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We dedicate this article to the memory of Philippe Flajolet, who was

and will remain a guide and a wonderful source of inspiration for so

many of us. ❃❃❃

We study the coefficients of algebraic functions
∑

n�0 fnz
n. First, we recall the too-little-

known fact that these coefficients fn always admit a closed form. Then we study their

asymptotics, known to be of the type fn ∼ CAnnα. When the function is a power series

associated to a context-free grammar, we solve a folklore conjecture: the critical exponents

α cannot be 1/3 or −5/2; they in fact belong to a proper subset of the dyadic numbers. We

initiate the study of the set of possible values for A. We extend what Philippe Flajolet called

the Drmota–Lalley–Woods theorem (which states that α = −3/2 when the dependency

graph associated to the algebraic system defining the function is strongly connected). We

fully characterize the possible singular behaviours in the non-strongly connected case. As

a corollary, the generating functions of certain lattice paths and planar maps are not

determined by a context-free grammar (i.e., their generating functions are not N-algebraic).

We give examples of Gaussian limit laws (beyond the case of the Drmota–Lalley–Woods

theorem), and examples of non-Gaussian limit laws. We then extend our work to systems

involving non-polynomial entire functions (non-strongly connected systems, fixed points

of entire functions with positive coefficients). We give several closure properties for N-

algebraic functions. We end by discussing a few extensions of our results (infinite systems

of equations, algorithmic aspects).
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2 C. Banderier and M. Drmota

1. Introduction

Algebraic functions and their asymptotics are ubiquitous in combinatorics. In this article

we review some of the main reasons for this.

Algebraic functions and language theory. The theory of context-free grammars and its

relationship with combinatorics was initiated by the article of Noam Chomsky and

Marcel-Paul Schützenberger in 1963 [39], where it is shown that the generating function

of the number of words generated by a non-ambiguous context-free grammar is algebraic.

Since then, there has been much use of context-free grammars in combinatorics. Several

chapters of the Flajolet and Sedgewick book Analytic Combinatorics [65] are dedicated

to what they called the ‘symbolic method’ (which is in large part isomorphic to the

Joyal theory of species [73, 20] and, when restricted to context-free grammars, is

sometimes called the ‘DVS methodology’, for Delest–Viennot–Schützenberger, as the

Bordeaux combinatorics school made great use of it [117, 47] for the enumeration

of polyominoes [48] and lattice paths [59], for example). Context-free grammars also

allow one to enumerate trees [68, 89], sofic-Dyck automata [18], non-commutative

identities [81, 98], pattern-avoiding permutations [80, 88, 3, 17], some types of planar maps,

triangulations, Apollonian networks [26], non-crossing configurations, and dissections of

polygons [62] (as studied by Euler in 1751, one of the founding problems of analytic

combinatorics!); see also [110]. Links between asymptotics of algebraic functions and the

(inherent) ambiguity of context-free languages was studied in [77, 61], and for prefixes of

infinite words in [5]. Growth rates are studied in [36, 37], in connection with asymptotics

of random walks [120, 38, 69, 84, 85]. Applications in bioinformatics or for patterns in

RNA are given in [96, 118, 50, 42, 119].

Random generation of algebraic objects. The first efficient algorithm for uniform random

generation of words of length n of a context-free grammar involved n2(ln n)2 operations

on average via fast Fourier transform, and is due to Hickey and Cohen [72]. Generating

functions associated to context-free grammars are the key tool for improving this average

complexity: the recursive method, coupled with the boustrophedon algorithm [66], led to

a time-complexity n ln n. Asymptotics of their coefficients are used in the implementation

of this method with floating-point arithmetic [51]. The case of ambiguous grammars was

also considered in [24]. A revolutionary change of paradigm on the generating functions

arose in [60], where the authors introduced the ‘Boltzmann method’; this led to O(n)

complexity for generating objects of size n ± ε(n), benefitting new analytic investigations

of the function. See also the applications of this method to algebraic objects in [46, 35]

and to grammars with parameters in [27].

Other occurrences of algebraic functions. The link between algebraic functions and p-

automatic sequences (numbers written in a given base via an automaton) is well illustrated

by the Christol–Kamae–Mendès France–Rauzy theorem [40, 4].

More links with monadic second-order logic, tiling problems and vector addition systems

appear in [92, 121].
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Algebraic functions via functional equations. Many algebraic functions pop up in combin-

atorics [32] via tools other than context-free grammars: quite often, they appear as the

‘diagonal’ of rational functions [13, 15], or as solutions of functional equations (solvable

by the ‘kernel method’ and its variants [9, 33]), and the interplay with their asymptotics is

crucial for analysis of lattice paths [10], walks with an infinite set of jumps [7, 14] (which

are thus not coded by a grammar on a finite alphabet), or planar maps [11]. Sometimes,

differential equations lead to algebraic solutions, as in some urn models [90].

Algebraicity of permutation related problems. Since Knuth enumerated permutations

sortable by a stack, much attention has been drawn to permutations avoiding a given

pattern, or counting the number of appearances of a given pattern. Many cases involved

a Knuth-like approach (using the ‘kernel method’), or an approach by (in)decomposable

subclasses [80, 88, 3, 17], leading to algebraic functions.

Algebraic functions and universality of critical exponents. When one thinks about the

asymptotics of the coefficients of generating functions, one often gives the example of

Catalan numbers,

1

n + 1

(
2n

n

)
∼ 4n√

πn3

(this is a direct consequence of Stirling’s formula for n!, or can also be obtained by

the saddle point method or singularity analysis). One important fact with respect to

the asymptotics of coefficients of algebraic generating functions is that it often involves

the factor 1/
√
πn3. In [65] this was called the ‘Drmota–Lalley–Woods theorem’, due to

independent similar results of these three authors [53, 84, 121], relying on a ‘strong

connectivity’ assumption of the system implicitly defining the algebraic function. In this

article, we extend the theorem by removing this restrictive assumption, to give all the

possible asymptotics for the important class of context-free algebraic functions, and

associated limit laws. In one sense, this could be considered a generalization of the

Perron–Frobenius theorem to the algebraic case, also including a multivariate extension.

We do this in a constructive way, which opens the door to full algorithmization.

Plan of this article.

• In Section 2 we give a few definitions, mostly illustrating the link between context-free

grammars, solutions of positive algebraic systems, and N-algebraic functions. We also

prove some basic properties of such functions.

• In Section 3 we survey some closure properties of algebraic functions and give a closed

form for their coefficients.

• In Section 4 we state our main theorem on the possible critical exponents of algebraic

functions (associated to a context-free grammar with positive weights), and we give

some of its consequences (see also Figure 1).

• In Section 5 we give finer results about asymptotics and the corresponding Puiseux

expansions, which incidentally prove our main theorem.

https://doi.org/10.1017/S0963548314000728 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000728


4 C. Banderier and M. Drmota

Figure 1. (Colour online) Many combinatorial objects are algebraic, sometimes for non-trivial reasons, e.g.,

Gessel random walks (a) or planar maps (b). A nice consequence of our Theorem 4.2 is that these combinatorial

structures (and many similar objects) cannot be generated by a context-free grammar, because their asymptotics

have the critical exponent −2/3 and −5/2.

• In Section 6 we provide a complete picture of the asymptotic behaviour of the

coefficients of functions that are solutions of positive systems of algebraic equations

when ‘periodic behaviour’ occurs.

• In Section 7 we consider the mysterious set of all the radii of convergence of N-

algebraic functions, and some variants. We give some closure properties of this set.

• In Section 8 we prove that the associated limit laws are Gaussian for a broad variety

of cases (thus extending the Drmota–Lalley–Woods theorem), and we also give an

argument explaining the diversity of other possible limit laws.

• In Section 9 we give an analogue of our main theorem for systems involving entire

functions.

• We end with a conclusion reading the reader to several extensions (algorithmic

considerations, decidability questions, extensions to infinite systems, and to attribute

grammars).

2. Definitions: N-algebraic functions and well-defined systems

Coefficients of algebraic functions have very constrained asymptotics; we will focus on

their ‘critical exponents’.

Definition 2.1 (critical exponent of a sequence). For any sequence such that fn ∼ Cnαρ−n,

α is called the critical exponent and ρ is the radius of convergence of the corresponding

generating function

F(z) =
∑
n�0

fnz
n.
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Moreover, if the sequence fn has asymptotics depending on the modulo class of n, the

definition extends naturally by saying that fn has a (possibly different) critical exponent

for each class. The singularities of F located on its radius of convergence are called the

dominant singularities of F .

There is a dual point of view when one considers functions instead of sequences.

Definition 2.2 (Puiseux critical exponent of a function). For any function having a Puiseux

expansion

F(z) =
∑
k�k0

ak(z − ρ)rk

(with ak0
�= 0), the number rk0 is called the valuation of this series, while the smallest

value of rk which is not a non-negative integer and for which ak �= 0 is called the Puiseux

critical exponent of F(z). In this article, ρ is by default assumed to be the radius of

convergence of F(z).

Examples include

F(z) = 1 + 2(1 − z) + 5(1 − z)2 + (1 − z)5/2 + (1 − z)3 + (1 − z)7/2(1 + o(1)),

which has Puiseux critical exponent 5/2, and

F(z) = 1/(1 − 2z) + (1 − 2z) + (1 − 2z)5/2(1 + o(1)),

which has Puiseux critical exponent −1.

The Flajolet–Odlyzko theory of singularity analysis [63] (which has roots in the works

of Darboux, Hankel, Hardy and Littlewood) links the critical exponent α of a sequence

(fn) and the Puiseux critical exponent e of the corresponding function F(z) via the relation

α = −e − 1 (provided that ρ is the only singularity on the circle |z| = ρ).

We will consider algebraic functions defined via systems of algebraic equations. Such

systems are ubiquitous in language theory. For the notions of automata, pushdown

automata, and context-free grammars, we refer to the first three chapters of [116] (by

Perrin on finite automata, by Berstel and Boasson on context-free languages, and by

Salomaa [101] on formal languages and power series) or to the more recent survey [95]

in [57]. Another excellent compendium on the subject is the Handbook of Formal

Languages [100] and the Lothaire trilogy [87]. In language theory, it is natural to

consider equations involving positive integer coefficients, whereas for other applications it

is natural to consider positive real weights or probabilities. Accordingly, we will consider

equations having various types of coefficients.
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6 C. Banderier and M. Drmota

Definition 2.3 (well-posed systems, N-algebraic functions, Q+-algebraic functions). A ‘well-

posed’ system is a system1 ⎧⎪⎪⎨⎪⎪⎩
y1 = P1(z, y1, . . . , yd),

...

yd = Pd(z, y1, . . . , yd),

(2.1)

where each polynomial Pi is such that [yi]Pi �= 1 and has coefficients in any set S of

real numbers that is closed under addition and multiplication (in this article, we consider

S = N, Z, Q+, or R+)2 and which has a tuple of solution (f1(z), . . . , fd(z)), where each fi(z)

is a power series with coefficients in S. Functional solutions of such a system are called

S-algebraic functions.

Example 1.

{
y1 = 3y2y1 + 4z

y2 = 23y2
1 + 5z

{
y1 = 3y2y1 + 4z

y2 = 23y1 − 5z

⎧⎨⎩y1 =
1

3
zy2 +

25

4
zy1 + z

y2 = zy1 + zy2⎧⎪⎪⎨⎪⎪⎩
y1 = 3.14zy1y2 + πz3y1y3

y2 = exp(−1)y1y2 + z3

y3 = z + cos(3)y2
3

The solutions of the above systems are examples of functions which are N-algebraic

(left, top), Z-algebraic (left, bottom), Q+-algebraic (right, top), and R+-algebraic (right,

bottom).

Remark. Requiring that the solutions have real coefficients is indeed a restriction: for

example, the equation y = 1 + z + y2 has two power series solutions, but each of them

has complex coefficients. On the other hand, if the system has positive coefficients and is

such that [yi]Pi = 0 and Pi(0, 0) = 0 for all i, then it would be superfluous to require the

yi to have non-negative real coefficients, as this would result by iteration (while a system

such as y = z + 2y shows that the power series could elsewhere have negative coefficients

as soon as there is one i such that [yi]Pi > 1). Similarly, when one considers only N-

algebraic functions, one could also change the condition [yi]Pi �= 1 by the (apparently

more restrictive) condition [yi]Pi = 0; this would not actually change the set of N-algebraic

functions (this easily follows from our Proposition 2.6 hereafter).

We now give a definition which offers a fast ‘combinatorial’ way to ensure that a system

is well-posed.

1 In this article, we will often abbreviate the system (2.1) with the convenient short notation y = P(z, y), where

bold fonts are used for vectors.
2 We make use of the notations Q+ = {x ∈ Q, x � 0}, R+ = {x ∈ R, x � 0}, and [uk]P (u), which stand for the

coefficient of uk in P (u).
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Definition 2.4 (well-defined systems). The above system (2.1), y = P(z, y), is called ‘well-

defined’ if and only if the following conditions hold.

• No monic production. The coefficient of each yj in each Pi is 0:

∀i∀j [yj]Pi(0, 0, . . . , 0, yj , 0, . . . , 0) = 0.

• No epsilon production. For all i, Pi(0, 0, . . . , 0) = 0.

• Terminating condition. For any yj , there is at least one yk reachable from yj (i.e.,

∃t > 0|At
jk �= 0, where A is the adjacency matrix of the dependency graph associated

to the system, as illustrated by Figure 2 in Section 5), such that Pk(z, 0, . . . , 0) �= 0.

By design, any well-defined system is well-posed, but the converse is not true, as can

be seen from systems of Example 2. We will discuss some analytic distinctions between

these two notions in Section 5.1, because introducing both of them allows us to simplify

the statements of our theorems without loss of generality concerning the combinatorial

or analytical problems we want to consider.

Example 2.

⎧⎪⎪⎨⎪⎪⎩
y1 =

1

2
y1 +

1

2
y2 + z

y2 =
1

2
y1 +

1

2
y2 + z

{
y = 1 + z + y2

{
y = z + 2y

⎧⎪⎪⎪⎨⎪⎪⎪⎩
y1 = 1 + y1y

4
3

y2 = 2y3

y3 =
1

2
y2 + y2

3 + z

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y1 = zy2 + zy1

y2 = 1 + z + zy2 + y3

y3 = 5y4

y4 =
1

10
y3y4

⎧⎪⎪⎨⎪⎪⎩
y1 = zy2 + zy1 + z

y2 = 3y1 + zy2 + z

y3 = zy2
2 + zy1

The above list shows systems that are not well-defined. Well-defined systems (our

Definition 2.4) are just a convenient way to prevent pathological cases such as the

examples in the first two columns. The systems from the right column are not well-

defined, but are ‘well-posed’ (our Definition 2.3): they have power series solutions with

non-negative real coefficients.

Remark. Several authors have introduced different notions with some minor distinctions:

our ‘well-defined’ systems are thus related to the ‘proper’ or ‘well-posed’ or ‘well-founded’

notions of [39, 53, 97].

The idée fixe is that it corresponds to context-free grammars for which one has no

‘infinite chain rules’ (no infinite chain of monic productions, no infinite chain of epsilon

productions).

