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We prove that, contrary to the L!-Nash inequality, there exists a second best
constant for the L2-Nash inequality on any smooth compact Riemannian manifold.

1. Introduction

The Nash inequality in R™ asserts that there exists A > 0 such that, for all

u € D(R™),
1+2/n 4/n
(/ u? dx) < A/ |Vu|? dx(/ |u|dx> .
n ]Rn n

For n > 3, this inequality is obtained by combining the Sobolev inequality,

(n—2)/n
(/ |u|?/ (=2) dx) < A/ |Vu|? de,
n Rn

and Holder’s inequality,

14+2/n 4/n (n—2)/n
(/ u? dx) < (/ |u|dx> (/ |27/ (" =2) dx)

By [3], the best constant in the Nash inequality is

(n_|_ 2)(n+2)/n
22/ )\ (B)|B|2/

where |B| denotes the Euclidean volume of the unit ball B in R and A1(B) is the
first Neumann eigenvalue of the Laplacian for radial functions on B.

In this paper we let (M, g) be a smooth compact Riemannian n-manifold. With-
out loss of generality, we may assume that Vol(M) = 1. The previous Nash inequal-
ity is clearly not true on M. It has to be modified by adding another term. One may
add an L!-term to get what we will refer to as the L'-Nash inequality, Vu € C>°(M),

1+2/n 4/n 2+4/n
(/ u? dvg> < A/ |Vu|z dvg(/ |u|dvg> + B(/ |u|dvg> . (1.1)
M M M M

This inequality was studied in [4] by Druet, Hebey and Vaugon. They showed that,
for every € > 0, there exists B. > 0 such that it is true with A = Ap(n) + € and

Ao(n)
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B = B.. More importantly, they also exhibited the rather unexpected fact that the
existence of B, such that it is true with A = Ag(n), depends on the geometry of
M.

We consider in this paper the following inequality, Yu € C*°(M):

142/n
(/ u2dvg>
M
4/n
< (A/ |Vu|§ dvg —|—B/ u? dvg> (/ |u|dvg> N(A, B)(u)
M M M

We refer to this inequality as the L?-Nash inequality. As in the case of the L'-
Nash inequality, for n > 3, it is obtained by combining the Sobolev inequality
and Holder’s inequality. Concerning terminology, we say that N (A, B) is valid
if N(A, B)(u) is true for all u € C*(M).

In this paper we study the sharp L2-Nash inequality N(Ag(n), B). In this case,
contrary to the sharp L!'-Nash inequality, we prove that B always exists. Among
other references, a similar study was done in [2,5,6] on what concerns classical sharp
Sobolev inequalities. We especially point out the beautiful and inspiring reference [5]
by Druet, which we somehow follow here. However, note that our partial differential
equation and the concentration phenomenon we face are of different nature. In
particular, the difficulties we have to deal with are distinct. In order to be easily
understood, the proof is done in the case of compact Riemannian manifolds. This
contains all the technical difficulties. Concerning manifolds with boundary and
complete manifolds, we only give a sketch of the proof. A general reference on
sharp Sobolev-type inequalities is given in [7].

Define A by

A={A>0]|3 B> 0 such that N(A, B) is valid}.
Mimicking what was done in [4], one easily gets that
inf(A) = Agp(n).
Conversely, we prove the following.

THEOREM 1.1. Let (M,g) be a smooth compact Riemannian n-manifold. Then
there exists B > 0 such that, for all w € C*(M),

1+2/n 4/n
(/ u? dvg> < (Ao(n)/ |Vu|z dvg + B/ u? dvg> (/ |u|dvg> .
M M M M

In other words, there always exists B for which N(Ag(n), B) is valid.

For n = 1 (i.e. for M = S'), a simple proof of theorem 1.1 goes through a
partition of unity argument. Such a proof extends to flat manifolds. Independently,
an extension of this result to manifolds with boundary and complete manifolds will
be sketched at the end of § 2.

We now define

By = inf{B € R such that N(Ay(n), B) is valid}.
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In last section, we compute By for the circle S* using a non-trivial argument. Giving
the explicit value for By in the other cases is a difficult problem. At the moment,
we only obtain the following result in the general case.

THEOREM 1.2. Let (M, g) be a smooth compact Riemannian n-manifold. Then

B|=2/m (2 —2\ (n+2\""
BOBmax(Vol(M)_Q/",| |6n (n_|_2—|—n)\1 )(n2 ) %%(Sg(x))

where |B| is the volume of the unit ball B in R™, X1 is the first non-zero Neumann
eigenvalue of the Laplacian on radial functions on B, Vol(M) is the volume of
(M, g) and Sq(x) is the scalar curvature of g at x.

We now say that v € HZ(M), u # 0, is an extremal function for the sharp
L2-inequality N(Ag(n), By) if

1+2/n 4/n
(/ u? dvg> = (Ao(n)/ |Vu|§ dvy + Bo/ u? dvg> (/ |ul dvg> .
M M M M

We then prove, with a very simple argument, the following result.

THEOREM 1.3. Let (M, g) be a smooth compact Riemannian n-manifold withn > 1.
Suppose that the L'-Nash inequality (1.1) is true, with A = Ag(n) and some B.
Then there exists u € HZ(M), u # 0, an extremal function for the sharp L?-Nash
inequality N(Ag(n), By).

Together with the results of [4], this leads to the following result. A discussion
on the n-dimensional Cartan-Hadamard conjecture can be found in [7].

