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Slow Continued Fractions and Permutative
Representations of ON

Christopher Linden

Abstract. Representations of the Cuntz algebraON are constructed from interval dynamical systems
associated with slow continued fraction algorithms introduced by Giovanni Panti. heir irreducible
decomposition formulas are characterized by using the modular group action on real numbers, as a
generalization of results by Kawamura, Hayashi, and Lascu. Furthermore, a certain symmetry of such
an interval dynamical system is interpreted as a covariant representation of the C∗-dynamical system
of the “�ip-�op” automorphism ofO2 .

1 Introduction

Permutative representations of the Cuntz algebrasON are a special class of representa-
tions arising from branching function systems. Bratteli and Jorgensen [6]
classiûed irreducible permutative representations of ON up to unitary equivalence.
Kawamura, Hayashi, and Lascu [11] studied the permutative representation arising
from the Gauss map, a well-studied dynamical system related to continued fractions.
hey showed that unitary equivalence classes of irreducible permutative representa-
tions ofO∞ correspond to PGL2(Z) equivalence classes of irrational numbers. More-
over, representations labeled by solutions to quadratic equations with integer coeõ-
cients are characterized by the existence of certain eigenvectors. his establishes a cor-
respondence between the number theoretic properties of the label and the properties
of the representation. If this connection is further developed, the rich combintorial
and algebraic structure of continued fractions can be used to study the representation
theory of Cuntz algebras.

In this note, we study permutative representations associated with so-called slow
continued fraction algorithms (herea�er SCFAs) recently introduced by Panti [14].
his is a broad class of continued fractions including regular continued fractions,
Zagier’s ceiling continued fractions [18], even and odd continued fractions [5], and
“backwards” continued fractions [1]. Our main result is a correspondence between
unitary equivalence classes of irreducible permutative representations of ON and
PGL2(Z) equivalence classes of real numbers for ûnite N (heorem 6.3). In contrast
to the N = ∞ case, it is insuõcient to consider irrational numbers. he dynamics of
rational numbers under the iteration of SCFAs is more complicated and less studied
than that of irrational numbers, and is the source of several technical diõculties that
we must overcome.
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788 C. Linden

As the name suggests, SCFAs can be thought of as slow downs of analogues of the
Gauss map. hese “Gauss maps” can then be realized as jump transformations of SC-
FAs. We relate permutative representations associated to SCFAs and those associated
with their jump transformations. Precisely, we show that the permutative representa-
tion of ON associated with an SCFA can be precomposed with an embedding of O∞
into ON to obtain the representation of O∞ associated with a jump transformation
(heorem 6.5). In a similar vein, we translate combinatorial relationships between
diòerent SCFAs into embeddings of ON into O2 ⋊ Z2. We show that the represen-
tation of ON associated with any SCFA is the composition of this embedding and a
representation of O2 ⋊θ Z2 (heorem 6.8).

he paper is organized in the following way. In Section 2, we review Cuntz alge-
bras and their permutative representations. In Section 3, we discuss regular continued
fractions and conclude with an outline of the argument of Kawamura, Hayashi, and
Lascu [11]. In Section 4, we introduce the basic deûnitions and facts for SCFAs, largely
following Panti [14]. In Section 5 we consider the symbolic dynamics of SCFAs, pay-
ing special attention to rational numbers. In Section 6 we state and prove our main
results connecting slow continued fractions and permutative representations of Cuntz
algebras. In Section 7 we consider a few examples of heorem 6.3.

2 Permutative Representations

In this section, we review Cuntz algebras and their permutative representations. For
N = 2, 3, . . . ,∞, theCuntz algebraON is the universalC∗-algebra generated by {S i}

N
i=1

satisfying [8]:

(2.1) S
∗
i S j = δ i j1,

N

∑
i=1

S iS
∗
i = 1.

For N = ∞, the second equality is replaced with∑n

i=1 S iS
∗
i ≤ 1 for all n ∈ N. hrough-

out this section, we treat the ûnite and N = ∞ cases simultaneously. For convenience,
we will write NN for {1, 2, . . .N}, with the understanding that N∞ = N.

Deûnition 2.1
(i) A representation of a C∗-algebra A on a Hilbert spaceH is a ∗-homomorphism

from A into B(H), the set of all bounded linear operators on H.
(ii) A subspace V ⊂H is invariant for a representation π ∶ A→ B(H) if π(a)v ∈ V

for any a ∈ A and v ∈ V .
(iii) For a representation π of A on H with a closed invariant subspace V , the re-

striction π∣V of π to V is deûned as the restriction of the operator π(a) to V for
each a ∈ A. We call π∣V ∶ A→ B(V) a subrepresentation of π.

(iv) A representation π ∶ A → B(H) is irreducible if {0} andH are the only closed
invariant subspaces for π.

Any collection of isometries satisfying the relations (2.1) determines a representa-
tion of ON , because ON is simple [8]. All C∗-algebras, representations, and embed-
dings that we consider are unital.
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Deûnition 2.2 ([6, Chapter 2]) For N = 2, 3, . . . ,∞, a branching function system

(BFS) of order N on a set Ω is a collection of injective transformations { f i}N
i=1 on Ω

with pairwise disjoint ranges whose union is Ω.