In this article we need this to handle probability generating functions (in order to get

general results on the limit laws), so we allow real weights. Therefore the situation is

slightly more tricky than those considered by previous authors, who only needed to deal
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8 C. Banderier and M. Drmota

with systems having integer coefficients. Indeed, in the case of real coefficients, ‘analytic

convergence’ can compensate ‘formal divergence’ (e.g., for the grammar A → zA/2). This

is why (in the notion of a well-posed system), the coefficients of monic productions are

allowed to be non-zero, as soon as the spectral radius of the Jacobian of the associated

system is < 1, as this will guarantee a global contraction (we will also comment on this

when discussing our notion of well-posed systems in Section 5.1; see also [114] for a

more topological point of view). It is true that the two rules ‘no monic productions’

and ‘no epsilon productions’ are a little more restrictive than is necessary (as illustrated

by the first case in the right column of our Example 2), but they make it easy to

test the ‘well-definedness’ of a system. Moreover, the systems that do not fulfil all the

conditions of Definition 2.4, but nonetheless have an analytic and combinatorial meaning,

are easily transformed into a system fulfilling these conditions (essentially by replacing

some coefficients of the polynomials Pi with some new formal parameters).

A little caveat. We have mentioned the issue of formal convergence. Let us recall briefly

that this is defined on the set of power series by the following ultrametric distance:

d(F(z), G(z)) := 2−val(F(z)−G(z)),

where val gives the exponent of the first non-zero monomial. This distance extends to

vectors of functions (and to multivariate series), and allows us to apply the Banach fixed-

point theorem, since the system (2.1) is a contraction, implying existence and uniqueness

of a solution of the system as a d-tuple of power series (y1, . . . , yd) (and they are analytic

functions near 0, as we already know that they are power series and algebraic by nature).

A common mistake is to forget that there exist situations for which the system (2.1) can

admit several solutions as power series for y1 (note that there is no contradiction to our

previous claim, which considered tuples). We illustrate this point via the system{
y1 = z(1 + y2 + 2y2

1),

y2 = z(1 + y1 + y2
2).

(2.2)

If one eliminates y2 in this system, this implies that y1 is defined by the equation

4z2y4
1 − 4zy3

1 + (2z + 1 + 4z2)y2
1 + (z2 − 1 − 2z)y1 + 2z2 + z = 0, (2.3)

which has four solutions for y1:

z + z2 + O(z3), 1 + 3 z + 10 z2 + O(z3),

1

2
z−1 − 3

2
z − 5

4
z2 + O(z3),

1

2
z−1 − 1 − 5

2
z − 39

4
z2 + O(z3).

Here, several of these solutions are power series, and it can even be proved that two

branches of equation (2.3) are power series with positive integer coefficients (this does not

contradict unicity of the solution via the Banach fixed-point theorem, because equation

(2.3) is not a contraction in Q[[z]]). The analogous elimination of y1 in the system leads
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to four solutions for y2:

z + z2 + O(z3), 1 + 3 z + 10 z2 + O(z3),

1

2
z−1 − 3

2
z − 5

4
z2 + O(z3),

1

2
z−1 − 1 − 5

2
z − 39

4
z2 + O(z3).

However, because of the multidimensional fixed-point theorem, amongst the four pairs

(y1, y2) of functions satisfying the system, there is only one pair of power series (namely

the one with y1 ∼ y2 ∼ z):(
y1(z)

y2(z)

)
=

⎛⎝1 + 3z + 10z2 + O(z3)

1

z
− 2z + 3z2 + O(z3)

⎞⎠,

(
y1(z)

y2(z)

)
=

(
z + z2 + 3z3 + O(z4)

z + z2 + 2z3 + O(z4)

)
,

(
y1(z)

y2(z)

)
=

⎛⎜⎜⎝
1

2z
− 1 − 5

2
z + O(z2)

1

z
− 1

2
− 1

4
z + O(z2)

⎞⎟⎟⎠, and

(
y1(z)

y2(z)

)
=

⎛⎜⎜⎝
1

2z
− 3

2
z − 5

4
z2 + O(z3)

1

2
− 5

4
z − 1

4
z2 + O(z3)

⎞⎟⎟⎠.

Different algebraic classes. By elimination theory (resultant or Gröbner bases: see the

discussion in [111, 94]), S-algebraic functions are algebraic functions: it is possible

to transform a system of equations in the yi into a single equation involving just y1

and z. Now, we give a few trivial/folklore results. N-algebraic functions correspond

to generating functions of context-free grammars (this is the Chomsky–Schützenberger

theorem: see [39]), or, equivalently, pushdown automata (via, e.g., a Greibach normal

form). They are closed with respect to sums, products and derivations. Z-algebraic

functions have no natural simple combinatorial structures associated to them, but they

are related to N-algebraic functions via the following proposition.

Proposition 2.5. Any Z-algebraic function is the difference of two N-algebraic functions.

Proof. This can be seen by introducing two new sets of unknowns a and b, and then by

splitting the initial system into two:

y = P (z, y) ⇐⇒ a − b = P (z, a − b).

Indeed, expanding and collecting the positive terms gives an N-algebraic equation for a,

and collecting the negative terms gives an N-algebraic equation for b: there are clearly no

monic productions in right-hand side inherited from P (z, y).

For example, the Z-algebraic function defined by F = 1 + 3zF2 − 3z2F3 can be written

as the difference of two N-algebraic functions: F = A − B with

A = 1 + 3zA2 + 3zB2 + 9z2A2B + 3z2B3 and B = 6zAB + 3z2A3 + 9z2AB2.

Proposition 2.6 (coefficients in Z ⇒ Z-algebraic). Any algebraic power series F(t) in S[[t]],

where S = R, Q̄, Q, or Z, is in fact an S-algebraic function in disguise. More precisely, after
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10 C. Banderier and M. Drmota

a possible change of variable F → G = tvF + a, G is S-algebraic, and the corresponding

system has just one equation.

Proof. Let us start with an algebraic function F(t) satisfying a general polynomial

equation, namely Q(t, F(t)) = 0 (where Q is irreducible and has real coefficients). We

would like to prove that we can also define it via an equation of the type of system (2.1),

namely F(t) = P (t, F(t)).

To do this, we will use a little Newton polygon theory. To each monomial F(t)itj in

Q(t, F(t)), one associates the point (i, j). The convex hull of the set of points associated to

Q(t, F(t)) is called the Newton polygon of Q. Now imagine a source of light below this

polygon, which thus illuminates all the lower segments of the polygon (and only these).

Each illuminated segment has a slope (call it σk), and a length on the x-axis (call it λk).

Newton polygon theory implies that one then has λk roots of valuation −σk . This can be

checked by a ‘plug and identify’ process.

Now, if F(t) is an algebraic power series of valuation v, the change of variable F(t) →
tvF(t) in its characteristic polynomial Q(t, F(t)) = 0 allows us to restrict without loss of

generality to power series F(t) having a non-zero constant term.

Equivalently, one of the points of the Newton polygon is (0, 0), and another point is

(0, m) for some m (if not, there would be no root with integer valuation, i.e., a power

series solution). If m = 1, we obtain the shape of system (2.1). If m > 1, then making the

change of variable y → y + a leads to a new equation, in which the coefficient of y is

a polynomial in a, and any real value of a not cancelling this polynomial leads to an

equation satisfying the shape of system (2.1).

Now, what about the coefficients of this newly found P (t, F)? Well, they are by design

real, and if (at least) one of the coefficients (call it c) of this equation were not rational,

then bootstrapping the equation F = P (t, F) would imply that the power series F(t) would

have a coefficient (required to be rational) which would also be a linear relation between

this irrational coefficient c and other rational numbers. The same holds for (S = Q̄):

simply replace algebraic/transcendental with rational/irrational.

The same also holds with ‘integer’ (S = N) instead of ‘rational’; it is, however, more tricky

in this last case. Once we have obtained a polynomial P (t, F) with rational coefficients,

via the previous argument, just apply the Newton polygon theory in a ‘p-adic way’. First

make a simplification by the least common multiple (call it �) of the denominators of

the coefficients of P (t, F) (call p a prime factor of this least common multiple), and then

consider the Newton polygon (taking F and p as coordinates) of �y = �P (t, F). There, the

slope of the line corresponding to our power series solution implies that its valuation in p

is negative, but since by hypothesis it is positive, this implies that no such prime p exists,

and therefore there were no pure rational coefficients in P (t, F).

Remark. The above proposition does not hold for S = N. Indeed, we show later in

Proposition 4.5 that N-algebraic functions can intrinsically require the definition of more

than one equation having non-negative coefficients, while they can always be defined

with a single equation having positive and negative coefficients. A nice consequence of

the algebraicity of a power series F(z) with rational coefficients is the Eisenstein lemma,
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namely that there exists an integer b such that F(bz) has integer coefficients only. This

is obvious thanks to Proposition 2.6, as F(z) is then Q-algebraic, and thus F(bz) (with

b killing all the denominators of the coefficients) is then Z-algebraic. This is a way to

prove that exp or log type functions such as
∑

zn/n!k and
∑

zn/nk are transcendental

(see example VII.37 in [65]).

There is a natural extension of N-algebraic functions to a multivariate setting: the

multivariate function F(z) (for z a tuple of variables) is called S-algebraic if there is

a system such that y = P(z, y), where z = (z1, . . . , zd) and y = (y1, . . . , ym) are tuples and

where P = (P1, . . . , Pm) is a tuple of polynomials in d + m variables, with coefficients in S.

Proposition 2.7 (systems of N-algebraic equations have N-algebraic solutions). Consider a

system of equations y = N(z, y), where y and z are tuples, and where each Ni is a multivariate

S-algebraic function. Then the power series yi(z) solutions of this system are S-algebraic

functions.

Proof. One has a system of d equations yj = Nj(z, y1, . . . , yd), where each Nj(z, y) is itself

solution of a possibly large system Nj = Pj(z, y,Nj) (the reader will need good eyesight

here to distinguish fonts: Nj is a tuple, of which Nj is the first component). By keeping

track of all the intermediate variables, one gets a huge system and a polynomial Aj (with

coefficients in S) such that yj = Aj(z, y,N1, . . . ,Nd); thus yj is S-algebraic. Alternatively,

this can be seen with the context-free grammar approach, by doing a substitution:

replacing some initial terminals with some non-terminals.

There is actually a nice combinatorial example of this type of equation.

Corollary 2.8 (N-algebraicity of classes of pattern-avoiding permutations). If the generat-

ing function of the so-called ‘simple’ permutations (associated to a pattern P ) is N-algebraic,

then the generating function of permutations avoiding the pattern P is also N-algebraic.

Proof. Permutations avoiding some patterns satisfy the functional equation

C = (1 + C)(z + S(C)) + C2,

where S is the generating functions of the so-called ‘simple’ permutations (see [3, 17]),

which is known to be N-algebraic in many cases. For such cases, our Proposition 2.7

therefore implies that the generating function C is itself also N-algebraic. Indeed, this is

also trivially the case when there is a finite number of simple permutations.

Now let us conclude this section by mentioning N-rational functions: an N-rational

function is a function solution of a system (2.1) where each polynomial Pi has coefficients

in N and total degree 1. Such functions correspond to generating functions of regular

expressions or, equivalently, automata (a result attributed to Kleene [79]). Their coefficients
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satisfy a recurrence

fn+d =

d−1∑
i=0

aifn+i,

with ai ∈ N. Much is known about N-rational functions, and they are well characterized

by their analytic and asymptotic properties [23, 115]. Our article aims at reaching a

similar level of knowledge about N-algebraic functions. However, before tackling them in

Section 4, we continue with facts that hold for algebraic functions in full generality.

3. Closed form for the coefficients of algebraic functions

A first natural question is: How can we compute the nth coefficient fn of an algebraic

power series? The fastest way is to rely on the theory of D-finite functions. A function F(z)

is D-finite if it satisfies a linear differential equation with coefficients that are polynomials

in z; equivalently, its coefficients fn satisfy a linear recurrence with coefficients that are

polynomials in n. There are numerous algorithms to deal with this important class of

functions, which includes many special functions from physics, number theory and also

combinatorics [110].

Proposition 3.1 (Abel–Tannery–Cockle–Harley–Comtet theorem). Algebraic functions are

D-finite. Moreover, for an algebraic function F(z) that is the solution of a polynomial

equation Q(z, F(z)) = 0 (where Q(z, y) has degree d in y), the dimension of the space spanned

by the derivatives ∂kzF(z) is bounded by d.

Proof. In combinatorics, Comtet popularized the fact that algebraic functions are D-

finite (see [44, 45]). The key idea is to differentiate Q(z, F(z)) = 0 with respect to z,

which shows that each derivative ∂kzF(z) can be expressed as a rational fraction in z and

F(z). Taking Taylor expansions of these fractions and using the relation Q(z, F) = 0 then

allows us to write them as polynomials in F of degree at most d, so they all live in the

same space of dimension at most d, and thus we infer the relation claimed between the

derivatives. It is amusing that this is in fact an old theorem rediscovered many times, e.g.,

by Tannery [113], and Cockle and Harley [43, 70] in their method for solving quintic

equations via 4F3 hypergeometric functions. Last but not least, this theorem can also be

found in an unpublished manuscript of Abel [1, p. 287]!

The world of D-finite functions offers numerous closure properties. Let us mention

some that are related to algebraic functions.

Proposition 3.2 (holonomy and closure properties for algebraic functions).

(1) f and 1/f are simultaneously D-finite if and only if f′/f is algebraic.

(2) f and exp(
∫
f) are simultaneously D-finite if and only if f′/f is algebraic.

(3) Let g be algebraic of genus � 1. Then f and g(f) are simultaneously D-finite if and only

if f is algebraic.
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(4) The Hadamard product of a rational and an algebraic function is algebraic.

(5) Let A be a context-free language and let R be a rational language. Then one has

closure by intersection, Hadamard product, and set difference: A ∩ R, A � R, A − R,

and R − A are context-free (and thus have algebraic generating functions).

(6) Each algebraic function is the diagonal of a bivariate rational function.

(7) In finite fields, Hadamard products of algebraic functions are algebraic.

(8) The set of generalized hypergeometric functions nFn−1 which are algebraic is well iden-

tified.

(9) It is possible to decide whether a D-finite equation has algebraic solutions.

Proof. Property (1) is due to Harris and Sibuya [71], (2) and (3) to Singer [107], and (4)

to Jungen [74]. Property (5) can be proved via the (pushdown) automata point of view

(see also [22]). Property (6) is due to Denef and Lipshitz [49], (7) to Furstenberg [67],

and (8) to Schwarz [105] and Beukers and Heckman [25]. It is still a challenge to find an

efficient algorithm for (9), beyond the constructive approach given by Singer [106].

The linear recurrence satisfied by fn allows us to compute in linear time all the

coefficients f0, . . . , fn. More precisely, it is proved in [28] that there exists an algorithm

of complexity O(nd2 ln d), where d is the degree of the function. If one just wants

the nth coefficient fn, it is possible to get it in O(
√
n) operations [41]. Many of

these features (and a few others related to random generation and context-free gram-

mars, and corresponding asymptotics) are implemented in the ‘Algolib’ library, a set of

Maple packages developed by Flajolet, Salvy, Zimmermann, Chyzak and Mezzarobba

(see http://algo.inria.fr/libraries/); see also the SageMath package by Kauers,

Jaroschek and Johansson [75].