COROLLARY 1.4. There exists extremal functions for the sharp L?-Nash inequal-
ity N(Ao(n), Bo) on any smooth compact Riemannian n-manifold of non-positive
sectional curvature when the n-dimensional Cartan—Hadamard conjecture is true.
In particular, there exist extremal functions for the sharp L2?-Nash inequality
N(Ap(n), Bg) on any smooth compact Riemannian manifold of non-positive sec-
tional curvature and dimension 2, 3 or 4.

A more in-depth study of the existence of extremal functions for the sharp L2-
Nash inequality will be done in [8]. In § 5 below, we point out the example of S?,
where constant functions are extremal functions for the sharp L?-Nash inequality.
We also exhibit a counterexample where this is false.

2. Proof of theorem 1.1

The proof of theorem 1.1 proceeds in four steps, which are quite similar to the ones
of [5]. The specific problems of the L?-Nash inequality appear in step 2, where the
method used in [5] does not work, and especially in step 4, where the special form
of our inequality leads to several difficulties. We assume here that n > 2. The proof
of the theorem then proceeds by contradiction. We assume that, for all B > 0, there
exists u € C°(M) such that

1+2/n 4/n
(/ u? dvg> > (Ao(n)/ |Vu|z dvg + B/ u? dvg> (/ |u|dvg> .
M M M M
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This is clearly equivalent to fi, = inf,ec Io(u) < Ag(n)~* for all v > 0, where

Io(u) = (/M Vul? du, + a) (/M |ul dvg>4/n

and
Az{uECOO(MH/ u2dvg=1}.
M

In order to carry over the non-differentiability of I, we define for ¢,o« > 0 and

u € A,
) ) 1 4/(n(1+e))
I o(u) (/ [Vul, dvg + a) (/ || "€ dvg>
M M

and

feq = felg Iea(u).

One may check that lim._,g fte,o = flo- Hence, for o < 0, we can choose (€4)q
such that lim, . €4 = 0 and p, o < Ag(n)~!. We let

Mo = Peg,o and I, = fea,a.
Mimicking what was done in [4], one may prove that there exists u, € C?(M)

such that I,(uq) = po with u, = 0. Moreover, writing the Euler equation of ug,
we get that, in the sense of distributions,

4
240 Jiig + —Bats® = katia, (Ea)
n

where A, stands for the Laplacian with the minus sign convention, and where

4/(n(1+ea))
Ao = ( / ultee dvg>
M

4/(n(1+ea))—1
B, = (/ |Vuo¢|£27 dvg + a) (/ ultee dvg>
M M
4 4/(n(1+ea))
ko = —pa + 2/ |Vua|£27 dvg(/ ultee dvg> .
n M M

By the Sobolev embedding theorem, we have u, € LQ"/("_Q)(M) and then, by
classical methods, we prove that u, € C?(M).

REMARK 2.1. In the following, all the limits are taken as @ — oo. Moreover, we
assume that all the sequences have a limit (not necessarily finite) by passing to a
subsequence.
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REMARK 2.2. Since p, < Ag(n)~ !, we have

/ utte dv, — 0.
M

From N(Ao(n) + €, Be)(uq), where € > 0 is small, we get

4/(n(1+€a))
liminf/ |Vua|§dvg(/ ultee dvg> > (Ao(n) +¢) L
M M

In addition, since o < Ag(n)~", it is clear that

4/(n(l+€a))
limsup/ |Vua|§dvg(/ ultee dvg> < Ag(n)~h
M M

As one easily checks,

limAa/ Va2 dog = Ag(n)™", (2.1)
M
lim Ba/ ultee dv, = Ag(n) ™", (2.2)
M
. 4 -1
limk, = (2 + g)Ao(n) , (2.3)
lim Ay = 0. (2.4)

Now let an = AY%. Also let x4 be a point of M such that U (ZTa) = |[ualloo-
STEP 1. For all § > 0,

1+€q
oo (8a0) Yo dvg

fMu e dug

lim inf > 0.

For z € B(0,9) C R™, let
ga(z) = (exp,,, ) g(aaz),
¢a(r) = luall i ualexp,, (aar)).
We easily get

2 — €
Ag(ﬁpa + 5||ua||ool+ *B

a(p;a = %k‘a@a- (Ea)
Since Aguq(zq) = 0, we get from (E,) and (2.3),
ltallfe Bo < Clltall. (2.5)

Since ||¢all (50, 5)) < 1, one gets from (E,) and standard methods that, for a €
10, 1], [l¢all o, aB(0,6) S C. Hence (¢q),, is equicontinuous and, by Ascoli’s theorem,
there exists ¢ € C’O( (0,9)) such that ¢, — ¢ in C°(B(0,d)). We have

©(0) = lim ¢, (0) = 1, (2.6)
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and also

/ ‘F’y—ea dug,
B(0,6)

= a0 [ e,
Bz, (6aa)

fBM (5aa) upte dvy,
[y ua e dug

fBM (5aa) uy e dvg
Loy ua e dug

— ||ua||;o(1+ea)A;(n/4)(1—ea)

< uall A" : (2.7)

since ||uq |52 > 1, equation (2.5) implies that ||ua||co = C - B, and, since A, — 0,
equation (2.2) implies By, > C - A, ~™/H0+e) > ¢ A Inequality (2.7) then

becomes "
€a
w3 < JB.., (s et dvg
Yq “dvg, <C T
B(0,6) fM U dug
Moreover,

/ it du,, — C >0 (2.8)
B(0,5)
by (2.6) and since g, — & in C2(K). Finally, we get

14€q
fBM (6aq) Yo dug

which ends the proof of the step.
REMARK 2.3. Coming back to (2.7) and (2.8), one easily gets that
A ug oo — C > 0. (2.9)

STEP 2. Let (cq)a be a sequence of positive numbers such that a,/c, — 0. Then

1+4+e€n
mea (ca) Yo dug

14+€q
Jag ua™ dug

lim =1.

