
Robotica (2018) volume 36, pp. 1167–1187. © Cambridge University Press 2018
doi:10.1017/S0263574718000309

Human to humanoid motion conversion for dual-arm
manipulation tasks
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SUMMARY
A conversion process for the imitation of human dual-arm motion by a humanoid robot is presented.
The conversion process consists of an imitation algorithm and an algorithm for generating human-
like motion of the humanoid. The desired motions in Cartesian and joint spaces, obtained from the
imitation algorithm, are used to generate the human-like motion of the humanoid. The proposed
conversion process improves existing techniques and is developed with the aim to enable imitating
of human motion with a humanoid robot, to perform a task with and/or without contact between
hands and equipment. A comparative analysis shows that our algorithm, which takes into account
the situation of marker frames and the position of joint frames, ensures more precise imitation
than previously proposed methods. The results of our conversion algorithm are tested on the robot
ROMEO through a complex “open/close drawer” task.

KEYWORDS: Motion capture system, Dual arm manipulation, Imitation algorithms, Humanoid
robot, Motion planning.

1. Introduction
The imitation process is an interesting and fast method for teaching robots new motion skills. The
motion learning process is based on the repetition of observed motions. Once a human observes a
task being carried out for the first time, they are usually capable of immediately performing the same
action. In robotics, this process is more complex and can be interpreted in different ways, such as:
the imitation learning process and the motion imitation process.1 The imitation learning process is
aimed at understanding the characteristics of human motions, based on data collected from multiple
observations of the demonstrated action. On the other hand, the motion imitation process is based on
the imitation of human movements without any analysis of the characteristics of the human motion. In
this paper, we consider the latter approach and propose an algorithm based on how the robot imitates
human motion by utilizing recorded data obtained from a marker-based motion capture system.

Today, there are numerous techniques for recording and analyzing human motions. Human
motions can be tracked by a number of different motion capture systems, such as inertial, optical,
magnetic, acoustic or mechanical. The type of motion capture system used depends on the volume
of measurements taken, the required resolution, the characteristics of the motion recorded and the
environment in which the motion is performed. Acoustic,2 inertial3 and magnetic4 motion capture
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systems are able to record outdoor and indoor human motions. The most commonly used techniques for
recording human movement are marker-based and marker-less motion capture systems. Comparative
analyses of different motion capture systems are given in refs. [5-7]. In order to record a three
dimensional (3D) model of human motion, including the position and orientation of the required
segments and joints, in this research we used an ART marker-based motion capture system.

The imitation process can be defined in Cartesian space and/or joint space.8 In Cartesian space,
the motions of the hands, head or feet are recorded and a geometric inverse model of the humanoid
can be used to achieve the task. In joint space, the objective is to enable the robot to replicate joint
motions of the human, following the human configuration. This last objective is conventionally used
for the imitation process and allows for human-like behavior, especially in the presence of a redundant
robot. If a human (or a robot) has to achieve the same task in Cartesian space as another human of
different body size, they have to modify the motion of the joints while keeping the end-effector
(hands, feet or head) in the same Cartesian position. Since the human (or robot) is a kinematic
redundant structure, the same end-effector trajectories are feasible for different joint trajectories. The
main idea of the research was to achieve these joint trajectories so they fit the motion of human joints
as much as possible while keeping the required end-effector motion in Cartesian space. Therefore,
joint trajectory tracking was the object of optimization, while end-effector trajectory tracking was an
imposed constraint in the optimization process. It should be noted that depending on the task being
analyzed, various components in Cartesian space can be taken into account (position, or position and
orientation of the hands). In the case of a task that involves contact between hands and equipment, the
position and orientation of the hand should be included as a constraint in the optimization process,
whereas in a task without contact between hands and equipment, following of the position of the
hands is required. In short, to imitate a dual-arm human motion, where the robot interacts with the
environment using its hands and exhibits human-like motion behavior, the imitation process needs to
include mimicking of human motion in the joint and Cartesian spaces.

The human motion imitation problem can be solved at the kinematic or the dynamic level. In Ott
et al.,9 the robot imitated human motions by using dynamic equations. Based on measurements of
marker positions, they define a Cartesian control approach to real-time imitation of a human’s upper
body. Virtual springs connected the measured marker positions and corresponding points on the
humanoid robot. Since additional difficulties arise in the process of motion imitation by a humanoid
robot, such as joint velocity and torque limits, Suleiman et al.10 also use dynamic equations to
formulate a recursive optimization algorithm for imitating human motion. It permits the imitation
of upper-body human motion by using the physical capabilities (joint, velocities and torques) of a
humanoid robot. Huang et al.11 present an algorithm that provides humanoid motion, which is very
similar to human motion and satisfies kinematic constraints and dynamic stability. Jamisola et al.12

show modular task-space dynamic formulations for a dual arm controlled as a single manipulator.
They used existing kinematic and dynamics models of each of the stand-alone manipulators to arrive
at the overall dynamics of the single end-effector dual-arm. The treatment of a dual-arm as a single
end-effector manipulator through the use of the relative Jacobian affords a drastic increase in the
null-space dimension and lesser constraints in the task space. This approach was tested for dual-arm
manipulation tasks that did and did not require coordination between hands.