We will refer to such a system by the tuple {Ω, F , { f i}N
i=1 , {∆ i}

N
i=1}, where ∆ i =

f i(Ω), and F is the piecewise function on Ω deûned by f −1
i on ∆ i .

Deûnition 2.3 A permutative representation of ON on H is a representation π for
which there is an orthonormal basis {ek ∶ k ∈ K} for H such that

π(S i)en ∈ {ek ∶ k ∈ K} (n ∈ K , i ∈ NN).

Proposition 2.4 ([6, p. 7]) Let ℓ2(Ω) denote theHilbert space with orthonormal basis

{eω ∶ ω ∈ Ω}. Any BFS {Ω, F , { f i}N
i=1 , {∆ i}

N
i=1} induces a permutative representation

πF ∶ ON → B(ℓ2(Ω)) deûned by

(2.2) πF(S i)eω = e f i(ω) (ω ∈ Ω, i ∈ NN).

Lemma 2.5 If {Ω, F , { f i}N
i=1 , {∆ i}

N
i=1} and {Ω′ ,G , {g i}

N
i=1 , {∆

′
i}

N
i=1} are conjugate,

then the representations πF and πG are unitarily equivalent.

Proof he function systems are conjugate if there exists a bijection C ∶ Ω → Ω′ such
that

(2.3) C ○ f i = g i ○ C i ∈ NN .

Deûne the unitary U ∶ ℓ2(Ω) → ℓ2(Ω′) by Ueω = eC(ω). From (2.3), we obtain

UπF(S i) = πG(S i)U (i ∈ NN). ∎

Deûnition 2.6 ([6, Chapter 4])
(i) For a ûnite word w = w1w2 ⋅ ⋅ ⋅wk in the alphabet NN , we denote Sw1Sw2 ⋅ ⋅ ⋅ Swk

by Sw . Let FN denote the C∗-subalgebra of ON generated by all elements of the
form SwS∗w′ , where w and w′ are ûnite words with equal length in the alphabet
NN .

(ii) We call an irreducible permutative representation of ON a cycle.
(iii) We call an irreducible component of the restriction of a cycle to FN an atom.

We recall a construction of the shi� representation πN
S

of ON . Let ΩN denote the
set NN of all inûnite sequences in the alphabet {1, . . . ,N}. Deûne the BFS {σi}

N
i=1 on

ΩN by

σi((x1 , x2 , x3 , . . . )) = (i , x1 , x2 , x3 , . . . ) (i ∈ NN).

From Proposition 2.4, we obtain a representation πN
S

of ON on ℓ2(ΩN) as

π
N
S (S i)e(xn) = eσ i((xn)) (i ∈ NN (xn) ∈ ΩN).

For (xn) and (yn) in ΩN ∶= NN, write (xn) ∼ (yn) if there exist z ∈ Z,m ∈ N such
that xn+z = yn for n ≥ m. Write (xn) ≈ (yn) if z can be taken to be 0. hese are equiv-
alence relations, which we call tail equivalence and eventual equivalence, respectively.
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790 C. Linden

We denote the equivalence class of (xn) under ∼ by [(xn)] and the equivalence class
of x under ≈ by [[(xn)]].

Proposition 2.7 ([6, Chapter 6])
(i) he decomposition of πN

S
into cycles corresponds to the decomposition of ℓ2(ΩN)

into subspaces

ℓ
2
(ΩN) = ⊕

[(xn)]∈ΩN/∼
H[(xn)] ,

where H[(xn)] is the (separable) subspace of ℓ2(ΩN) with basis {e(yn) ∶ (yn) ∈

[(xn)]}.

(ii) Any irreducible permutative representation ofON is unitarily equivalent to exactly

one such a representation.

(iii) he decomposition of πN
S

(restricted to FN ) into atoms corresponds to the decom-

position of ℓ2(ΩN) into subspaces

ℓ
2
(ΩN) = ⊕

[[(xn)]]∈ΩN/≈
H[[(xn)]] ,

whereH[[(xn)]] is the subspace of ℓ
2(ΩN) with basis {e(yn) ∶ (yn) ∈ [[(xn)]]}.

3 Regular Continued Fractions

In this section, we review a few useful deûnitions and facts about regular continued
fractions. he regular continued fraction expansion of x ∈ I ∶= [0, 1] ∖Q is written as

(3.1) x = [a1 , a2 , . . . ] =
1

a1 +
1

a2+ 1
⋱

,

where the partial quotients a i are positive integers. Continued fractions can be un-
derstood in terms of the Gauss and Farey maps, GR , FR ∶ I→ I deûned as

GR(x) =
1
x
− ⌊

1
x
⌋, FR(x) =

⎧⎪⎪
⎨
⎪⎪⎩

x

1−x if x ∈ (0, 1/2),
1−x
x

if x ∈ (1/2, 1),

where ⌊x⌋ is the �oor function. For [a1 , a2 , . . . ] as in (3.1) GR and FR act as:

GR([a1 , a2 , a3 , . . . ]) = [a2 , a3 , a4 , . . . ],

FR([a1 , a2 , a3 , . . . ]) =
⎧⎪⎪
⎨
⎪⎪⎩

[a1 − 1, a2 , a3 , . . . ] if a1 ≥ 2,
[a2 , a3 , a4 , . . . ] if a1 = 1.

