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We prove that, contrary to the L1-Nash inequality, there exists a second best
constant for the L2-Nash inequality on any smooth compact Riemannian manifold.

1. Introduction

The Nash inequality in Rn asserts that there exists A > 0 such that, for all
u 2 D(Rn),

³Z

Rn

u2 dx
1́+ 2=n

6 A

Z

Rn

jruj2 dx

³Z

Rn

juj dx
4́=n

:

For n > 3, this inequality is obtained by combining the Sobolev inequality,
³Z

Rn

juj2n=(n¡2) dx
(́n¡2)=n

6 A

Z

Rn

jruj2 dx;

and H�older’s inequality,
³Z

Rn

u2 dx
1́+ 2=n

6
³Z

Rn

juj dx
4́=n³Z

Rn

juj2n=(n¡2) dx
(́n¡2)=n

By [3], the best constant in the Nash inequality is

A0(n) =
(n + 2)(n + 2)=n

22=nn¶ 1(B)jBj2=n
;

where jBj denotes the Euclidean volume of the unit ball B in Rn and ¶ 1(B) is the
 rst Neumann eigenvalue of the Laplacian for radial functions on B.

In this paper we let (M; g) be a smooth compact Riemannian n-manifold. With-
out loss of generality, we may assume that Vol(M ) = 1. The previous Nash inequal-
ity is clearly not true on M . It has to be modi ed by adding another term. One may
add an L1-term to get what we will refer to as the L1-Nash inequality, 8u 2 C 1 (M ),

³Z

M

u2 dvg

1́+ 2=n

6 A

Z

M

jruj2g dvg

³Z

M

juj dvg

4́=n

+ B

³Z

M

juj dvg

2́+ 4=n

: (1.1)

This inequality was studied in [4] by Druet, Hebey and Vaugon. They showed that,
for every ° > 0, there exists B ° > 0 such that it is true with A = A0(n) + ° and
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622 E. Humbert

B = B ° . More importantly, they also exhibited the rather unexpected fact that the
existence of B, such that it is true with A = A0(n), depends on the geometry of
M .

We consider in this paper the following inequality, 8u 2 C 1 (M ):

³Z

M

u2 dvg

1́+ 2=n

6
³

A

Z

M

jruj2g dvg + B

Z

M

u2 dvg

´³Z

M

juj dvg

4́=n

N (A; B)(u)

We refer to this inequality as the L2-Nash inequality. As in the case of the L1-
Nash inequality, for n > 3, it is obtained by combining the Sobolev inequality
and H�older’s inequality. Concerning terminology, we say that N (A; B) is valid
if N (A; B)(u) is true for all u 2 C 1 (M).

In this paper we study the sharp L2-Nash inequality N (A0(n); B). In this case,
contrary to the sharp L1-Nash inequality, we prove that B always exists. Among
other references, a similar study was done in [2,5,6] on what concerns classical sharp
Sobolev inequalities. We especially point out the beautiful and inspiring reference [5]
by Druet, which we somehow follow here. However, note that our partial di¬erential
equation and the concentration phenomenon we face are of di¬erent nature. In
particular, the di¯ culties we have to deal with are distinct. In order to be easily
understood, the proof is done in the case of compact Riemannian manifolds. This
contains all the technical di¯ culties. Concerning manifolds with boundary and
complete manifolds, we only give a sketch of the proof. A general reference on
sharp Sobolev-type inequalities is given in [7].

De ne A by

A = fA > 0 j 9 B > 0 such that N (A; B) is validg:

Mimicking what was done in [4], one easily gets that

inf(A) = A0(n):

Conversely, we prove the following.

Theorem 1.1. Let (M; g) be a smooth compact Riemannian n-manifold. Then
there exists B > 0 such that, for all u 2 C 1 (M ),

³Z

M

u2 dvg

1́+ 2=n

6
³

A0(n)

Z

M

jruj2g dvg + B

Z

M

u2 dvg

´³Z

M

juj dvg

4́=n

:

In other words, there always exists B for which N (A0(n); B) is valid.

For n = 1 (i.e. for M = S1), a simple proof of theorem 1.1 goes through a
partition of unity argument. Such a proof extends to ®at manifolds. Independently,
an extension of this result to manifolds with boundary and complete manifolds will
be sketched at the end of x 2.

We now de ne

B0 = inffB 2 R such that N (A0(n); B) is validg:
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In last section, we compute B0 for the circle S1 using a non-trivial argument. Giving
the explicit value for B0 in the other cases is a di¯ cult problem. At the moment,
we only obtain the following result in the general case.

Theorem 1.2. Let (M; g) be a smooth compact Riemannian n-manifold. Then

B0 > max

³
Vol(M )¡2=n;

jBj¡2=n

6n

³
2

n + 2
+

n ¡ 2

¶ 1

´³
n + 2

2

2́=n

max
x 2 M

Sg(x)

´
;

where jBj is the volume of the unit ball B in Rn, ¶ 1 is the ¯rst non-zero Neumann
eigenvalue of the Laplacian on radial functions on B, Vol(M) is the volume of
(M; g) and Sg(x) is the scalar curvature of g at x.

We now say that u 2 H2
1 (M ), u 6² 0, is an extremal function for the sharp

L2-inequality N(A0(n); B0) if

³Z

M

u2 dvg

1́+ 2=n

=

³
A0(n)

Z

M

jruj2g dvg + B0

Z

M

u2 dvg

´³Z

M

juj dvg

4́=n

:

We then prove, with a very simple argument, the following result.

Theorem 1.3. Let (M; g) be a smooth compact Riemannian n-manifold with n > 1.
Suppose that the L1-Nash inequality (1.1) is true, with A = A0(n) and some B.
Then there exists u 2 H2

1 (M ), u 6² 0, an extremal function for the sharp L2-Nash
inequality N (A0(n); B0).

Together with the results of [4], this leads to the following result. A discussion
on the n-dimensional Cartan{Hadamard conjecture can be found in [7].

Corollary 1.4. There exists extremal functions for the sharp L2-Nash inequal-
ity N (A0(n); B0) on any smooth compact Riemannian n-manifold of non-positive
sectional curvature when the n-dimensional Cartan{Hadamard conjecture is true.
In particular, there exist extremal functions for the sharp L2-Nash inequality
N (A0(n); B0) on any smooth compact Riemannian manifold of non-positive sec-
tional curvature and dimension 2, 3 or 4.

A more in-depth study of the existence of extremal functions for the sharp L2-
Nash inequality will be done in [8]. In x 5 below, we point out the example of S1,
where constant functions are extremal functions for the sharp L2-Nash inequality.
We also exhibit a counterexample where this is false.

2. Proof of theorem 1.1

The proof of theorem 1.1 proceeds in four steps, which are quite similar to the ones
of [5]. The speci c problems of the L2-Nash inequality appear in step 2, where the
method used in [5] does not work, and especially in step 4, where the special form
of our inequality leads to several di¯ culties. We assume here that n > 2. The proof
of the theorem then proceeds by contradiction. We assume that, for all B > 0, there
exists u 2 C 1 (M ) such that

³Z

M

u2 dvg

1́+ 2=n

>

³
A0(n)

Z

M

jruj2g dvg + B

Z

M

u2 dvg

´³Z

M

juj dvg

4́=n

:
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This is clearly equivalent to ~· ¬ = infu 2 ¤
~I¬ (u) < A0(n)¡1 for all ¬ > 0, where

~I¬ (u) =

³Z

M

jruj2g dvg + ¬

´³Z

M

juj dvg

4́=n

and

¤ =

»
u 2 C 1 (M ) j

Z

M

u2 dvg = 1

¼
:

In order to carry over the non-di¬erentiability of ~I ¬ , we de ne for ° ; ¬ > 0 and
u 2 ¤ ,

~I ° ;¬ (u) =

³Z

M

jruj2g dvg + ¬

´³Z

M

juj1+ °
dvg

4́=(n(1+ ° ))

and

· ° ;¬ = inf
u 2 ¤

~I° ;¬ (u):