The human motion imitation problem is addressed at the kinematic level by Ude et al.13,14 They
propose a method for transforming the recorded 3D position of the markers into high dimensional
trajectories of the humanoid robot joints based on twist representation. The human body was modeled
as a scaled model of the humanoid robot. They established relationships between the motion of the
robot’s joints and the motion of the markers by using B-spline wavelets and large-scale optimization
techniques. The method was applied offline to a humanoid robot called DB. Ayusawa et al.15,16

propose a gradient-based method for simultaneous identification of the geometric parameters of a
human skeletal model and calculation of inverse kinematics by using information about the recorded
positions of markers. In order to define the geometric parameters, as segment lengths, and the positions
of the markers relative to the robot segments, they introduced virtual translation of joints. In the present
research, the problem of human motion imitation was studied at the kinematic level.

According to the state-of-the-art of the imitation process, we additionally explored the
following:
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Fig. 1. Models in the human to humanoid motion conversation process and related parameters.

• Imitation of the upper-body human motion by the humanoid, where the motion consists of phases
without and/or with hand contact with the environment and a transition strategy between these two
types of motion.

• An analytical imitation algorithm based on the Jacobian matrix (instead of the standard optimization
algorithm presented in our previous research),17 which is capable of real-time extraction of
Cartesian motions and joint motions that can be used by the humanoid.

In the present research, human to humanoid motion conversion is divided into two parts. In the first
part, we used the information provided by the motion capture system and analytically defined the
imitation algorithm to acquire the desired motion of the humanoid in the task and joint spaces. The
algorithm is based on the markers positioned on a scaled model of the humanoid (virtual markers),
which follow the motion of markers (real markers) placed on the human. The intermediate use of a
scaled model of the humanoid presented by Ude et al.14 permits the size of the robot to be adapted to
the size of the human that has accomplished the task and thus to record the coherent joint and Cartesian
motions. Since the task of the imitation algorithm proposed in the present paper is to generate a motion
where the hands and the environment are in contact, precise imitation of the hand motions is important.
This imitation algorithm incorporated not only marker motion, but also joint motion measurement, in
order to increase the robot’s imitation accuracy. Instead of twists in our kinematic model, the modified
Denavit and Hartenberg convention was used to simplify modeling.18 The imitation algorithm is based
on the kinematic structure of the humanoid and can be used in real time.

In the second part of the conversion, the motion imitation of the scaled robot model was used to
generate a human-like motion on the robot ROMEO in its real size (1.40 m tall) and in the same
environments. The strategy differed depending on whether a contact with the environment did or did
not exist during the studied phase of motion. When there was a contact with the environment, the
hand motions were defined to achieve the contact and the robot hand motions had to be the same as
those of the human. During the phase without contact, priority was given to motion that appeared
visually close to human motion and was based on similar joint motions of the humanoid robot with
respect to the human. Hand motions can be modified since they are not constrained by equipment.
As such, if contact motion is observed, hand motion in Cartesian space is perceived as a constraint,
while joint positions in joint space are the object of the optimization process. Contrarily, if contact
free motion is observed, the optimization process focuses on both hand motion in Cartesian space and
joint positions in joint space, and different priorities can be set. The approach exploited in this research
is elaborated in Section 4. Conversion from human to humanoid motion is analyzed for a complex
task that consists of both types of motion. A transition strategy for motion with and without contact
is introduced. Since the task is motion imitation with contact between hands and equipment, the
technique proposed by Ude is unable to generate these types of motions for the robot. The advantage
of the proposed conversion algorithm over existing algorithms is precise imitation of the position
and orientation of human hand motions, which is necessary to perform the task. The results of the
conversion algorithm were tested on the ROMEO robot in the same environment as that of the human.

The following paragraphs present kinematic parameters and their correlations for each model
instance in the conversation process (human and graphical/digital representation – avatar, scaled model
of the humanoid and ROMEO). An overview of the entire human to humanoid motion conversion
process is provided in Section 2. Each step of the conversion process is explained in detail.

The conversion process for human to humanoid motion imitation is directly related to the
transformation process from kinematic human parameters to those of the humanoid. To that end, three
kinematic models were used: kinematic model of the human graphical/digital representation (avatar),
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scaled kinematic model of the ROMEO robot and kinematic model of the real-size ROMEO robot
(see Fig. 1). These models were represented by their parameters in Cartesian space and joint space,
as indicated in Fig. 1. The conversion process started with the kinematic model of the human body,
which was automatically generated by the motion capture system. This digital/graphical representation
of the human body was denoted as the avatar model. The avatar model contained 20 spherical joints
(60 degrees of freedom (DoFs) in total), to define its kinematic model. The avatar segment sizes which
corresponded to those of the human were estimated by the motion capture system. To enable human
motion imitation by a humanoid robot, ROMEO was selected because it is a humanoid with 37 DoFs,
but its segment sizes differ from those of a human. In order to make a connection between the avatar
and the humanoid kinematic model, an intermediate model, called a scaled model of the humanoid,
was defined. The scaled model of the humanoid had the same kinematic structure as ROMEO (37
DoFs) and the same segment sizes as those in the avatar model.