A less known fact is that these coefficients admit a closed-form expression in terms of

a finite linear combination of weighted multinomial numbers. The multinomial number

is the number of ways to divide m objects into d groups, of cardinality m1, . . . , md (with

m1 + · · · + md = m):

[u1
m1 · · · udmd](u1 + · · · + ud)

m =

(
m

m1, . . . , md

)
=

m!

m1! · · ·md!
.

More precisely, we have the following theorem.

Theorem 3.3 (Flajolet–Soria formula for coefficients of an algebraic function). Consider a

power series implicitly defined by a polynomial equation Q(z, f(z)) = 0 (plus initial conditions

for f(z), when the equation has several branches which are power series). Therefore (up to

a change of variable as explained in Proposition 2.6), f(z) can equivalently be defined by

f(z) = P (z, f(z)), where P (z, y) is bivariate polynomial such that [y]P �= 1 and P (z, 0) �= 0.

Then the Taylor coefficients of f(z) are given by the following finite sum:

fn =
∑
m�1

1

m
[znym−1]Pm(z, y). (3.1)
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Accordingly, applying the multinomial theorem to

P (z, y) =

d∑
i=1

aiz
biyci

leads to

fn =
∑
m�1

1

m

∑
m1+···+md=m

b1m1+···+bdmd=n
c1m1+···+cdmd=m−1

(
m

m1, . . . , md

)
a1

m1 · · · admd , (3.2)

where all the mis are non-negative integers. This sum is finite, as is more easily seen via the

equivalent formula

fn =

n∑
m=0

∑
m1+···+md=m+1
b1m1+···+bdmd=n
c1m1+···+cdmd=m

m!
a1

m1

m1!
· · · ad

md

md!
. (3.3)

Proof. We consider y = P (z, y) as the perturbation at u = 1 of the equation y = uP (z, y),

to which we apply (legitimate as P (z, 0) �= 0) the Lagrange inversion formula (considering

u as the main variable, and z as a fixed parameter). This gives

[um]y =
1

m
[ym−1]P (z, y)m.

Then, summing for all m (the sum converges to y(z), as it is well-defined) and extracting [zn]

on both sides leads to a non-trivial equality (and therefore to (3.1)), because [y]P (z, y) �= 1.

Note that formula (3.1) still holds even if P is not a polynomial but more generally a

power series ∈ C[[z, y]].

This Flajolet–Soria formula was first published in the habilitation thesis of Michèle

Soria in 1990, and then in 1998 in the INRIA proceedings of the Algorithms Seminar; it

is also mentioned in [65, Section VII.34, p. 495]. It was also found by Gessel (as published

in 1999 in [110, exercise 5.39, p. 148]), and it was finally also rediscovered in 2009 by

Sokal [109]. It is worth observing that Lagrange [83] initially presented his inversion

formula in order to solve algebraic equations of any degree (considering the coefficients

of the equations as parameters).

It is noteworthy that if P has 3 terms or less, then the multiple sum in formula (3.2)

reduces to a single term, and it then remains just a simple sum on m. For instance, if we

consider the equation

f(z) = z + z2f2(z) + z3f3(z), (3.4)

then the coefficients have the nice form (although this is a matter of taste!)

fn+1 =

�2/3n�∑
m=�3/5n�

m!

(n + 1 − m)!(5m − 3n)!(2n − 3m)!
. (3.5)
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It is not possible to get this nice formula via a naive application of Lagrange’s inversion

formula, but it is a direct application of Theorem 3.3.

If one consider the case of the equation for the generating functions of d-ary trees,

namely y = 1 + zyd, then the formula simplifies greatly: each nested sum involves just one

term. This gives the classical result

fn =
1

(d − 1)n + 1

(
dn

n

)
.

More generally, the coefficients of an algebraic function defined by y = P (z, y) are

therefore given by d − 2 nested sums of binomials, where d is the number of terms of

P (z, y). Let d1 be the z degree of P and let d2 be the y degree of P . The worst-case

number of nested sums in equation (3.3) is therefore (1 + d1)(1 + d2) − 3. For example, if

the y and z degree are bounded by 2, we will have six nested sums at most, as is the case

for P (z, y) = 1 + y2 + z + zy + zy2 + z2 + z2y + z2y2, while P (z, y) = 1 + zy2 + z2y2 will

lead to just one sum.

This can lead to impressive identities such as several thousands of nested sums which

actually simplify in a non-trivial way to a single factorial-like product. An example of

such a phenomenon follows from the observation of Rodriguez-Villegas that

F(z) =
∑
n�0

(30n)!n!

(15n)!(10n)!(6n)!
zn

is a (generalized hypergeometric) algebraic function of minimal degree 483 840. More

generally, it is an interesting algorithmic question to get the minimal number of nested

sums giving the coefficients fn (see [103] for an approach related to Karr’s ΠΣ-fields).

Also, the set of sequences which can be expressed as nested sums of multinomials is

exactly the set of diagonals of rational functions (see [31, 93]).

All these ‘closed forms’ are nice for arithmetical/combinatorial properties, but they are

not the right way to access any form of universal asymptotics for the coefficients fn. In

the next section we use a completely different approach to tackle these questions.

4. Critical exponents for coefficients of algebraic function

It would at least be desirable to determine directly, from a positive (but reducible)

system, the type of singular behaviour of the solution, but the systematic research

involved in such a programme is yet to be carried out.

Philippe Flajolet and Robert Sedgewick [65, p. 493]

In this section we will characterize the singular behaviours of such systems, thus answering

the wish of Flajolet and Sedgewick. Our approach relies on the theory of Puiseux

expansions, which implies that the critical exponents are pure rational numbers for pure

algebraic functions. (Pure algebraic means algebraic but not rational, pure rational means

rational but not integer.) The full question is: Which subset of rational number do we

get? We first start with the following proposition, which shows that all rational numbers
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are obtained if we do not constrain the algebraic function to satisfy a positive system of

the type y = P(z, y).

Theorem 4.1. For any rational number r that is not a negative integer, there exists an

algebraic power series F(z) =
∑

n�0 fnz
n with positive integer coefficients fn which have

critical exponent r, i.e., fn ∼ CnrAn (for some positive constants A,C). Moreover, this power

series is Z-algebraic.

Proof. First, consider

F(z) :=
1 − (1 − a2z)1/a

az
,

where a is any positive or negative integer. Accordingly, its coefficients are given by

fn =

(
1/a

n + 1

)
a2n+1(−1)n.

The fact that the fn are positive integers was proved in [86], via a link with a variant of

Stirling numbers. We give here another shorter proof. First, the Newton binomial theorem

applied on (1 − azF)a = (1 − a2z) leads to an algebraic equation for F(z):

F(z) = 1 +

a∑
k=2

(
a

k

)
ak−2(−1)kzk−1(F(z))k.

Then, if one sees this equation as a fixed-point equation (as a rewriting rule in the style

of context-free grammars), it is obvious that the fn belong to Z. But as

fn+1 = a
(a(n + 1) − 1)fn

n + 2
,

it is also clear that the fn are indeed positive integers. Thus, we have obtained any

Puiseux critical exponent 1/a, and we now want to get any Puiseux critical exponent

b/a, where b is any positive integer (not a multiple of a). Indeed, it is not possible

to take Fb directly, as it does not have Puiseux critical exponent b/a (but 1/a), so we

consider G(z) = e(azF(z) − 1)b (where e = 1 if a > b mod (2a) and e = −1 elsewhere),

which gives a series with integer coefficients (because of the integrality of the coefficients

of F), positive coefficients (except for a few of its first coefficients, as seen via the Newton

binomial expansion). Removing these negative coefficient terms gives a power series with

only positive integer coefficients, with a Puiseux expansion G(z) = e(−1)b(1 − a2z)b/a, and

consequently its coefficients have the asymptotics Cn−1−b/aa2n for some C > 0.

One may then wonder if there is something stronger. For example, is it the case that

for any radius of convergence, any critical exponent is possible? It happens not to be the

case, as can be seen via a result of Fatou: a power series with integer coefficients and

radius of convergence 1 is either rational or transcendental (in fact the transcendental

case necessarily involves a natural boundary: this was a conjecture of Pólya proved by

Carlson). However, we have the following neat generic behaviour.
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Theorem 4.2 (main result: dyadic critical exponents for R+-algebraic function). Any power

series

F(z) =
∑
n�0

fnz
n,

which is a solution of a well-defined positive polynomial system of equations y = P(z, y)

(i.e., any R+-algebraic function, and a fortiori any N-algebraic function) has the following

asymptotic behaviour.

• If F(z) has a single singularity ρ on its radius of convergence |z| = ρ, then we have

fn ∼ C
1

Γ(1 + α)
nαρ−n

for some positive (algebraic if P or F have algebraic coefficients) constants C and ρ, and

a dyadic critical exponent α which belongs to the set

D2 =

{
−1 − 1

2k
: k � 1

}
∪

{
m

2k
− 1 : m � 1, k � 0

}
. (4.1)

This set D2 of possible critical exponents is sparse on [−3/2,−1) (starting with the

values {−3/2,−5/4,−9/8,−17/16, . . .}) and dense on (−1,+∞), where it contains all

dyadic numbers.

• If F(z) has several singularities on its radius of convergence |z| = ρ, then there exists an

integer p � 1 such that for every residue class � ∈ {0, 1, . . . , p − 1} we have either fn = 0

for sufficiently large n with n ≡ � mod p, or

fn ∼ C�

1

Γ(1 + α�)
nα�An

�, n ≡ � mod p,

where A� and C� are positive (algebraic if P or F have algebraic coefficients) constants

and the critical exponent α� belongs to the set D2 defined in (4.1).

Proof. In the case of a single singularity on the radius of convergence, this theorem

is the consequence of our stronger theorem on the Puiseux expansion of R+-algebraic

functions (see Theorem 5.3). The periodic case (this essentially means that F(z) has several

dominant singularities, as may be seen from F(z) = 1/(1 − 9z2) + 1/(1 − 8z3), which is 6

periodic) involves some additional care, and we consider the full details of such cases in

Section 6 (Theorem 6.3); this even gives a proof which works in a more general setting

than well-defined polynomial systems. The algebraicity of the constants C,A�, ρ follows

from our Proposition 2.6, while coupling it with our results on the Puiseux expansions (in

the following sections) with the so-called ‘transfer’ Theorem VI.3 from [65].

Accordingly, we have the following two propositions.

Proposition 4.3 (dyadic critical exponents for N-algebraic functions). All the critical expo-

nents of Theorem 4.2 are indeed obtained, even for the subclass of R+-algebraic functions

made up of N-algebraic functions.
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Proof. By singularity analysis [65], there is a direct link between the singular behaviour

of F(z) and the critical exponent of its coefficients fn, namely, if F(z) ∼ (1 − Az)α then

fn ∼ 1

Γ(−α)
n−1−αAn

(when ρ = 1/A is the only singularity on the radius of convergence |z| = ρ). We will

therefore show that all the singular behaviours corresponding to our dyadic set D2 of

critical exponents are indeed obtained. The system of equations

y1 = z(y2 + y2
1), y2 = z(y3 + y2

2), y3 = z(1 + y2
3)

has the following (explicit) solution:

y1(z) =
1 − (1 − 2z)1/8

√
2z

√
2z

√
1 + 2z +

√
1 − 2z + (1 − 2z)3/4

2z

y2(z) =
1 − (1 − 2z)1/4

√
2z

√
1 + 2z +

√
1 − 2z

2z
, and

y3(z) =
1 −

√
1 − 4z2

2z
.

Here y1(z) has dominant singularity (1 − 2z)1/8, and it is clear that this example can

be generalized. Indeed, consider the system yi = z(yi+1 + y2
i ) for i = 1, . . . , k − 1, and

yk = z(1 + y2
k ), which leads to behaviour (1 − 2z)2−k

for each k � 1. Now, taking the

system of equations y = z(ym0 + y), y0 = z(1 + 2y0y1) leads to behaviour (1 − 2z)−m2−k

for

each m � 1 and k � 0. See also [78, 112] for another explicit combinatorial structure

(a family of coloured trees related to a critical composition) exhibiting all these critical

exponents.

Proposition 4.4 (non-N-algebraicity). Planar maps and several families of lattice paths

(such as Gessel walks) are not N-algebraic (i.e., they cannot be generated by an unambiguous

context-free grammar). The Franel numbers (and other sequences counting some tuples of

integer compositions having the same numbers of parts) are not algebraic.

Proof. This comes as a nice consequence of our Theorem 4.2: none of the families of

planar maps of [11] can be generated by an unambiguous context-free grammar, because

of their critical exponent −5/2, see also Figure 1. Also, the tables [29] of lattice paths

in the quarter plane and their asymptotics (where some of the connection constants are

guessed, but all the critical exponents are proved, and this is enough for our point) allow

us to prove that many sets of jumps give a non-algebraic generating function, as they lead

to a critical exponent which is a negative integer or involving 1/3. One very neat example

is Gessel walks (their algebraicity was a nice surprise [30]), where the hypergeometric

formula for their coefficients leads to an asymptotic 4n/n2/3 that is not compatible with

N-algebraicity.3

3 The fact that critical exponents involving 1/3 were not possible was an informal conjecture in the community

for years (see, e.g., [61, 32] and Note 2 in [64]). We thank Philippe Flajolet, Mireille Bousquet-Mélou and
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The Franel number of order m, defined by

n∑
k=0

(
n

k

)m

,

and other sequences counting some tuples of integer compositions having the same

numbers of parts [13], e.g., the sequence

n∑
k=0

(
n − k

k

)m

,

do not have an algebraic generating function (for m � 3), as their asymptotics involve a

non-algebraic multiplicative constant C = algebraic number/π(m−2)/2 (for even m > 2) or

a negative integer critical exponent (for odd m > 2), both cases being incompatible with

Theorem 4.2.

The critical exponents −3/4,−1/4, 1/4 which appear for walks on the slit plane [34]

and other lattice path questions [30] are compatible with N-algebraicity, but these lattice

paths are in fact not N-algebraic (one can use Ogden’s pumping lemma to prove that these

walks cannot be generated by a context-free grammar). To get a constructive method to

decide N-algebraicity (input, a polynomial equation; output, a context-free specification,

when it exists) is a challenging task.

It is well known that any N-rational function has star height at most 2, e.g., the

regular expression (x(x(xx∗)∗)∗)∗ involves 3 nested stars but can also be written as 1 +

x + x∗(3x)∗x2 + x2x∗. For context-free grammars, one could consider the Chomsky and

Greibach normal forms as a ‘similar flavour’ result. On the other hand, one consequence of

our Theorem 5.3 is that there exist context-free languages with unbounded ‘non-terminal

height’, as shown more precisely in the following result.