(3.2)

Let N0 ∶= {0} ∪N. We have the relation

(3.3) GR(x) = FR
r(x)+1

(x) r(x) = inf{n ∈ N0 ∶ FR
n
(x) ∈ (1/2, 1)}.

For x in I, (3.1) implies that r(x)+ 1 = a1, and, in particular, r(x) is ûnite. We say that
the Gauss map is the jump transformation of the Farey map obtained by inducing on
the interval (1/2, 1). From (3.3), the Gauss mapGR can be regarded as an acceleration
of the Farey map FR . Conversely, FR can be regarded as a slow-down of GR .
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Deûnition 3.1 Let PGL2(Z) be the group of two by two integer matrices of deter-
minant ±1, with the matrices M and −M identiûed. We will regard PGL2(Z) as the
group of fractional linear transformations with integer coeõcients by identifying the
matrix [ a b

c d
] ∈ PGL2(Z) with the function x ↦ ax+b

cx+d .

Deûnition 3.2 Let Σ be a subgroup of PGL2(Z). We say x , y ∈ R are Σ-equivalent
and write x ∼Σ y if there exists a matrix [ a b

c d
] ∈ Σ such that y = ax+b

cx+d . his is an
equivalence relation, and we denote the equivalence class of x by [x]Σ .

We recall the following well-known facts about continued fractions.

Proposition 3.3 ([10, heorems 2.3, 6.1, and 5.3 in Chapter 10])

(i) Let Ω∞ denote the set of all sequences of positive integers. he map I ∋ x ↦

(a1 , a2 , . . . ) ∈ Ω∞ deûned by the correspondence in (3.1) is bijective.
(ii) (Lagrange) An irrational number has an eventually periodic continued fraction

expansion if and only if it is the solution of a quadratic equation with integer co-

eõcients.

(iii) (Serret, [15, p. 34])Two irrational numbers x and y have tail equivalent continued

fraction expansions if and only if x ∼PGL2(Z) y.

We end this sectionwith a brief sketch of the argument of Kawamura, Hayashi, and
Lascu in our terminology. he (regular) GaussmapGR is a branching function system
on I = [0, 1]∖Q, which the correspondence in Proposition 3.3(i) conjugates to the full
shi� on Ω∞ = NN. By Lemma 2.5, the representation πGR of O∞ associated with the
Gauss map by Proposition 2.4 is unitarily equivalent to the shi� representation π∞

S
.

he conjugacy sends PGL2(Z)-equivalence classes of irrational numbers to tail equiv-
alence classes of sequences, as per Proposition 3.3(iii). In light of Proposition 2.7, we
obtain a correspondence between unitary equivalence classes of irreducible permuta-
tive representations of O∞ and PGL2(Z)-equivalence classes of irrational numbers.
Proposition 3.3(ii) implies that an irreducible permutative representation of O∞ has
ûnitely many atoms if and only if it is labeled by a class of solutions to quadratic equa-
tions with integer coeõcients.

4 Slow Continued Fraction Algorithms

In this section, we introduce SCFAs and discuss a few useful combinatorial properties.

Deûnition 4.1

(i) A subinterval [ p

q
, p

′

q′ ] ⊂ [0, 1] with rational endpoints is said to be unimodular

if p

q
and p

′

q′ are reduced fractions such that pq′ − p′q = −1.
(ii) Aunimodular partition is a ûnite collectionunimodular intervals I i whose union

is [0, 1], such that for i ≠ j, I i ∩ I j contains at most one point.

Deûnition 4.2 An SCFA is a ûnite collection of functions h i ∶ [0, 1] → [0, 1] such
that
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(i) each function h i is a fractional linear transformation in PGL2(Z);
(ii) the images {h i([0, 1])}N

i=1 form a unimodular partition.

he most important example is the regular Farey map with inverse branches x

x+1
and 1

x+1 . In general, the fractional linear transformation x ↦ ax+b
cx+d is continuous and

monotone except at the singular point − d
c
. he assumption h i([0, 1]) ⊂ [0, 1] ensures

that this singularity does not occur on the interval [0, 1]. Hence, h i ∶ [0, 1] → [0, 1] is
continuous and strictlymonotone. By assumption, h i([0, 1]) is a unimodular interval,
which we denote [

p i
q i
, p

′
i

q′i
]. If h i is increasing, then h i(

0
1 ) =

p i
q i
and h i(

1
1 ) =

p
′
i

q′i
. We,

therefore, have the formula

h i(x) = [
p′i − p i p i

q′i − q i q i

] (x).

If h i is decreasing, the situation is reversed and

h i(x) = [
p i − p′i p′i
q i − q′i q′i

] (x).

In general, denoting the determinant of h i (equivalently, the sign of its derivative), by
є i ∈ {±1}, h i is given by the formula

(4.1) h i(x) = [
p′i − p i p i

q′i − q i q i

] [
−1 1
0 1]

(1−є i)/2
(x).