The conversion from the avatar to the model of the humanoid in Cartesian and joint spaces was
described by equations to facilitate understanding of the scaling process. Considering the avatar model,
Eq. (1) relates generalized joint coordinates (qh) and hand position and orientation in Cartesian space:

Ẋh = Jhq̇h. (1)

For dual-arm manipulation, Xh represents the position and orientation of both human hands, and Jh

is the Jacobian matrix of the avatar model. The dimension of vector qh contains 60 elements that
correspond to the avatar’s 60 DoFs. However, to enable conversion from the recorded human motion
to the generated ROMEO robot motion, the scaled kinematic model of ROMEO was used to represent
the human body model. To that end, the scaled robot model had 37 DoFs and segment dimensions equal
to human. The imitation algorithm, based on the scaled model of the humanoid, was defined with the
ultimate goal of generating human-like motion of the humanoid in joint space. The marker trajectories
and the joint positions in Cartesian space obtained for the avatar model were translated to the scaled
model of the humanoid. Consequently, this information was input into the imitation algorithm to
obtain the human motion in joint space qsr . Accordingly, the human hand motions in Cartesian space
generated by the scaled model of ROMEO were calculated from the following equation:

Ẋh = Jsrq̇sr, (2)

where Jsr is the Jacobian matrix of the scaled model of ROMEO. For humanoid robot control, the
joint motion qsr is useful but the motions of the hand, which are in contact with the environment, are
mandatory. Since this information was not directly measured by instrumentation, it was defined via
Eq. (2) based on the joint motion resulting from the imitation process and the Jacobian matrix Jsr .
To arrive at human motion of the humanoid robot ROMEO, joint motion qsr can be played on the
robot. However, the motion of the robot’s hands in Cartesian space, resulting from joint motion qsr ,
was defined by the following equation:

Ẋrobot = Jrobotq̇sr, (3)

where Jrobot is the Jacobian matrix of the ROMEO model and Xrobot is the position and orientation
of ROMEO’s hands in Cartesian space. The scaling factors between models of different segment
sizes were integrated through the Jacobian matrices Jrobot and Jsr . The motion of the robot’s hands
in Cartesian space (Xrobot ) was different from the motion of human hands Xh since the segment sizes
of the human and the robot were not the same. Therefore, the motion of the robot’s hands generated
in this manner can only be used for a motion without contact between hands and equipment. If the
motion involves such a contact, the motion of the robot’s hands has to be the same as that of the human
in Cartesian space

Xrobot = Xh. (4)

Thus, in contact tasks where the motion of the robot’s hands has to be the same as of human hands
in Cartesian space, and where, additionally, human motion needs to be imitated in joint space, the
generalized robot coordinates (qrobot ) can be defined by the inverse kinematic algorithm (5). The
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inverse kinematic algorithm is the object of optimization, as explained in Section 4.

q̇robot = J+
robotẊh + (I − J+

robotJrobot )q̇sr . (5)

Here, J+
robot represents the pseudo-inverse of the matrix Jrobot and I is the identity matrix.

The paper is organized as follows. Section 2 presents the conversion steps from human to humanoid
motion and the basic characteristics of the robot and the capture motion system. Section 3 proposes our
imitation algorithm that converts data obtained from the capture motion system into joint trajectories
of the scaled robot model. The imitation process starts with the definition of the humanoid robot
kinematic model. The motion generation algorithm for the real-robot ROMEO, which takes into
account the output from the imitation algorithm, is given in Section 4. The conversion process was
tested for the dual arm “open/close drawer” task and the results are presented in Section 5.

2. Conversion Steps from Human to Humanoid Motion
Regardless of the motion capture system, the conversion from human to humanoid motion can be
represented in four steps: the first step is recording of human motion; in the second, a digital/graphical
representation of the human body (avatar) is defined according to the data acquired by the motion
capture system; in the third step, a human-size kinematic model of the robot (scaled humanoid model)
is defined and the imitation algorithm used to obtain motions in the joint and Cartesian spaces of
the humanoid; and the fourth step concerns the generation of ROMEO’s motion (with and without
contact), using the output from the imitation algorithm. An overview of the conversion from human
to humanoid motion is given in Fig. 2.

The motion capture system is able to recognize and find relations between the actor’s body
segments in consecutive frames and provide a graphical representation of the actor (avatar) in a
virtual environment19 (see Fig. 2, step 1). The kinematic model of the avatar graphically represented
the human body and included 60 DoFs (20 joints with 3 DoFs per joint). Since the kinematic model
of the humanoid, which was used in the imitation process, had 37 DoFs in total (fewer DoFs than the
avatar), the model of the avatar could not be used directly and a reduced model that enabled human
to humanoid motion replication had to be adopted.