Proposition 4.5 (unbounded number of non-terminals for context-free grammars). For all

k ∈ N, there exists a context-free language requiring inherently at least k non-terminals for

any grammar generating it, and there exists a context-free language requiring inherently at

least k non-strongly connected components for any grammar generating it.

Proof. Indeed, the integer k (in Theorem 4.2) is the number of ‘nested dominant

critical components’ (as is transparent from our proof in Section 5.4), and each of

these components requires at least one non-terminal. Multicoloured supertrees are an

example of a structure requiring k non-terminals: they are a generalization of Example

VI.10 in [65], i.e., they are ‘trees of trees of trees . . . ’ with nodes of two colours, defined

via Tk+1 = Tk[2ZTk] and T0 = Z × Seq(T0).

In this section we have characterized the critical exponents of coefficients of algebraic

functions. Can we also characterize the subdominant critical exponents? Well, for algebraic

Gilles Schaeffer, who encouraged us to work on this question. Non-algebraicity of Franel numbers was

another folklore conjecture; see, e.g., [13]. We thank Alin Bostan for pointing out this example to us. He also

has a nice proof of their non-algebraicity via a p-Lucas property satisfied by this sequence.
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functions, it is a consequence of their local Puiseux expansions and of singularity analysis

that their coefficients behave, for example, like

fn = Annα
(∑

k�0

ak
1

nk

)
+ Bnnβ

(∑
k�0

bk
1

nk

)
+ O(Cn),

where C < B, with A > B or A = B and α > β. Moreover, we have proved in Theorem 4.2

that for N-algebraic functions (and more generally for Q+-algebraic functions), α belongs

to a specific subset of dyadic numbers. It is thus natural to ask what can be said for

β. In fact, the union of Proposition 2.5 (Z-algebraic functions are the difference of two

N-algebraic functions) and Theorem 4.1 (Z-algebraic functions can have any rational

critical exponent) implies that subdominant critical exponents β of N-algebraic functions

can be any rational number that is not a negative integer.

5. Finer asymptotics for R+-algebraic functions

The main goal of this section is to obtain a theorem on the Puiseux expansion of

R+-algebraic functions.

Section 5.1 gives precise conditions on the system. Section 5.2 gives our fundamental

result, Theorem 5.3, which implies Theorem 4.2. Section 5.3 introduces the notion of

dependency graph and a few preliminary lemmas, while the last subsection, Section 5.4,

gives the proof of Theorem 5.3.

5.1. Well-defined versus well-posed systems of functional equations

In Definitions 2.3 and 2.4, we have described the so-called well-posed and well-defined

systems of algebraic equations y = P(z, y), and by definition it is clear that every positive

well-defined system is also well-posed. (We just have to start with y0 = 0 and consider the

iteration yk+1 = P(z, yk), which converges formally and analytically to a tuple of power

series

(f1(z), . . . fd(z)) = lim
k→∞

yk

with non-negative coefficients and the property fi(0) = 0.) However, as already indicated,

there are also meaningful systems with power series solutions that are not well-defined

in the sense of Definition 2.4. The essential point is that such a meaningful system has

power series solutions yj = fj(z) with non-negative coefficients. (Of course, if the algebraic

system is positive then we can expect non-negative coefficients, in particular if the iteration

from above converges.)

Let us make this more precise by formulating an analytic condition for systems to be

meaningful.

Definition 5.1 (analytically well-defined system). A positive system of polynomial equa-

tions y = P(z, y) will be called analytically well-defined if P(0, 0) = 0, if the Jacobian

Py(0, 0) =

(
∂Pi

∂yj
(0, 0)

)

https://doi.org/10.1017/S0963548314000728 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000728


Formulae and Asymptotics for Coefficients of Algebraic Functions 21

has spectral radius smaller than 1, and if all solution functions yj = fj(z) (with fj(0) = 0)

are neither zero nor polynomials.

The condition on the spectral radius of Py ensures that the matrix I − Py(0, 0) (which is

the Jacobian of the system y − P(z, y) = 0) is invertible, so the implicit function theorem

implies that there is a unique tuple of analytic solution (f1(z), . . . , fd(z)) with fj(0) = 0.

Furthermore, this solution is obtained as the limit (f1(z), . . . fd(z)) = limk→∞ yk of the

iteration yk+1 = P(z, yk) with y0 = 0 (actually the iteration is uniform for |z| � η, where

η > 0 is sufficiently small). Since all the iterates yk are polynomials with non-negative

coefficients, the (uniform) limit has the same non-negativity property. Note that this

convergence need not be formal, as the example y = z + 1
2
y shows.

As mentioned above, the condition P(0, 0) = 0 is not a real restriction. If P(0, 0) �= 0 and

if there exists a non-negative vector y0 with P(0, y0) = y0 such that the spectral radius of

Py(0, y0) is smaller than 1, then the same argument as in the preceding paragraph shows

that there exists a unique tuple of analytic solution (f1(z), . . . , fd(z)) with (f1(0), . . . , fd(0)) =

y0. Furthermore, we apply a shift to reduce it to the case P(0, 0) = 0. We set ỹ = y + y0

so that we obtain a system for ỹ of the form ỹ = P̃(z, ỹ) with P̃(z, ỹ) = P(z, ỹ + y0) − y0.

Since P has non-negative coefficients, the same holds for P̃. Consequently, there is no loss

of generality in assuming that we have a system y = P(z, y) with P(0, 0) = 0.

Finally, it is very easy to detect whether a meaningful system has some zero or

polynomial solutions fj(z). In any case, if zero or polynomial solutions fj(z) appear, we

simply replace all appearances of yj with fj(z) and remove the jth equation. This leads

to a subsystem where no solution fj(z) is zero or a polynomial. The Jacobian of the new

(and smaller) system is just a submatrix of the original Jacobian, and thus has a spectral

radius that is not larger than that of the original one. So if the spectral radius of the

Jacobian of the original system is smaller than 1, we get the same property for the new

system.

Summing up, it is no loss of generality to consider analytically well-defined systems.

Furthermore, well-defined systems are also analytically well-defined.

Lemma 5.2. Every well-defined system y = P(z, y) is analytically well-defined. And every

analytically well-defined system is well-posed.

Proof. By definition, a well-defined system satisfies P(0, 0) = 0. Furthermore, the condi-

tion [yj]Pi(0, 0, . . . , yi, . . .) = 0 implies that Py(0, 0) is the zero matrix, which has spectral

radius 0. Finally, the terminating condition ensures that there are no zero or polynomial

solutions fj(z).

We have already discussed that every analytically well-defined system has a tuple of

power series solutions fj(z) with non-negative coefficients. This completes the proof of

the lemma.

There are several reasons why we distinguish between well-defined and analytically

well-defined systems of equations. From a formal point of view, well-defined systems

are very easy to describe, since we just have to look at the polynomial system. On the
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other hand, it excludes some meaningful systems (in particular systems having epsilon

production or loops of monic productions with a total weight < 1). When it comes to

proofs, it is easier to work with analytic conditions such as the condition on the spectral

radius, and therefore we will mainly rely on analytically well-defined systems. A good

motivation for this approach is that the analysis of the behaviour of the spectral radius

r(Py(z, f (z))) actually plays a dominant role in the proof of Theorem 5.3.

5.2. Critical exponents of R+-algebraic functions

Our first main goal is to characterize the Puiseux critical exponents of the singular

expansions of fj(z) at the radius of convergence ρj , when we are considering power series

solutions of analytically well-defined positive polynomial systems of equations. The main

observation is that these exponents are special dyadic rational numbers, in contrast to

general algebraic functions (see Theorem 4.1).

Theorem 5.3. Let y = P(z, y) be an analytically well-defined positive polynomial system of

functional equations.

Then the solutions fj(z) have positive and finite radii of convergence ρj and the Puiseux

critical exponents are either of the form 2−kj for some integer kj � 1 or of the form −mj2
−kj

for some integer mj � 1 and kj � 0. In particular, the singular behaviour of fj(z) around ρj
is either of type

fj(z) = fj(ρj) + cj(1 − z/ρj)
2

−kj
+ c′

j(1 − z/ρj)
2·2−kj

+ · · · , (5.1)

where cj �= 0 (and an integer kj � 1), or of type

fj(z) =
dj

(1 − z/ρj)mj2
−kj

+
d′
j

(1 − z/ρj)(mj−1)2
−kj

+ · · · , (5.2)

where dj �= 0 (and integers mj � 1 and kj � 0).

This theorem already gives a partial result for the asymptotic structure of the coefficients

fj;n of fj(z). If we assume that ρj is the only singularity on the circle of convergence

|z| = ρj (which we call the aperiodic case), then the transfer theorem of Flajolet and

Odlyzko [63] implies that fj;n is asymptotically given by

fj;n ∼ Cjn
αj ρ−n

j (n → ∞), (5.3)

where Cj > 0, ρj > 0, and αj is either of the form αj = −2−kj − 1 for some integer kj � 1

or of the form αj = mj/2kj − 1 for some integers kj � 0 and mj � 1.

In fact we will provide a complete answer to the problem in the periodic case too:

see Theorems 6.2 and 6.3. In all cases we obtain asymptotic properties as stated in (5.3).

However, we have to distinguish between residue classes modulo some positive integer p,

and the asymptotic scale might be different in each residue class. In order to make the

presentation more transparent, we first deal with Theorem 5.3 and then consider the more

involved question of periodicities.
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5.3. Dependency graph and auxiliary results

A main ingredient of the proof of Theorem 5.3 is the analysis of the dependency graph

G of the system yj = Pj(z, y1, . . . , yd), 1 � j � d. The vertex set is {1, . . . , d}, and there is a

directed edge from i to j if Pj depends on yi (see Figure 2). If the dependency graph is

strongly connected then we are in a very special case of Theorem 5.3, for which we have

one of the following two situations (see [53]).

Lemma 5.4 (rational singular behaviour). Let y = A(z)y + B(z) be an affine analytically

well-defined system of equations, where the dependency graph is strongly connected. Then

the functions fj(z) have a joint polar singularity ρ of order one as the dominant singularity:

fj(z) =
cj(z)

1 − z/ρ
,

where cj(z) is non-zero and analytic at z = ρ.

Proof. In the affine case the Jacobian of the system equals A(z). Hence, by assumption,

the spectral radius of A(0) is smaller than 1; this implies that f (z) can be represented as

f (z) = (I − A(z))−1B(z)

if |z| is sufficiently small. Since the dependency graph is strongly connected, it follows that

the matrix A(z) is a positive and irreducible matrix if z > 0. Consequently, by the Perron–

Frobenius theorem, the spectral radius r(A(z)) is a strictly increasing and continuous

function in z > 0. Hence, there exists a unique ρ > 0 with r(A(ρ)) = 1. Again by the

Perron–Frobenius theorem, the spectral radius is the dominant eigenvalue of A(ρ) and is

also simple. This also implies that the function

z �→ det(I − A(z))

has a simple root at z = ρ. Of course, this leads to a simple polar singularity for f (z).

Note that this singularity has to appear for all functions fj(z), 1 � j � d, since the system

is strongly connected.

Lemma 5.5 (algebraic singular behaviour). Let y = P(z, y) be an affine analytically well-

defined polynomial system of equations that is not affine and where the dependency graph

is strongly connected. Then the functions fj(z) have a joint radius of convergence ρ and

Puiseux singular exponent 1/2 at z = ρ, that is, they can be locally represented as

fj(z) = gj(z) − hj(z)

√
1 − z

ρ
,

where gj(z) and hj(z) are non-zero and analytic at z = ρ.

Proof. Since the system is positive and well-posed, there exists a unique solution f (z)

with f (0) = 0 which has non-negative coefficients. By assumption the spectral radius of the

Jacobian Py(0, 0) is smaller than 1. Since the dependency graph is strongly connected, the
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Figure 2. A positive system, its dependency graph G and its reduced dependency graph G̃. None of these graphs

are strongly connected. For example, the state 1 is a sink; it is thus a typical example of a system not covered

by the Drmota–Lalley–Woods theorem but covered by our new result implying dyadic critical exponents.

matrix Py(z, f (z)) is a positive and irreducible matrix for z > 0 (as long as f (z) is regular).

Furthermore the spectral radius r(Py(z, f (z)))) is a strictly increasing and continuous

function in z > 0. Recall that (by the implicit function theorem) f (z) is certainly regular

if r(Py(z, f (z)))) < 1. Hence, it follows that there exists ρ > 0 with the property that f (ρ)

exists (although it will not be a regular point) and r(Py(ρ, f (ρ)))) = 1. Thus, we can now

apply the Drmota–Lalley–Woods theorem [54, 65], which implies that ρ is the dominant

singularity for fj(z) and they are all of square-root type.4

In the proof of Theorem 5.3 we will use extended versions of Lemmas 5.4 and 5.5, where

we introduce additional parameters, that is, we consider systems of functional equations

of the form
y = P(z, y, u),

where P is now a polynomial in z, y, u with P(0, 0, 0) = 0 and non-negative coefficients and

where the dependency graph (with respect to y) is strongly connected. We also assume

that r(Py(0, 0, 0)) < 1 so that we can consider the solution that we denote by f (z, u). We

also consider situations where u is strictly positive from the very beginning. In this case

we restrict ourselves to situations where f (0, u) exists and where the spectral radius of the

Jacobian Py(0, f (0, u), u) is smaller than 1.

If we are in the affine setting (y = A(z, u)y + B(z, u)) it follows that f (z, u) has a polar

singularity:

fj(z, u) =
cj(z, u)

1 − z/ρ(u)
, (5.4)

where the functions ρ(u) and cj(z, u) are non-zero and analytic (see Lemma 5.6). Note that

we have to distinguish two cases. If A(z, u) = A(z) does not depend on u, then ρ(u) = ρ is

constant and the dependency from u just comes from B(z, u). Of course, if A(z, u) depends

on u then ρ(u) is not constant. More precisely, it depends exactly on those coordinates of

u that appear in A(z, u).

4 The proofs of Lemma 5.4 and 5.5 could be simplified, since we work only with algebraic functions. However,

in Section 9 we will also consider entire systems of functional equations, and the present proof generalizes to

this situation.
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Similarly, in the non-affine setting we obtain representations of the form

fj(z, u) = gj(z, u) − hj(z, u)

√
1 − z

ρ(u)
, (5.5)

where the functions ρ(u), gj(z, u), and hj(z, u) are non-zero and analytic. In this case ρ(u)

is always non-constant and depends on all coordinates of u (see Lemma 5.6).

In fact we have to be careful with the property that ρ(u) is analytic. By looking at the

above proofs it immediately follows that ρ(u) exists but analyticity is not immediate. For

notational convenience we will denote by D0 the set of positive real vectors u for which

r(Py(0, f (0, u), u)) < 1.

Lemma 5.6. The function ρ(u) that appears in the representations (5.4) and (5.5) is analytic

in a proper complex neighbourhood of D0. Moreover, if u ∈ D0 is real, then ρ(u) tends to

0 when u approaches the boundary of D0 in such a way that all coordinates of u are non-

decreasing.

Proof. We recall a general method for reducing the system y = P(z, y, u) to a single

equation if the dependency graph is strongly connected. We split the first equation into

y1 = P1(z, y1, y, u) and y = P(z, y1, y, u),

where

y = (y2, . . . , yd) and P = (P2, . . . , Pd).

