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Abstract. We consider the dynamics of complex rational maps on Ĉ. We prove that,
after reducing their orbits to a fixed number of positive values representing the Fubini–
Study distances between finitely many initial elements of the orbit and the origin, ergodic
properties of the rational map are preserved.
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1. Introduction
In this paper we investigate dynamical properties of complex rational maps that are
preserved after reducing their orbits to a finite number of real values. Our work is
motivated by the paper of Fornæss and Peters [8], in which they prove that, in the case
of a non-exceptional polynomial, one can recover its topological and measure-theoretical
entropy from the real parts of finitely many elements in every orbit. This result was
generalized further to all polynomials by the first named author [3]. In the present paper
we deal with complex rational maps defined on the Riemann sphere Ĉ. Since there is no
natural value that could be assigned to the real part of∞, we instead use the Fubini–Study
distance between the origin and a given element of the orbit. Our goal is to determine for
which complex rational maps the two above mentioned entropies are preserved after such
reduction.

Let us recall the definition of the Fubini–Study distance on the Riemann sphere. For
z, w ∈ CP1 the normalized form of the distance is given by

dF S(z, w)=
2
π

arccos
|〈z, w〉|
‖z‖ · ‖w‖

.
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In this set-up 0 ∈ Ĉ corresponds to the point [0 : 1] and ∞∈ Ĉ corresponds to [1 : 0].
Hence, for z ∈ Ĉ we can write the following expressions:

dF S(0, z)=
2
π

arccos

√
1

1+ |z|2

and dF S(0,∞)= 1. Note that dF S(0, z)= dF S(0, w) if and only if |z| = |w|. Thus,
given ρ ∈ [0, 1) the level sets �r = {z ∈ Ĉ | dF S(0, z)= ρ} agree with circles ∂Dr ⊂ C
of radius r = tan (πρ/2) and centered at the origin. We call such circles the prime circles.
Moreover, note that �0 = {0} and �1 = {∞} for r = 0 and r = 1 respectively.

Let R be a complex rational map of degree d ≥ 2 and let Rn denote its nth iterate. Given
z0 ∈ Ĉ we define zn = Rn(z0) and we call (zn) the orbit of z0. Further, we consider the
sequence of Fubini–Study distances (dF S(0, zn))n≥0. We prove that such a sequence of
real values is completely determined by its first N = N (R)≥ 0 elements.

LEMMA 1. Let R be a rational map of degree d ≥ 2. There exists N ∈ N0 such that if
dF S(0, zn)= dF S(0, wn) for all n ≤ N, then dF S(0, zn)= dF S(0, wn) for every n ∈ N0.
Let N be as in lemma above. We define 8 : Ĉ→ [0, 1]N+1 to be the map given by

8(z0) := (dF S(0, z0), . . . , dF S(0, zN )).

Then the action of R can be pushed down to a compact subset �̂ :=8(Ĉ)⊂ [0, 1]N+1,
i.e. there exists a map Q : �̂→ �̂ such that the following diagram commutes.

Ĉ R //

8

��

Ĉ

8

��
�̂

Q
// �̂

In particular, Q is given by

Q(dF S(0, z0), . . . , dF S(0, zN )) := (dF S(0, z1), . . . , dF S(0, zN+1)).

Even though the map 8 is never an embedding, many properties of the dynamical system
(Ĉ, R) can be observed by analyzing the reduced system (�̂, Q). In this paper we focus
only on the ergodic properties of the dynamical systems.

Let JR denote the Julia set of R. By classical results of Lyubich and Mañé [12, 13]
every rational map R of degree d ≥ 2 admits a unique invariant, ergodic probability
measure µR on Ĉ of maximal entropy log d . Moreover, the equidistribution property for
repelling periodic points of R implies that suppµR = JR .

Let νR :=8∗(µR) be the corresponding measure on the set �̂ and let Dr denote the
disk of radius r centered at the origin. The following is our main result.

THEOREM 2. Let R be a rational map of degree d ≥ 2. If JR is not contained in a prime
circle, then νR is the unique invariant, ergodic measure of maximal entropy log d on �̂.
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We also prove that if JR is contained in some prime circle, then both, the topological
entropy of Q and the measure-theoretical entropy of νR , are equal to zero (see
Proposition 6). Therefore, we call such maps R strongly exceptional.

The paper is organized as follows. In §2 we recall some basic facts concerning ergodic
theory and prove Lemma 1. In §3 we introduce the notion of exceptional maps and study
the semi-analytic set of mirrored points M , i.e. the set of points z ∈ M for which there
exists w 6= z such that 8(z)=8(w). We prove that either M contains a dense open
subset of Ĉ or else dimR M = 1 (see Theorem 8). In §4 we give the proof of Theorem 2.
Moreover, we prove Lemma 12 which may be of independent interest. It states that
whenever µR puts a mass on a one-dimensional semi-analytic set, the Julia set JR is
contained an invariant circle of Ĉ.

Finally note that the techniques used in this paper are quite different from those in [8].
In particular, we deal with proper real analytic maps and sub-analytic sets instead of real
algebraic maps and semi-algebraic sets.