An adult human body has 206 bones linked by different types of joints, which can be flexible.
The imitation process needs to be based on the effective kinematic model of the humanoid robot,
consistent with its joint mobility and size. Many humanoid robots of a size close to that of a human
have several DoFs, e.g., at least 7 DoFs per arm and 6 DoFs per leg (see Fig. 3). A humanoid robot with
these characteristics, such as the humanoid robot ROMEO, can be used for accurate human motion
imitation. The closer the kinematic model of the humanoid is to the model of a human as regards the
size, joint limits and kinematic model, the better the imitation.

The transformation of the kinematic model of the avatar to the model of ROMEO is described on
two levels. At the first level, the simplification of the kinematic model was taken into account, so the
kinematic model of the avatar (which had 60 DoFs) was reduced to the model of the robot ROMEO
(37 DoFs). This kinematic model, which had the same segment size as that of the avatar model and
the number of DoFs equal to those of ROMEO, was defined as a scaled model of ROMEO. Therefore,
the scaled model of ROMEO was used in the imitation algorithm to define human motion in joint
space. The output of the imitation algorithm was coherent motions in joint space and Cartesian space
for the scaled model of ROMEO. At the second level, the difference in body segments between the
human and ROMEO was taken into account in order to imitate human motion with the real model
of ROMEO. Imitation was implemented with the algorithm for human-like motion generation. At
this level, the motion defined in joint and Cartesian spaces provided by the imitation algorithm was
non-coherent (using the real size of ROMEO) and the algorithm favored the motion defined in joint or
Cartesian space depending on whether the task did or did not involve contact with the environment.

2.1. Robot ROMEO
The humanoid robot ROMEO has been developed by Aldebaran Robotics (see Fig. 3). ROMEO is
1.4 m tall and has 37 DoFs, including 7 DoFs per arm, 6 DoFs per leg, 2 DoFs for each eye, 1 DoF
for each foot, 2 DoFs for the neck, 2 DoFs for the head, and 1 DoF for the spine.20
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Fig. 2. The process of conversion from human to humanoid motion.
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Fig. 3. Robot ROMEO and its kinematic model.

Fig. 4. The scaling process includes the following: (a) Extended kinematic model of the robot ROMEO in its
basic configuration; (b) Extended kinematic model of ROMEO scaled to the dimensions of a human in the initial
configuration, with markers and marker frames.

Dual arm manipulation of the robot was analyzed in this research. To that end, an extended kinematic
model of ROMEO’s upper body was used. The model contained 19 DoFs and an additional 3 DoFs
in the trunk, which emulated leg motion (3 prismatic (see Fig. 4)).
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2.2. ART motion capture system
The ART motion capture system consists of a hybrid suit of 17 sets of markers relative to the feet,
shins, thighs, shoulders, upper arms, forearms, hands, head, hip, back and torso (see Fig. 2). A set
of eight infrared (IR) cameras is used to record markers motions. The motion capture hardware is
supported by DTrack software and ART Human software is used for tracking and reproducing the
motion of the actor in a virtual environment. DTrack software acquires two dimensional (2D) marker
positions using information from each IR camera and provides the transformation matrices of each
marker (position and orientation of the marker) relative to different local frames attached to the body
parts with respect to the global reference frame. ART Human software uses the information provided
by DTrack and provides a direct link between motion of the human subject and motion of the 3D
graphical model of the human (avatar) in real time. ART Human estimates the locations of the human
joint frames and the human segment size using marker information. The digital human representation,
the avatar model, is created in this manner.19 The flowchart showing how the motion capture system
works is depicted in Fig. 2, step 2. The sampling frequency for data acquisition is set to 100 Hz.

3. The Imitation Process
The information provided by the motion capture system can be used to define the characteristics of
the human body and its motion in the task space. In the previous decades, the focus of some research
papers has been on estimating a kinematic model of the human body using data obtained by the motion
capture systems.21,22 In this research, we used data obtained by the ART motion capture system to
scale the kinematic model of the robot ROMEO to the characteristics of the actor.

The motion capture system always automatically generates the avatar model as a 3D graphical
representation of the human. Each avatar joint is represented as spherical. Therefore, the avatar model
has 60 DoFs to represent human motion. The kinematic model of ROMEO was used to imitate human
motion in joint space. Therefore, the kinematic representation of the human body was reduced from
the avatar model to the kinematic model of ROMEO. Since the information obtained from the motion
capture system (such as the position and orientation of real markers and the position of joints) is defined
according to the model of the human-size avatar performing the recorded action, the kinematic model
of ROMEO was scaled to the size of the human. In that manner, it was possible to calculate human
motion in joint space.