Let n € C*°(R) be such that

(i) n([0,3]) = {1},

(i) n([1,400[) = {0},

(i) 0<n < 1.

For k € N, we let 14,1 = (n(c;ldg(x,xa)))Qk. Multiplying (E,) by ni’kua and
integrating over M gives

2Aa/ |v77a,kua|£27 dvg - 2Aa/ |v77a,k|£27ui dvg
M M

4
+ —Ba/ 772 kuife‘l dvg = k:a/ (7704,16%4)2 dog. (2.10)
n Mo M
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Using N (Ag(n) + €, Be) (a,kUaq ), one easily checks that

4
2Aa/ |v77a,kua|_(2] d'Ug - 2Aa/ |v77a,k|£2]uig d’Ug + _Ba/ ni’kuife(x d’Ug
M M " o

4/(n(1+€a))
< k:a((AO(n) + e)/ |V77a,kua|§dvg(/ (e ke ) e dvg>
M M

4/(n(1+ea))\n/(n+2)
+ BE/ (na,kua)deg (/ (Nev ke ) T dvg> ) )
M M
(2.11)
Moreover, with the assumption on (¢ )a,
v |2<£ A |Var2u? dv, — 0
| Na,k g ) = « o Mo,k gua Vg .
Now let
2 ultee dy - okl ) T dv
A = lim fM 77a,k1+o;a g, Ar = lim fM(n L 1+e)a g
fM Un d’Ug fM Ue dvg
From the definition of 7, i, we get, for all £ € N,
- - ) fBM (ca) uptee dv,
Akl S A1 S A < A < p=lim s (2.12)
Sy ue e dug
and, by step 1,
3 C > 0 such that Vk € N, A\, > C. (2.13)

Let us now prove that Ay < Xz Let
Ly = limAa/ |V, ktal] dvg.
M
Note that (2.2) and the definition of A, imply
limBa/ n2 pultee dv, = AAg(n) ™"
e
and

k:a/ (na,kua)deg <.
M

In particular, equation (2.10) gives Ly < +oo. We also clearly have, by (2.1)
and (2.2),

4/mhe))
lim/ |V77a’kua|§dvg(/ (na,kua)“”a dvg> = Lk)\k/".
M M

Equation (2.11) then leads to

4 — 4 \4/n\n/(n
2L, + gAO(n) i < (2+ g)AO(n)_l((AO(n) ) LAy ™M/ (42
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If L, = Ag(n)Ly, we obtain, since € was arbitrary,
T 4 4 rn/(n X n
2Ly + = < (2 + 5) Ly/ 2 X/ 2
Now, for z, y, z, let
4\ n/n+2), 4/ mt2) _ (4
f(z,y,2) = 2+5 T Y — 524—230 .

Differentiating in x, we see that Vx,y,z > 0, f(z,y,2) < f(¥%,v, z), and then

(AR — M)

S|~

F(Liy Moo M) < FOR, Ais Ag) =

We then get Ak < A2, Now, from (2.12), (2.13), we get VN € N, 0 < C < A < p.
Since p < 1, we have p = 1, which proves the step.

STEP 3. There exists C > 0 such that, for all z € M,
uoé(ac)al(ac,aca)"/2 < C,

where d denotes the distance for g.
We proceed by contradiction. Suppose that the following assumption is true:

3 yo € M such that vy (Ya)d(Ya, xa)"/Q — —+00. (H)

Let
Vo = Ua (Yo )d(Yor, xa)n/Q-

We can assume that
Vo = ||ua(')d('axa)n/2||oo

First, we prove that, if v is small enough,
By, (ua(ya) ™2™ N By, (a4v%) = 0. (2.14)
It is here enough to show that
d(a,ya) = ua(ya)">/" + aavy,

or, equivalently, that
vg/”_” > u,” + aaua(ya)Q/".

If v < 2/n, from (H), we get that 0™ — 400 and v, Y — 0. Hence 1t still has

to be proved that aqta(ya)?™ < C. We have aaua(ya)Q/" < aallual|2". Since

4o = AY?, and by (2.9), this gives 0Lo¢||uo¢||Oo < C. Equation (2.14) then follows.
We let, for x € B(0,1),

ha(.l‘) = eXpr)*g(lal‘),
Ya(z) = ua(ya)_lua(expya (la)),

where
= Jluall ;o(n+4)/2nua (Yar) 172,
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On B(0,1), we have

_ Fallual T g (a) | 2Balualld T g (ga)

A o, £’
hawa 2Aa wa TLAa wa ( a)
Moreover,
ho — & in C*(B(0,1)). (2.15)
We have

vl (B, (ua(ya)-2/7)) < C - Ua(Ya)-

To see this, note that, by the very first definition of y,, for all z € By, (ua(ya)~2/™),
we have
Ua(Ya)d(Tas Ya)"'? 2 to(2)d(za, @)™/, (2.16)

Moreover, since € By, (g (ya ) ~2/™),
A(Yar ) < Ua (Ya) 2"

and, by (H), ua(ya)_Q/" < 2d(2a,Ya)- So we have

d(z,70) 2 d(ZTa, Ya) — AT, Ya) Z d(Ta, Ya) — ua(ya)_Q/n = %d(xa,ya).