Suppose that r(Py(ρ, y0, u0)) = 1 for some u0 ∈ D0 (and ρ = ρ(u0), y0 = y0(u0)). Then, by

the Perron–Frobenius theorem,

r(Py(ρ, y1,0, y0, u0)) < 1,

since Py is the submatrix that results from Py by deleting the first row and column. Hence,

by the implicit function theorem, there is an analytic solution f (z, y1, u) of the subsystem

(locally around ρ, y1,0, u0) that we can insert into the first equation, so that we are left

with a single equation:

y1 = P1(z, y1, f (z, y1, u), u) = Q(z, y1, u).

In the affine case this rewrites to y1 = a(z, u)y1 + b(z, u) or y1 = b(z, u)/(1 − a(z, u)). Since

we are in the well-posed case, a(z, u) depends on z and u. Furthermore a(ρ(u0, u0)) = 1.

Since we certainly have az(ρ(u0), u0) > 0, the implicit function theorem implies that ρ(u)

is analytic locally at u0 ∈ D0.

In the non-affine case, the situation is similar but slightly more involved. Since the

equation y1 = Q(z, y1, u) is singular for z = ρ, y1 = y1,0, u = u0, we have

y1,0 = Q(ρ, y1,0, u0), 1 = Qy1
(ρ, y1,0, u0).

Furthermore, this small system can be used to calculate ρ(u) (locally near u0). Here u

is the variable and ρ = ρ(u), y1,0 = y1,0(u0) are the unknown functions. By the implicit
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function theorem we just have to observe that the corresponding Jacobian(
Qz Qy1

− 1

Qzy1
Qy1y1

)
=

(
Qz 0

Qzy1
Qy1y1

)
is regular. We certainly have Qz > 0 and Qy1y1

> 0 (if the system is non-affine). Hence, the

determinant of the Jacobian is non-zero. This implies that ρ(u) is analytic in a complex

neighbourhood of u0 ∈ D0.

Finally, if u increases and gets close to the boundary of D0, then the spectral radius

r(Py(0, f (0, u), u))

is close to 1. This implies that the radius of convergence ρ(u) has to be close to zero.

5.4. Proof of Theorem 5.3 on possible Puiseux expansions

In order to give a flavour of the proof of Theorem 5.3 in the general case, we first discuss a

simple example. Suppose we are dealing with the system of equations depicted in Figure 2.

The first step is to consider the reduced dependency graph G̃, which is obtained by the

following procedure. The vertices of G̃ are the strongly connected components of G; these

are the maximal strongly connected subgraphs. In our example, these components are {1},

{2}, {3, 4}, {5, 6}. Next, two different components C1, C2 in G̃ are linked by a directed edge

if there exist vertices v1 ∈ C1 and v2 ∈ C2 that are linked in G. The resulting graph G̃ (also

depicted in Figure 2) is acyclic and comprises precisely the connectivity relation in G.

Furthermore, this directed acyclic graph (DAG) G̃ indicates how the system of equations

yj = Pj(z, y1, . . . , yd) can be solved. First, one considers all components in G (vertices in

G̃) with zero in-degree. (Since G̃ is acyclic such vertices have to exist.) In our example,

these are the components {3, 4} and {5, 6}, which correspond to the subsystems

y3 = P3(z, y3, y4)

y4 = P4(z, y3, y4)
and

y5 = P3(z, y5, y6)

y6 = P4(z, y5, y6).

These subsystems can be independently solved and their solutions f3(z), f4(z) and

f5(z), f6(z), respectively, can be put into the remaining equations:

y1 = P1(z, y1, y2, f5(z)),

y2 = P2(z, y2, f3(z), f5(z)).

This resulting system of equation for the unknown y1 = f1(z), y2 = f2(z) corresponds to

a dependency graph, where the corresponding vertices 3, 4 and 5, 6 are deleted. This is

depicted in Figure 2. As above, we can solve all equations that correspond to components

in the reduced dependency graph with zero in-degree. In our example, this is only the

component {2}. With this solution f2(z) (where we already use the previous solutions

f3(z), f5(z)), we can finally obtain y1 = f1(z) by solving the remaining equation

y1 = P1(z, y1, f2(z), f5(z)).

Of course, this procedure generalizes easily to any system of functional equations of the

form yj = Pj(z, y1, . . . , yd).

In fact we will use a two-step procedure. First, for each component of the dependency

graph we solve the corresponding system, where the input functions are considered as
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additional parameters u (as discussed in Section 5.3). For example, for the component {2},

one should consider the solution f2(z; y3, y5).

According to the generalizations of Lemmas 5.4 and 5.5, these functions have either

a polar singularity or a square-root singularity ρ(u) (which depends on the parameters).

In the second step we then insert step by step the solutions of the subsystems and get

the solution of the system. The main problem is to trace the leading singularity. For

example, in the first example in the proof of Proposition 4.3, the square-root singularities

coalesce and give rise to singularities of fourth and eighth roots. Similarly, in the second

example in the proof of Proposition 4.3, a polar and a square-root singularity give rise to

a singularity of the form 1/
√

1 − 2z.

The main problem in the proof of Theorem 5.3 is to show that this insertion process

does not create other singularities than stated.

We fix some notation. Let G denote the dependency graph of the system and G̃

the reduced dependency graph. Its vertices are the strongly connected components

C1, . . . CL of G. We can then reduce the dependency graph to its components (see

Figure 2).

Let y1, . . . , yL denote the system of vectors with coordinates corresponding to the com-

ponents C1, . . . CL, and let u1, . . . , uL denote the input vectors related to these components.

In the above example we have

C1 = {1}, C2 = {2}, C3 = {3, 4}, C4 = {5, 6},
y1 = y1, y2 = y2, y3 = (y3, y4), y4 = (y5, y6),

u1 = (y2, y5), u2 = (y3, y5), u3 = ∅, u4 = ∅.

As mentioned above in the first step, for each strongly connected component C� we

solve the corresponding subsystem in the variables z and u� and obtain solutions f (z, u�),

1 � � � L. In our example these are the functions

f1(z, u1) = f1(z; y2, y5), f2(z, u2) = f2(z; y3, y5),

f3(z, u3) = (f3(z), f4(z)), f4(z, u4) = (f5(z), f6(z)).

Finally, for each component C� we define the set D� of real vectors u� for which the

spectral radius of the Jacobian of the �th subsystem evaluated at z = 0, y� = f�(0, u� is

smaller than 1.

Since the dependency graph G̃ is acyclic, there are components C�1
, . . . , C�m with no

input, that is, the corresponding functions f�1
(z), . . . , f�m (z) can be computed without any

further information. By Lemmas 5.4 and 5.5, they either have a polar singularity or a

square-root singularity, that is, they are of the types that are included in the statement of

Theorem 5.3.

Now, we proceed inductively. We consider a strongly connected component C� together

with its function f�(z, u�) and assume that all the functions fj(z) that correspond to

the input coordinates u� are already known, and that their leading singularities are

of the two types stated in Theorem 5.3. By the discussion following Lemmas 5.4

and 5.5, it follows that coordinate functions in f�(z, u�) have either a common polar

singularity or a common square-root singularity ρ(u�). We distinguish between three

cases.
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Case 1. First, let us assume that f�(z, u�) comes from an affine system and thus has a

polar singularity. Since all functions in f�(z, u�) have the same form, we just consider one

of these functions and denote it by f(z, u�):

f(z, u�) =
c(z, u�)

1 − z/ρ(u�)
. (5.6)

If ρ(u�) = ρ′ is constant then the only dependency from u� comes from the numerator

c(z, u�). Since this solution comes from an affine system, c(z, u�) is just a linear combination

of the polynomials of B(z, u�) with coefficient functions that depend only on z (this follows

from the expansion of (I − A(z))−1B(z, u�)). Furthermore, since f(z, u�) is (in principle) a

power series in z and u� with non-negative coefficients, the coefficients of this polynomial

(if z is some positive real number) have to be non-negative, too.

When we substitute u� with the functions fj(z) that correspond to u�, we obtain the

functions f(z) that correspond to the component C�. We have to consider the following

subcases.

Case 1.1. The dominating singularities ρj of the fj(z) are larger than ρ′. In this case the

resulting dominating singularity ρ� is ρ′ and we just get a polar singularity for f(z).

Case 1.2. At least one of the dominating singularities ρj of the functions fj(z) is smaller

than ρ′. Let ρ′′ denote the smallest of these singularities. If all of the functions fj(z) with

ρj = ρ′′ have a singular behaviour of the form (5.1), then we just make a local expansion

of c(z, u�) at the corresponding points fj(ρ
′′) (for uj) and observe again an expansion of

this form. Note that the largest appearing kj reappears in the expansion of f(z).

Second, if at least one of the functions fj(z) with ρj = ρ′′ is of type (5.2), then we

use the property that c(z, u�) is just a polynomial in u� (with non-negative coefficients).

It is clear that the leading singular behaviour comes from these functions. In fact they

have to be multiplied and added. However, since functions of the type (5.2) are closed

under multiplication and addition, this again gives a function of type (5.2). Note that the

coefficient functions that depend just on z have to be expanded at ρ′′, too, and do not

disturb the overall structure.

Case 1.3. The smallest dominating singularities ρj of the functions fj(z) equals ρ′. Here

we can argue similarly to the previous case. If all of the functions fj(z) with ρj = ρ′

have a singular behaviour of the form (5.1) then we perform a local expansion in the

numerator. Let k̃ be the largest kj that appears. Then we interpret the polar singularity

(1 − z/ρ′)−1 as (1 − z/ρ′)−m2−k̃

with m = 2k̃ and obtain a singular expansion of the form

(5.2). If at least one of the functions fj(z) with ρj = ρ′ is of type (5.2), then we use the

polynomial structure of the numerator as above and obtain an expansion of the form

(5.2). By combining this with the factor (1 − z/ρ′)−1, we finally obtain an expansion of

the form (5.2) for f(z) too.

Case 2. Second, let us (again) assume that f�(z, u�) comes from an affine system (and has

a polar singularity) of the form (6.1). However, we now assume that ρ(u�) is not constant

but depends on some of the uj (not necessarily on all of them). In this case we first study
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the behaviour of the denominator when uj is replaced with the corresponding functions

fj(z). For the sake of simplicity we will work with the difference ρ(uj) − z. Of course, this

is equivalent to the discussion of the denominator 1 − z/ρ(uj), since the factor ρ(uj) can

also be put to the numerator. Finally, let J ′
� denote the set of indices of functions uj on

which the function ρ(u�) actually depends.

Let ρ′ denote the smallest radius of convergence of the functions fj(z), j ∈ J ′
�. Then

we consider the difference δ(z) = ρ((fj(z))j∈J ′
�
) − z. We have to consider the following

subcases for the denominator.

Case 2.1. δ(ρ′′) = 0 for some ρ′′ < ρ′ such that (fj(ρ
′′))j∈J ′

�
∈ D�. First, we note that

δ(z) has at most one positive zero since ρ((fj(z))j∈J ′
�
) is decreasing and z is increasing.

Furthermore, the derivative satisfies δ′(ρ′′) > 0. Consequently, we have a simple zero ρ′′

in the denominator.

Case 2.2. We have δ(ρ′) = 0 such that (fj(ρ
′))j∈J ′

�
∈ D�. In this case all functions fj(z),

j ∈ J ′
�, with ρj = ρ′ have to be of type (5.1). Consequently δ(z) behaves like

c(1 − z/ρ′)2−k̃

+ · · · ,

where c > 0 and k̃ is the largest appearing kj (among those functions fj(z) with ρj = ρ′).

Case 2.3. We have δ(ρ′) > 0 such that (fj(ρ
′))j∈J ′

�
∈ D�. In this case all functions fj(z),

j ∈ J ′
�, with ρj = ρ′ have to be (again) of type (5.1). Consequently δ(z) behaves like

c0 − c1(1 − z/ρ′)2−k̃

+ · · · ,

where c0 > 0 and c1 > 0 and k̃ is the largest appearing kj (among those functions fj(z)

with ρj = ρ′). Hence, 1/δ(z) is of type (5.1).

Note that there are no other subcases. This follows from the fact that ρ(u�) → 0 if u�
approaches the boundary of D�. This means that if we trace the function z → δ(z) for

z > 0 then we either meet a singularity of δ(z) or we pass a zero of δ(z) before (fj(z))j∈J ′
�
)

leaves D�.

Finally, we have to discuss the numerator (as in the above case). Note that there might

occur uj with j �∈ J ′
�, so that more functions fj(z) than in the denominator are involved.

Nevertheless, in all possible subcases we can combine the expansions of the numerator

and denominator and obtain for f(z) either type (5.1) or (5.2).

Case 3. Finally, let us assume that f�(z, u�) comes from a non-affine system and thus has

a square-root singularity. Again, since all functions in f�(z, u�) have the same form, we

simply consider one of these functions and denote it by f(z, u�):

f(z, u�) = g(z, u�) − h(z, u�)

√
1 − z

ρ(u�)
. (5.7)

In this case ρ(u�) depends on all components of u�, which makes the analysis slightly

easier. As above, we will study the behaviour of the square-root
√
ρ(u�) − z instead of√

1 − z/ρ(u�), since the non-zero factor
√
ρ(u�) can be put to h(z, u�).
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Let ρ′ denote the smallest radius of convergence of the functions fj(z) that correspond

to u�. Here we have to consider the following subcases.

Case 3.1. δ(ρ′′) = 0 for some ρ′′ < ρ′ such that (fj(ρ
′′)) ∈ D�. This means that ρ((fj(z)) − z

has a simple zero. Thus, we can represent this function as

ρ((fj(z)) − z = (ρ′′ − z)H(z),

where H(z) is non-zero and analytic at ρ′′. Consequently√
ρ((fj(z)) − z =

√
ρ′′ − z

√
H(z),

and we observe that f(z) has a (simple) square-root singularity.

Case 3.2. We have δ(ρ′) = 0 such that (fj(ρ
′)) ∈ D�. In this case all functions fj(z) with

ρj = ρ′ have to be of type (5.1). Hence, the square-root of δ(z) behaves like√
c(1 − z/ρ′)2−k̃

+ · · · =
√
c(1 − z/ρ′)2−k̃−1

+ · · · ,

where k̃ equals the largest appearing kj plus 1. Thus, f(z) is of type (5.1).

Case 3.3. We have δ(ρ′) > 0 such that (fj(ρ
′))j∈J ′

�
∈ D�. In this case all functions fj(z),

with ρj = ρ′ have to be (again) of type (5.1). Consequently the square-root of δ(z) behaves

like √
c0 − c1(1 − z/ρ′)2−k̃

+ · · · =
√
c0

(
1 − c1

2c0
(1 − z/ρ′)2−k̃

+ · · ·
)
,

where c0 > 0 and c1 > 0 and k̃ is the largest appearing kj (among those functions fj(z)

with ρj = ρ′). Hence, f(z) is of type (5.1).

This completes the induction proof of Theorem 5.3.