An initialization process was introduced with the aim of defining the initial configuration of the
actor and to scale the size of ROMEO to the size of the actor and attach virtual markers to the scaled
model of ROMEO. The initial configuration of ROMEO (see Fig. 4(a)) is proposed as the initial
configuration of the actors (arms horizontally extended forward, with palms facing the floor (see Fig.
4(b))), because it is well defined and easily achievable.

Since the kinematic model of ROMEO was taken as the kinematic model of a human, the size of
the robot’s segments had to be scaled to the size of the actor’s limbs. The dimensions of the human
segments were calculated by taking the mean Euclidian distance between two adjacent joints and
using several samples from the recorded data, when the actor retained the initial configuration. The
dimensions of the paired segments located on the left and right sides of the body, assumed to be
identical, were calculated by taking the mean value of the estimated segment dimensions on the right
and left sides for each actor. The scaling factor SF for each segment was calculated as the ratio of the
actor segment length Lhuman to ROMEO segment length Lrobot, SF = Lhuman

Lrobot
.

The position of the real marker relative to the corresponding proximal frame of the actor’s joint
and the dimensions of the segments were calculated and assumed constant in the scaled model of
the humanoid. In reality, this quantity varies during motion of the actor due to unmodeled joints of
the human and motion of the skin. The unmodeled joints in the shoulders are responsible for vertical
displacement of the shoulders and the real markers attached to the shoulders (see Fig. 5). Although
the markers are firmly attached to the body segments, the distance between a real marker and its
proximal joint is not constant due to the motion of the skin. This phenomenon is the most obvious
in the case of hand and shoulder markers. An error occurs and a perfect imitation of human motion
by the scaled kinematic model of the humanoid is not possible. Virtual marker fames were defined
according to real-marker frames in the initial configuration, during the initialization process. Details
about the calculation of virtual markers frames are provided in the appendix. The imitation algorithm
was used to calculate the joint configuration of the scaled model of ROMEO, in order to minimize
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Fig. 5. Displacement of the shoulders and real markers attached to the shoulders during motion.

the matching error between the virtual and real markers and the matching error between the joint
positions of the human to the joint positions of the scaled model of ROMEO.

3.1. Imitation algorithm for the scaled model of the robot
In this section, an analytical imitation algorithm based on the Jacobian matrix capable of real-
time extraction of Cartesian motions and joint motions is introduced. The imitation algorithm was
formulated as an optimization algorithm (6), which calculated the generalized coordinates of the joints
qimitation(ti) for the scaled model of ROMEO, for each time sample ti, with i ∈ [1 . . . N], where N is
the number of time samples of the recorded motion.

qimitation(ti) = min
q

(ζ ) . (6)

The criterion function ζ , which should be minimized, was comprised of the error between the
position of the frames attached to the actor joint Pa j and those of the scaled model of the humanoid
Pr j ; the error between the position of the real-marker frames Prm and virtual marker frames Pvm; and
the error in orientation between the real-marker frames Rrm and virtual marker frames Rvm in the
way proposed in Eqs. (7) and (8). Since the precision of orientation measurement was lower than
that of position measurement, and the orientations of the proximal segments were implicitly taken
into account via their effect on distal joint positions and markers, the orientations of the proximal
frames were disregarded in the minimization criterion. Only the orientations of the distal segments
were included.

The optimization criterion is

ζ = ‖ε(ti, q)‖2, (7)

where

ε(ti, q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
(
�Prm(ti) − �Pvm(q)

)
β

(
�Pa j (ti) − �Pr j (q)

)
γ

(
��ervmLeftHand (ti, q)

)
γ

(
��ervmRightHand (ti, q)

)
δ
(
Pa jLeftHand (ti) − Pr jLeftHand (q)

)
δ
(
Pa jRightHand (ti) − Pr jRightHand (q)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

where α, β, γ and δ are the weighting factors for the errors in marker positions, joint positions, hand
marker orientations and hand joint positions, respectively; �Prm(ti) and �Pa j (ti) are the vectors of the
recorded real-marker positions and proximal actor joints at time sample ti, respectively; �Pvm(q) and
�Pr j (q) are the vectors of the positions of the virtual markers and proximal robot joints in the current
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joint configuration q

�Prm(ti) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

PrmLeftUpperArm (ti)

PrmRightUpperArm (ti)

PrmLeftForeArm (ti)

PrmRightForeArm (ti)

PrmLeftHand (ti)

PrmRightHand (ti)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

; �Pvm(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

PvmLeftUpperArm (q)

PvmRightU pperArm(q)

PvmLe f tForeArm(q)

PvmRightForeArm (q)

PvmLeftHand (q)

PvmRightHand (q)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

; �Pa j (ti) =

⎡
⎢⎢⎢⎣

Pa jLe f tShoulder (ti)

Pa jRightShoulder (ti)

Pa jLe f tElbow (ti)

Pa jRightElbow (ti)

⎤
⎥⎥⎥⎦;

�Pr j (q) =

⎡
⎢⎢⎢⎣

Pr jLe f tShoulder (q)

Pr jRightShoulder (q)