2. Preliminary results
2.1. Entropy. Let (X, ρ) be a compact metric space and F : X→ X a continuous map.
For ε > 0 we define a (n, ε)-ball centered in x ∈ X as

B(x, ε, n)= {y ∈ X | ρ(Fk(x), Fk(y)) < ε, 0≤ k < n}.

Let N (n, ε) denote the maximal number of pairwise disjoint (n, ε)-balls in X and define

Hε = lim sup
n∈N

1
n

log N (n, ε).

The topological entropy of F is defined as

htop(F)= lim
ε→0

Hε.

Further, let λ be a probability measure on X and define

hλ(F, x, ε)= lim inf
n∈N

−
1
n

log λ(B(x, ε, n))

and
hλ(F, x)= sup

ε>0
hλ(F, x, ε).

If λ is an invariant measure then hλ(F, x)≥ hλ(F, F(x)) and if λ is also ergodic this
function is constant λ-almost everywhere. The measure-theoretic entropy hλ(F) is then
defined to be this constant. Note that it is independent of the metric. In fact it is a
topological invariant.

Let X and Y be compact metric spaces and let R : X→ X and Q : Y → Y be continuous
maps which are semi-conjugated. That is, there exist a continuous, surjective map
8 : X→ Y such that the following diagram commutes.

X R //

8

��

X

8

��
Y

Q
// Y
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Moreover, we assume that the fibers of 8 are finite and that their cardinality is uniformly
bounded from above, i.e. there exist CR ∈ N such that:

#8−1(y)≤ CR for all y ∈ Y. (1)

In such a set-up we have the following proposition.

PROPOSITION 3. Let R, Q and 8 be defined as above and let µ be an invariant, ergodic
measure on X. If the condition (1) is satisfied then the following statements hold.
(a) The topological entropies of maps Q and R agree, that is, htop(R)= htop(Q).
(b) The measure ν =8∗(µ) is invariant and ergodic on Y .
(c) Suppose hµ(R)= hν(Q). If µ is the unique measure of maximal entropy on X then

ν is also the unique measure of maximal entropy on Y .

Proof. This proposition is a summary of known results which were also proven in [8] in a
slightly less general form. Therefore we will only sketch the proof.

(a) In general, the semi-conjugacy of R and Q implies only htop(R)≥ htop(Q).
However, in our case the two topological entropies agree due to condition (1), e.g. see
[5, Theorem 4.1.15].

(b) This statement is proved in [8, Lemma 4.2.]. Note that it remains valid even in the
case of unbounded fibers. That is, we do not need condition (1) to prove it.

(c) As before, semi-conjugacy of R and Q implies htop(R)≥ htop(Q). Combining (b)
with the variational principle we obtain

hν(Q)≤ sup
λ

hλ(Q)≤ htop(Q)≤ htop(R)= hµ(R), (2)

where the supremum is taken over all invariant ergodic measures on the set Y , and hence
in every semi-conjugate system we have hµ(R)≥ hν(Q). Suppose that hµ(R)= hν(Q).
Then it follows immediately from (2) that ν is the measure of maximal entropy on Y . To
prove the uniqueness let σ 6= ν be any other invariant ergodic probability measure on Y .
By [8, Lemma 4.9] the measure σ is the push forward of an invariant ergodic probability
measure τ on X . Since σ 6= ν and since µ is unique measure of maximal entropy we have
τ 6= µ and hτ (R) < hµ(R). Since σ is a push forward of τ it follows that hσ (Q)≤ hτ (R),
and hence hσ (Q) < hν(Q), which completes the proof of uniqueness. �

Remark 2.1.1. In what follows, we sometimes consider maps 8 for which (1) is satisfied
everywhere but in a single infinite fiber 8−1(y0). However, note that the claim (c) from
Proposition 3 can still be applied. Indeed, one can check that [8, Lemma 4.9] remains valid
if the fibers 8−1(y) satisfy the condition (1) for ν-almost every y ∈ Y . These details are
left to the reader.

2.2. Proof of Lemma 1. The map z→ dF S(0, z) is real analytic on Ĉ, hence given
n ∈ N0 the map 8n : Ĉ× Ĉ→ R defined as

8n(z, w)= dF S(0, Rn(z))− dF S(0, Rn(w)),

is real analytic as well. Furthermore, we define

Zn = {(z, w) ∈ Ĉ× Ĉ |80 =81 = · · · =8n = 0}.
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Note that Zn ⊃ Zn+1 for all n. By [9, Theorem I.9.] the ring of global real analytic
functions on a compact real analytic manifold is noetherian (see also the last paragraph
in [14]). Hence, there exists N ∈ N0 such that Zn = Zn+1 for all n ≥ N .

3. Mirrored points
In this section we investigate the fibers of 8 and the corresponding data reduction. Let us
begin with the following elementary example.

Example 3.0.1. Let R(z)= zd where d ≥ 2. Then |z| = |w| implies |R(z)| = |R(w)|
therefore N = 0 and Q : [0, 1] → [0, 1] can be computed explicitly

Q(x)=
2
π

arctan
(

tan
(
πx
2

))d

.