Hence, the data of a unimodular partition {[
p i
q i
, p

′
i

q′i
]}N

i=1 and signs {є i}N
i=1, є i ∈ {−1, 1}

speciûes an SCFA. Our convention will be to order the unimodular partition (and
hence the h i) such that 0 = p1

q1
and p

′
i

q′i
=

p i+1
q i+1

for 1 ≤ i < N .

Proposition 4.3 Fix an SCFA {h i}
N
i=1, and let f i be the restriction of h i to I ∶= [0, 1]∖

Q. he functions { f i}
N
i=1 form a BFS on I.

Proof As we have already remarked, the condition h i([0, 1]) ⊂ [0, 1] guarantees
that h i is continuous and strictly monotone on [0, 1]. Hence, f i is injective. Since
[0, 1] ⊂ ∪N

i=1h i([0, 1]) and h i maps irrational numbers to irrational numbers, I ⊂

∪N
i=1 f i(I). For i ≠ j, h i([0, 1]) ∩ h j([0, 1]) is either empty or a rational singleton.

Hence, f i(I) ∩ f j(I) = ∅. ∎

Deûnition 4.4 With the notation introduced in Deûnition 2.2(i), let {I, F , { f i}N
i=1 ,

{∆ i}
N
i=1} be the BFS associated with an SCFA. Suppose E ⊂ I is of the form ∪k

i= j
∆ i for

some 1 ≤ j ≤ k ≤ N . Deûne

IE ∶= {x ∈ I ∶ Fn
(x) ∈ E for inûntely many n ∈ N},

r(x) ∶= inf{n ∈ N0 ∶ F
n
(x) ∈ E} for x ∈ IE .

he jump transformation of F induced on E is G(F , E)∶ IE → IE ,

G(F , E)(x) = F r(x)+1
(x).
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Figure 1: he SCFAs of Example 4.5.

If E is a proper subset of I, thenG will have countablemany inverse branches g j ∶ IE →

IE , which also form a BFS.

With the above generalization of the relationship between the Farey and Gauss
maps in hand, we can now describe several motivating examples of SCFAs and their
jump transformations.

Example 4.5 (See also Figure 1.)
(i) he classical Farey map FR in (3.2) is the SCFA associated with the partition

[0, 1/2], [1/2, 1] and signs 1,−1. From (3.3), inducing on ∆2 = [1/2, 1] ∩ I yields the
classical Gauss map GR as its acceleration [2, 7, 9].

(ii) An important SCFA, which we denote FB is the SCFA associated with the par-
tition [0, 1/2], [1/2, 1] and signs 1, 1. Inducing FB , on ∆2 = [1/2, 1] ∩ I yields Zagier’s
ceiling algorithm G(x) = ⌈ 1

x
⌉ − 1

x
, where ⌈x⌉ is the ceiling function [18]. Inducing on

∆1 = [0, 1/2] ∩ I yields the “backwards” continued fractions [1].
(iii) he even and odd Farey maps FE and FO are SCFAs associated with the parti-

tion [0, 1/3], [1/3, 1/2], [1/2, 1] and signs 1,−1, 1 and 1, 1,−1, respectively. Inducing FE
and FO on ∆2 ∪ ∆3 = [1/3, 1] ∩ I yields the even and odd Gauss maps [4, 5, 16].

he following lemma provides a useful description of the inverse branches of an
arbitrary SCFA as compositions of those of FB . Let b1 = [ 1 0

1 1 ] and b2 = [ 0 1−1 2 ].

Lemma 4.6 Fix an SCFA {h i}
N
i=1.

(i) Each h i = [
p
′
i−p i p i

q
′
i−q i q i

][ −1 1
0 1 ]

(1−є i)/2
can be written as bν i T

(1−є i)/2 where bν i is a

word in {b1 , b2}, T(x) = 1 − x.
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(ii) hewords {bν i}
N
i=1 are the leaves of a ûnite, rooted binary tree. In particular, none

of the words are le� factors of another. he word bµb1 is a le� factor of a word in

{bν i}
N
i=1 if and only if bµb2 is a le� factor of a word in {bν i}

N
i=1.

Proof Any unimodular partition can be obtained uniquely from the interval
[ 01 ,

1
1 ] by repeatedly splitting an interval [ p

q
, p

′

q′ ] into two subintervals [
p

q
, p+p

′

q+q′ ] and

[
p+p

′

q+q′ ,
p
′

q′ ]. Equation (4.1) associates the intervals [ p

q
, p

′

q′ ], [
p+p

′

q+q′ ,
p
′

q′ ], and [
p

q
, p+p

′

q+q′ ] to

the matrices [
p
′−p p

q
′−q q

], [ −p p+p
′

−q q+q
′ ], and [

p
′

p

q
′

q
]. he lemma follows from the observ-

abtion that sp an interval corresponds to right multiplication of its associated matrix
with b1 and b2:

[
p′ − p p

q′ − q q
] [

1 0
1 1] = [

p′ p

q′ q
] ,

[
p′ − p p

q′ − q q
] [

0 1
−1 2] = [

−p p + p′

−q q + q′] . ∎

5 Symbolic Dynamics for SCFAs

he analogue of continued fractions are itinerarieswith respect to an SCFA. Although
only irrational numbers have inûnite continued fraction expansions, every real num-
ber will have an inûnite itinerary. For the same reason that the (terminating) contin-
ued fraction expansions of rational numbers are not unique, each rational number in
(0, 1) will have two itineraries. Instead of a bijection, we therefore work separately
with a surjective decoding map and an injective encoding map.