One may check that lim ° ! 0 · ° ;¬ = ~· ¬ . Hence, for ¬ < 0, we can choose ( ° ¬ ) ¬

such that lim ¬ ! 1 ° ¬ = 0 and · ° ¬ ;¬ < A0(n)¡1. We let

· ¬ = · ° ¬ ;¬ and I ¬ = ~I° ¬ ;¬ :

Mimicking what was done in [4], one may prove that there exists u ¬ 2 C2(M )
such that I¬ (u¬ ) = · ¬ with u ¬ > 0. Moreover, writing the Euler equation of u ¬ ,
we get that, in the sense of distributions,

2A ¬ ¢gu ¬ +
4

n
B ¬ u ° ¬

¬ = k ¬ u ¬ ; (E ¬ )

where ¢g stands for the Laplacian with the minus sign convention, and where

A ¬ =

³Z

M

u1+ ° ¬
¬ dvg

4́=(n(1+ ° ¬ ))

B ¬ =

³Z

M

jru ¬ j2g dvg + ¬

´³Z

M

u1+ ° ¬
¬ dvg

4́=(n(1+ ° ¬ ))¡1

k ¬ =
4

n
· ¬ + 2

Z

M

jru¬ j2g dvg

³Z

M

u1+ ° ¬
¬ dvg

4́=(n(1+ ° ¬ ))

:

By the Sobolev embedding theorem, we have u ¬ 2 L2n=(n¡2)(M ) and then, by
classical methods, we prove that u ¬ 2 C2(M ).

Remark 2.1. In the following, all the limits are taken as ¬ ! 1. Moreover, we
assume that all the sequences have a limit (not necessarily  nite) by passing to a
subsequence.
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Remark 2.2. Since · ¬ < A0(n)¡1, we have
Z

M

u1+ ° ¬
¬ dvg ! 0:

From N (A0(n) + ° ; B ° )(u ¬ ), where ° > 0 is small, we get

lim inf

Z

M

jru¬ j2g dvg

³Z

M

u1+ ° ¬
¬ dvg

4́=(n(1+ ° ¬ ))

> (A0(n) + ° )¡1:

In addition, since · ¬ < A0(n)
¡1

, it is clear that

lim sup

Z

M

jru¬ j2g dvg

³Z

M

u1+ ° ¬
¬ dvg

4́=(n(1+ ° ¬ ))

6 A0(n)¡1:

As one easily checks,

lim A ¬

Z

M

jru ¬ j2g dvg = A0(n)
¡1

; (2.1)

lim B¬

Z

M

u1+ ° ¬
¬ dvg = A0(n)

¡1
; (2.2)

lim k¬ =

³
2 +

4

n

´
A0(n)

¡1
; (2.3)

lim A ¬ ¬ = 0: (2.4)

Now let a ¬ = A
1=2
¬ . Also let x¬ be a point of M such that u¬ (x ¬ ) = ku ¬ k 1 .

Step 1. For all ¯ > 0,

lim inf

R
Bx¬ ( ¯ a ¬ ) u1+ ° ¬

¬ dvg
R

M u1+ ° ¬
¬ dvg

> 0:

For x 2 B(0; ¯ ) » Rn, let

g ¬ (x) = (expx ¬
) ¤ g(a ¬ x);

’ ¬ (x) = ku ¬ k¡1
1 u ¬ (expx ¬

(a ¬ x)):

We easily get

¢g¬
’ ¬ +

2

n
ku ¬ k¡1+ ° ¬

1 B ¬ ’ ° ¬
¬ = 1

2
k ¬ ’ ¬ : ( ~E ¬ )

Since ¢gu¬ (x ¬ ) > 0, we get from (E¬ ) and (2.3),

ku ¬ k ° ¬
1 B ¬ 6 Cku ¬ k 1 : (2.5)

Since k’ ¬ kL1 (B(0;¯ )) 6 1, one gets from ( ~E¬ ) and standard methods that, for a 2
]0; 1[ , k’ ¬ kC1;aB(0;¯ ) 6 C. Hence (’ ¬ ) ¬ is equicontinuous and, by Ascoli’s theorem,
there exists ’ 2 C0(B(0; ¯ )) such that ’ ¬ ! ’ in C0(B(0; ¯ )). We have

’(0) = lim ’ ¬ (0) = 1; (2.6)
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and also
Z

B(0;¯ )

’1+ ° ¬
¬ dvg¬

= ku¬ k¡(1+ ° ¬ )
1 A¡n=2

¬

Z

Bx¬ ( ¯ a ¬ )

u1+ ° ¬
¬ dvg

= ku¬ k¡(1+ ° ¬ )
1 A¡(n=4)(1¡ ° ¬ )

¬

R
Bx¬ ( ¯ a ¬ )

u1+ ° ¬
¬ dvg

R
M

u1+ ° ¬
¬ dvg

6 ku¬ k¡1
1 A¡n=4

¬

R
Bx¬ ( ¯ a ¬ )

u1+ ° ¬
¬ dvg

R
M

u1+ ° ¬
¬ dvg

; (2.7)

since ku ¬ k° ¬
1 > 1, equation (2.5) implies that ku ¬ k 1 > C ¢ B ¬ and, since A ¬ ! 0,

equation (2.2) implies B¬ > C ¢ A ¬
¡(n=4)(1+ ° ¬ ) > C ¢ A

¡n=4
¬ . Inequality (2.7) then

becomes Z

B(0;¯ )

’1+ ° ¬
¬ dvg¬

6 C

R
Bx¬ ( ¯ a ¬ )

u1+ ° ¬
¬ dvg

R
M

u1+ ° ¬
¬ dvg

:

Moreover, Z

B(0;̄ )

’1+ ° ¬
¬ dvg¬ ! C > 0 (2.8)

by (2.6) and since g¬ ! ¹ in C2(K). Finally, we get
R

Bx¬ ( ¯ a ¬ )
u1+ ° ¬

¬ dvg
R

M
u1+ ° ¬

¬ dvg

> C > 0;

which ends the proof of the step.

Remark 2.3. Coming back to (2.7) and (2.8), one easily gets that

An=4
¬ ku ¬ k 1 ! C > 0: (2.9)

Step 2. Let (c ¬ ) ¬ be a sequence of positive numbers such that a ¬ =c¬ ! 0. Then

lim

R
Bx¬ (c¬ ) u1+ ° ¬

¬ dvg
R

M
u1+ ° ¬

¬ dvg

= 1:

Let ² 2 C 1 (R) be such that

(i) ² ([0; 1
2
]) = f1g,

(ii) ² ([1; +1[) = f0g,

(iii) 0 6 ² 6 1.

For k 2 N, we let ² ¬ ;k = ( ² (c¡1
¬ dg(x; x ¬ )))2k

. Multiplying (E ¬ ) by ² 2
¬ ;ku ¬ and

integrating over M gives

2A ¬

Z

M

jr ² ¬ ;ku ¬ j2g dvg ¡ 2A ¬

Z

M

jr ² ¬ ;k j2gu2
¬ dvg

+
4

n
B¬

Z

M

² 2
¬ ;ku1+ ° ¬

¬ dvg = k¬

Z

M

( ² ¬ ;ku ¬ )2 dvg: (2.10)
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Using N (A0(n) + ° ; B° )( ² ¬ ;ku ¬ ), one easily checks that

2A ¬

Z

M

jr ² ¬ ;ku ¬ j2g dvg ¡ 2A ¬

Z

M

jr² ¬ ;k j2gu2
¬ g

dvg +
4

n
B ¬

Z

M

² 2
¬ ;ku1+ ° ¬

¬ dvg

6 k¬

³
(A0(n) + ° )

Z

M

jr² ¬ ;ku¬ j2g dvg

³Z

M

( ² ¬ ;ku ¬ )1+ ° ¬ dvg

4́=(n(1+ ° ¬ ))

+ B °

Z

M

( ² ¬ ;ku ¬ )2 dvg

³Z

M

( ² ¬ ;ku ¬ )1+ ° ¬ dvg

4́=(n(1+ ° ¬ )) ń=(n + 2)

:

(2.11)

Moreover, with the assumption on (c ¬ ) ¬ ,

jr ² ¬ ;kj2g 6 C

c2
¬

) A ¬

Z

M

jr² ¬ ;k j2gu2
¬ dvg ! 0:

Now let

¶ k = lim

R
M

² 2
¬ ;ku1+ ° ¬

¬ dvgR
M u1+ ° ¬

¬ dvg

; ~¶ k = lim

R
M

( ² ¬ ;ku¬ )1+ ° ¬ dvgR
M u1+ ° ¬

¬ dvg

:

From the de nition of ² ¬ ;k, we get, for all k 2 N,

¶ k + 1 6 ~¶ k + 1 6 ¶ k 6 ~¶ k 6 · = lim

R
Bx¬ (c¬ )

u1+ ° ¬
¬ dvg

R
M

u1+ ° ¬
¬ dvg

(2.12)

and, by step 1,
9 C > 0 such that 8k 2 N; ¶ k > C: (2.13)

Let us now prove that ¶ k 6 ~¶ 2
k. Let

Lk = lim A ¬

Z

M

jr² ¬ ;ku ¬ j2g dvg:

Note that (2.2) and the de nition of A ¬ imply

lim B ¬

Z

M

² 2
¬ ;ku1+ ° ¬

¬ dvg = ¶ kA0(n)
¡1

and

k ¬

Z

M

( ² ¬ ;ku ¬ )2 dvg 6 C:

In particular, equation (2.10) gives Lk < +1. We also clearly have, by (2.1)
and (2.2),

lim

Z

M

jr² ¬ ;ku¬ j2g dvg

³Z

M

( ² ¬ ;ku ¬ )1+ ° ¬ dvg

4́=(n(1+ ° ¬ ))

= Lk
~¶

4=n
k :

Equation (2.11) then leads to

2Lk +
4

n
A0(n)¡1 ¶ k 6

³
2 +

4

n

´
A0(n)¡1((A0(n) + ° )Lk

~¶
4=n
k )n=(n + 2):
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If ~Lk = A0(n)Lk, we obtain, since ° was arbitrary,

2~Lk +
4

n
¶ k 6

³
2 +

4

n

´
~L

n=(n + 2)
k

~¶
4=(n+ 2)
k :

Now, for x, y, z, let

f(x; y; z) =

³
2 +

4

n

´
xn=(n + 2)y4=(n + 2) ¡

³
4

n
z + 2x

´
:

Di¬erentiating in x, we see that 8x; y; z > 0, f (x; y; z) 6 f (y2; y; z), and then

f (~Lk; ~¶ k; ¶ k) 6 f (~¶ 2
k; ~¶ k; ¶ k) =

4

n
(~¶ 2

k ¡ ¶ k):

We then get ¶ k 6 ~¶ 2
k. Now, from (2.12), (2.13), we get 8N 2 N, 0 < C 6 ¶ N

0 6 · .
Since · 6 1, we have · = 1, which proves the step.

Step 3. There exists C > 0 such that, for all x 2 M ,

u ¬ (x)d(x; x¬ )n=2 6 C;

where d denotes the distance for g.
We proceed by contradiction. Suppose that the following assumption is true:

9 y¬ 2 M such that u¬ (y ¬ )d(y¬ ; x¬ )n=2 ! +1: (H)

Let
v ¬ = u ¬ (y¬ )d(y¬ ; x ¬ )n=2:

We can assume that
v ¬ = ku ¬ (¢)d(¢; x ¬ )n=2k 1 :

First, we prove that, if ¸ is small enough,

By ¬ (u ¬ (y ¬ )¡2=n) \ Bx ¬ (a¬ v ¸
¬ ) = ;: (2.14)

It is here enough to show that

d(x ¬ ; y¬ ) > u ¬ (y¬ )¡2=n + a ¬ v ¸
¬ ;

or, equivalently, that
v2=n¡ ¸

¬ > v¡ ¸
¬ + a ¬ u ¬ (y ¬ )2=n:

If ¸ < 2=n, from (H), we get that v
2=n¡ ¸
¬ ! +1 and v¡ ¸

¬ ! 0. Hence it still has
to be proved that a ¬ u ¬ (y¬ )2=n 6 C. We have a ¬ u ¬ (y ¬ )2=n 6 a ¬ ku ¬ k2=n

1 . Since
a ¬ = A

1=2
¬ , and by (2.9), this gives a ¬ ku ¬ k2=n

1 6 C. Equation (2.14) then follows.
We let, for x 2 B(0; 1),

h ¬ (x) = (expy¬
) ¤ g(l ¬ x);

Á ¬ (x) = u ¬ (y¬ )¡1u ¬ (expy ¬
(l ¬ x));

where
l ¬ = ku ¬ k¡(n+ 4)=2n

1 u ¬ (y¬ )1=2:
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On B(0; 1), we have

¢h ¬ Á ¬ =
k¬ ku ¬ k¡(1+ 4=n)

1 u ¬ (y¬ )

2A ¬
Á ¬ ¡ 2B¬ ku ¬ k¡(1+ 4=n)

1 u ¬ (y¬ ) ° ¬

nA ¬
Á ° ¬

¬ : (E0
¬ )

Moreover,

h ¬ ! ¹ in C2(B(0; 1)): (2.15)

We have

ku¬ kL1 (By¬ (u ¬ (y ¬ ) ¡ 2=n)) 6 C ¢ u ¬ (y ¬ ):

To see this, note that, by the very  rst de nition of y¬ , for all x 2 By ¬ (u ¬ (y¬ )¡2=n),
we have

u ¬ (y ¬ )d(x ¬ ; y¬ )n=2 > u¬ (x)d(x ¬ ; x)n=2: (2.16)

Moreover, since x 2 By ¬
(u ¬ (y¬ )¡2=n),

d(y¬ ; x) 6 u ¬ (y¬ )¡2=n

and, by (H), u¬ (y ¬ )
¡2=n 6 1

2d(x ¬ ; y¬ ). So we have

d(x; x ¬ ) > d(x ¬ ; y¬ ) ¡ d(x; y¬ ) > d(x ¬ ; y¬ ) ¡ u¬ (y ¬ )¡2=n > 1
2d(x ¬ ; y¬ ):

Coming back to (2.16), the result comes immediately. Since l¬ 6 u ¬ (y¬ )¡2=n, it
follows that kÁ ¬ kL1 (B(0;1)) 6 C. From (2.5), (2.9) and the fact that, by (2.2),
B ¬ A

1=4
¬ n(1 + ° ¬ ) ! C > 0, we get

ku ¬ k° ¬
1 ! C: (2.17)

Now, from (2.5), (2.9) and (2.17), we see that (E0
¬ ) has bounded coe¯ cients. Hence

standard arguments imply that the sequence (Á ¬ ) ¬ is bounded in C1;a(B(0; 1))
(0 < a < 1). As in step 1, one may  nd Á 2 C0(B(0; 1)) such that, up to a
subsequence,

Á ¬ ! Á in C0(B(0; 1)):

Here, Á is such that Á(0) = 1, and then
Z

B(0;1)

Á dx > 0: (2.18)

However, by (2.15),
Z

B(0;1)

Á dx = lim

Z

B(0;1)

Á1+ ° ¬
¬ dvh¬ ;

and, as one can check, Z

B(0;1)

Á1+ ° ¬
¬ dvh¬ =  ¬ ;

where

 ¬ = A(n=4)(1+ ° ¬ )
¬ u ¬ (y¬ )¡(1+ ° ¬ )l¡n

¬

R
By¬ (l ¬ )

u1+ ° ¬
¬ dvg

A
(n=4)(1+ ° ¬ )
¬

:
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If we prove that lim  ¬ = 0, we get a contradiction with (2.18), which ends the
proof of the step. First, let

m ¬ =
u¬ (y ¬ )

ku ¬ k1
:

Clearly, by (2.9),

 ¬ 6 Cm¡(n=2+ 1)
¬

R
By¬ (u ¬ (l ¬ )) u1+ ° ¬

¬ dvg
R

M
u1+ ° ¬

¬ dvg

:

By the previous step and (2.14),

lim

R
By¬ (u¬ (y ¬ ) ¡ 2=n) u1+ ° ¬

¬ dvg
R

M
u1+ ° ¬

¬ dvg

= 0: (2.19)