Since Q is a homeomorphism of the unit interval we have htop(Q)= 0. In contrast, we
know from [12, 13] that htop(R)= log d.

3.1. Exceptional maps. As seen above, map8 compresses the behavior along the prime
circles. Hence, in order to preserve its entropy, we have to exclude cases in which the
loss of information would be too large. That is, in order to apply Proposition 3, we
have to assure that all fibers 8−1(y), y ∈ �̂ (except at most one) are finite and have their
cardinality uniformly bounded.

The following lemma shows that this is true for all R that omit the special case presented
in the above example. The proof is based on the fact that the only rational maps R : Ĉ→ Ĉ
satisfying R(∂D)⊂ ∂D are the finite Blaschke products

R(z)= eiϕz`
n∏

k=1

z − ak

1− āk z
, (3)

where ak ∈ C∗\∂D, ` ∈ Z and ϕ ∈ R.

LEMMA 4. Let R be a rational map of degree d ≥ 2. If R maps two distinct prime circles
into prime circles, it is of the form R(z)= az±d , a ∈ C∗.

Proof. Assume that R maps prime circles of radii s1 > r1 > 0 into prime circles with radii
s2 > 0 and r2 > 0 respectively. Without loss of generality we can assume that r1 = r2 = 1.
That is, R is of the form

R(z)= eiϕz`
n∏

k=1

z − ak

1− āk z
,

for some ak ∈ C∗\∂D, ` ∈ Z and ϕ ∈ R. Furthermore, the same is true for

1
s2

R(s1 · z)= eiθ z ˜̀
m∏

k=1

z − bk

1− b̄k z
.

However, `= ˜̀ and n = m since the function R was only rescaled. Thus

1
s2

R(s1 · z)= eiθ z`
n∏

k=1

z − bk

1− b̄k z
=

1
s2

eiϕ(s1z)`
n∏

k=1

s1z − ak

1− āks1z
.
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We divide this relation with z` and observe its zeroes. It is evident that after reordering
the products one can assume that ak = bks1. Furthermore, comparing the poles one sees
that s1 = 1. This yields contradiction unless n = 0. �

The lemma and the example above indicate that the case R(z)= az±d is very special
and has to be treated separately. Moreover, in the spirit of the Remark 2.1.1, we pay a
special attention to the following maps as well.

Definition 3.1.1. A rational map R is exceptional if R(Dr )⊂ Dr for some r > 0, i.e.
R(r z)/r is a finite Blaschke product.
The following proposition establishes the bound (1) from §2.1. As pointed out above
this bound is violated in precisely one infinite fiber when R(z) 6= az±d is exceptional.
We introduce some additional terminology. We say that z ∈ Ĉ is mirrored by w ∈ Ĉ if
8(z)=8(w) and w 6= z, that is, they belong to the same fiber. The set of all such w 6= z
is called the mirrors of z. Finally, z is mirrored if it has at least one mirror.

PROPOSITION 5. Let R be a rational map of degree d ≥ 2. The following hold.
(a) If R is non-exceptional, then #8−1(y)≤ 2d2 for every y ∈ �̂.
(b) If R is exceptional and R(z) 6= az±d , there exists a unique y0 ∈ �̂ such that the fiber

8−1(y0) is infinite and that #8−1(y)≤ 2d for every y ∈ �̂ \ {y0}.

Proof. First note that the following statement holds: if r1 > 0 and r2 > 0 are distinct and
such that R(∂Dr1) 6⊂ ∂Dr2 , then the number of points in ∂Dr1 that are mapped into ∂Dr2

is at most 2d . Indeed, let R be the rational map obtained from R by conjugating its
coefficients. Since R(∂Dr1) 6⊂ ∂Dr2 the map

z→ R(z)R(r2
1/z)− r2

2

does not vanish identically on ∂Dr1 . Hence, we may extend it as a 2d-degree rational map
that admits at most 2d distinct zeroes on Ĉ.

Let R be non-exceptional. Note that z = 0 and z =∞ cannot be mirrored. Hence
z ∈ R−1({0,∞}) admits at most d − 1 mirrors and z ∈ R−2({0,∞}) admits at most d2

− 1
mirrors. Next, assume that {z, R(z), R2(z)} ∩ {0,∞} = ∅ and suppose that r0, r1, r2 > 0
are the radii of prime circles through z, R(z) and R2(z) respectively. If R(∂Dr0) 6⊂ ∂Dr1

then there are at most 2d points in ∂Dr0 mapped to ∂Dr1 . Thus, z can be mirrored by at
most 2d − 1 points. In contrast, if R(∂Dr0)⊂ ∂Dr1 we know that ∂Dr0 6= ∂Dr1 since there
is no R-invariant prime circle. Moreover, R(∂Dr1) 6⊂ ∂Dr2 since two prime circles cannot
be carried into prime circles. Hence at most 2d points in ∂Dr1 are mapped into ∂Dr2 . Each
of them has at most d preimages in ∂Dr0 , so there are at most 2d2