Deûnition 5.1 Fix an SCFA {h i}
N
i=1 with associated BFS {I, F , { f i}N

i=1 , {∆ i}
N
i=1}.

(i) A sequence (xn) ∈ ΩN is an F-itinerary for x if x ∈ ∩∞n=1hxn ○ hxn−1 ○ ⋅ ⋅ ⋅ ○

hx1([0, 1]).
(ii) We write x ∼F y if there exist tail equivalent F-itineraries for x and y. his is an

equivalence relation, and we write [x]F for the ∼F-equivalence class of x.
(iii) he Panti–Serret group ΣF associated with {I, F , { f i}N

i=1 , {∆ i}
N
i=1} is the sub-

group of PGL2(Z) generated by the matrices h i .
(iv) he SCFA {I, F , { f i}N

i=1 , {∆ i}
N
i=1} is said to satisfy the Serret theorem if for ir-

rational numbers, the relation ∼F coincides with ∼ΣF as in Deûnition 3.2.

he Serret theorem in Deûnition 5.1(iv) holds for some, but not all SCFAs. In gen-
eral, each ΣF equivalence class is the union of ∼F equivalence classes. A practical
criterion for checking the validity of the Serret theorem is established in [14]. We
recall the following facts from [13].

Proposition 5.2 (Panti) (i)([13,Observation 3])he intersection inDeûnition 5.1(i)
is always a singleton.
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(ii) (Generalized Lagrange heorem [13, Section 3]) An irrational number has an

eventually periodic itinerary with respect to every SCFA if and only if it is a solu-

tion to a quadratic equation with integer coeõcients.

Deûnition 5.3 Fix an SCFA {h i}
N
i=1 with BFS {I, F , { f i}N

i=1 , {∆ i}
N
i=1}.

(i) For (xn) ∈ ΩN , let x be the singleton∩∞n=1hxn○hxn−1○⋅ ⋅ ⋅○ hx1([0, 1]), as in Propo-
sition 5.2(i). Deûne the decoding map DecF ∶ ΩN → [0, 1] by DecF((xn)) = x.

(ii) For x ∈ I, let (xn) ∈ ΩN be the sequence such that Fn−1(x) ∈ ∆xn . Deûne the
encoding map EncF ∶ I→ ΩN by EncF(x) = (xn).

Remark 5.4 Since ∪N
i=1h i([0, 1]) = [0, 1], DecF is surjective. he injectivity of EncF

is [13, Observation 3(i)].

Proposition 5.5 he encodingmap EncF conjugates {I, F , { f i}N
i=1 , {∆ i}

N
i=1} to a sub-

shi� {EncF(I), σ , {σi}
N
i=1 , {σi(EncF(I))}N

i=1}.

Proof Since EncF is injective, it is enough to observe that

EncF ○ f i = σi ○ EncF i ∈ {1, . . . ,N}. ∎

he encoding map in the above proposition is never surjective; its image is always
ΩN minus the itineraries of rational numbers. For example, denoting the constant
sequences by 1 = 1, 1, 1, . . . and 2 = 2, 2, 2, . . . ,

EncFR(I) = Ω2 ∖ {(xn) ∶ (xn) ∼ 1},

EncFB(I) = Ω2 ∖ {(xn) ∶ (xn) ∼ 2 or (xn) ∼ 1}.

We conclude this section by establishing a strong version of the Serret theorem,
which includes rational numbers for a speciûc family of SCFAs, which we denote FN .

Deûnition 5.6 For 2 ≤ N < ∞, let FN be the SCFA associated with the unimodular
partition [0, 1

N
], [ 1

N
, 1
N−1 ], [

1
N−1 ,

1
N−2 ], . . . , [

1
2 ,

1
1 ] and signs 1,−1,−1, . . . ,−1.

Proposition 5.7

(i) he subgroup ΣFN of PGL2(Z) generated by {h i}
N
i=1 coincides with PGL2(Z).

(ii) he Serret theorem holds for FN in the sense of Deûnition 5.1(iv).
(iii) A sequence (xn) ∈ ΩN is an FN -itinerary of a rational number if and only if

(xn) ∼ 1 = 1, 1, 1, . . . .

Corollary 5.8 Let x , y ∈ [0, 1] and (xn), (yn) ∈ ΩN such thatDecFN ((xn)) = x and

DecFN ((yn)) = y. hen (xn) ∼ (yn) if and only if x ∼PGL2(Z) y.

Proof of Proposition 5.7
(i) Note that F2 is simply the Farey map FR . Denote the inverse branches of FR by

r1 and r2. he inverse branches of FN are rN−1
1 , rN−2

1 r2, rN−3
1 r2, . . . , r21 r2, r1r2, r2.