Coming back to (2.16), the result comes immediately. Since lo < uq(ya)™2/™, it
follows that [[¢q|lL~(B(0,1)) < C. From (2.5), (2.9) and the fact that, by (2.2),
BaAi/Aln(l +€q) = C >0, we get

luallss — C. (2.17)

Now, from (2.5), (2.9) and (2.17), we see that (E’,) has bounded coefficients. Hence
standard arguments imply that the sequence (14)a is bounded in C*?(B(0,1))
(0 < a < 1). As in step 1, one may find » € CY(B(0,1)) such that, up to a
subsequence,

Yo =¥ in C°(B(0,1)).
Here, 1 is such that ¥ (0) = 1, and then

/ ¢ da > 0. (2.18)
B(0,1)
However, by (2.15),
/ ¢ dz = lim pltee duy,
B(0,1) B(0,1)

and, as one can check,

/ wi—i—e(x dvha = ﬂaa
B(0,1)

where

f u1+ea dov
_ A/ (1+ea) ~(tea)ynBralle) @ "9
Bo = AL Ua (Ya) lo AT/
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If we prove that lim 3, = 0, we get a contradiction with (2.18), which ends the
proof of the step. First, let

Ua (Ya)

1tualloo

mey =

Clearly, by (2.9),

e dug

B < Cm= (/24D I By (ua ) Vet
* Ju o dug

By the previous step and (2.14),

14+€q
B, (e yay—2m) U dug

lim
1+4+e€q
Sy uat e dug

=0. (2.19)

If mqg > C > 0, we have 8, — 0. Hence we assume that limm, = 0. We now
proceed by induction to prove that

m;((n+3)/(n+2))k / u? dv, — 0. (Hy)
B

va (27 % ua (ya)=2/™)

First, we prove that (Hy) is true. We proved before that

[vall Loe (B, (e (ya)-2/7)) < C - Ua(Ya)-

Hence we have, noting that uq (ya) — 00,

/ u? dvy < Cua(ya)/ ubte du,
By, (ta(ya)=>/™) By, (ua(ya)=>/™)

< Omalalle [ aee o,
By, (ta(ya)=2/™)

By (2.9) and (2.19),

lim ||ua||oo/ ultee dv, = 0;
By (ta(ya)=2/™)

(Hp) then follows. Now let e = ((n + 3)/(n + 2))* and suppose that (Hy) is true.
Let us prove that (Hyi1) is true. Let 1q £(2) = n(ta(Ya)?"25dy (7, ya)), where 1
is defined as in step 2. Multiplying (E,) by

Uq (Ua,k)Q
€k
me

and integrating over M, we obtain
2A,m7 " / |V77a,kua|§dvg
M
4
—2A,m_ " / IV1a, k| dvg + - B m,, / ni’kuiﬂa dug
M

= kam_* /M(na’kua)deg. (2.20)

https://doi.org/10.1017/50308210501000270 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210501000270

Best constants in the L?>-Nash inequality 631
By (Hk)a
24amg / |v77a,k|527ui dug < CAaua(ya)4/nm;6k / U, dug
M Bya (27 ua (ya)=?/™)

< CAgug (ya)¥™.

Moreover, by (2.9), Agta (ya)*/™ = A ™Mua || < C-m¥™ = 0. We also have,
by (Hi) and (2.3),

kam, " / (7704,16%4)2 dvg — 0.
M

Therefore, equation (2.20) gives

2Aa/ [V, ktial; dvg < C-mé,
M

4

(2.21)
B [ ke dog < € om
n M

Replacing 1q,x by \/Ta.r and doing the same, we see that
4
—Ba/ niteeylte dv, <O -meh. (2.22)
n M ’

Moreover, using N (A, B)(7q,kU%q), one easily checks that

(n+2)/n
(/M (Ua,kua)Q dvg)

4/(n(1+€a))
<A / Vo, ktial} dvg(/ (e ke ) T dvg>
M M

4/(n(1+ea))
+B'/ (na,kua)deg(/ (Mo ki) 0 dv_,,)
M M

Clearly, we have, in fact,
(n+2)/n
(/ (Ua,kua)deg>
M
4
<C / |V77a,kua|527dvg(/ (Ua,kua)H—EQ dvg)
M M

C 2
S Qg ( /M |Vila ptial] dnga>

4/(n(1+€a))
X (Ba/ (na,kua)H'EQ dvg> .
M

/(n(1+ea))

Using (2.21) and (2.22), we get

, .\ c (1+4/(n(1+€a))
. n € €k
(f ssrtan) < 4ty |
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By (2.2), Ao B ") > > 0. Since

/ ui dvg < / (7704,16%4)2 dvg,
By (27D uq (ya)=2/™) M

(Hg+1) then follows. As a consequence, (Hy) is true for all k. Coming back to (2.22),
we get that, for all &,

limm,,** B, / ubte dv, = 0.
Bya (27 ua(ya) /™)

Using the fact that
la

Ua (Ya) ~2/M B

and choosing k such that ¢, > %n + 1, we get lim 8, = 0, which ends the step.

0

lim

STEP 4 (Various estimates). This step proceeds in seven parts. Let ¢ be a strictly
positive number.

PART A. Let us prove that, Vk > 0,
A;k/ u? dvg, — 0. (2.23)
M =Bz, (c)
Let 7o (z) = dg(z,z4) and let § € ]0, 2n[. Using step 3, we have
A;‘s/ ui dvg < C- A;‘s/ u?‘e‘lr;("/m(l_e‘l)dvg
M—Bz, () M—Bg, ()
<C- A;‘s/ ultee dv,.

M—Bg, (c)

Recall the definition of A, to get

A;‘s/ u? dvg, — 0.
M—B,, (c)

Mimicking what we did in the previous step, we prove by induction that

A;(("+3)/("+2))k6/ ul dvg — 0. (Hy)
M—B,;, (2%c)

REMARK 2.4. As in the previous step, we have, for all k£ > 0,

limA;k/ |Vua|§dvg =0,
M—B,, (c)

(2.24)
lim A;k/ ubtee dv, = 0.
M—Bz,, (c)
PART B. Let us prove that
3 to > 0 such that Agua <0 on M — By, (tOAal/Q). (2.25)
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Let x € M be such that Aju,(x) > 0. By equation (2.5), we have uy(x) > C - B,.
We also have, by (2.2), B, = C - A;"/Q, and, by step 3, uq(z) < C - 74(z) /2. We
then have ro(z)~"/2 > C - A3™*.