If m ¬ > C > 0, we have  ¬ ! 0. Hence we assume that lim m ¬ = 0. We now
proceed by induction to prove that

m¡((n+ 3)=(n + 2))k

¬

Z

By¬ (2 ¡ ku ¬ (y ¬ ) ¡ 2=n)

u2
¬ dvg ! 0: (Hk)

First, we prove that (H0) is true. We proved before that

ku¬ kL1 (By¬ (u ¬ (y ¬ ) ¡ 2=n)) 6 C ¢ u ¬ (y ¬ ):

Hence we have, noting that u ¬ (y¬ ) ! 1,
Z

By¬ (u ¬ (y¬ )¡ 2=n )

u2
¬ dvg 6 Cu¬ (y¬ )

Z

By¬ (u¬ (y ¬ ) ¡ 2=n)

u1+ ° ¬
¬ dvg

6 Cm ¬ ku ¬ k 1

Z

By¬ (u ¬ (y¬ )¡ 2=n )

u1+ ° ¬
¬ dvg:

By (2.9) and (2.19),

lim ku ¬ k1

Z

By¬ (u¬ (y ¬ ) ¡ 2=n)

u1+ ° ¬
¬ dvg = 0;

(H0) then follows. Now let ° k = ((n + 3)=(n + 2))k and suppose that (Hk) is true.
Let us prove that (Hk + 1) is true. Let ² ¬ ;k(x) = ² (u¬ (y¬ )2=n2kdg(x; y¬ )), where ²
is de ned as in step 2. Multiplying (E¬ ) by

u ¬ ( ² ¬ ;k)2

m ° k
¬

and integrating over M , we obtain

2A ¬ m¡ ° k
¬

Z

M

jr² ¬ ;ku¬ j2g dvg

¡ 2A ¬ m¡ ° k
¬

Z

M

jr ² ¬ ;kj2gu2
¬ dvg +

4

n
B¬ m¡ ° k

¬

Z

M

² 2
¬ ;ku1+ ° ¬

¬ dvg

= k¬ m¡° k
¬

Z

M

( ² ¬ ;ku ¬ )2 dvg : (2.20)
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By (Hk),

2A ¬ m¡ ° k
¬

Z

M

jr² ¬ ;k j2gu2
¬ dvg 6 CA ¬ u ¬ (y¬ )4=nm¡° k

¬

Z

By¬ (2¡ ku ¬ (y¬ ) ¡ 2=n )

u2
¬ dvg

6 CA ¬ u ¬ (y¬ )4=n:

Moreover, by (2.9), A ¬ u ¬ (y¬ )4=n = A ¬ m
4=n
¬ ku ¬ k4=n

1 6 C ¢m4=n
¬ ! 0. We also have,

by (Hk) and (2.3),

k¬ m¡ ° k
¬

Z

M

( ² ¬ ;ku ¬ )2 dvg ! 0:

Therefore, equation (2.20) gives

2A ¬

Z

M

jr ² ¬ ;ku ¬ j2g dvg 6 C ¢ m ° k
¬ ;

4

n
B ¬

Z

M

² 2
¬ ;ku1+ ° ¬

¬ dvg 6 C ¢ m ° k
¬ :

9
>>=

>>;
(2.21)

Replacing ² ¬ ;k by
p

² ¬ ;k and doing the same, we see that

4

n
B¬

Z

M

² 1+ ° ¬

¬ ;k u1+ ° ¬
¬ dvg 6 C ¢ m ° k

¬ : (2.22)

Moreover, using N (A; B)( ² ¬ ;ku ¬ ), one easily checks that

³Z

M

( ² ¬ ;ku ¬ )2 dvg

(́n + 2)=n

6 A ¢
Z

M

jr ² ¬ ;ku ¬ j2g dvg

³Z

M

( ² ¬ ;ku ¬ )1+ ° ¬ dvg

4́=(n(1+ ° ¬ ))

+ B ¢
Z

M

( ² ¬ ;ku ¬ )2 dvg

³Z

M

( ² ¬ ;ku ¬ )1+ ° ¬ dvg

4́=(n(1+ ° ¬ ))

:

Clearly, we have, in fact,

³Z

M

( ² ¬ ;ku ¬ )2 dvg

(́n+ 2)=n

6 C ¢
Z

M

jr² ¬ ;ku¬ j2g dvg

³Z

M

( ² ¬ ;ku ¬ )1+ ° ¬ dvg

4́=(n(1+ ° ¬ ))

6 C

A ¬ B
4=(n(1+ ° ¬ ))
¬

³Z

M

jr² ¬ ;ku ¬ j2g dvgA ¬

´

£
³

B¬

Z

M

( ² ¬ ;ku ¬ )1+ ° ¬ dvg

4́=(n(1+ ° ¬ ))

:

Using (2.21) and (2.22), we get

³Z

M

( ² ¬ ;ku ¬ )2 dvg

(́n + 2)=n

6 C

A ¬ B
4=(n(1+ ° ¬ ))
¬

¢ m(1+ 4=(n(1+ ° ¬ ))) ° k
¬ :
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By (2.2), A ¬ B
4=(n(1+ ° ¬ ))
¬ > C > 0. Since

Z

By¬ (2 ¡ (k+1)u ¬ (y ¬ ) ¡ 2=n)

u2
¬ dvg 6

Z

M

( ² ¬ ;ku ¬ )2 dvg;

(Hk + 1) then follows. As a consequence, (Hk) is true for all k. Coming back to (2.22),
we get that, for all k,

lim m¡ ° k
¬ B ¬

Z

By¬ (2¡ ku ¬ (y ¬ ) ¡ 2=n )

u1+ ° ¬
¬ dvg = 0:

Using the fact that

lim
l¬

u ¬ (y ¬ )¡2=n
= 0

and choosing k such that ° k > 1
2
n + 1, we get lim  ¬ = 0, which ends the step.

Step 4 (Various estimates). This step proceeds in seven parts. Let c be a strictly
positive number.

Part a. Let us prove that, 8k > 0,

A¡k
¬

Z

M¡Bx¬ (c)

u2
¬ dvg ! 0: (2.23)

Let r¬ (x) = dg(x; x¬ ) and let ¯ 2 ]0; 1
4 n[. Using step 3, we have

A¡ ¯
¬

Z

M¡Bx¬ (c)

u2
¬ dvg 6 C ¢ A¡ ¯

¬

Z

M¡Bx¬ (c)

u1+ ° ¬
¬ r¡(n=2)(1¡ ° ¬ )

¬ dvg

6 C ¢ A¡ ¯
¬

Z

M¡Bx¬ (c)

u1+ ° ¬
¬ dvg :

Recall the de nition of A ¬ to get

A¡ ¯
¬

Z

M¡Bx¬ (c)

u2
¬ dvg ! 0:

Mimicking what we did in the previous step, we prove by induction that

A¡((n + 3)=(n+ 2))k ¯
¬

Z

M¡Bx¬ (2kc)

u2
¬ dvg ! 0: ( ~Hk)

Remark 2.4. As in the previous step, we have, for all k > 0,

lim A¡k
¬

Z

M¡Bx¬ (c)

jru ¬ j2g dvg = 0;

lim A¡k
¬

Z

M¡Bx¬ (c)

u1+ ° ¬
¬ dvg = 0:

9
>>>=

>>>;
(2.24)

Part B. Let us prove that

9 t0 > 0 such that ¢gu ¬ < 0 on M ¡ Bx ¬ (t0A ¬
1=2): (2.25)
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Let x 2 M be such that ¢gu ¬ (x) > 0. By equation (2.5), we have u¬ (x) > C ¢ B ¬ .
We also have, by (2.2), B ¬ > C ¢ A

¡n=2
¬ , and, by step 3, u ¬ (x) 6 C ¢ r¬ (x)¡n=2. We

then have r¬ (x)¡n=2 > C ¢ A
¡n=4
¬ .

Equation (2.25) then follows. We now let ² ¬ = ² ((1=c)r ¬ ).