Proposition 5.7(i) then follows from the fact that {r1 , r2} generates PGL2(Z).
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(ii) We construct the transducer (ûnite state automaton) considered in [14,
Lemma 5.5]. Let b1 and b2 be the branches of FB and T(x) = 1 − x, as in
Lemma 4.6. Given h ∈ {h i}

N
i=1 and v ∈ V , there is a unique w ∈ V for which

there exists a (possibly empty) word µ = µ1µ2 ⋅ ⋅ ⋅ µn in the alphabet {1, . . . ,N}

such that

vh = hµ1hµ2 ⋅ ⋅ ⋅ hµnw .

he transducer in question has state set V = {bk
1 T

e ∶ 0 ≤ k ≤ N − 2, e ∈
{0, 1}}. For v and w as in (ii), it has a directed edge from v to w labeled with
input h and output hµ1hµ2 ⋅ ⋅ ⋅ hµn . To construct the edge set, we consider the
following cases:
(a) If v = bk

1 and h = bN−1
1 : We obtain a self loop, labeled with both input and

output h.
(b) If v = bk

1 and h = b
j

1b2T : We obtain an edge to 1. If k = 0 (i.e., v = 1) this
self loop is labeled with both input and output h.

(c) If v = bk
1 T and h = bN−1

1 : We obtain an edge to bN−2
1 .

(d) If v = bk
1 T and h = b

j

1b2T for j ≠ 0: We obtain an edge to 1.
(e) If v = bk

1 T and h = b2T , for k ≠ N − 2: We obtain an edge to bk+1
1 .

(f) If v = bN−2
1 T and h = b2T : We obtain an edge to 1.

An inûnite path in the transducer constructed above eventually consists of an
inûnitely repeated self loop, labeled with the same input as output. Hence, the
output of the transducer is always tail equivalent to its input. By [14, Corollary
5.6], the Serret theorem holds.

(iii) his is a special case of the following Lemma 5.9. ∎

Lemma 5.9 Suppose the SCFA {h i}
N
i=1 satisûes є1 = 1 and єN = −1. (Recall our

ordering convention that 0 ∈ h1([0, 1]) and 1 ∈ hN([0, 1]).) A sequence (xn) ∈ ΩN is

an itinerary of a rational number if and only if (xn) ∼ 1 = 1, 1, 1, . . . .

Proof By the proof of [13, Observation 3], for r ∈ Q and (xn) ∈ ΩN , there is M ∈ N
such that r is not in the topological interior of hxm ○⋅ ⋅ ⋅○hx1([0, 1]) for m ≥ M. If (xn)

is an itinerary for x ∈ Q∩[0, 1], this implies that x is an endpoint of hxm○⋅ ⋅ ⋅○hx1([0, 1])
for m ≥ M. If the determinant of hxm ○ ⋅ ⋅ ⋅ ○ hx1 is 1, then hxm ○ ⋅ ⋅ ⋅ ○ hx1([0, 1]) shares
its right endpoint with hN ○hxm ○ ⋅ ⋅ ⋅ ○hx1([0, 1]) and le� endpoint with h1 ○hxm ○ ⋅ ⋅ ⋅ ○

hx1([0, 1]). If the determinant is −1, the situation is reversed. In this way, the shared
endpoint and the determinant of hxm ○ ⋅ ⋅ ⋅ ○ hx1 inductively determine xm+1.

If xm = N , the determinants of hxm ○ ⋅ ⋅ ⋅ ○ hx1 and hxm−1 ○ ⋅ ⋅ ⋅ ○ hx1 diòer by the
assumption det(hN) = −1. By the above, xm+1 = 1. If xm = 1, the determinants of
hxm ○ ⋅ ⋅ ⋅ ○ hx1 and hxm−1 ○ ⋅ ⋅ ⋅ ○ hx1 coincide by the assumption det(h1) = 1. Again,
xm+1 = 1. We conclude that xm = 1 for m > M, proving the forward implication.
Conversely, if (xn) is tail equivalent to 1, then for n and m suõciently large, the

intervals hxn ○ ⋅ ⋅ ⋅ ○ hx1([0, 1]) and hxm ○ ⋅ ⋅ ⋅ ○ hx1([0, 1]) share a rational endpoint.
he common endpoint is therefore the unique point in the intersection ∩∞n=1hxn ○ ⋅ ⋅ ⋅ ○

hx1([0, 1]). We conclude that (xn) is the itinerary of a rational number, proving the
lemma. ∎
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6 Main Results

In this section, we state and prove our main results. We begin with the following
corollary of Lemma 2.5 and Propositions 2.7 and 5.5.

Proposition 6.1 Let {I, F , { f i}N
i=1 , {∆ i}

N
i=1} be the BFS associated with an SCFA and

let πF be the permutative representation of ON on ℓ2(I) in Proposition 2.4. hen the

irreducible decomposition of πF is given as

ℓ
2
(I) = ⊕

[x]F∈I/∼F
,H[x]F

whereH[x]F is the subspace of ℓ2(I) with basis {ey ∶ y ∼F x}.