Pr jLe f tElbow (q)

Pr jRightElbow (q)

⎤
⎥⎥⎥⎦ ,

Pa jLeftHand (ti) and Pa jRightHand (ti) are the positions of the left and right actor hand joints at time
sample ti, respectively; Pr jLeftHand (q) and Pr jRightHand (q) are the positions of the left and right
robot hand joints in the current joint configuration q; and ��ervmLeftHand and ��ervmRightHand are the
orientation errors between the real and virtual markers attached to the left and right hands (distal
markers) at time sample ti and in joint configuration q, respectively. The orientation errors were
represented in terms of quaternions. The rotation matrices, RrmLeftHand (ti) and RvmLeftHand (q) (which
express the real and virtual marker orientations of the left hand, respectively), can be rewritten
in terms of quaternions as QrmLeftHand = [ Q1

rmLeftHand
(ti) Q2

rmLeftHand
(ti) Q3

rmLeftHand
(ti) Q4

rmLeftHand
(ti) ]

and Qvml = [ Q1
vmLeftHand

(ti) Q2
vmLeftHand

(ti) Q3
vmLeftHand

(ti) Q4
vmLeftHand

(ti) ], respectively where ηrmLeftHand
=

Q1
rmLeftHand

(ti), �ermLeftHand
= [ Q2

rmLeftHand
(ti) Q3

rmLeftHand
(ti) Q4

rmLeftHand
(ti) ]T , η

vmLeftHand
= Q1

vmLeftHand
(q), and

�e
vmLeftHand

= [ Q2
vmLeftHand

(q) Q3
vmLeftHand

(q) Q4
vmLeftHand

(q) ]T . The orientation error ��ervmLeftHand
was

calculated using Eq.:22

��ervmLeftHand (ti, q) = η
vmLeftHand

(q) · �ermLeftHand
(ti)

−ηrmLeftHand
(ti) · �e

vmLeftHand
(q) − S(�ermLeftHand

(ti)) · �e
vmLeftHand

(q), (9)

where S(·) is the skew-symmetric operator of the vector.
The orientation error of the right hand ��ervmRightHand was calculated in the same way.
The minimization criterion is quadratic. The configuration at time sample ti can be expressed as the

configuration at time ti−1 plus the change in configuration �q. Thus, the criterion can be expressed
as a function of �q

ε(ti, q) = ε(ti, qimitation(ti−1) + �q) = εα (ti, qimitation(ti−1)) + εβ (ti, qimitation(ti−1))�q, (10)

where vector εα (ti, qimitation(ti−1)) can be evaluated based on Eq. (8), and matrix εβ (ti, qimitation(ti−1))
based on its derivative. The analytical expression for �q is deduced for the optimality condition
∂ζ

∂�q = ∂ (‖ε(ti,qimitation (ti−1 )+�q)‖2 )
∂�q = 0, so that

�q = −εβ (ti, qimitation(ti−1))+ · εα (ti, qimitation(ti−1)), (11)

where εβ (ti, qimitation(ti−1))+ represents the pseudo-inverse of the matrix εβ (ti, qimitation(ti−1)). More
details about vectors εα (ti, qimitation(ti−1)) and matrix εβ (ti, qimitation(ti−1)) are provided in the appendix.

Factors α, β, γ and δ in the imitation algorithm assigned different desired levels of precision for
joint and marker tracking. The values of the weighting factors were set heuristically. Since contact
tasks require high precision of the hand positions and orientations in Cartesian space, weighting
factors δ (hand position weighting factor) and γ (hand marker orientation) had significantly higher
values than other factors. However, the weighting factor γ should be set to slightly less than δ,
since orientation measurement precision is lower than that of position measurement. The positions of
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proximal (shoulder and elbow) joints in Cartesian space is less important than the Cartesian position of
the hand joints, but they still have a significant effect on the similarity between recorded human motion
and generated humanoid motion. The associated weighting factor was β. The similarity between the
recorded human motion and the generated humanoid motion was depicted by marker position as well,
but with the aim of reducing the effect of skin motion (which directly influences the motion of the
markers), weighting factor α had to be set to the lowest value. Accordingly, the weighting factors
were selected as follows: α = 1, β = 2, γ = 10 and δ = 20.

The actor motion in Cartesian space Xh was re-calculated using qimitation(ti) and the direct geometric
scaled model of the ROMEO robot. Furthermore, the orientation of the hands’ joints, which was
unknown from the data obtained by the motion capture system, was also calculated in this manner.
A comparative analysis of the recorded hand positions and the position calculated by the imitation
algorithm is given in Section 5.

4. From Imitation Results to Motion of Robot ROMEO
The motion obtained with the previously described imitation algorithm could not be used directly
by the humanoid robot ROMEO because joint limitations had not been taken into account. If joint
motion qimitation(t ) is used directly by ROMEO, the motion in Cartesian space will not be preserved
and thus contact with the environment will not be achieved. On the other hand, if Cartesian motion is
used, human skill will not be preserved. Therefore, we propose different strategies depending of the
existence of contact with the environment or not. A contact with the environment is assumed to exist
via the hands of the robot. The case of contact with another body part may be considered in a similar
way. A transition strategy will also be proposed between the contact and no contact phases.