Equation (2.25) then follows. We now let n, = n((1/¢)rq).

PART C. Let us prove that

/M(Tana)2|vua|zdvg < C. (2.26)

Let
Y :/ (rana)2|Vua|§dvg.
M

Integrating by parts, we compute
Yo = /M(Agua)ua(raﬁa)deg - 2/M UaTaNa(Vrala; Via) g dvg,
and, by (2.25),
Yo < /BM(tOA}JZ)(Agua)ua(rana)Q dvg + C/M UaTalalVratalg| Vialg dvg.

Using (F,), equation (2.5) and the following inequality (which comes from (2.9)),
Uq () < ||ua||oo <C- A;n/4’

one can prove that

/ (Aguoé)uoé(roﬂya)2 dvg < C.
B, (toAL?)

Moreover, by Holder’s inequality,

/uarana|V7“a77a|g|Vua|gdvg
M 1/2 1/2
S(/ ui|V7“a77a|§dvg> (/ |Vua|§(ra77a)2dvg> .
M M

7a<0+0'7i/23

Finally,

and (2.26) follows.
PART D. Let us prove that

/M(uarana)deg < CvaA,. (2.27)

Assume that, on the contrary,

fM(uarana)Q dv,

Vad,

— +400. (H")
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Multiply (E,) by

2 (7‘047704)2
fM (UaTaNa)? dvg ’

and integrate over M. Then

24, fM(Agua)ua(rana)deg N 4B, fM ultee (rana)? dug

fM (uaroﬂ?a)Q dvg n fM (uoﬂ"oﬂ?a)Q d’Ug

=kq. (2.28)

Integrating by parts, we clearly have (using (2.26))

< C’/ (rana)2|Vua|§ doy —|—/ ui|V7“a77a|§ dug
M M

<C

’/M(Aguoé)uoé(romo‘)2 dvg

Thus (H') implies

Ag fM(Agua)ua(Tana)Q dug
fM(uarana)Q dug

- 0. (2.29)

From (2.3), (2.28) and (2.29), one easily gets that

B fM uij_ea (7"047704)2 dug

Jo (Uarana)? dg

<C.

We have already seen that B, > C - A;"/4, and then

fM ui—i_ea (7"047704)2 dug

2 < (2.30)
Aa/4 fM(uarana)Q dvy
Note that
/ (ugna ) Teor? dvg — / ultee (rana)deg <C ultee du
M M M =Bz, (c)
<C- Ak
for all £ > 0, by (2.24). Equations (H’) and (2.30) then imply
14+€a .2 d
A fM(uarana)Q dvy
Let us show that
UaTa (UaNa ) T dv
/ (uam%)HEQ dvg < CfM ( 771 )2 g (2.32)
M a1/4Aa/
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We have

/ (uarana)H'Ea dvg = / (uarana)HEQ dvg
M B.. (AY?a1/4)

1+ea
—|—/ (UaTaNa) T dug
M—B.,,_ (AY?a1/4)

1+€a
S/ (UaTaNa) te dog
Bma(A;/zal/‘l)

C
1+ea
l1—e€a 1/2 (uOéT/OL) ‘
Ta M —Ba, (Ad “al/?)

S/ (uarame) T dog
B, (A;/2a1/4)

|
Aa1/2a1/4 M—Bma(AL/Zal/“)

+ r2 dv,

+ (e )t e 7“2 dvg (2.33)

(we have used the fact that (A5 2al/4)1=¢ < AY2al/4, which comes from (2.4)).
Clearly,

/ (uoﬂ”ana)u_ea dvy < C- AZ/4+1/2a1/4. (234)
Ba, (AY?a1/4)
Now assume that
t
An/4+1/2 1/4 > —0‘/ 1+€q,.2 d ’ H//
“ “ g Ai/2a1/4 M_Bma(A}l/ZalM)(uana) o Vg ( )
where t, — +00. We would get from step 3 that
/ (uanara)Q dvg < / (UQTQ)QU;;’_EQ d’Ug
M—Ba, (ALY ?al/4) M—B.,,, (AY?a1/4)

<C ri_"/Q(uana)HEa dog
M—B, (AY?al/4)

and, by (H") and ra"? < A;n/4a_"/8,
/ (uanara)deg < CVaA,.
M—Bq, (AY al/4)

In addition, we clearly have
/ (uanara)deg < CVaA,,
B.., (A;/Zal/“)

and thus
/ (uanara)deg < CVaA,.
M

This assertion contradicts (H') and thus (H") is false. Coming back to (2.33)
and (2.34), this gives

C

14+€q 14+€a .2
UaT dv, < —— u ro do
/M( alala) g X Ai/Qal/‘l /M—BM(AL/ZOAM)( alla) o 9Vg;
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which proves (2.32). Now write N (A, B)(uaraNa)s

, Jar IV taranal2 dvg ([, (uarana) e dug)d/ (i +ea))
(o (tarara)? dug)t+2/n
([ (Warama)Hee dug)d/ (r(1+ea))
(fM(uarana)Q d’Ug)Q/”

1< A

+B-

(2.35)