Part C. Let us prove that
Z

M

(r ¬ ² ¬ )2jru ¬ j2g dvg 6 C: (2.26)

Let

® ¬ =

Z

M

(r ¬ ² ¬ )2jru ¬ j2g dvg :

Integrating by parts, we compute

® ¬ =

Z

M

(¢gu ¬ )u¬ (r ¬ ² ¬ )2 dvg ¡ 2

Z

M

u ¬ r¬ ² ¬ hrr ¬ ² ¬ ; ru¬ ig dvg;

and, by (2.25),

® ¬ 6
Z

Bx¬ (t0A
1=2
¬ )

(¢gu ¬ )u ¬ (r ¬ ² ¬ )2 dvg + C

Z

M

u ¬ r¬ ² ¬ jrr ¬ ² ¬ jgjru ¬ jg dvg :

Using (E ¬ ), equation (2.5) and the following inequality (which comes from (2.9)),

u¬ (x) 6 ku ¬ k1 6 C ¢ A¡n=4
¬ ;

one can prove that
Z

Bx¬ (t0A
1=2
¬ )

(¢gu ¬ )u ¬ (r¬ ² ¬ )2 dvg 6 C:

Moreover, by H�older’s inequality,

Z

M

u ¬ r ¬ ² ¬ jrr ¬ ² ¬ jg jru ¬ jg dvg

6
³Z

M

u2
¬ jrr ¬ ² ¬ j2g dvg

1́=2³Z

M

jru¬ j2g(r ¬ ² ¬ )2 dvg

1́=2

:

Finally,

® ¬ 6 C + C ¢ ® 1=2
¬ ;

and (2.26) follows.

Part D. Let us prove that
Z

M

(u¬ r ¬ ² ¬ )2 dvg 6 C
p

¬ A ¬ : (2.27)

Assume that, on the contrary,
R

M
(u¬ r ¬ ² ¬ )2 dvgp

¬ A ¬
! +1: (H 0)
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Multiply (E ¬ ) by

u ¬ (r ¬ ² ¬ )2

R
M

(u ¬ r ¬ ² ¬ )2 dvg
;

and integrate over M . Then

2A ¬

R
M

(¢gu¬ )u ¬ (r¬ ² ¬ )2 dvgR
M

(u¬ r ¬ ² ¬ )
2

dvg

+
4B¬

R
M

u1+ ° ¬
¬ (r ¬ ² ¬ )2 dvg

n
R

M
(u ¬ r¬ ² ¬ )2 dvg

= k ¬ : (2.28)

Integrating by parts, we clearly have (using (2.26))


Z

M

(¢gu ¬ )u¬ (r ¬ ² ¬ )2 dvg

6 C


Z

M

(r¬ ² ¬ )2jru ¬ j2g dvg +

Z

M

u2
¬ jrr ¬ ² ¬ j2g dvg



6 C:

Thus (H 0) implies

A ¬

R
M (¢gu ¬ )u ¬ (r ¬ ² ¬ )2 dvgR

M
(u ¬ r¬ ² ¬ )2 dvg

! 0: (2.29)

From (2.3), (2.28) and (2.29), one easily gets that

B ¬

R
M u1+ ° ¬

¬ (r¬ ² ¬ )2 dvgR
M (u ¬ r ¬ ² ¬ )2 dvg

6 C:

We have already seen that B ¬ > C ¢ A
¡n=4
¬ , and then

R
M u1+ ° ¬

¬ (r¬ ² ¬ )2 dvg

A
n=4
¬

R
M

(u ¬ r¬ ² ¬ )2 dvg

6 C: (2.30)

Note that

Z

M

(u ¬ ² ¬ )1+ ° ¬ r2
¬ dvg ¡

Z

M

u1+ ° ¬
¬ (r ¬ ² ¬ )2 dvg 6 C

Z

M¡Bx¬ (c)

u1+ ° ¬
¬ dvg

6 C ¢ Ak
¬

for all k > 0, by (2.24). Equations (H 0) and (2.30) then imply

R
M

(u ¬ ² ¬ )1+ ° ¬ r2
¬ dvg

A
n=4
¬

R
M

(u ¬ r¬ ² ¬ )2 dvg

6 C: (2.31)

Let us show that

Z

M

(u ¬ r ¬ ² ¬ )1+ ° ¬ dvg 6 C

R
M

u ¬ r¬
2(u ¬ ² ¬ )1+ ° ¬ dvg

¬ 1=4A
1=2
¬

: (2.32)
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We have
Z

M

(u ¬ r ¬ ² ¬ )1+ ° ¬ dvg =

Z

Bx¬ (A
1=2
¬ ¬ 1=4)

(u ¬ r ¬ ² ¬ )1+ ° ¬ dvg

+

Z

M¡Bx¬ (A
1=2
¬ ¬ 1=4)

(u ¬ r¬ ² ¬ )1+ ° ¬ dvg

6
Z

Bx¬ (A
1=2
¬ ¬ 1=4)

(u ¬ r ¬ ² ¬ )1+ ° ¬ dvg

+
C

r1¡ ° ¬
¬

Z

M¡Bx¬ (A
1=2
¬ ¬ 1=4)

(u ¬ ² ¬ )1+ ° ¬ r2
¬ dvg

6
Z

Bx¬ (A
1=2
¬ ¬ 1=4)

(u ¬ r ¬ ² ¬ )1+ ° ¬ dvg

+
C

A ¬
1=2 ¬ 1=4

Z

M¡Bx¬ (A
1=2
¬ ¬ 1=4)

(u ¬ ² ¬ )1+ ° ¬ r2
¬ dvg (2.33)

(we have used the fact that (A
1=2
¬ ¬ 1=4)1¡ ° ¬ 6 A

1=2
¬ ¬ 1=4, which comes from (2.4)).

Clearly,
Z

Bx¬ (A
1=2
¬ ¬ 1=4)

(u ¬ r ¬ ² ¬ )1+ ° ¬ dvg 6 C ¢ An=4+ 1=2
¬ ¬ 1=4: (2.34)

Now assume that

An=4+ 1=2
¬ ¬ 1=4 > t ¬

A
1=2
¬ ¬ 1=4

Z

M¡Bx¬ (A
1=2
¬ ¬ 1=4)

(u¬ ² ¬ )1+ ° ¬ r2
¬ dvg; (H 00)

where t ¬ ! +1. We would get from step 3 that
Z

M¡Bx¬ (A
1=2
¬ ¬ 1=4)

(u ¬ ² ¬ r ¬ )2 dvg 6
Z

M¡Bx¬ (A
1=2
¬ ¬ 1=4)

(u ¬ r ¬ )2 ² 1+ ° ¬
¬ dvg

6 C

Z

M¡Bx¬ (A
1=2
¬ ¬ 1=4)

r2¡n=2
¬ (u ¬ ² ¬ )1+ ° ¬ dvg

and, by (H 00) and r
¡n=2
¬ 6 A

¡n=4
¬ ¬ ¡n=8,

Z

M¡Bx¬ (A
1=2
¬ ¬ 1=4)

(u¬ ² ¬ r ¬ )2 dvg 6 C
p

¬ A ¬ :

In addition, we clearly have
Z

Bx¬ (A
1=2
¬ ¬ 1=4)

(u ¬ ² ¬ r ¬ )2 dvg 6 C
p

¬ A ¬ ;

and thus Z

M

(u¬ ² ¬ r ¬ )2 dvg 6 C
p

¬ A ¬ :

This assertion contradicts (H 0) and thus (H 00) is false. Coming back to (2.33)
and (2.34), this gives

Z

M

(u ¬ r ¬ ² ¬ )1+ ° ¬ dvg 6 C

A
1=2
¬ ¬ 1=4

Z

M¡Bx¬ (A
1=2
¬ ¬ 1=4)

(u ¬ ² ¬ )1+ ° ¬ r2
¬ dvg ;
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which proves (2.32). Now write N(A; B)(u ¬ r ¬ ² ¬ ),

1 6 A ¢
R

M
jru¬ r ¬ ² ¬ j2g dvg(

R
M

(u¬ r ¬ ² ¬ )1+ ° ¬ dvg)4=(n(1+ ° ¬ ))

(
R

M
(u ¬ r¬ ² ¬ )2 dvg)1+ 2=n

+ B ¢
(
R

M
(u ¬ r ¬ ² ¬ )1+ ° ¬ dvg)4=(n(1+ ° ¬ ))

(
R

M
(u ¬ r ¬ ² ¬ )2 dvg)2=n

: (2.35)