During a motion with contact, the motion of the actor’s hands was constrained by the characteristics
of the equipment. In ref. [24], we elaborated the types of contact constraints and the corresponding
mathematical representations. Here, we studied the case in which the robot should do the task in the
same environment as that of humans, with the same type of contact. The moment when the robot’s
hands established contact with the equipment was calculated using the hand positions of the scaled
model of the robot and the known position of the equipment. To that end, the hand coordinates of the
scaled robot model and the equipment coordinates were represented in the same referent frame. For
the phase of contact, the robot’s hands should be able to follow the same motion in Cartesian space
as the actor’s hands. A necessary condition for performing the task by the robot is that the trajectories
of the actor’s hands (for the phase of contact) are within the workspace of the robot. The workspace
of ROMEO was defined according to the robot segment size and the joint limits as proposed in refs.
[25, 26]. If this condition is satisfied, when the robot is initially in the same place as the actor, the
actor’s motion will be easily achieved by ROMEO. Otherwise, a new initial position and orientation
of the robot need to be calculated for the task to become feasible. In the latter case, the transformation
matrix that describes the displacement of the robot is taken into account, in order to modify the desired
motion of the robot’s hands accordingly.

4.1. Inverse kinematic algorithm as a tool for human-like motion generation
The human motion imitation process requires the robot to be able to perform a task like a human.
Since the structure of ROMEO is designed with redundant features, the same motion as that of human
hands can be obtained for different arm configurations. By using the inverse kinematic algorithm, the
recorded human joint motion can be imitated by ROMEO. The minimized difference between the
current joint trajectories qrobot (t ) and joint trajectories qimitation(t ) obtained with the imitation algorithm
for the scaled robot model |qrobot (t ) − qimitation(t )|2 was included in the inverse kinematic algorithm
as an additional criterion

dqrobot (ti) = Jrobot
+λdX (ti) − (I − Jrobot

+Jrobot )(qrobot (ti−1) − qimitation(ti))

qrobot (ti) = qrobot (ti−1) + dqrobot (ti),
(12)

where Jrobot
+λ is the damped least-square inverse of the Jacobian matrix Jrobot and damping factor

λ = 0.003 (see ref. [27]), which was introduced with the aim of solving the discontinuity problem of
the pseudo-inverse solution for a singular configuration; Jrobot

+ is the pseudo-inverse of the Jacobian
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matrix Jrobot of ROMEO, calculated for the robot size; I is the identity matrix; and dX (ti) is the
position and orientation variation between the desired trajectories of the robot’s hands X d

robot (ti) and
the current position and orientation of the robot’s hands X c

robot (qrobot (ti−1)), calculated by the direct
geometric model using the real size of the robot

dX (ti) = X d
robot (ti) − X c

robot (qrobot (ti−1)). (13)

The desired trajectories of the robot’s hands X d
robot have to be the same as the motion of human

hands in Cartesian spaceXh. The joint limits were included in the inverse kinematic algorithm by using
the internal clamping loop that checked and removed the joints that reached their upper or lower joint
limits qmin

robot and qmax
robot , respectively. If a joint reached the limit, the joint value was clamped to the

limit value. The elements of the Jacobian matrix J and identity matrix I related to the clamped joint
were set to zero. In this manner, any further motion of the clamped joint is prevented. The inverse
kinematic algorithm continues to initiate other joints in order to reach the desired values for the hands.
The inverse kinematic algorithm with a clamping loop is explained in detail in Baerlocher et al.28

The primary task of the inverse kinematic algorithm was to follow the desired hand trajectories
X d

robot (ti). If motion involved contact between hands and equipment, the robot needed to use the same
equipment and manipulate it in the same way as a human. The desired motions of the robot’s hands
were defined in the imitation algorithm, calculating the hand position and orientation using qimitation(t )
and the direct geometric model of the scaled ROMEO. However, it is important to note that qimitation(t )
was defined for a scaled model of the robot and that Jacobian matrix J used here was calculated for
the real size of ROMEO. Parameters qimitation(t ) and X d

robot (ti) were not consistent, thus, the secondary
task was not achieved and qrobot (t ) differed from qimitation(t ).

4.2. Motion of robot hands without contact
A robot is not able to simultaneously follow recorded hand and joint motions since the robot size and
joint limits and those of a human are not the same. When there is no contact with the environment,
it may be preferable to follow human joint motions rather than human Cartesian motions, in order to
express human skills.