Let us prove that
(fM (uaroﬂ?a)u_% dvg)4/("(1+ea))
(Jy (UaTala)” dvg)2/n

=0. (2.36)

lim
Indeed,

([ (arama) T dug) ¥/ (r(+ea))
(fM (uaroﬂ?a)Q dvg)"/Q

Ba fM (uoﬂ'ana)l-i_ea d’Ug )4/("(14-6(1)) (fM (uaroﬂ?a)Q dvg)4/(n(1+ea))_2/n
Bi/("(1+ea))

B ( fM (UaTana)’ dvg
From (2.32) and the fact that BoA3™* — C (by (2.2), (2.9) and (2.17)), we get
(fM (uoﬂ"ana)l-i_ea dvg)4/(n(1+ea))

(fM (uoﬂ"ana)Q dvg)Q/n

( fM (uana)1+ea 7‘2 d’Ug )4/(71(14_6@))
AZ/4 fM (%M%)Q d’Ug

Ai/(l-‘rea)(l—Q/n) . 2/n
% W(/M(uaroﬂ?a) dvg> .

We clearly have

A}l/(1+ea)(1—2/n) . 2/n
e 0w ([ (o) <

Using (2.31), equation (2.36) then follows. Let us prove that

Jar IVtaranal2 dvg ([, (uaramna) e dug)d/ (i +eea))

0. 2.37
(Jyy (Warana)? dug)1+2/n - (2.37)
We have, by (2.32),
fM |vu°‘7‘°‘77°‘|§ d’Ug (fM (uaroﬂ?a)u_ea dvg)4/(n(1+ea))
([ys (WaTama)? dug) 1 H2/m
S ( Agv/a )H/n
= al/(n(l+ea)) fM(uaTaUa)Q o,
Lea 2 gy \&/(n(14ea))
X/ |Vua7“a77a|2dvg( Jag (wata) +eerd :;;4) (238)
M fM (uarana)g d’UgAa
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We remark that

/ |Vua7“a77a|§dvg</ |Vua|§(7~a77a)2dvg
M M
—|—/ (Vua,Vrana>§uara77advg+/ ui|V77a7“a|§dvg
M M

and, by Holder’s inequality,

1/2
/ (Vua,Vrana>§ua7“a77a dug < C(/ |Vua|§(7~a77a)2 dvg> .
M M
By (2.26), it follows that
/ |Vua7“a77a|§dvg <C. (2.39)
M
Equations (2.31), (H'), (2.38) and (2.39) lead to (2.37). Equations (2.35), (2.36)

and (2.37) prove that (H’) is false.

PART E. Let us prove that

1- (fM(uaUa)Q dvf)l+2/n
Ao

We first recall some results about the expansion of the metric. Let £ denote the
Euclidean metric. Since (z4)q is convergent up to a subsequence, we may write,
from the Cartan expansion of g in geodesic normal coordinates at zo = limz,,
that, for a large,

< C. (2.40)

|Vua77a|§(x) < |Vua77a|£27(x)(1 +C- 7"2)

and
(1—C-72)dve <dv, < (14 C - 72) dvg. (2.41)

Hence
/ |Vua77a|§dv§ < / |Vua77a|§(1 +C - r2)dv,. (2.42)
M M

We now prove (2.40). We have, by (2.41),

<C

(
< C(/M u? dv, — /M(uoma)2 dv, + C/M(uanam)Q dvg>
(/M (“a(l - ”a)>2 dvg +C /M(uw(m)2 dvg> .

Equations (2.23) and (2.27) give (2.40).
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PART F. Let us prove that

4/(n(1+ea)) 4/(n(1+e€a))
(/M(uana)H'“ dv§> < (/M(uana)H'“ dvg> +C-A%Va.

(2.43)
Multiply (E,) by
Uo(Tala)?
AoV
and integrate over M,
2 4B, .
= | @yl oy + =2 [k ),
ko
= 1o /M(uarana)deg. (2.44)

As we did to get (2.39), we have, from (2.26),

/M(Agua)uoé(roﬂya)2 dvy < C

and then, from (2.27), (2.44) and the fact that B, > C - A;n/4,

Ajé*/a < C VoAl

[e3

/ ut e (rone)? dvy, < C
M

This implies
/ (Natta) 1% dv, < C- VA4 (2.45)
M

Now

. 4/(n(1+e€a))
(/ (uata) d”é)
M

4
< (/ (uana)““a dvg + C/ (uana)“”ari dvg>
M M

4/("(1""5@)) oTa 1+ea7,,2 d'U 4/(n(1+ea))
< (/ (uoﬂ?a)H_Ea dvg> (1_|_ fM(u Na) — a g) .
M fM (wana) e dug

/(n(1+e€a))

Clearly,
fM (uana) Itea 7"2 dug

fM (Uana) T du,

Hence, developing, we check

) 4/(n(14-€a))
(/ (uama) e dv£>
M

4/(n(14-€a))
< (/ (uana)u_ea dvg)
M

4/(n(1+e€a))—1
+C - (/ (uana)“”a dvg> / (uana)“”ari doy.
M M
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From (2.45) and the fact that
/M(uana)““a dvy < C- Ag"/4)(1+ea)’

we get (2.43) (we have used ASr — C > 0).
PART G (Conclusion). By [3], we get

639

1+2/n 4/(n(1+e€a))
(/ (uana)Qd%) < Ao(n)/ |Vua77a|§ dvg(/ (tana) e dv§> )
M M M

Clearly, by (2.26) and (2.42),

/ |Vua77a|§dv§ S/ |Vua|§77§dvg—|—0.
M M

From (2.1), (2.43),

(f twaney? dvs)mm

4/(n(1+ea))
< Ao(n)/ Vualons dvg(/ () Heo dvg> +C - Vad,.
M M
(2.46)
From the very first definition of u,, we get
1 a
1= (—/ |Vug|? dv, + —)Aa. (2.47)
Mo Jpr 979 Mo