Remark 6.2 If the SCFA satisûes the Serret theorem as in Deûnition 5.1(iv), then
the sets [x]F coincide with ΣF-orbits of irrational numbers.

We now consider the SCFAs FN introduced in Deûnition 5.6 to produce a bijec-
tion between equivalence classes of irreducible permutative representations ofON and
PGL2(Z)-equivalence classes of real numbers.

heorem 6.3 For 2 ≤ N < ∞, the decoding mapDecFN in Deûnition 5.3(i) provides a
bijection between unitary equivalence classes of irreducible permutative representations

ofON andPGL2(Z)-equivalence classes of real numbers. Moreover, an equivalence class

of representations corresponds to an equivalence class of solutions to quadratic equations

with integer coeõcients if and only if it has ûnitely many atoms.

Proof By Proposition 2.7, there is a bijection between unitary equivalence classes of
irreducible permutative representations of ON and the subspaces H[(xn)] of ℓ

2(ΩN).
We consider the bijection

H[(xn)] z→ [DecFN ((xn))]PGL2(Z) ∈ [0, 1]/ ∼PGL2(Z) .

his is well deûned by the forward implication in Corollary 5.8. It is injective by the
backwards implication in Corollary 5.8, and surjective by Remark 5.4. By Proposi-
tion 5.2(ii) for irrationals and Proposition 5.7(iii) for rationals, [(xn)] is labeled by a
class of solutions to quadratic equations with integer coeõcients if and only if [(xn)]

contains a periodic sequence. his is equivalent to consisting of ûnitely many even-
tual equivalence classes, which by Proposition 2.7(iii) is equivalent to the associated
irreducible permutative representation of ON having ûnitely many atoms. ∎

Remark 6.4 If x ∈ [0, 1] has FN -itinerary (xn) and wn is the word x1x2 ⋅ ⋅ ⋅ xn , then
irreducible permutative representations ofON labeled by [x]PGL2(Z) are characterized
by the existence of a vector ξ such that S∗wn

ξ ≠ 0 for n ∈ N. For πN
S
∣H[(xn)] , ξ is simply

e(xn). We consider examples in Section 7.

heorem 6.5 Let {I, F , { f i}N
i=1 , {∆ i}

N
i=1} be the BFS associated with an SCFA, and

G = G(F , E) be the jump transformation of F induced on E. here is a unital embedding

φ ∶ O∞ → ON that is compatible with the representations πF and πG (as deûned in
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Proposition 2.4) in the sense that ℓ2(IE) sits inside ℓ2(I) as a closed, invariant subspace

on which

(6.1) πF ○ φF = πG .

Proof From Deûnition 4.4, IE = {x ∈ I ∶ Fn(x) ∈ E for inûnitely many n ∈ N},
and hence ℓ2(IE) is invariant under the action of πF(ON). Let {Tj ∶ j ∈ N} be the
generators of O∞ and let {S i ∶ i = 1, . . . ,N} be the generators of ON . Let f = { f i ∶

range( f i) ⊂ E} and fE c = { f i ∶ range( f i) ∩ E = ∅}. he inverse branches g j of
G(F , E) are of the form g j = f j1 ○ f j2 ○ ⋅ ⋅ ⋅ ○ f jk where f jk ∈ fE and f j1 , . . . , f jk−1 ∈ fE c .
We denote the word j1 j2 ⋅ ⋅ ⋅ jk by µ j . Deûne φ(1) = 1 and φ(Tj) = Sµ j , from which
(6.1) immediately follows. To show that φ is an embedding, it suõces to verify (2.1).
For j, j′ ∈ N, only f jk and f j′ k′ belong to fE . Hence, µ j is a le� factor of µ j′ only if
j = j′. his veriûes the le�-hand equality of (2.1):

φ(T
∗
j′)φ(Tj) = S

∗
µ j′ Sµ j = δ j , j′1.

For j ≠ j′, µ j is not a le� factor of µ j′ nor vice versa, soφ(Tj)φ(Tj)
∗ andφ(Tj′)φ(Tj′)

∗

are projections with disjoint ranges, verifying the right-hand inequality of (2.1). ∎

Remark 6.6 A theorem of a similar �avor appears in [12], relating representations
associated with the regular Gauss and Farey maps.

he “�ip-�op” [3] automorphism θ of O2 is deûned by θ(S1) = S2 and θ(S2) = S1.
Since θ is an involution, it determines an action of the group Z2 ∶= Z/2Z on O2. We
write O2 ⋊θ Z2 for the associated crossed product. We refer to [17, Chapter 2, Section
2.3] for a treatment of crossed products of C∗-algebras by ûnite groups. Recall the
SCFA FB introduced in Example 4.5(ii).

Proposition 6.7 he representation πFB of O2 on ℓ2(I) extends to a representation

π̃FB of O2 ⋊θ Z2 on ℓ2(I).

Proof Let Uθ ∈ O2 ⋊θ Z2 be the unitary that implements θ, i.e.,

UθAU
∗
θ = θ(A), A ∈ O2 .

Since S1 and S2 generate O2 and Uθ = U∗
θ
, this is equivalent to

UθS1 = S2Uθ .