6. Periodicities

When we are interested in the asymptotic properties of the coefficients of R+-algebraic

equations, we need the structure of all singularities z on the radius of convergence |z| = ρ.

When there are several such singularities, periodic behaviour can appear, justifying the

following definition.

Definition 6.1 (strong (a)periodicity). A function f(z) that is the solution of a positive

system of algebraic equations will be called strongly aperiodic if z = ρ is the only singularity

on the circle |z| = ρ.

Similarly, we call such a function f(z) strongly periodic with period p > 1 if f(z) is not

strongly aperiodic but can be represented as

f(z) =

p∑
j=0

zjfj(z
p)
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such that all functions fj(z) are either polynomials or strongly aperiodic functions and at

least one of these functions is strongly aperiodic.

The main purpose of this section is to prove the following property.

Theorem 6.2. Every function f(z) that is the solution of an analytically well-defined positive

polynomial system of equations (see Definition 5.1) is either strongly aperiodic or strongly

periodic (with some period p > 1).

In particular, this implies the following asymptotic relations for the coefficients of

solutions of a positive polynomial system.

Theorem 6.3. Suppose that f(z) is a solution of an analytically well-defined positive poly-

nomial system of equations (see Definition 5.1). Then there exists an integer p � 1 such that

for all j = 0, 1, . . . , p − 1, we either have fn = 0 for almost all n � n0,j with n ≡ j mod p, or

fn ∼ Cjn
αj ρ−n

j (n → ∞, n ≡ j mod p),

where Cj > 0, ρj > 0, and αj is either of the form αj = −2−kj − 1 for some integer kj � 1

or of the form αj = mj/2kj − 1 for some integers kj � 0 and mj � 1.

Proof. If f(z) is strongly aperiodic, then the radius of convergence ρ is the only singularity

on the circle |z| = ρ, and the possible singularities are given by Theorem 5.3. Furthermore,

since f(z) is an algebraic function, it can be analytically continued to a region of the form

{z ∈ C : |z| < ρ + η} \ [ρ,∞) for some η > 0.

Consequently we can apply the transfer principle of Flajolet and Odlyzko [63] and obtain

the proposed asymptotic expansion for the coefficients.

In the periodic case we just apply this for fj(z), 0 � j < p.

The proof of Theorem 6.2 runs along similar lines to the proof of Theorem 5.3, that is,

we partition the dependency graph into strongly connected components and solve the

system step by step. The core of the proof is to check in every step that each solution is

strongly aperiodic or strongly periodic.

For this purpose we will have to split the solution functions into several parts.

Lemma 6.4. Suppose that y = P(z, y) is an analytically well-defined positive polynomial

system of equations and y = f (z) = (f1(z), . . . , fd(z)) is the solution. Then for every p � 1

we can represent fk(z), 1 � k � d, as

fk(z) =

p−1∑
j=0

zjfk,j(z
p)

and the functions fk,j(z) − fk,j(0), 1 � k � d, 0 � j < p, that are not polynomials are again

solutions of an analytically well-defined positive polynomial system of equations ỹ = P̃(z, ỹ).
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Proof. Let y = P(z, y) be an analytically well-defined positive system of polynomial

equations that has y1 = f(z) as one of its solutions. By substituting

y =

p−1∑
j=0

zjyj ,

and expanding the polynomials of P(z, y), it follows that we can represent it as

P(z, y) =

p−1∑
j=0

zjPj(z
p, y0, . . . , yp−1).

Hence, if we consider the p × d-dimensional system

yj = Pj(z, y0, . . . , yp−1), 1 � j < p,

then with ỹ = (y0, . . . , yp−1) and P̃ = (P0, . . . ,Pp−1) we obtain a proper positive polynomial

system ỹ = P̃(z, ỹ), where the functions fk,j(z), defined by

fk(z) =

p−1∑
j=0

zjfk,j(z
p),

are solutions. Of course, if fk,j(0) > 0 we can shift the system to have solutions fk,j(z) −
fk,j(0)), and we can remove polynomial solutions from the system.

The final step is to show that the spectral radius of the Jacobian P̃ỹ (for z = 0 and

yk,j = fk,j(0))) is again smaller than 1. In fact it is an easy exercise to show that the

spectral radii are the same. More precisely, if λ is a positive eigenvalue of P̃ỹ with a

positive eigenvector, then it is also a positive eigenvalue of Py (with a corresponding

positive eigenvector). We illustrate the idea of the proof in a slightly simplified situation.

Suppose we have the system y = P(z, y), and we write y = y1 + y2 and

P(z, y1 + y2) = P1(z, y1, y2) + P1(z, y1, y2)

and consider the extended system

y1 = P1(z, y1, y2), y2 = P2(z, y1, y2).

Let λ > 0 be an eigenvalue of (
P1,y1

P1,y2

P2,y1
P2,y2

)
,

with a positive eigenvector x = (x1, x2), that is,(
P1,y1

P1,y2

P2,y1
P2,y2

) (
x1

x2

)
= λ

(
x1

x2

)
.

By multiplying from the left with (I, I) and by observing that

Py = Py1
= P1,y1

+ P2,y1
= Py2

= P1,y2
+ P2,y2

,

we obtain

Py(x1 + x2) = λ(x1 + x2).

It is now clear how we can adapt this example to the original situations.
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Lemma 6.5. Suppose that

f(z) =
∑
n�0

anz
n

is a strongly aperiodic function with non-negative coefficients an and radius of convergence

ρ. Then, for every p � 1 we can represent f(z) as

f(z) =

p−1∑
j=0

zjfj(z
p),

where the functions

fj(z) =
∑
n�0

aj+pnz
n, 0 � j < m,

are strongly aperiodic and have the same kind of dominating singularity.

Proof. By Lemma 6.4, we already know that fj(z) is a solution of an analytically well-

defined positive polynomial system of equations. Furthermore, fj(z) can be represented

as

fj(z) =
1

p

p−1∑
�=0

e−2πij�/pf(z1/pe2πi�/p).

Since f(z) is strongly aperiodic, the radius of convergence ρ is the unique singularity

on the circle of convergence |z| = ρ. Hence, ρ1/p is the radius of convergence of fj(z)

and (again) the only singularity of fj(z) on the circle of convergence |z| = ρ1/p. Since

the coefficients (aj+pn)n�0 have the same kind of asymptotic expansion as (an)n�0, it also

follows that fj(z) (for z ∼ ρ1/p) and f(z) (for z ∼ ρ) have the same kind of singularity.

We start our considerations concerning the proof of Theorem 6.2 with a strongly

connected affine system. In order to make the statements (and proofs) simpler, we assume

that we have already reduced the system to a single equation of the form y = a(z)y + b(z),

where a(z) and b(z) are rational functions with non-negative coefficients that are regular

for |z| < ρ + ε for some ε > 0, where ρ > 0 is given by a(ρ) = 1 and is the radius of

convergence of f(z) = b(z)/(1 − a(z)).

Lemma 6.6. Suppose that a(z) and b(z) are non-zero rational functions with non-negative

coefficients that are regular for |z| � ρ, where ρ > 0 is given by a(ρ) = 1. Furthermore, we

assume that a′(z) �= 0. Then f(z) is strongly aperiodic or strongly periodic (with period p

for some integer p > 1) such that all singularities on the circle of convergence are poles of

order 1.

We note that this lemma can be generalized to functions f(z) that are solutions of not

necessarily strongly connected affine systems; see [102, Theorem 10.1]. The only difference

is that the order of poles might be larger than 1 in the non-strongly connected case, but

the order of ρ is the maximum order appearing.
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Proof. Let

a(z) =
∑
n�0

anz
n.

Since an � 0 and a(z) �= 0, it is clear that there exists a unique ρ > 0 with a(ρ) = 1 which

is (by assumption) the radius of convergence and also a polar singularity of f(z). Now,

suppose that z = ρζ is also a singularity of f(z), where |ζ| = 1. Then we certainly have

a(ρζ) = 1. On the other hand, we have

|a(ρζ)| =

∣∣∣∣∑
n�0

anρ
nζn

∣∣∣∣ �
∑
n�0

anρ
n = 1,

which implies that all inequalities have to be equalities. In particular we have apρ
pζp = apρ

p

for some p > 0 for which ap > 0. Consequently ζm = 1. Thus, we are certainly in the

strongly aperiodic or strongly periodic case.

The example

f(z) =
1

1 − z
+

1

1 − z2
=

2 + z

1 − z2

shows that even a single equation of the form y = z2y + 2 + z can lead to a (strongly)

periodic case with period p = 2 > 1, where the behaviour in both residue classes is different

and non-zero. However, if we use the method of Lemma 6.4, we can reduce this equation

to a system with only strongly aperiodic solutions. If we set y = y0 + zy1, then we have

z2y + 2 + z = z2(y0 + zy1) + 2 + z = (2 + z2y0) + z(1 + z2y1).

Hence, if we consider the system {y0 = 2 + zy0, y1 = 1 + zy1}, then we have as solutions

f0(z) = 2/(1 − z) and f1(z) = 1/(1 − z), which are strongly aperiodic and give back the

original solutions f(z) as

f(z) = f0(z2) + zf1(z2).

It is interesting to observe that in non-affine and strongly connected systems there is

only one residue class modulo p for which the coefficients are non-zero. This is proved

in the next lemma. As in the affine case we assume that we have already reduced the

system of equations to a single equation; as in the affine case the right-hand side of

the equation is no longer a polynomial but an algebraic function. In fact, the reduction

procedure (compare also with the proof of Lemma 5.6) leads to an equation that satisfies

the following regularity conditions.

Lemma 6.7. Suppose that

P (z, y) =
∑
k,�

ak�z
ky�

is an algebraic function with non-negative coefficients such that ak� > 0 for some � � 2 and

a01 < 1. Furthermore, let ρ > 0 denote the radius of convergence of the solution f(z) of
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the equation y = P (z, y) and suppose that there exist ε > 0 such that P (z, y) is regular for

|z| < ρ + ε and |y| < f(ρ) + ε.

Let p be the largest positive integer for which there exists an integer r � 0 such that

P (z, 0) can be represented as P (z, 0) = zrq(zp) for a proper function q(z) with non-negative

coefficients, and that p divides k + r(� − 1) for all ak� > 0 with � > 0. If p = 1, then f(z)

is strongly aperiodic, and if p > 1, then f(z) is strongly periodic with period p and can be

represented as f(z) = zrf̃(zp), where f̃(z) is strongly aperiodic.

Proof. Let ρ > 0 be the radius of convergence of f(z) and η = f(η) > 0. Then we have

P (ρ, η) = η and Py(ρ, η) = 1. If |z′| = ρ then we have |f(z′)| � f(|z′|) = η, and consequently

|Py(z
′, f(z′))| � Py(|z′|, |f(z′)|) � Py(|z′|, f(|z′|)) = 1.

Hence, if z′ is a singularity, that is, we certainly have Py(z
′, f(z′)) = 1, then all these

inequalities have to be equalities. From |f(z′)| = f(|z′|) it follows (similarly to the proof of

Lemma 6.6) that f(z) can be written as f(z) = zrf̃(zp) (for some integers r � 0 and p � 1)

and z′ is of the form z′ = ρe2πj/p (for some integer j that is coprime to m). Consequently,

from Py(z
′, f(z′)) = 1 and f(z′) = ηe2πijr/p it follows that p divides k + r(� − 1) for all pairs

(k, �) for which ak� > 0 and � > 0. Finally, we also have f(z′) = P (z′, f(z′)), which implies

that P (z, 0) can be represented as P (z, 0) = zrq(zp) for a polynomial q.

Conversely, we can search for the largest positive integer p for which there exists an

integer r � 0 such that P (z, 0) can be represented as P (z, 0) = zrq(zp) and that p divides

k + r(� − 1) for all pairs (k, �) with ak� > 0 and � > 0. It is clear that the power series of

f(z) is divisible by zr . Furthermore, we can represent P as

P (z, y) = zrq(zp) + zr
∑

k�0,��1

ak,�z
k+r(�−1)(y/zr)� = zrQ(zp, y/zr)

for some proper function Q. Hence, y = y/zr solves the equation y = Q(zp, y) and can

be represented as f(z) = f̃(zp). This implies that f(z) = zrf̃(zp). Finally, since p was

chosen to be the largest integer satisfying the above-mentioned properties, it follows

that f̃(z) is strongly aperiodic. Otherwise, we could iterate the procedure and obtain a

contradiction.

In order to complete the proof of Theorem 6.2, we now follow the proof of Theorem 5.3

and observe step by step that all functions are strongly aperiodic or strongly periodic.

For this purpose we will frequently use the set F of algebraic functions f for which there

exists p � 1 and (algebraic) functions fj , 0 � j < p, with

f(z) =

p∑
j=0

zjfj(z
p)

and the functions fj , 0 � j < p, have positive radii of convergence which are the only

singularities on the circles of convergence and all dominating singularities are of the types

described in Theorem 5.3. This set of functions has the following property.
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Lemma 6.8. The set F is closed under taking sums and products. Furthermore, suppose

that f ∈ F has only one singularity ρ on the circle of convergence and f(ρ) is finite. Let

c(z, u) be a power series

c(z, u) =
∑
n,k

an,kz
nuk

with non-negative coefficients an,k that is analytic at (ρ, f(ρ)), and there is some n and some

k > 0 with an,k > 0. Then the function g(z) = c(z, f(z)) is also in F , and again has the

property that ρ is the only singularity on the circle of convergence.

Proof. Suppose that f and g are in F and have radii of convergence ρ1 and ρ2 and

periods p1 and p2. Of course, we only have to consider the case ρ1 = ρ2.

If p1 = p2 = 1, it is immediate to see that f + g and f · g are in F .

If p1 > 1 or p2 > 1, then let p denote the least common multiple of p1 and p2. With the

help of Lemma 6.5 it follows that we can represent f and g as

f(z) =

p−1∑
j=0

zjfj(z
p) and g(z) =

p−1∑
j=0

zjgj(z
p),

where fj and gj have the property that there is only one singularity on the circle of

convergence. Hence, it follows similarly to the case p1 = p2 = 1 that f + g and f · g are

in F .

Finally, in order to handle the function g(z) = c(z, f(z)) we just have to observe (by a

local expansion) that g(z) has the same kind of singularity as f(z) (at z = ρ) and that

there are no other singularities for |z| � ρ other than ρ.

In order to prove Theorem 6.2, we now show inductively that all appearing solution

functions of an analytically well-defined system are contained in F .

Suppose that we are considering a strongly connected component C� and the cor-

responding system y� = P�(z, y�, u�), where u� denotes the input vector that corresponds

to those components that have already been solved (and for which we can assume by

induction that they are in F).

As in the proof of Theorem 5.3, we distinguish between three cases.

Case 1. First, let us assume that f�(z, u�) comes from an affine system of the form

y� = A�(z)y� + B�(z, u�),

that is, the matrix I − A�(z) does not depend on u or equivalently

f(z, u�) =
c(z, u�)

1 − z/ρ′ , (6.1)

where c(z, u�) is a polynomial in u� with non-negative coefficients. Note that the coefficient

functions cj(z)/(1 − z/ρ′) are in F .