We now compute (cf. (2.46), (2.47)) (Aava)™ L,

1- (fM(uana)Q dvf)l+2/n

Va

[e3

AV
1+ea d 4/(n(1+€a))
> _Ao(n) / |Vua|277a2 du, (fM(uoﬂ?a) vg)
Va Jy g Ag
1
+ |Vug|? dvy + ~— — C.
tav/a Jar I
Note that S )
1+e€a 4/(n(14€a
i > Ao(n), (fM(uana) dvg) <1
Mo Ao

It follows that

1- (fM(uaUa)Q dvf)l+2/n S Ag(n)
Asva TV

The first member of this inequality is bounded from below (by (2.40)),

/ Vual2(1 - n2) dv, + Ao(n)va — C.
M

while the

second member goes to +00. This contradiction ends the proof of the theorem.
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The case of manifolds with boundary and complete manifolds

Theorem 1.1 is also true on compact Riemannian manifolds with boundary. The
proof may easily be modified when the sequence z,, goes to the boundary. Moreover,
note that the result is always true when g is not a fixed metric. More precisely, we
consider (ga)a, a bounded family of Riemannian metrics on M (in C?(M)); this
bound allows us to control each constant that appears in the proof. We are then
able to get the following result for the complete case.

THEOREM 2.5. Let (M, g) be a smooth complete Riemannian n-manifold, n > 1.
We let |Rmgy| and [VRmy|4 be the norms of the Riemannian curvature of g and of
its gradient. We note rq, the injectivity radius of g. Let C', C', § > 0 and assume
that |[Rmgy| < C, [VRmgy|, < C" and ry > 6. Then there exists B > 0 such that

142/n 4/n
(/ u? dvg> < (Ao(n)/ [Vul? dog + B/ u? dvg> (/ |u|dvg> .
M M M M

Moreover, B depends only onn, C, C' and §.

To prove this theorem, we use a covering of M with balls and a smooth partition
of unity. The results in the case of manifolds with boundary applied on these balls
gives the theorem. A complete study of this problem is done in [6] for the sharp
Sobolev inequality.

3. Proof of theorem 1.2

As in theorem 1.1, we may assume that Vol(M) = 1. We write N(Ag(n), Bo)(1), to
get By > 1. Now let € M. As in theorem 1.4 of [4], we let u (u # 0 and radially
symmetric) be an eigenfunction associated to A;. We also set

u(r/e) —u(l) ifr <e,
Ue =
0 otherwise,

where r = dy(x,-), and dg stands for the distance with respect to g. Let

AO(”)(fM |VU|§ dvg + By fM v? dvg)(fM |v] dvg)4/n

Ip,(v) = (fM V2 dvg)Q/n

In [4], it is shown that

Ap(n) fM |Vue|§ dvg(fM || dvg)4/n 1 ) i
(fMugd’Ug)l""Q/n = 1+%ng(l')€ +0(€ )7
where
_ 2 n=2
T ht2 A

From the explicit computations made in [4], we get easily that

(fM |u6| dvg)4/n

B
O ([ w2 dug)?/m

= BoY e +o(€é?),
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Y = (/B lu(z) —u(1)|dx>4/n(/6(u(x) — u(l))de>_2/n.

We then have

where

1
IBO (ue) =1+ 62(%)(5‘(](.1‘) + B()Y> + 0(62).
Hence, since I, (u) > 1 for every u € HZ(M), we get that

Bo > oy ms Sal®):

We now compute Y. As in [4], we have
Y = (=|Blu(1)"(5(n + 2)u(1)*[B) =" = B/ (5(n +2))7>/™.

This gives the theorem.

4. Proof of theorem 1.3

First, let
By =inf{B > 0| N(Ap(n), B) is valid}.

Also let ag = Bvo(n)_l and &g = BOAO(n)_l. In the following, the limits are
taken as @ — 0. Proceeding as in the proof theorem 1.1, one can find (e4), that
goes to 0 such that, if we define,

4/(n(l+€a))
Jo(u) = (/ [Vul? dvg + (ag — a)) (/ || Hee dvg> ,
M M
) 2/(L+ea)
Ja(u) = (/ [Vul? dvg + (ao — a)(/ || e dvg> )
M M
4/(n(l+€a))
X (/ || 1€ dvg> ,
M

fo < Ag(N)™! and  po — Ag(N)H,
fio < Ag(N)™! and  fi, — Ag(N) 7,

then

—~
[N
~— ~—

where p, = inf,cq Jo(u) and fi, = inf,eq ja(u) (A is defined as in the proof
of theorem 1.1). Moreover, there exists u, and 4., two non-negative functions in
C?(M), such that

/uidvgzl and  fio = Jo(ua),
M

/aidvg:1 and  fia = Ja(la).
M
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To prove the theorem, it is enough to show that
liminf/ [ua| e du, > 0.
M

Indeed, this implies that
/ |Vuo¢|£27 dv, < C
M

and, by classical methods, the theorem follows. Suppose that, on the contrary,

/ lug | e dv, — 0.
M
We can then find a > 0 small enough such that
2/(1+€a)
(g —a) — (o — a)(/ g | e dvg> > 0. (4.3)
M

Now let a € ]0,a[. We have, using Holder’s inequality,
) 4/(n(1+e0))
Ja(ug) = Jo(ug) = (ap — a)(/ |2t | T dvg>
M

— (& — a)(/M | e dog,
4/ (n(14<0)
> (oo a)( [ ol v,
M 1/(14+€a) (24 4/n)
o= [ e an,)

2/(14€4)
~(@o-0—@-a)( [ flrean) )
4/(n(1+e€q))
X (/ [tg | e dvg> .
M

From (4.3), we get Jo(uq) > Ju(ua). From the definition of g, Jo(ta) < Jo(ta).
Therefore,

)1/<1+ea><2+4/n>

Ja(ua) < Jo(uq). (4.4)

Equation (4.4), together with (4.1) and (4.2), shows that the assumption we made
is false. This gives the theorem.