− 1 points that mirror z.
Let ∂Dr0 be the unique invariant prime circle of an exceptional map R. Suppose that

z ∈ C∗\∂Dr0 and let ∂Dr1 and ∂Dr2 be the prime circles through z and R(z) respectively.
Clearly ∂Dr0 6= ∂Dr1 and since R(z) 6= az±d we also have R(∂Dr1) 6⊂ ∂Dr2 . Hence, there
are at most 2d points in ∂Dr1 that are mapped to the circle ∂Dr2 . �

In the example above we show that if R(z)= az±d , one has htop(Q)= 0. This is due to
the fact that the Julia set of such R is contained in a prime circle that is compressed by 8.
Our next aim is to prove that this is true for any map R that satisfies JR ⊆ ∂Dr for some
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r > 0. Since JR is R-invariant and uncountable, it follows by Proposition 5 that in this
case we have R(∂Dr )⊆ ∂Dr . Therefore all such maps are exceptional.

Definition 3.1.2. A rational map R is strongly exceptional if JR ⊆ ∂Dr for some r > 0.
Note that such maps were classified in [7]. We use this classification in order to prove the
following proposition.

PROPOSITION 6. If R is a strongly exceptional rational map, we have htop(Q)= 0.

Proof. Our proof is based on the result from [6]. Given a continuous endomorphism
F defined on a compact metric space (X, d) and satisfying htop(F) > 0 there exists an
uncountable set E ⊂ X such that for any x, y ∈ E we have

lim inf
n→∞

1
n

n∑
k=1

d(Fk(x), Fk(y))= 0 and lim sup
n→∞

1
n

n∑
k=1

d(Fk(x), Fk(y)) > 0.

Let us try to find such set E for our map F = Q and the space X = �̂ equipped with the
usual Euclidean metric.

According to [7, Theorem 2] we have to consider two cases. First, a strongly exceptional
map R can be represented as a finite Blaschke product with all the zeros belonging to either
D or Ĉ \ D. In this case, JR is equal to ∂D or to a Cantor subset of ∂D. However, in
both cases for z ∈ Ĉ \ ∂D the iterates Rn(z) approach one of at most two points given by
Denjoy–Wolff Theorem.

In contrast, all other strongly exceptional maps R satisfy the following two conditions:
R admits a fixed point w0 ∈ ∂D whose multiplier belongs to [−1, 1]; the Julia set JR is
contained in a closed arc I ⊂ ∂D whose interior does not contain w0. However, for all
such maps we have Rn(z)→ w0 where z ∈ Ĉ \ ∂D.

The above consideration implies that the condition

lim inf
n→∞

1
n

n∑
k=1

dF S(Rk(z), Rk(w)) 6= lim sup
n→∞

1
n

n∑
k=1

dF S(Rk(z), Rk(w))

can be fulfilled only if at least one of the points z and w is contained in JR . However, the
map 8 compresses JR into a single point. Hence the condition

lim inf
n→∞

1
n

n∑
k=1

‖Qk(x)− Qk(y)‖ 6= lim sup
n→∞

1
n

n∑
k=1

‖Qk(x)− Qk(y)‖

is satisfied for at most two points x, y ∈ �̂. That is, #E ≤ 2 and htop(Q)= 0. �

3.2. Mirrored set. As seen above, the mirrored points play important role in the analysis
of our reduced dynamical system. Therefore we define the following set

M := {z ∈ Ĉ | ∃w 6= z :8(w)=8(z)}.

We call it the mirrored set. Let us prove that it is never empty.

LEMMA 7. Let R be a rational map of degree d ≥ 2. Given its critical point c ∈ Ĉ there
exist distinct points z, w ∈ Ĉ arbitrarily close to c and such that 8(z)=8(w).
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Proof. It suffices to find z and w near c such that z 6= w, |z| = |w| and R(z)= R(w).
Suppose c /∈ {0,∞}. There exist k ≥ 2 and a small neighborhood Uc of c such that the map
R|Uc acts as a small perturbation of v + ak(z − c)k , ak 6= 0. Fixing ε > 0 small enough
we may assume that the curve

Kε = {R−1(v + εeiϕ), ϕ ∈ [0, 2π)} ∩Uc

is a small perturbation of a circle centered in c and of radius k
√
ε. Hence, given θ ∈ [0, 2π)

and wθ = v + εeiθ there are k distinct points z1, z2, . . . , zk ∈ Kε ordered in the counter
clockwise direction and such that R(z j )= wθ . We denote by J j the open arcs connecting
two consecutive points z j and z j+1 or zk and z1 respectively. Note that the closure of every
such arc is mapped into a full circle around v.