Elements ofO2⋊θ Z2 can be written in the form A+UθB, where A, B ∈ O2. herefore,
any self-adjoint unitary U ∶ ℓ2(I) → ℓ2(I) that satisûes

UπFB(S1) = πFB(S2)U

deûnes an extension π̃FB by setting π̃FB(Uθ) = U . Deûne the self-adjoint unitary
Uex = e1−x . Equations (2.2) and (4.1) yield

πFB(S1)ex = e x
1+x , πFB(S2)ex = e 1

2−x
.
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Applying these,

UπFB(S1) = πFB(S2)U ,

and hence, π̃FB(Uθ)ex = e1−x gives the claimed extension. ∎

heorem 6.8 Let {I, F , { f i}N
i=1 , {∆ i}

N
i=1} be the BFS associated with an SCFA. here

is a unital embedding ψF ∶ ON → O2 ⋊θ Z2 such that the following diagram commutes:

O2 ⋊θ Z2 B(ℓ2(I))

ON .

π̃FB

ψF
πF

Proof Let {S i}
N
i=1 be the generators of ON , and B1 , B2, and Uθ the generators of

O2 ⋊θ Z2. Applying Lemma 4.6(i), write f i = bν i T
e i and deûne

ψF(S i) = Bν iU
e i
θ
,

which immediately satisûes π̃FB ○ ψF = πF . Consider

ψ(S
∗
i′)ψ(S i) = U

e i′
θ
B
∗
µ i′Bν iU

e i
θ
.

his expression is nonzero only if µ i is a le� factor of µ i′ or vice versa. By
Lemma 4.6(ii), this occurs only when i = i′. Hence,

ψ(S
∗
i′)ψ(S i) = δ i , i′1,

verifying the le�-hand side of (2.1). Now consider

∑
1≤i≤N

ψF(S i)ψF(S i)
∗
= ∑

1≤i≤N

Bν iU
p i
θ
U

p i
θ
B
∗
ν i
= ∑

1≤i≤N

Bν iB
∗
ν i
.

Repeated application of B1B
∗
1 + B2B

∗
2 = 1, together with the binary tree structure

described in Lemma 4.6(ii), shows that

∑
1≤i≤N

Bν iB
∗
ν i
= 1,

verifying the right-hand side of (2.1). ∎

Remark 6.9 If the signs є i of the SCFA are all positive, heorem 6.8 gives an em-
bedding into O2.

7 Examples

In this section we give examples of heorem 6.3. We choose a representative of a
PGL2(Z)-equivalence class from [0, 1] and characterize the associated unitary equiv-
alence class of irreducible permutative representations of ON for N = 2, 3, . . . .

Example 7.1 For N = 2, 3, . . . , the FN -itinerary of 0 is 1 = 1, 1, 1, . . . . he irreducible
permutative representations of ON labeled by 0 are characterized by the existence of
a vector ξ such that S1ξ = ξ, and consist of a single atom.
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Example 7.2 Similarly, for N = 2, 3, . . . , the FN -itinerary of
√
5−1
2 is N , and the

irreducible permutative representations of ON labeled by
√
5−1
2 are characterized by

the existence of a vector ξ such that SN ξ = ξ, and consist of a single atom.

Example 7.3 For N = 2,
√

2−1 has F2-itinerary 12, so the corresponding irreducible
permutative representations ofO2 are characterized by the existence of a vector ξ such
that S2S1ξ = ξ. here are two atoms, corresponding to the two eventual equivalence
classes. For 2 < N < ∞,

√
2 − 1 has FN -itinerary N − 1, so the corresponding ir-

reducible permutative representations of ON are characterized by the existence of a
vector ξ such that SN−1ξ = ξ, and consist of a single atom.

Remark 7.4 he existence of an eigenvector for a ûnite composition of the gener-
ating isometries is how Hayashi, Kawamura, and Lascu characterize representations
associatedwith quadratic irrationals forO∞. his is equivalent to having ûnitelymany
atoms, which is the characterization established in heorem 6.3 for ûnite N .

Finally, we consider a label that is not a quadratic root, forwhich the corresponding
irreducible permutative representations must have countably many atoms.

Example 7.5 Let e be the base of the natural logarithm. he regular continued
fraction expansion of e − 2 is [1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, . . . ]. he F2-itinerary of e − 2
is

2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, . . . .

For each N , the itinerary is aperiodic. he F3, F4, and F5-itineraries of e − 2 are re-
spectively

3, 2, 3, 3, 1, 1, 2, 3, 3, 1, 1, 1, 1, 2, 3, 3, 1, 1, 1, 1, 1, 1, 2, 3, . . . ,
4, 3, 4, 4, 1, 2, 4, 4, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 2, 4, . . . ,
5, 4, 5, 5, 2, 5, 5, 1, 1, 2, 5, 1, 1, 1, 1, 2, 5, . . . .

Every ûnite composition of the generating isometries of the associated representation
ofON is a pure isometry. In particular, there are no eigenvectors as in the previous ex-
amples. he FN -itineraries nevertheless characterize the representations as discussed
in Remark 6.4.
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