5. Examples

Let (M, g) be a smooth compact Riemannian n-manifold. Studying how the best
second constant By in the sharp L2-Nash inequality depends on the geometry of
(M, g) is a difficult problem. At the moment, we explicitly know By only for the
circle S1. Even in this case, the result is not trivial (see below). The example of the
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torus S1(R) x S™~1(1), where the radius of the first circle is going to 0, shows that
the naive idea that

o 1BIPYR 2 m—2\ (n+2}"
Bozmax(Vol(M) 2/ ,| |6n (n—|—2+ N )( 5 51162}\)4(557(30)

is false. This paragraph is devoted to the study of these examples. First, we prove
a general result.

PROPOSITION 5.1. Suppose that the L'-Nash inequality (1.1) is true on M, with

A= Ag(n). Let u be the extremal function given by theorem 1.8. If the set
{z € M | u(z) = 0} is negligible, then By = Vol(M)~2/".

Without loss of generality, we may assume that Vol(M) = 1. We use the same
notations than those used in the proof of theorem 1.3. First, let us prove that
u € CY (M) and u, — u in CY(M). Suppose that lim||uq||cc = +00. Then let
Vo = Uq/|talloo- Note that u, satisfies the same equation than that involved in
theorem 1.1. Hence we easily get that [|Agvallec < C. As we did in theorem 1.1,
we can find v € C°(M) such that v, — v in C°(M) (up to a subsequence). Let z,,
be a maximum of u,. There exists xg such that z, — zg up to a subsequence. We
clearly have v(zg) = 1. Therefore,

/ vdog > 0.
M

1+€q

u dv

/ vdu, = hmea—Heg —0.
M l[walloe

This shows that lim [[uq|[cc < +00. We then have [[Ajuql|s < C. The result then
easily follows. Now we prove the proposition. Since Vol({x € M | u(z) = 0}) = 0,

we get
lim/ ug dvg = 1.
M

I :/ udvg, Iy =/|Vu|2dvg.
M

Integrating (F,) (where (E,) is as in theorem 1.1), we have

However,

Set

4
—lim B, = limk,l;.
n
We then get, from the definitions of By, ko and from lim I, (us) = Ag(n) ™1,

440(n)7"

4/n 4 —1
=12 —A lq.
i ( vl + n o(n) ) 1

Since lim I, (uq) = Ag(n) ", we also have

1= (Ao(n)ly + Bo)l1*/™.
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As one easily checks, it follows that

2 2 _4/n
By = ((1+—> - —l;2>11 “n,
n n
Now let, for 0 < x < 1,

= ((1+2) 2o )

A simple study of f gives that f(x) < 1, with equality if and only if x = 1. As
By > 1, we have necessarily I[; = 1 and By = 1. An application of this result is the
following.

COROLLARY 5.2. On the standard circle of radius 1, By = (27) 2.
Proof. We keep the same notations. It is sufficient to prove that
Vol({z € M | u(x) =0}) = 0.

Suppose that there exists z € S* such that u(x) = 0. Clearly, by the works of
Carlen and Loss [3], we would get

3 4
(/ u? dv§> < Ao(l)/ [VulZ doe (/ udv§> .
st st st

Moreover, since u is extremal,

(/S u2dvg>3 = (AO(U/Sl |VulZ doe +BO> (/S udv§>4.

We get a contradiction. The result then follows. O

We give another example. As a remark, taking M = T"~! in the following result,
we see that By may be as large as we want while the metric is kept Euclidean.

PROPOSITION 5.3. Let (M, g) be a smooth compact Riemannian (n — 1)-manifold
with n > 2. Let G}, be the group of rotations in R? of centre 0 and angle 27 /k.
Let S, = Sl/Gk and My = Sk X M, with the standard product metric gi. Then
Bo(My,) is as large as we want in the sense that YC > 0, 3 kg € N such that
Vk > ko, Bo(My,) = C - Vol(My,)~2/™.

Proof. Assume that, on the contrary, there exists C' > 0 and (k;); such that
lim; k; = +00 and
Bo(Mjy,) < C - Vol (My,)~2/™,

Note that Vol(My,) = Vol(My)/k. It is clear that we can find u € C*°(M) such

that )
(/ udvg> <C-V01(M)/ u? dv,.
M M

Let @ € C*°(Mjy,) be defined by
V(t,x) € S x M, a(t,z) = u(x).
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We have

142/n
(], o)
My, ‘

< (otw [ 193, v
M,

(M —2/n 4/n
+(C.M> / d)(/ d) .
k’i Mki ‘ Mk ‘

i

Clearly, on My,

142/n
(/ @? dvg1>
My

< 2 (Aato) [ 19, a,

M —2/n 4/n
+ (C : M) / T dvg1> (/ advg1> ,
ki My My

and on M (using the definition of @),

1+2/n
(2#/ u2dvg>
M

< (k:lv)—2/n(A0(n)27r /M [Vul? du,

(M —2/n 4/n
+ (C : M) 27r/ u? dvg> (2#/ udvg> .
ki M M

When k; — 400, we get (using Vol(M;) = 27 Vol(M))

2
(/ udvg> >C-V01(M)/ u? dv,.
M M

Recall that u has been chosen such that the previous inequality is false. We then

get the proposition. O
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