σ , µ), (B 3)

where
L̃n(σ , µ)= 1− (R− 1)

(n− iµ)
σ 2

tanh [(n− iµ)hu]. (B 4)

The kinematic condition (2.18) gives

∞∑
j=−∞

Dn−2jAn−2j,jZn−2j(µ)=
∞∑

j=−∞
Bn−2jQjỸn−2j(µ), (B 5)

where
Ỹn(µ)=−(n− iµ) tanh [(n− iµ)hu]. (B 6)

Equations (B 3) and (B 5) replace (2.45) and (2.47), determining the dispersion
relationship between σ and µ under the assumption of a rigid lid. From (2.37)
and (2.39), for σ � 1 and fixed n, Ln(σ , µ) = L̃n(σ , µ) + O(σ 2) and Yn(σ , µ) =
Ỹn(µ)+O(σ 2).
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