Let us prove that

lim
(
R

M
(u ¬ r ¬ ² ¬ )

1+ ° ¬ dvg)4=(n(1+ ° ¬ ))

(
R

M
(u¬ r ¬ ² ¬ )

2
dvg)2=n

= 0: (2.36)

Indeed,

(
R

M
(u ¬ r ¬ ² ¬ )

1+ ° ¬ dvg)4=(n(1+ ° ¬ ))

(
R

M
(u¬ r ¬ ² ¬ )

2
dvg)n=2

=

³
B¬

R
M

(u ¬ r ¬ ² ¬ )
1+ ° ¬ dvgR

M
(u¬ r ¬ ² ¬ )

2
dvg

4́=(n(1+ ° ¬ )) (
R

M
(u ¬ r ¬ ² ¬ )2 dvg)4=(n(1+ ° ¬ ))¡2=n

B
4=(n(1+ ° ¬ ))
¬

:

From (2.32) and the fact that B ¬ A
¡n=4
¬ ! C (by (2.2), (2.9) and (2.17)), we get

(
R

M
(u ¬ r ¬ ² ¬ )

1+ ° ¬ dvg)4=(n(1+ ° ¬ ))

(
R

M
(u ¬ r ¬ ² ¬ )

2
dvg)2=n

6 C

³ R
M

(u ¬ ² ¬ )1+ ° ¬ r2
¬ dvg

A
n=4
¬

R
M (u¬ r ¬ ² ¬ )2 dvg

4́=(n(1+ ° ¬ ))

£ A
1=(1+ ° ¬ )(1¡2=n)
¬

¬ 1=(n(1+ ° ¬ ))

³Z

M

(u ¬ r ¬ ² ¬ )2 dvg

2́=n

:

We clearly have

A
1=(1+ ° ¬ )(1¡2=n)
¬

¬ 1=(n(1+ ° ¬ ))
! 0 and

³Z

M

(u ¬ r ¬ ² ¬ )
2

dvg

2́=n

6 C:

Using (2.31), equation (2.36) then follows. Let us prove that
R

M
jru ¬ r ¬ ² ¬ j2g dvg(

R
M

(u¬ r ¬ ² ¬ )1+ ° ¬ dvg)4=(n(1+ ° ¬ ))

(
R

M (u ¬ r¬ ² ¬ )2 dvg)1+ 2=n
! 0: (2.37)

We have, by (2.32),

R
M

jru ¬ r ¬ ² ¬ j2g dvg(
R

M
(u ¬ r ¬ ² ¬ )1+ ° ¬ dvg)4=(n(1+ ° ¬ ))

(
R

M
(u ¬ r ¬ ² ¬ )2 dvg)1+ 2=n

6 C

¬ 1=(n(1+ ° ¬ ))

³
A ¬

p
¬R

M
(u ¬ r ¬ ² ¬ )2 dvg

1́¡2=n

£
Z

M

jru¬ r ¬ ² ¬ j2 dvg

³ R
M

(u ¬ ² ¬ )1+ ° ¬ r2
¬ dvgR

M
(u ¬ r¬ ² ¬ )2

g dvgA
n=4
¬

4́=(n(1+ ° ¬ ))

: (2.38)
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We remark that
Z

M

jru¬ r ¬ ² ¬ j2g dvg 6
Z

M

jru ¬ j2g(r¬ ² ¬ )2 dvg

+

Z

M

hru ¬ ; rr¬ ² ¬ i2
gu ¬ r ¬ ² ¬ dvg +

Z

M

u2
¬ jr² ¬ r¬ j2g dvg

and, by H�older’s inequality,

Z

M

hru¬ ; rr ¬ ² ¬ i2
gu ¬ r¬ ² ¬ dvg 6 C

³Z

M

jru ¬ j2g(r ¬ ² ¬ )2 dvg

1́=2

:

By (2.26), it follows that
Z

M

jru ¬ r¬ ² ¬ j2g dvg 6 C: (2.39)

Equations (2.31), (H 0), (2.38) and (2.39) lead to (2.37). Equations (2.35), (2.36)
and (2.37) prove that (H 0) is false.

Part E. Let us prove that

1 ¡ (
R

M
(u ¬ ² ¬ )2 dv ¹ )1+ 2=n

A ¬

p
¬

6 C: (2.40)

We  rst recall some results about the expansion of the metric. Let ¹ denote the
Euclidean metric. Since (x¬ ) ¬ is convergent up to a subsequence, we may write,
from the Cartan expansion of g in geodesic normal coordinates at x0 = lim x¬ ,
that, for ¬ large,

jru ¬ ² ¬ j2¹ (x) 6 jru¬ ² ¬ j2g(x)(1 + C ¢ r2
¬ )

and

(1 ¡ C ¢ r2
¬ ) dv ¹ 6 dvg 6 (1 + C ¢ r2

¬ ) dv ¹ : (2.41)

Hence Z

M

jru¬ ² ¬ j2¹ dv ¹ 6
Z

M

jru ¬ ² ¬ j2g(1 + C ¢ r2
¬ ) dvg : (2.42)

We now prove (2.40). We have, by (2.41),

1 ¡
³Z

M

(u ¬ ² ¬ )2 dv ¹

1́+ 2=n

6 C

³
1 ¡

Z

M

(u ¬ ² ¬ )2 dv ¹

´

6 C

³Z

M

u2
¬ dvg ¡

Z

M

(u ¬ ² ¬ )2 dvg + C

Z

M

(u ¬ ² ¬ r ¬ )2 dvg

´

6 C

³Z

M

³
u ¬ (1 ¡ ² ¬ )

2́

dvg + C

Z

M

(u ¬ ² ¬ r¬ )2 dvg

´
:

Equations (2.23) and (2.27) give (2.40).
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Part F. Let us prove that
³Z

M

(u¬ ² ¬ )1+ ° ¬ dv ¹

4́=(n(1+ ° ¬ ))

6
³Z

M

(u¬ ² ¬ )1+ ° ¬ dvg

4́=(n(1+ ° ¬ ))

+ C ¢ A2
¬

p
¬ :

(2.43)
Multiply (E ¬ ) by

u ¬ (r¬ ² ¬ )2

A ¬

p
¬

and integrate over M ,

2p
¬

Z

M

(¢gu ¬ )u ¬ (r¬ ² ¬ )2 dvg +
4B ¬

nA ¬

p
¬

Z

M

u1+ ° ¬
¬ (r¬ ² ¬ )2 dvg

=
k¬

A ¬

p
¬

Z

M

(u ¬ r¬ ² ¬ )2 dvg : (2.44)

As we did to get (2.39), we have, from (2.26),
Z

M

(¢gu¬ )u ¬ (r¬ ² ¬ )2 dvg 6 C

and then, from (2.27), (2.44) and the fact that B¬ > C ¢ A
¡n=4
¬ ,

Z

M

u1+ ° ¬
¬ (r ¬ ² ¬ )2 dvg 6 C

A ¬

p
¬

B ¬
6 C ¢

p
¬ A1+ n=4

¬ :

This implies Z

M

( ² ¬ u ¬ )1+ ° ¬ r¬
2 dvg 6 C ¢

p
¬ A1+ n=4

¬ : (2.45)

Now
³Z

M

(u ¬ ² ¬ )1+ ° ¬ dv ¹

4́=(n(1+ ° ¬ ))

6
³Z

M

(u ¬ ² ¬ )1+ ° ¬ dvg + C

Z

M

(u ¬ ² ¬ )1+ ° ¬ r2
¬ dvg

4́=(n(1+ ° ¬ ))

6
³Z

M

(u ¬ ² ¬ )1+ ° ¬ dvg

4́=(n(1+ ° ¬ ))³
1 +

R
M

(u¬ ² ¬ )1+ ° ¬ r2
¬ dvgR

M
(u ¬ ² ¬ )1+ ° ¬ dvg

4́=(n(1+ ° ¬ ))

:

Clearly, R
M

(u ¬ ² ¬ )1+ ° ¬ r2
¬ dvgR

M
(u ¬ ² ¬ )1+ ° ¬ dvg

! 0:

Hence, developing, we check
³Z

M

(u ¬ ² ¬ )1+ ° ¬ dv ¹

4́=(n(1+ ° ¬ ))

6
³Z

M

(u ¬ ² ¬ )1+ ° ¬ dvg

4́=(n(1+ ° ¬ ))

+ C ¢
³Z

M

(u ¬ ² ¬ )1+ ° ¬ dvg

4́=(n(1+ ° ¬ ))¡1 Z

M

(u ¬ ² ¬ )1+ ° ¬ r2
¬ dvg :
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From (2.45) and the fact that
Z

M

(u¬ ² ¬ )1+ ° ¬ dvg 6 C ¢ A(n=4)(1+ ° ¬ )
¬ ;

we get (2.43) (we have used A ° ¬
¬ ! C > 0).