For ε > 0 small enough the set Kε intersects the circle |z| = c in precisely two points,
one in the upper-half plane and one in the lower-half plane. Without loss of generality
we may assume that these two points are contained in two distinct J j1 and J j2 (if not we
perturb θ ). Furthermore, we may assume that |z j1 |< |z j1+1| and |z j2 |> |z j2+1|. Since
each of these sets is mapped into a full circle around v, continuity implies that there exist
ζ j1 ∈ J j1 and ζ j2 ∈ J j2 such that |ζ j1 | = |ζ j2 | and R(ζ j1)= R(ζ j2)= v + εeiϕ for some
ϕ ∈ [0, 2π). This concludes the proof for c /∈ {0,∞}.

If c ∈ {0,∞}, we construct the arcs J j in an analogous way. Furthermore, we may
assume that |z1| ≤ |z j |. Hence, by the similar argument as above there exist ζ1 ∈ J1 and
ζk ∈ Jk such that |ζ1| = |ζk | and R(ζ j )= R(ζk). �

Remark 3.2.1. Note that the points ζ j depend continuously on ε > 0. Hence M always
contains a piecewise continuous curve that approaches c when ε→ 0. However, the point
c needs not to be in M .

We proceed by giving two explicit examples of the set M .

Example 3.2.2. Let R(z)= (z − 1)2 + 1. Since R has real coefficients, it follows that
|R(z)| = |R(z̄)| and hence 8(z)=8(z̄). Therefore C\R⊆ M (the points 0 and ∞ are
never mirrored). Moreover, let z ∈ R. Given n ∈ N0 we can define a polynomial in three
real variables x , y and z:

φn(x, y, z) := |Rn(x + iy)|2 − |Rn(z)|2.

A point x + iy is mirrored by z if and only if φn(x, y, z)= 0 for all n ∈ N. In order to
find solutions of this system, we can try to determine the basis for the ideal generated
by polynomials φn . In fact one can compute that the Gröbner basis consists of three
polynomials −y2z2(1− z), y2(4+ 4y2

− 8z + z2) and 3x + y2(3− z2)− 3z. Observe
that the intersection of the zero sets of these three polynomials in R3 is equal to {(ζ, 0, ζ ) |
ζ ∈ R} ∪ {( 1

2 ,−
√

3
2 , 1), ( 1

2 ,
√

3
2 , 1)}, which implies that 1 is the only mirrored point on the

real axis. Thus M = {1} ∪ C\R. Finally, let us emphasize that in this case M contains a
dense open subset of Ĉ, which is also true for every rational map with real coefficients.

Example 3.2.3. Let us conjugate P(z)= i z2 by a fractional transform ϕ(z)=
2(z − 1)/z + 2:

R(z)= ϕ−1
◦ P ◦ ϕ(z).
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FIGURE 1. The orange curves represent the image of the blue vertical lines under the map z→ 2
3 i(z − 1)2 + 1.

Note that ϕ(∂D(− 1
2 ,

3
2 ))= iR and that for every z ∈ ∂D(− 1

2 ,
3
2 ) we have φ(z)= φ(z).

This implies that 8(z)=8(z̄) for all z ∈ ∂D(− 1
2 ,

3
2 ) \ {−2, 1}. We claim that this is

precisely the mirrored set M .
Note that the points from D(2, 2) and Ĉ\D(2, 2) are attracted to fixed points of different

modulus, namely 1 and −2. Moreover, a point z ∈ JR = ∂D(2, 2) with |z| = 1 or |z| = 2
is not periodic. Therefore, there can be no mirroring between these three sets and we can
discuss them separately. Given z ∈ ∂D(2, 2) the situation is clear. Such a point can only be
mirrored by z̄. However, this happens only for ϕ−1(±i) ∈ D(− 1

2 ,
3
2 ). If z ∈ D(2, 2) \ {1}

the iterates Rn(z)move towards 1. However, close to this point the prime circles are almost
identical to parallel lines and R is almost z→ 2

3 i(z − 1)2 + 1.
In such an approximative setting, a vertical line intersects the image of some other line in
a unique point. The only exception is the line z = 1+ iy, y ∈ R, which is mapped into
a ray below the point 1. Therefore this has to be the line approximating ∂D(− 1

2 ,
3
2 )\{1}

and there can be no other mirrored points near 1. Next, observe that if z, w ∈ D(2, 2), we
have R(z)= R(w) only when w = z or w = z. Moreover, R(z) and R(z) either belong to
different components of D(2, 2)\∂D(− 1

2 ,
3
2 ) or else they are both contained in ∂D(− 1

2 ,
3
2 ).

This implies that given z ∈ M ∩ D(2, 2) there is n ∈ N such that Rn(z) ∈ ∂D(− 1
2 ,

3
2 ). Thus

Rn−1(z) is contained in ∂D(− 1
2 ,

3
2 ) or in [0, 4]. However, the interval [0, 4] contains

no mirrored points. Therefore, ∂D(− 1
2 ,

3
2 ) ∩ (D(2, 2) \ {1}) equals to M ∩ D(2, 2). We

treat the set Ĉ\D(2, 2) in an analogous way.

According to the examples above, the set M can be of two types: either it contains a
dense and open subset of Ĉ or its dimension is equal to dimR M = 1. We prove in the
following that these are the only two cases that can occur. In order to do this, we present
M in the spirit of sub-analytic sets.