When we substitute u� by the functions fj(z) that correspond to uj (and are thus in F),

then it follows from Lemma 6.8 that the resulting function is in F .
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Case 2. Second, let us (again) assume that f�(z, u�) comes from an affine system

y� = A�(z, u�)y� + B�(z, u�),

where A�(z, u�) depends on some of the uj . As above, let J ′
� denote the set of indices of

functions uj on which A�(z, u�) really depends. Of course, if we represent f(z, u�) as

f(z, u�) =
c(z, u�)

1 − z/ρ(u�)
,

then J ′
� is precisely the set of indices of functions uj on which the function ρ(u�) depends.

Note that c(z, u�) is a polynomial in the uj with j �∈ J ′
�. (In what follows we will denote

the coefficients of this polynomial by cr(z, (uj)j∈J ′
�
). We note that for all r the function

cr(z, (uj)j∈J ′
�
)/(1 − z/ρ(uj)j∈J ′

�
)

is a power series with non-negative coefficients in z and (uj)j∈J ′
�
.)

Let ρ′ denote the smallest radius of convergence of the functions fj(z), j ∈ J ′
�. Then

we consider the difference δ(z) = ρ((fj(z))j∈J ′
�
) − z. We have to consider the following

subcases.

Case 2.1. δ(ρ′′) = 0 for some ρ′′ < ρ′ such that (fj(ρ
′′))j∈J ′

�
∈ D�. Here we have a polar

singularity, and with the help of Lemma 6.6 we deduce that

cr(z, (fj(z))j∈J ′
�
)/(1 − z/ρ((fj(z))j∈J ′

�
))

is in F . Hence, it follows (again) from Lemma 6.8 that the resulting function is in F .

Case 2.2. We have δ(ρ′) = 0 such that (fj(ρ
′))j∈J ′

�
∈ D�. In this case, we first replace the

system y� = A�(z, u�)y + B�(z, u�) with another one. By assumption, we know that all

functions fj(z) are strongly aperiodic (with periods pj). We define p as the least common

multiple of the periods pj and by Lemma 6.5 we can represent them all as

fj(z) =

p−1∑
i=0

zifj,i(z
p),

with strongly aperiodic functions fj,i(z). Formally, this means that we replace the

parameters uj with

p−1∑
i=0

ziuj,i.

Furthermore, by following the proof method of Lemma 6.4 we split the (originally d-dim-

ensional) system into a (p × d)-dimensional system, where the solutions fi(z) correspond

to the original one by

f(z) =

p−1∑
i=0

zifi(z
p).

Let us denote this new system by

ỹ� = Ã�(z, ũ�)ỹ� + B̃�(z, ũ�).
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It is easy to check that this new system is either strongly connected or the corresponding

dependency graph decomposes into several strongly connected components without any

link between these components. For the sake of simplicity, we assume that we have only

one component (in the other case we have to deal with each component separately, but

this does not cause any difficulty).

The advantage of this construction is that all functions fj,i(z) (that have to be substituted

for uj,i) are strongly aperiodic, which implies that |fj,i(z)| < fj,i(|z|) if z is not a positive

real number.

It might occur that the new system (or one of the new systems) falls into Cases 2.1

or 2.3. In these cases, we proceed as explained there. Thus, we can assume that we are

again in Case 2.2. We note that the function ρ̃(ũ�) is determined by the property that the

positive matrix Ã�(z, ũ�) has spectral radius 1. Since this matrix is irreducible, it follows

that the spectral radius is strictly smaller than 1 if at least one of the entries decreases

in modulus. Hence, if we substitute the uj,i by fj,i(z), there is certainly no singularity if

|z| = ρ̃′ but z �= ρ̃′. Consequently, the only singularity of the resulting function is on the

circle of convergence z = ρ̃′, and we know already from the proof of Theorem 5.3 which

type of singularity will appear.

Summing up, it follows that the solution of the expanded system is strongly aperiodic,

and thus the solution of the original system is either strongly aperiodic or strongly

periodic.

Case 2.3. We have δ(ρ′) > 0 such that (fj(ρ
′))j∈J ′

�
∈ D�. We first apply the same trans-

formation of the system as in Case 2.2 and are led to one (or several) strongly dependent

new system. Of course, some of them might be in Cases 2.1 or 2.2. But then we just apply

the procedure there. However, it is important to note that it is not necessary to apply the

transformation again, since we have already reached the goal that all functions fj,i(z) are

strongly aperiodic.

In order to simplify the notation, we stick with the original notation of the system

y� = A�(z, u�)y� + B�(z, u�).

In this case, we can represent the function f(z) that results after substitution as a

polynomial in fj(z) with j �∈ J ′ with coefficient functions that are analytic in z and

(fj(z))j∈J ′ at z = ρ′ and (fj(ρ
′))j∈J ′ . Of course, all coefficients in the power series expansions

are non-negative. By extending the last part of Lemma 6.8 to several (strongly aperiodic)

functions, it follows that the coefficient functions are in F , which implies (via Lemma 6.8)

that the resulting function is in F .

Case 3. Finally, let us assume that f�(z, u�) comes from a non-affine system and thus has a

square-root singularity of the form (5.7). In this case ρ(u�) depends on all components of

u�. As above, we set δ(z) = ρ(u�) − z and let ρ′ denote the smallest radius of convergence

of the functions fj(z) that correspond to u�.

Case 3.1. δ(ρ′′) = 0 for some ρ′′ < ρ′ such that (fj(ρ
′′)) ∈ D�. Here, we are precisely in the

situation of Lemma 6.7. From the very beginning, we can substitute uj with the functions

fj(z) and thus obtain either a strongly aperiodic function or a strongly periodic function,

where only one residue class modulo m appears.
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Case 3.2. We have δ(ρ′) = 0 such that (fj(ρ
′)) ∈ D�. As in Case 2.2, we first replace the

original system y� = P�(z, y�, u�) with a new one, ỹ = P̃�(z, ỹ�, ũ�), which might decompose

into several strongly connected but non-affine systems. As above, we assume that it is

just one system and that it is again in Case 3.2. Here, the function ρ̃(ũ�) is given by the

property that the Jacobian P̃ỹ(z, ỹ�, ũ�) has spectral radius 1. As in the proof of Case 2.2,

the spectral radius is smaller than 1 if at least one entry of this matrix decreases in

modulus. This again implies that there are no singularities on the cycle of convergence

|z| = ρ′ other than ρ′. And the type of singularity that appears for z = ρ′ is already known

from the proof of Theorem 5.3.

Summing up, we again get that the solution of the expanded system is strongly aperiodic,

and thus the solution of the original system is either strongly aperiodic of strongly periodic.

Case 3.3. We have δ(ρ′) > 0 such that (fj(ρ
′))j∈J ′

�
∈ D�. We proceed similarly to Case 2.3.

We first expand the system as in Case 3.2 and assume (without loss of generality) that the

new system is again in Case 3.3 (and for the sake of simplicity we stick with the original

notation).

In this case the spectral radius of P�,y� (z, y�, u�) is smaller than 1 for u� = (fj(ρ
′))j∈J ′

�
.

Thus, it follows that we can invert the system of equations y� = P�(z, y�, u�) locally to

y� = Q(z, u�), which implies that the resulting function f(z) is singular at z = ρ′ (and we

know from the proof of Theorem 5.3 that the types of singularities of yj(z) are inherited).

Furthermore, it follows that there are no other singularities on the circle of convergence

|z| = ρ′ other than ρ′. This follows from the fact that the spectral radius of the Jacobian

stays smaller than one and that the functions fj(z) are not singular for |z| = ρ′, z �= ρ′.

This completes the proof of Theorem 6.2.

7. Possible radius of convergence of Q+-algebraic functions

In this section we briefly discuss the radius of convergence ρ that can appear in a positive

algebraic system with rational coefficients. Of course, ρ has to be a positive algebraic

number, but it is not immediate whether all positive algebraic numbers actually appear.

Let us begin with an assertion for more restricted systems of equations.

Conjecture 7.1 (radius of N-rational functions). All positive algebraic numbers � 1 appear

as a radius of convergence of solutions of a positive affine system of equations with integer

coefficients.

Note that the Berstel–Soittola theorem [108] implies that dominant roots have to differ

by root of unity factors (this is why, for example, (z + 5z2)/(1 + z − 5z2 − 125z3) is not N-

rational). It is not trivial to see how this theorem affects Conjecture 1, but this conjecture

(which we do not believe to be true, e.g., it is a challenge to find an N-rational function

with ρ = (1 + 21/3)/3) implies the following weaker conjecture.
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Conjecture 7.2 (radius of N-algebraic functions). All positive algebraic numbers � 1 appear

as a radius of convergence of solutions of a positive algebraic system of equations with integer

coefficients.

If F(z) is N-algebraic, then F(az) (for any rational a) is Q+-algebraic, so it is clear that

Conjecture 7.2 implies the following conjecture.

Conjecture 7.3 (radius of Q+-algebraic functions). All positive algebraic numbers appear

as a radius of convergence of solutions of a positive algebraic system of equations with

rational coefficients.

For each of these conjectures, it is also natural to ask: What are the properties of the

set of corresponding radii of convergence, e.g., to what extent are they closed under sum

or product? In what follows we present some properties of the set of these algebraic

numbers which led us to the above conjecture.

Theorem 7.4. The set R of radii of convergence of Q+-algebraic functions has the following

properties.

(i) All positive roots of equations of the form p(z) = 1, where p(z) is a polynomial with

non-negative rational coefficients, are in R, in particular all rational numbers and all

roots of rational numbers.

(ii) If ρ1 ∈ R and ρ2 is a radius of convergence that appear in positive rational systems, then

ρ1ρ2 ∈ R.

(iii) All positive quadratic irrational numbers are in R.

Proof. (i) Suppose that p(z) is a polynomial with non-negative rational coefficients and z0

a positive solution of the equation p(z) = 1. Then it is certainly the radius of convergence

of y = f(z) that satisfies the equation y = z + p(z)y. Since p(0) < 1, this equation is well-

posed. By setting p(z) = z/ρ or p(z) = zm/α, it follows that rational numbers ρ and roots

ρ = α1/m are in R.

(ii) The fact that the Hadamard product of an algebraic function with a rational function

is algebraic [74] has a non-commutative version [104]. This implies that the Hadamard

product of an N-algebraic function with an N-rational function is N-algebraic. The same

holds for Q+ instead of N.

We first assume that we are in the aperiodic case. Then the asymptotic expansion for the

coefficients an and bn of the Q-algebraic function and the Q-rational function are of the

form an ∼ Anαρ−n
1 and bn ∼ Bnβρ−n

2 , so we can directly consider the Hadamard product

anbn ∼ ABnα+β(ρ1ρ2)−n and observe that the radius of convergence ρ of the Hadamard

product is just the product ρ1ρ2. Since the Hadamard product is Q+-algebraic, it follows

that ρ1ρ2 ∈ R.
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Now, suppose that a(z) is Q+-algebraic but not aperiodic. Then we can represent a(z)

as

a(z) =

p−1∑
j=0

zjaj(z
p),

where the functions aj(z) are Q+-algebraic, too, and there is at least one function, say

aj0 (z
p), that has the same radius of convergence as a(z). Hence, if we consider the function

ã(z) =
(
1 + z/ρ + (z/ρ)2 + · · · + (z/ρ)p−1

)
aj0 (z

p),

then ã(z) is again Q+-algebraic and the coefficients ãn have an asymptotic expansion of

the form ãn ∼ Ãnαρ−n
1 (for all n and not only in a residue class). A similar procedure

works for an aperiodic Q+-rational function, and we can proceed as above.

(iii) Finally, we suppose that ρ = α + β
√
m is a positive quadratic irrational number

(where α and β are rational numbers and m is a square-free positive integer). We have

to distinguish several cases. First, suppose that α < 0 and β > 0. Since ρ = α + β
√
m > 0,

this implies α2 − β2m < 0. If we set

p(z) =
2α

α2 − β2m
z +

1

β2m − α2
z2,

then p(z) has positive coefficients and we also have p(α + β
√
m) = 0. Consequently, ρ

is in R. Moreover we certainly have cn ∼ dρn for the coefficients of the solution of

y = z + p(z)y. Next, suppose that α > 0 and β < 0. In this case we have α2 − β2m > 0 so

that ρ is root of the polynomial z2 − 2αz + (α2 − β2m) = 0, which cannot be written in an

equivalent form p(z) = 1, where p(z) has non-negative coefficients. Here, we consider the

(rational) system of equations

y1 = z + (az + y2)y1, y2 = bz + czy2,

where y1 = f1(z) has the solution

f1(z) =
z

1 − az − bz
1−cz

=
z(1 − cz)

1 − (a + b + c)z + acz2
.

Consequently, if there are non-negative rational numbers a, b, c with

a + b + c = 2α/(α2 − β2m) and ac = 1/(α2 − β2m),

then we are done. For the moment set

a = c = 1/
√

α2 − β2m.

Then the trivial inequality α >
√

α2 − β2m implies

2α

α2 − β2m
>

2√
α2 − β2m

.

Hence, by setting

b =
2α

α2 − β2m
− 2√

α2 − β2m
,
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we obtain a + b + c = 2α/(α2 − β2m) and ac = 1/(α2 − β2m) with non-negative a, b, c. The

only problem is that a, b, c are not rational (in general). However, we can choose a to be

a proper rational approximation of 1/
√

α2 − β2m and then set c = 1/(a(α2 − β2m)) and

b = 2α/(α2 − β2m) − a − c. By continuity, we can choose this rational approximation in

such a way that a, b, c are all positive. Consequently, ρ is in R. Moreover, we again have

cn ∼ dρn for the coefficients of the solution of f1(z).

If α > 0 and β > 0, then we write ρ = α + β
√
m in the form

α + β
√
m =

1

α2 − β2m
(α − β

√
m)

if α2 − β2m > 0, and in the form

α + β
√
m =

1

β2m − α2
(−α + β

√
m)

if α2 − β2m < 0. In both cases, ρ equals the product ρ1ρ2, where ρ1 and ρ2 are radii of

convergence of (proper) positive rational systems. Consequently, ρ is in R, too.

8. Limit laws

8.1. The limit law version of the Drmota–Lalley–Woods theorem

In several applications in combinatorics, we are not only interested in a univariate situation

where z is the counting variable, but we are also interested in a second parameter that we

count with the help of another variable (say u). Hence, we are led to consider systems of

equations of the form y = P(z, y, u). Of course, if we set u = 1, we come back to the original

counting problem. The next theorem (from [53]) shows that the limiting distribution of

the additional parameter is always Gaussian if the system is strongly connected.

Theorem 8.1 (Drmota–Lalley–Woods, limiting distribution version: Gaussian limit law

for strongly connected systems). Suppose that y = P(z, y, u) is a strongly connected and

analytically well-defined entire or polynomial system of equations that depends on u and has

a solution f (z, u) that exists in a neighbourhood of u = 1. Furthermore, let h(z, u) be given

by

h(z, u) =
∑
n�0

hn(u)zn = H(z, f (z, u), u),

where H(z, y, u) is entire or a polynomial function with non-negative coefficients that depends

on y, and suppose that hn(u) �= 0 for all n � n0 (for some n0 � 0).