Part G (Conclusion). By [3], we get

³Z

M

(u ¬ ² ¬ )2 dv ¹

1́+ 2=n

6 A0(n)

Z

M

jru ¬ ² ¬ j2¹ dv ¹

³Z

M

(u ¬ ² ¬ )1+ ° ¬ dv ¹

4́=(n(1+ ° ¬ ))

:

Clearly, by (2.26) and (2.42),
Z

M

jru ¬ ² ¬ j2¹ dv ¹ 6
Z

M

jru ¬ j2g ² 2
¬ dvg + C:

From (2.1), (2.43),

³Z

M

(u ¬ ² ¬ )2 dv ¹

1́+ 2=n

6 A0(n)

Z

M

jru ¬ j2g ² 2
¬ dvg

³Z

M

(u ¬ ² ¬ )1+ ° ¬ dvg

4́=(n(1+ ° ¬ ))

+ C ¢
p

¬ A ¬ :

(2.46)

From the very  rst de nition of u¬ , we get

1 =

³
1

· ¬

Z

M

jru ¬ j2g dvg +
¬

· ¬

´
A ¬ : (2.47)

We now compute (cf. (2.46), (2.47)) (A ¬

p
¬ )¡1,

1 ¡ (
R

M (u ¬ ² ¬ )2 dv ¹ )1+ 2=n

A ¬

p
¬

> ¡ A0(n)p
¬

Z

M

jru¬ j2g ² ¬
2 dvg

(
R

M (u ¬ ² ¬ )1+ ° ¬ dvg)4=(n(1+ ° ¬ ))

A ¬

+
1

· ¬

p
¬

Z

M

jru ¬ j2g dvg +

p
¬

· ¬
¡ C:

Note that
1

· ¬
> A0(n);

(
R

M
(u¬ ² ¬ )1+ ° ¬ dvg)4=(n(1+ ° ¬ ))

A ¬
6 1:

It follows that

1 ¡ (
R

M
(u ¬ ² ¬ )2 dv ¹ )1+ 2=n

A ¬

p
¬

> A0(n)p
¬

Z

M

jru¬ j2g(1 ¡ ² 2
¬ ) dvg + A0(n)

p
¬ ¡ C:

The  rst member of this inequality is bounded from below (by (2.40)), while the
second member goes to +1. This contradiction ends the proof of the theorem.
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The case of manifolds with boundary and complete manifolds

Theorem 1.1 is also true on compact Riemannian manifolds with boundary. The
proof may easily be modi ed when the sequence x¬ goes to the boundary. Moreover,
note that the result is always true when g is not a  xed metric. More precisely, we
consider (g ¬ ) ¬ , a bounded family of Riemannian metrics on M (in C2(M )); this
bound allows us to control each constant that appears in the proof. We are then
able to get the following result for the complete case.

Theorem 2.5. Let (M; g) be a smooth complete Riemannian n-manifold, n > 1.
We let jRmgj and jrRmgjg be the norms of the Riemannian curvature of g and of
its gradient. We note rg, the injectivity radius of g. Let C, C0, ¯ > 0 and assume
that jRmgj 6 C, jrRmgjg 6 C 0 and rg > ¯ . Then there exists B > 0 such that

³Z

M

u2 dvg

1́+ 2=n

6
³

A0(n)

Z

M

jruj2g dvg + B

Z

M

u2 dvg

´³Z

M

juj dvg

4́=n

:

Moreover, B depends only on n, C, C 0 and ¯ .

To prove this theorem, we use a covering of M with balls and a smooth partition
of unity. The results in the case of manifolds with boundary applied on these balls
gives the theorem. A complete study of this problem is done in [6] for the sharp
Sobolev inequality.

3. Proof of theorem 1.2

As in theorem 1.1, we may assume that Vol(M ) = 1. We write N (A0(n); B0)(1), to
get B0 > 1. Now let x 2 M . As in theorem 1.4 of [4], we let u (u 6² 0 and radially
symmetric) be an eigenfunction associated to ¶ 1. We also set

u ° =

(
u(r=° ) ¡ u(1) if r < ° ;

0 otherwise;

where r = dg(x; ¢), and dg stands for the distance with respect to g. Let

IB0 (v) =
A0(n)(

R
M

jrvj2g dvg + B0

R
M

v2 dvg)(
R

M
jvj dvg)4=n

(
R

M
v2 dvg)2=n

:

In [4], it is shown that

A0(n)
R

M
jru ° j2g dvg(

R
M

ju ° j dvg)4=n

(
R

M
u2

° dvg)1+ 2=n
= 1 +

1

6n
XSg(x) ° 2 + o( ° 2);

where

X = ¡ 2

n + 2
¡ n ¡ 2

¶ 1
:

From the explicit computations made in [4], we get easily that

B0

(
R

M
ju ° j dvg)4=n

(
R

M
u2

° dvg)2=n
= B0Y ° 2 + o( ° 2);

https://doi.org/10.1017/S0308210501000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210501000270


Best constants in the L2-Nash inequality 641

where

Y =

³Z

B
ju(x) ¡ u(1)j dx

4́=n³Z

B
(u(x) ¡ u(1))2 dx

¡́2=n

:

We then have

IB0 (u° ) = 1 + ° 2

³
1

6n
XSg(x) + B0Y

´
+ o( ° 2):

Hence, since IB0 (u) > 1 for every u 2 H2
1 (M ), we get that

B0 > ¡ X

6nY
max
x 2 M

Sg(x):

We now compute Y . As in [4], we have

Y = ( ¡ jBju(1))4=n( 1
2 (n + 2)u(1)2jBj)¡2=n = jBj2=n( 1

2(n + 2))¡2=n:

This gives the theorem.

4. Proof of theorem 1.3

First, let
~B0 = inffB > 0 j ~N (A0(n); B) is validg:

Also let ¬ 0 = B0A0(n)
¡1

and ~¬ 0 = ~B0A0(n)¡1. In the following, the limits are
taken as ¬ ! 0. Proceeding as in the proof theorem 1.1, one can  nd ( ° ¬ ) ¬ that
goes to 0 such that, if we de ne,

J ¬ (u) =

³Z

M

jruj2g dvg + ( ¬ 0 ¡ ¬ )

´³Z

M

juj1+ ° ¬ dvg

4́=(n(1+ ° ¬ ))

;

~J ¬ (u) =

³Z

M

jruj2g dvg + (~¬ 0 ¡ ¬ )

³Z

M

juj1+ ° ¬ dvg

2́=(1+ ° ¬ )´

£
³Z

M

juj1+ ° ¬ dvg

4́=(n(1+ ° ¬ ))

;

then

· ¬ < A0(N)¡1 and · ¬ ! A0(N )¡1; (4.1)

~· ¬ < A0(N)¡1 and ~· ¬ ! A0(N )¡1; (4.2)

where · ¬ = infu 2 ¤ J ¬ (u) and ~· ¬ = infu 2 ¤
~J ¬ (u) ( ¤ is de ned as in the proof

of theorem 1.1). Moreover, there exists u ¬ and ~u ¬ , two non-negative functions in
C2(M ), such that

Z

M

u2
¬ dvg = 1 and · ¬ = J ¬ (u ¬ );

Z

M

~u2
¬ dvg = 1 and ~· ¬ = ~J ¬ (~u ¬ ):
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To prove the theorem, it is enough to show that

lim inf

Z

M

ju ¬ j1+ ° ¬ dvg > 0:

Indeed, this implies that Z

M

jru ¬ j2g dvg 6 C

and, by classical methods, the theorem follows. Suppose that, on the contrary,
Z

M

ju¬ j1+ ° ¬ dvg ! 0:

We can then  nd a > 0 small enough such that

( ¬ 0 ¡ a) ¡ (~¬ 0 ¡ ¬ )

³Z

M

juaj1+ ° a dvg

2́=(1+ ° a)

> 0: (4.3)

Now let ¬ 2 ]0; a[. We have, using H�older’s inequality,

Ja(ua) ¡ ~J ¬ (ua) = ( ¬ 0 ¡ a)

³Z

M

juaj1+ ° a dvg

4́=(n(1+ ° a ))

¡ (~¬ 0 ¡ ¬ )

³Z

M

juaj1+ ° ¬ dvg

1́=(1+ ° ¬ )(2+ 4=n)

> ( ¬ 0 ¡ a)

³Z

M

juaj1+ ° a dvg

4́=(n(1+ ° a ))

¡ (~¬ 0 ¡ ¬ )

³Z

M

juaj1+ ° a dvg

1́=(1+ ° a)(2+ 4=n)

=

³
( ¬ 0 ¡ a) ¡ (~¬ 0 ¡ ¬ )

³Z

M

juaj1+ ° a dvg

2́=(1+ ° a)´

£
³Z

M

juaj1+ ° a dvg

4́=(n(1+ ° a))

:

From (4.3), we get Ja(ua) > ~J ¬ (ua). From the de nition of ~u ¬ , ~J ¬ (u ¬ ) 6 ~J ¬ (ua).
Therefore,

~J ¬ (u ¬ ) 6 Ja(ua): (4.4)

Equation (4.4), together with (4.1) and (4.2), shows that the assumption we made
is false. This gives the theorem.

5. Examples

Let (M; g) be a smooth compact Riemannian n-manifold. Studying how the best
second constant B0 in the sharp L2-Nash inequality depends on the geometry of
(M; g) is a di¯ cult problem. At the moment, we explicitly know B0 only for the
circle S1. Even in this case, the result is not trivial (see below). The example of the
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torus S1(R) £ Sn¡1(1), where the radius of the  rst circle is going to 0, shows that
the naive idea that

B0 = max

³
Vol(M)¡2=n;

jBj¡2=n

6n

³
2

n + 2
+

n ¡ 2

¶ 1

´³
n + 2

2

2́=n

max
x 2 M

Sg(x)

´

is false. This paragraph is devoted to the study of these examples. First, we prove
a general result.

Proposition 5.1. Suppose that the L1-Nash inequality (1.1) is true on M , with
A = A0(n). Let u be the extremal function given by theorem 1.3. If the set
fx 2 M j u(x) = 0g is negligible, then B0 = Vol(M )¡2=n.

Without loss of generality, we may assume that Vol(M ) = 1. We use the same
notations than those used in the proof of theorem 1.3. First, let us prove that
u 2 C1(M ) and u ¬ ! u in C1(M ). Suppose that lim ku¬ k 1 = +1. Then let
v ¬ = u¬ =ku¬ k 1 . Note that u ¬ satis es the same equation than that involved in
theorem 1.1. Hence we easily get that k¢gv ¬ k 1 6 C . As we did in theorem 1.1,
we can  nd v 2 C0(M ) such that v ¬ ! v in C0(M ) (up to a subsequence). Let x ¬

be a maximum of u ¬ . There exists x0 such that x ¬ ! x0 up to a subsequence. We
clearly have v(x0) = 1. Therefore,

Z

M

v dvg > 0:

However, Z

M

v dvg = lim

R
M

u1+ ° ¬
¬ dvg

ku ¬ k1+ ° ¬
1

= 0:

This shows that lim ku ¬ k 1 < +1. We then have k¢gu¬ k 1 6 C. The result then
easily follows. Now we prove the proposition. Since Vol(fx 2 M j u(x) = 0g) = 0,
we get

lim

Z

M

u ° ¬
¬ dvg = 1:

Set

l1 =

Z

M

u dvg; lr =

Z
jruj2 dvg:

Integrating (E ¬ ) (where (E¬ ) is as in theorem 1.1), we have

4

n
lim B ¬ = lim k ¬ l1:

We then get, from the de nitions of B¬ , k ¬ and from lim I¬ (u ¬ ) = A0(n)¡1,

4A0(n)
¡1

nl1
=

³
2lrl

4=n
1 +

4

n
A0(n)¡1

´
l1:

Since lim I ¬ (u ¬ ) = A0(n)
¡1

, we also have

1 = (A0(n)lr + B0)l1
4=n:
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As one easily checks, it follows that

B0 =

³³
1 +

2

n

´
¡ 2

n
l¡2
1

´
l
¡4=n
1 :

Now let, for 0 6 x 6 1,

f (x) =

³³
1 +

2

n

´
¡ 2

n
x¡2

´
x¡4=n:

A simple study of f gives that f (x) 6 1, with equality if and only if x = 1. As
B0 > 1, we have necessarily l1 = 1 and B0 = 1. An application of this result is the
following.

Corollary 5.2. On the standard circle of radius 1, B0 = (2 º )¡2.

Proof. We keep the same notations. It is su¯ cient to prove that

Vol(fx 2 M j u(x) = 0g) = 0:

Suppose that there exists x 2 S1 such that u(x) = 0. Clearly, by the works of
Carlen and Loss [3], we would get

³Z

S1

u2 dv ¹

3́

6 A0(1)

Z

S1

jruj2¹ dv ¹

³Z

S1

u dv ¹

4́

:

Moreover, since u is extremal,

³Z

S1

u2 dv ¹

3́

=

³
A0(1)

Z

S1

jruj2¹ dv ¹ + B0

´³Z

S1

u dv ¹

4́

:

We get a contradiction. The result then follows.

We give another example. As a remark, taking M = T n¡1 in the following result,
we see that B0 may be as large as we want while the metric is kept Euclidean.

Proposition 5.3. Let (M; g) be a smooth compact Riemannian (n ¡ 1)-manifold
with n > 2. Let Gk be the group of rotations in R2 of centre 0 and angle 2 º =k.
Let Sk = S1=Gk and Mk = Sk £ M , with the standard product metric gk. Then
B0(Mk) is as large as we want in the sense that 8C > 0, 9 k0 2 N such that
8k > k0, B0(Mk) > C ¢ Vol(Mk)¡2=n.

Proof. Assume that, on the contrary, there exists C > 0 and (ki)i such that
limi ki = +1 and

B0(Mki ) 6 C ¢ Vol(Mki )
¡2=n:

Note that Vol(Mki ) = Vol(M1)=k. It is clear that we can  nd u 2 C 1 (M ) such
that ³Z

M

u dvg

2́

< C ¢ Vol(M )

Z

M

u2 dvg :

Let ~u 2 C 1 (Mki ) be de ned by

8(t; x) 2 Sk £ M; ~u(t; x) = u(x):
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We have
³Z

Mki

~u2 dvgki

1́+ 2=n

6
³

A0(n)

Z

Mki

jr~uj2gki
dvgki

+

³
C ¢ Vol(M1)

ki

¡́2=n Z

Mki

~u2 dvgki

´³Z

Mki

~u dvgki

4́=n

:

Clearly, on M1,

³Z

M1

~u2 dvg1

1́+ 2=n

6 (ki)
¡2=n

³
A0(n)

Z

M1

jr~uj2g1
dvg1

+

³
C ¢ Vol(M1)

ki

¡́2=n Z

M1

~u2 dvg1

´³Z

M1

~u dvg1

4́=n

;

and on M (using the de nition of ~u),

³
2 º

Z

M

u2 dvg

1́+ 2=n

6 (ki)
¡2=n

³
A0(n)2 º

Z

M

jruj2g dvg

+

³
C ¢ Vol(M1)

ki

¡́2=n

2º

Z

M

u2 dvg

´³
2 º

Z

M

u dvg

4́=n

:

When ki ! +1, we get (using Vol(M1) = 2 º Vol(M ))

³Z

M

u dvg

2́

> C ¢ Vol(M )

Z

M

u2 dvg :

Recall that u has been chosen such that the previous inequality is false. We then
get the proposition.
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