The class of sub-analytic sets is generated by images of proper real analytic maps into
real analytic manifolds, with respect to operations like finite union, finite intersection and
difference. Hironaka [10] proved that every such set X admits a locally finite stratification
in which the strata are locally closed, connected real-analytic sub-manifolds in the ambient
manifold. This enables us to define the topological dimension dimRX which does not
depend on the choice of stratification. Furthermore, the points in X are of two types:
regular if in their vicinity X is an analytic sub-manifold of dimension dimRX , and singular
otherwise. Moreover, it is known that the set of singular points is sub-analytic and that
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dimRSing(X)≤ dimRX − 1. However, if dimR Sing(X)≤ 1, the set of singular points is
semi-analytic as well. The reader is referred to [2, 11, 15] for more details.

In our case X = �̂ is the image of the proper real analytic map 8 : Ĉ→ [0, 1]N+1.
Hence �̂ is a compact sub-analytic and dimR Sing(�̂)≤ 1. Therefore, the set Sing(�̂) is
compact and semi-analytic. Let us define the set

S :=8−1(Sing(�̂)).

Recall that a map R(z) 6= az±d admits at most one infinite 8-fiber, that is, an invariant
prime circle. Therefore, since 8 is proper and real analytic, the set S is compact, semi-
analytic and of real dimension at most one. Moreover, if R(z)= az±d , we have S =
{0,∞} and M = Ĉ\S. Finally, note that M ⊆ S when a generic point is not mirrored. In
contrast, Ĉ \ S ⊂ M if the map 8 is a multiple cover over the set Reg(�̂). This gives the
following theorem.

THEOREM 8. Let R be a rational map of degree d ≥ 2. Then its mirrored set M is non-
empty and semi-analytic. Moreover, it either contains a dense and open subset of the
Riemann sphere Ĉ or else dimR M = 1.

Proof. Let us denote by 0 the diagonal in the set Ĉ× Ĉ and by 3 the set

3= {(z, w) ∈ Ĉ× Ĉ |8(w)=8(z)}.

Then M = π1(3\0), where π1 denotes the projection to the first component. Since the
sets 3 and 0 are real-analytic, the set 3\0 is semi-analytic. Moreover since π1 is proper,
it follows that π1(3\0) is sub-analytic. By Remark 3.2.1 we have dimR M ≥ 1.

Since 8 is a covering map over the set of regular points Reg(�̂), one of the following
two cases have to occur:
(i) 8−1(Reg(�̂))⊆ M ;
(ii) M ⊆ π1(3\0)= S.
In particular, case (i) corresponds to deg8≥ 2 and case (ii) corresponds to deg8= 1.
Since 8−1(Reg(�̂))⊆ Ĉ is open and dense and since M is sub-analytic it follows that
Ĉ\M is semi-analytic of dimension at most 1. But this implies that M is semi-analytic as
well. We have seen above that S is a compact semi-analytic set of dimension at most one,
therefore, in the case (ii), we have dimR M = 1 and hence M is semi-analytic. �

Note that the single infinite fiber of an exceptional map will always be in S. Moreover, let
us denote by X the set of points c ∈ Ĉ for which there exists a sequence of mirrored pairs
(zn, wn), i.e. zn 6= wn and 8(zn)=8(wn), that converges to (c, c). Clearly the map 8
cannot be injective in any neighborhood of such a point, and hence X ⊂ S. Furthermore,
by Remark 3.2.1 the critical points of R are contained in X and therefore in S. However, as
pointed out, a point from X needs not to be mirrored. Hence, in general, we have M 6= S
in the case (i) and M 6= Ĉ\S in the case (ii). We end this discussion with the following
corollary that will be used in the proof of Theorem 2. It follows directly from the properties
of S and the fact that 8 is a covering map over the set of regular points.

COROLLARY 9. Let U ⊂ Ĉ be an open neighborhood of S. There exists ε > 0 such that
for every z ∈ Ĉ\U the set

B ′(z, ε) := {w ∈ Ĉ | ‖8(w)−8(z)‖< ε}
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consists of connected components, where each component is contained in small disk
centered at one of the mirror points of z. Moreover these disks are pairwise disjoint and
R is one-to-one on each of them.

Finally, let us prove that, unless JR = Ĉ, the mirrored set M of a generic rational map
R satisfies the property dimR M = 1.

PROPOSITION 10. Let R be a non-exceptional rational map of degree d ≥ 2 admitting an
attracting periodic point z0 ∈ C∗ with a non-real multiplier. Assume that z0 is not mirrored
by any other non-repelling periodic point or a point belonging to the set R−1(z0). Then
dimR M = 1.

Proof. By Theorem 8 we know that dimR M 6= 1 if and only if M is open and dense.
Hence, let us prove that near z0 the set M has empty interior. First note that if z and w are
mirrored for R, then they are mirrored for Rn as well. Hence, without loss of generality
we may assume that z0 is a fixed point of R with a non-real multiplier. By Sullivan’s non-
wandering component theorem every Fatou component of R is pre-periodic. But since z0

is not mirrored by any other non-repelling periodic point, it follows from the classification
of periodic Fatou components that points near z0 can only be mirrored by the points whose
orbit converges to z0 or by the points from JR .