Let Xn be a random variable whose distribution is defined by

E[uXn ] =
hn(u)

hn(1)
.

Then Xn has a Gaussian limiting distribution. More precisely, we have E[Xn] = μn + O(1)

and Var[Xn] = σ2n + O(1) for constants μ > 0 and σ2 � 0 and

1√
n

(Xn − E[Xn]) → N(0, σ2).
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8.2. More Gaussian examples, beyond the Drmota–Lalley–Woods case

If the system of equations is not strongly connected, then we can still define a random

variable Xn, but it is not necessarily Gaussian, as we will see in the next section.

Nevertheless, it is possible to state sufficient conditions where a Gaussian limiting

distribution is present.

Theorem 8.2 (Gaussian limit law for non-strongly connected systems). Let y = P(z, y, u)

be a system of equations as in Theorem 8.1, the only difference being that it is not strongly

connected. Furthermore, we assume that the function h(z, 1) is strongly aperiodic. For every

strongly connected component C� of the dependency graphs G, let ρ� denote the radius of

convergence of those functions fj(z, 1) that correspond to C�. If all ρ� are different, then Xn

(defined as in Theorem 8.1) has a Gaussian limiting distribution.

Proof. We start by setting u = 1 and check the proof of Theorem 5.3. If all the ρ� are

different, then the only cases that can appear are Cases 2.1 and 3.1. In all other cases,

the new radius of convergence is inherited from another function fj(z). In fact the same

situation holds if u varies in a sufficiently small neighbourhood of 1. By the implicit

function theorem, it follows that there exists ρ′′(u) with ρ(fj(ρ
′′(u))) = ρ′′(u), that is, we

get the same singularity structure with a small perturbation because of u. This is precisely

the situation that is needed for the proof of the central limit theorem for Xn (see [65]).

8.3. Non-Gaussian limit laws

This section illustrates the wide variety of distributions followed by a parameter in a

non-strongly connected grammar. What is a ‘limiting distribution’? There is no universal

answer to this, but roughly speaking, we say that a random variable Xn has a limiting

distribution (or a limit law) if the curve (k,Prob(Xn = k)) (possibly renormalized) has a

limit when n goes to infinity. This leads to continuous distributions as well as discrete

distributions, even leading to less common limiting distributions, such as multi-valued

functions. There is thus a large zoo of limiting distributions, and the following theorem

shows that they even occur for simple models.

Theorem 8.3 (diversity of possible limit laws for context-free systems). Let Xn be the

number of occurrences of any given pattern – this pattern could be a given letter! – in a

word of length n generated by a grammar (or even by a simpler model of a Markov chain,

with an alphabet of 2 letters, each letter having an integer weight ). Then Xn can follow

‘any limit law’, in the sense that there exist some patterns and some grammars for which

the limit curve (for large n) of (k/n,Prob(Xn = k)) can, be arbitrarily close to any càdlàg

multi-valued curve in [0, 1]2.

Proof. This is a consequence of the fact that one can get any piecewise affine function,

as proved in [8], so by the Weierstrass theorem one gets any continuous (or càdlàg)

distribution. Due to the (possible) periodic behaviour of the coefficients of the distribution

functions, there is also a (possible) periodic behaviour of the limiting distribution, that is,
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Figure 3. This figure, taken from [8], gives the distribution of the letter ‘b’ in words of length n = 8200 in a

language generated by an ad hoc regular expression of a few lines. It gives a (discrete) probability distribution

which looks like the word ‘NONGAUSSIAN’. The key point of this example is that it is designed such that

if one rescales the plot by dividing its width by n, then the distribution converges towards a curve, which still

looks like ‘NONGAUSSIAN’. Note that this curve is, at the limit, a curve of a multi-valued functional (as can

be seen in the letters O, G, A, S, I). However, we achieve it for finite-length words via a single-valued function,

by interlacing two sequences mod 2. This figure illustrates the huge diversity of possible limit laws, even for the

distribution of a single letter. It is possible to play the same game starting from continuous distribution instead

of discrete distribution.

for every fixed residue class mod m we get different laws. Putting these finitely many limit

laws into one figure leads to a multi-valued curve, as illustrated in Figure 3.

9. Beyond the algebraic case: positive systems of entire functions

In this section we will see that most parts of the analysis of positive polynomial systems

of equations also work for positive entire systems. However, we cannot expect the same

universal algebraic behaviour as for pure polynomial systems, as the following example

shows.

Example 3. The system of equations⎧⎪⎪⎨⎪⎪⎩
y1 = z(ey2 + y1),

y2 = z(1 + 2y2y3),

y3 = z(1 + y2
3)

(9.1)

has the following explicit solutions:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f1(z) =
z

1 − z
exp

(
z√

1 − 4z2

)
,

f2(z) =
z√

1 − 4z2
,

f3(z) =
1 −

√
1 − 4z2

2z
.

(9.2)

So, while the subsystem for y2, y3 is just polynomial (and they behave as stated in

Theorem 5.3), the solution for y1 clearly has a non-algebraic singularity.

As we have seen in the proof of Theorem 5.3, the main difficulties arise from the

interactions with the affine case, which has to be treated with care. The good news is that
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if we just require that our system has no affine subsystem, then we can obtain a universal

algebraic behaviour with a singularity of the form (5.1).

Theorem 9.1 (dyadic exponents for entire systems). Let y = P(z, y) be an analytically well-

defined positive system of functional equations, where P consists of entire functions and we

have

∂2Pj

∂y2
j

�= 0, 1 � j � d. (9.3)

Then the solutions fj(z) have positive and finite radii of convergence ρj and a Puiseux

critical exponent of the form 2−kj with integers kj � 1, that is, the singular behaviour of

fj(z) around ρj is of type

fj(z) = fj(ρj) + cj(1 − z/ρj)
2

−kj
+ c′

j(1 − z/ρj)
2·2−kj

+ · · · , (9.4)

where cj �= 0 and where kj is a positive integer.

Remark. Instead of assuming condition (9.3), it is also sufficient that the subsystems

y� = P�(z, y�, u�) (corresponding to the strongly connected component C�) are not affine

in y�. Indeed, both assumptions are sufficient to obtain a singular expansion of the form

(9.4).

Proof. First of all, Lemmas 5.5 and 5.6 hold for entire systems of equations. Furthermore,

the condition (9.3) ensures that no subsystem is affine. Hence, by checking the proof of

Theorem 5.3, only singularities of type (9.4) occur. Actually, we only have to go through

Case 3, and in all these cases we obtain solutions of type (9.4).

It is possible to cover some cases where affine subsystems occur. For example, the

following theorem ensures that non-algebraic singularities (as in Example 3) do not occur.

Theorem 9.2. Let y = P(z, y) be an analytically well-defined positive system of functional

equations, where P consists of entire functions. Furthermore, we assume that for each j =

1, . . . , d we either have

∂2Pj

∂y2
j

�= 0

or, if Pj is affine in yj , then we have

∂2Pj

∂yj∂yi
�= 0 for all i �= j with

∂Pj

∂yi
�= 0. (9.5)

Then the solutions fj(z) have positive and finite radii of convergence ρj . Furthermore, the

singular behaviour of fj(z) around ρj has a Puiseux critical exponent of the form 2−kj , with

integers kj � 1, or of the form −2−kj , with integers kj � 0. Thus the singular behaviour of

fj(z) around ρj is of type

fj(z) = fj(ρj) + cj(1 − z/ρj)
2

−kj
+ c′

j(1 − z/ρj)
2·2−kj

+ · · · , (9.6)
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where cj �= 0 and where kj is a positive integer, or of type

fj(z) =
dj

(1 − z/ρj)2
−kj

+ d′
j + d′′

j (1 − z/ρj)
2

−kj
+ · · · , (9.7)

where dj �= 0 and kj are non-negative integers.

Instead of assuming condition (9.5) it is also sufficient that only the affine subsystems

y� = P�(z, y�, u�) = A�(z, u�)y� + B�(z, u�)

(corresponding to the strongly connected component C�) have the property that A�(z, u�)

depends on all components of u�.

Proof. By checking the proof of Theorem 5.3, we observe that we only have to consider

Cases 2 and 3. More precisely, in Case 2, δ(z) depends on all yj (that correspond to uj). If

we are in Case 3, then we obtain a singularity of type (9.6) as in the proof of Theorem 9.1.

Let us discuss Case 2 in more detail.

• For Case 2.1 we obtain a polar singularity ρ′′ that is smaller than all singularities of

the functions fj(z). Hence we obtain a singular expansion of type (9.7) (with k = 0).

• For Case 2.2 we obtain a singularity of type (9.7), where the exponent 2−k is inherited

from the functions fj . Note that the numerator is of type (9.6) since the denominator

depends on all possible functions fj , and thus no new singularity can appear in the

numerator.

• Finally, for Case 2.3 we obtain a singularity of type (9.6) that is inherited from the

functions fj(z) (of smallest radius of convergence).

This concludes our investigations of the numerous variants of systems leading to

algebraic behaviour.

10. Conclusions

Now that we have a better picture of the behaviour of positive systems of equations and

of the asymptotics of the coefficients of the corresponding solutions, several extensions

are possible, and we plan to say more in future works on the following questions.

Algorithmic aspects. In order to automate finding the asymptotics, one has to follow

the correct branch of the algebraic equations; this is doable by a disjunction of cases

following the proof of our main theorem, coupled with an inspection of the associated

spectral radii. This leads to a more ‘algebraic’ approach suitable for computer algebra,

bypassing some numerical methods, e.g., the Flajolet–Salvy ACA (analytic continuation

of algebraic) algorithm [65]. With respect to the Pisot problem (i.e., deciding if one, or an

infinite number of fn are zero), finding the best equivalent for N-algebraic functions of

the Skolem–Mahler–Lech theorem for N-rational functions is also a nice question [2, 19].

It is also of interest to get algorithms to decide if fn � 0 for all n [76]. The binomial

formula of Section 3 leads to many identities; it is not always easy to predict when the
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nested sums can be simplified. This has some links with diagonals of rational generating

functions.

Decidability of N-algebraicity. The converse by Soittola [108, 23] of a theorem of

Berstel [21] shows that it is possible to decide if a rational function is in fact an N-rational

function. There is an effective version of this decidability result [16]; Koutschan [82]

completed the details in order to get the first implementation of the algorithm. Giving an

algorithm to decide if a function is N-algebraic, in a constructive way, would be nice.

Extension to differential systems. It is possible to follow a similar approach for linear

systems of differential equations, where there is, however, a broader type of behaviour.

Extension to infinite systems. If one considers systems having an infinite (countable)

number of unknowns yi(z), it is proved in [91] that strongly connected systems also lead

to a square-root behaviour. It is proved in [55] that the limit law is Gaussian (as soon as

a Jacobian operator associated to the system is compact). When the conditions of strong

connectivity or of compactness are dropped, many different behaviours may appear, but

it is possible to describe interesting subclasses having a regular behaviour.

Extension to attributed grammars. Attribute grammars were introduced by Knuth. Many

interesting parameters (e.g., internal path length in trees or area below lattice paths [12,

58, 99]) are captured by such grammars. They lead to statistics with a mean which is no

longer linear. For a large class of strongly connected positive systems (with a Jacobian

condition), it leads to the Airy function, and it is expected that it will also be the case for

a class of functional equations allowing negative coefficients.
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Drmota–Lalley–Woods theorem. Encouraged by Mireille Bousquet-Mélou and Gilles
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Sci. Paris Sér. A–B 272 A1079–A1081.

[22] Berstel, J. and Boasson, L. (1996) Towards an algebraic theory of context-free languages.

Fund. Inform. 25 217–239.

[23] Berstel, J. and Reutenauer, C. (2011) Noncommutative Rational Series with Applications,

Vol. 137 of Encyclopedia of Mathematics and its Applications, Cambridge University Press.

[24] Bertoni, A., Goldwurm, M. and Santini, M. (2001) Random generation for finitely ambiguous

context-free languages. Theor. Inform. Appl. 35 499–512.

[25] Beukers, F. and Heckman, G. (1989) Monodromy for the hypergeometric function nFn−1.

Inventio Math. 95 325–354.

[26] Bodini, O., Darrasse, A. and Soria, M. (2008) Distances in random Apollonian network

structures. In 20th Annual International Conference on Formal Power Series and Algebraic

Combinatorics: FPSAC 2008, DMTCS Proc. AJ, pp. 307–318.

[27] Bodini, O. and Ponty, Y. (2010) Multi-dimensional Boltzmann sampling of languages. In 21st

International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis

of Algorithms: AofA’10, DMTCS Proc. AM, pp. 49–64.

[28] Bostan, A., Chyzak, F., Lecerf, G., Salvy, B. and Schost, E. (2007) Differential equations for

algebraic functions. In Proc. ISSAC 2007, ACM, pp. 25–32.

[29] Bostan, A. and Kauers, M. (2009) Automatic classification of restricted lattice walks. In Proc.

FPSAC ’09 (C. Krattenthaler, V. Strehl and M. Kauers, eds), pp. 201–215.

[30] Bostan, A. and Kauers, M. (2010) The complete generating function for Gessel walks is

algebraic. Proc. Amer. Math. Soc. 138 3063–3078.

[31] Bostan, A., Lairez, P. and Salvy, B. (2014) Integral representations of binomial sums. In

preparation.

[32] Bousquet-Mélou, M. (2006) Rational and algebraic series in combinatorial enumeration. In

Proc. International Congress of Mathematicians, Vol. III, European Mathematical Society,

pp. 789–826.

[33] Bousquet-Mélou, M. and Jehanne, A. (2006) Polynomial equations with one catalytic variable,

algebraic series and map enumeration. J. Combin. Theory Ser. B 96 623–672.

https://doi.org/10.1017/S0963548314000728 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000728


50 C. Banderier and M. Drmota

[34] Bousquet-Mélou, M. and Schaeffer, G. (2002) Walks on the slit plane. Probab. Theory Rel.

Fields 124 305–344.

[35] Canou, B. and Darrasse, A. (2009) Fast and sound random generation for automated testing

and benchmarking in objective Caml. In Proc. 2009 ACM SIGPLAN Workshop on ML:

ML’09, pp. 61–70.

[36] Ceccherini-Silberstein, T. and Woess, W. (2002) Growth and ergodicity of context-free

languages. Trans. Amer. Math. Soc. 354 4597–4625.

[37] Ceccherini-Silberstein, T. and Woess, W. (2003) Growth-sensitivity of context-free languages.

Theoret. Comput. Sci. 307 103–116.

[38] Ceccherini-Silberstein, T. and Woess, W. (2012) Context-free pairs of groups I: Context-free

pairs and graphs. European J. Combin. 33 1449–1466.

[39] Chomsky, N. and Schützenberger, M.-P. (1963) The algebraic theory of context-free languages.

Computer Programming and Formal Systems, Vol. 26 of Studies in Logic and the Foundations

of Mathematics, North-Holland, pp. 118–161.

[40] Christol, G., Kamae, T., Mendès France, M. and Rauzy, G. (1980) Suites algébriques, automates
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