Let us fix ε > 0 small enough so that the following conditions are fulfilled:
(i) R is one-to-one D(z0, ε);
(ii) R(D(z0, ε))⊂ D(z0, ε);
(iii) the prime circles passing through the z0-component of R−1(D(z0, ε)) do not meet

any other components of this set.
The conditions (ii) and (iii) imply that all the mirrors of z ∈ D(z0, ε) belong to the
union D(z0, ε) ∪ JR . Next, observe that for ε > 0 small enough, similarly as in the
Example 3.2.3, the prime circles through D(z0, ε) look like parallel lines mapped with
z→ z0 + λ(z − z0). Hence, since λ /∈ R, two points from D(z0, ε) can never mirror each
other. Therefore, we conclude that the points in D(z0, ε) can only be mirrored by the points
in JR . However, z0 belongs to the Fatou set. Therefore JR 6= Ĉ has a non-empty interior.
This, together with the bound #8−1(y)≤ 2d2, y ∈ �̂, from Proposition 5, concludes
the proof. �

Let us explain the meaning of the above statement. A generic rational map is non-
exceptional. Moreover, the number of the non-repelling periodic points together with their
8-fibers is finite. Hence, given an attracting point z0 the above conditions can be obtained
by a small perturbation of R. Thus, it is reasonable to believe that, as in [8, Theorem 3.8.],
the maps with dimR M > 1 can be classified. Therefore we end this section with an open
question that we were unable to answer so far. Suppose that M contains an open and dense
subset of Ĉ. Does this imply that R is rotationally conjugate to a rational function with
real coefficients?

4. Proof of Theorem 2
Let us first recall the statement of Theorem 2 written in the terminology of §3.1.
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THEOREM 11. Let R be a complex map of degree d ≥ 2 and let µR be its unique measure
of maximal entropy on Ĉ. If R is not strongly exceptional, then νR =8∗(µR) is the unique
invariant, ergodic measure of maximal entropy log d on �̂.

Proof. As explained in §2.1, we only have to prove that hνR (Q)≥ hµR (R)= log d . The
rest follows from Proposition 3 and Remark 2.1.1.

Case 1: Suppose that µR(S)= 0. Then given a large integer k > 1, there exists δ > 0 such
that the δ-neighborhood Nδ(S) of S in Ĉ satisfies the property µR(Nδ(S)) < 1/k. Hence,
if z0 ∈ JR is a generic point in the sense of [4], we have

lim
n→∞

#{0≤ j < n | R j (z) ∈ Nδ(S)}
n

<
1
k
.

Moreover, we may assume that z0 /∈ Nδ(S) and that the orbit of z0 never hits S.
Let x0 =8(z0). Recall that

B(x0, ε, n)= {y ∈ �̂ | ‖Qk(x0)− Qk(y)‖< ε, 0≤ k < n}.

Given ` < n we define

B ′(n, `, ε) :=
n−`−1⋂

r=0

{w ∈ Ĉ | ‖8(Rr (w)), 8(Rr+`(z0))‖< ε}.

Since B ′(n, 0, ε)=8−1(B(x0, ε, n)) this implies that

νR(B(x0, ε, n))= µR(B ′(n, 0, ε)).

Next, observe that R(B ′(n, `− 1, ε))⊂ B ′(n, `, ε). Since µR is invariant this gives

µR(B ′(n, `− 1, ε))≤ µR(B ′(n, `, ε)).

We claim that, given ε > 0 small enough, we have

µR(B ′(n, 0, ε))≤ (2d2)n/k
(

1
d

)n−(n/k)

.

By Corollary 9 the set B ′(n, 0, ε) can be represented as a finite union of connected and
pairwise disjoint components Aj . Moreover, the maps8|Aj and R|Aj can be assumed to be
one-to-one on Aj . Furthermore, a similar decomposition exists for any B ′(n, `, ε) where
R`(z0) /∈ Nδ(S). Hence, let m0 < n be the first integer for which Rm0(z0) ∈ Nδ(S). The
map Rm0 in one-to-one on each Aj . Thus by the equidistribution property of µR we have
R∗µR = d · µR and hence

µR(Aj )=
µR(Rm0(Aj ))

dm0
≤
µR(B ′(n, m0, ε))

dm0
.

Of course it is possible that several Aj are mapped into the same component of
B ′(n, m0, ε). However, the number of these pieces is bounded by 2d2. Thus we have

µR(B ′(n, 0, ε))≤ 2d2µR(B ′(n, m0, ε))

dm0
.
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Since Rm0(z0) ∈ Nδ(S) we only have µR(B ′(n, m0, ε))≤ µR(B ′(n, m0 + 1, ε)) at the
next step. Thus, by a similar argument as above we have

µR(B ′(n, m0 + 1, ε))≤ 2d2µR(B ′(n, m1, ε))

dm1−m0−1 ,

where m0 < m1 < n is the next iterate for which Rm1(z0) ∈ Nδ(S). Further, we have

µR(B ′(n, 0, ε))≤ (2d2)2
µR(B ′(n, m1 + 1, ε))

dm1−1 .

However, note that we have chosen z0 in such a way that R`(z0) ∈ Nδ(S) happens in at
most n/k cases if n ∈ N is sufficiently large. This means that

µR(B ′(n, 0, ε))≤ (2d2)n/k µR(B ′(n, n − 1, ε))
dn−(n/k) ≤ (2d2)n/k

(
1
d

)n−(n/k)

.

Thus for large n ∈ N and small ε > 0 we have(
1−

1
k

)
log d −

1
k

log 2d2
≤−

1
n

log νR(B(x, ε, n)).

Hence (
1−

1
k

)
log d −

1
k

log 2d2
≤ hνR (Q).

Since this holds for every k > 0 it follows that log d ≤ hνR (Q).

Case 2: Suppose now that µR(S) > 0. We first prove a general lemma which implies that
such a situation is very special.

LEMMA 12. Let X ⊂ Ĉ be a semi-analytic set such that dimR X = 1 and µR(X) > 0.
Then JR is contained in a circle of Ĉ.

Proof. Since dimR X = 1 the set Sing(X) is a discrete set of points. HenceµR(Reg(X)) >
0. Therefore there exist a one-dimensional irreducible semi-analytic set L in X (i.e. a semi-
analytic curve) for which µR(L) > 0. Recall that if A and B are two semi-analytic curves
in Ĉ and A ∩ B 6= ∅, then either A ∩ B is a discrete set of points or else A ∪ B is a semi-
analytic curve. Let L̃ be the largest possible semi-analytic curve containing L . Clearly
µR(L̃) > 0. Since R : Ĉ→ Ĉ is proper holomorphic map of finite degree, it follows that
for every j ≥ 0 the preimage R− j (L̃) is a semi-analytic set of dimension one and that
the set R j (L̃) is semi-analytic curve (since every sub-analytic set of dimension one is a
semi-analytic). Thus we have to consider two cases.
(1) For all j ≥ 1 the set R− j (L̃) ∩ L̃ is a discrete set of points.
(2) There exists j ≥ 1 for which R− j (L̃) ∩ L̃ is a semi-analytic curve.

We first prove that in our setting the case (1) cannot happen. Assume the contrary.
Then µR(R− j (L̃) ∩ L̃)= 0 for all j ≥ 1. Hence µR(R− j (L̃) ∩ R−k(L̃))= 0 for all j 6=
k. Given any n ∈ N this implies that

1≥ µR

( n⋃
j=0

R− j (L̃)
)
=

n∑
j=0

µR(R− j (L̃))= (n + 1)µR(L̃)
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where the last equality follows from the fact that µR is an invariant measure. However,
this is impossible unless µR(L̃)= 0.

Suppose now that the case (2) is valid. This means that there exists j ≥ 1 for
which the set L0 := R− j (L̃) ∩ L̃ is a semi-analytic curve. Moreover, R j (L0) is a semi-
analytic curve contained in L̃ and since R j (L0)⊂ R j (L̃) the maximality of L̃ implies
that R j (L̃)⊂ L̃ . Thus L̃ ⊂ R− j (L̃). However, the measure µR is invariant. Thus
µR(R− j (L̃))= µR(L̃) and µR(R− j (L̃)\L̃)= µR(L̃\R− j (L̃))= 0. Since µR is ergodic
this implies that µR(L̃)= 1.

Finally, it follows from the above considerations that JR ∩ Reg(L̃) 6= ∅. Since a semi-
analytic set is also locally finite, there exists an open set U for which JR ∩U ⊂ Reg(L̃) ∩
U . Thus a relatively open subset of JR is contained in a smooth curve. By [1, Theorem 2]
this implies that JR lies in a circle of Ĉ. �

Let us proceed now with the case (2). Since S meets the assumptions of the above lemma,
the Julia set of R is contained in an invariant circle C withµR(C)= 1. Moreover, we know
that the circle C is not prime since otherwise R would be strongly exceptional. Therefore,
the action of 8 on the set C is very clear. Indeed, within C every point admits at most
one mirror. Equivalently, outside a zero-dimensional semi-analytic set Sing(8|C (C)) the
restriction8|C acts as a two-to-one or a one-to-one cover. Thus, restricting ourselves to C
instead of Ĉ the set of points that needs to be avoided when computing the entropy is

S̃ :=8|−1
C (Sing 8|C (C))⊂ C.

But note that µR(S̃)= 0. Therefore, we can repeat the above proof word by word using a
generic point z0 ∈ JR , whose forward orbit avoids S̃, and the one-dimensional open sets

B ′C (n, `, ε) :=
n−`−1⋂

r=0

{w ∈ C | ‖8(Rr (w)), 8(Rr+`(z0))‖< ε}.

In particular, we obtain νR(Q)= νR(QC )≥ log d , where QC denotes the restriction of the
map Q to the set 8(C). �
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