However, to keep the same control approach with and without contact with the environment, and
to take into account the joint limits, we used a slightly modified Eq. (12):

dX (ti) = X c
robot (qimitationModif (ti)) − X c

robot (qrobot (ti−1)), (14)

where qimitationModif (ti) is the modified value of qimitation(t ), since the value of qimitation(t ) can be outside
the robot’s joint limits. The modification was implemented using the algorithm proposed by Safonova
et al.29 In this manner, X c

robot (qimitationModif (ti)) was inside the workspace of the robot and the desired
motion in the joint and Cartesian spaces was coherent and consistent with the dimensions of the
humanoid robot. The joint limits were also taken into account.

4.3. Transition strategy connecting motions with and without contact
For a motion with or without contact of the hands with the environment, we proposed the algorithm
given by Eqs. (12) and (14). The difference between the two cases is in the manner used to define
the desired Cartesian motion. As a consequence, we propose a transition strategy based on rescaling
the size of the robot to the size of the actor. The transition strategy starts during the motion without
contact, if the position of the robot’s hands relative to the object to be contacted reaches a prescribed
vicinity. Here, we assumed the prescribed vicinity was a sphere of 0.1 m radius. During transition,
the sizes of the robot segments on the model were linearly modified to reach the sizes of the actor.
The hand trajectories were calculated for the incrementally rescaled model of the robot by using the
value of qimitationModif (ti), which corresponds to this part of the motion. The transition strategy was
over when the size of the rescaled model of the robot was the same as that of the actor and the value
of qimitationModif (ti) was the same as that corresponding to the sample when the contact between the
actor’s hands and the equipment was achieved. A connection between the hands and the equipment
was therefore made.
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The desired trajectories of the robot’s hands can be processed further. In order to smooth trajectories
of the robot’s hands, we applied the Savitzky–Golay filter, which is based on fitting consecutive sub-
sets of adjacent data points with a low-degree polynomial by the linear least squares method.30

4.4. Handling collision
This research also addressed dual-arm motions performed by actors. Any actor naturally avoids
collision with equipment and self-collision. Since we used data generated by the imitation algorithm,
which characterize human skills, to generate motion of the robot it is expected that the robot, similarly
to the actor, will avoid self-collision. Also, the trajectories of the robot’s hands during the contact
phase of the motion were the same as those of a human, thus, collision with the equipment was
eliminated. Collisions did not occur in the tested motion. In other cases, collision avoidance could be
included in the generation of humanoid motion using the techniques developed in refs. [31-33]. The
vision-based path planning method for dual-arm end-effector features proposed by Qu et al.34 is also
a useful tool for precise pose alignment of two objects, which is the position and orientation of the
hands and equipment in our case.

5. Results
In this section, we will analyze the results of the imitation algorithm and the conversion process for
the “open/close drawer” task. “Open/close drawer” is a complex motion that consists of motions with
and without contact. Initially, the motion was without contact until the actor touched the drawer. The
task continued with a motion with contact, during which the actor performed the drawer opening and
closing functions. In order to show the general characteristics of the imitation algorithm, we tested
it on a set of 7 different dual-arm tasks, each performed by 19 actors, and present the corresponding
results. The results obtained with the imitation algorithm are compared with those of the numerical
algorithm proposed by Ude.13,14 The imitation algorithm proposed by Ude is a numerical optimization
approach based on following the 3D position of markers physically attached to the human body, with
markers placed on the scaled robot model. That imitation algorithm has been developed for imitating
free human motion (motion without contact) and, consequently, precise imitation of the hand joints
was not required.

5.1. Simulation results of the imitation algorithm
The imitation algorithm proposed in this paper was designed to give the highest priority to hand
position and orientation tracking to ensure that the task was properly done. According to the results
for the “open/close drawer” task presented here (see Fig. 6, color blue), our imitation algorithm
produced the same motion of the actor’s hands as the scaled model of the ROMEO robot. The highest
normed errors in following the actor’s hand trajectories were about 4 mm.

Since the robot model had enough DoFs, the imitation algorithm performed well when following
hand orientations. Bigger errors in following the shoulder and elbow joint motions (larger amplitude
around 25 mm) were the results of simplifying the kinematic model of the human by using the model
of the robot ROMEO. To highlight the performance of the proposed imitation algorithm, the results
are compared with the numerical algorithm proposed by Ude et al.13,14 and shown in Fig. 6, red scale.
Since Ude’s numerical algorithm is based on following 3D marker positions, the errors in following
the joint position and orientation are bigger compared to our imitation algorithm (see Fig. 6). In ref.
[14], big errors in following hand joint position and orientation would not allow ROMEO to achieve
contact between hands and equipment and the task would not be accomplished. On the other hand,
errors in following the position of the real marker with the virtual marker obtained with the algorithm
proposed by Ude are smaller compared with the results of our imitation algorithm, since hand position
tracking is of the highest priority in our algorithm (see Fig. 7).

Although the algorithm proposed by Ude ensures a small error when the 3D position of the markers
is followed, precise following of the position and orientation of the hand joints is not guaranteed. The
reasons are the calculation of the transformation matrix between real markers and the closest proximal
joint, which is not so precise, and the fact that this transformation matrix may change due to skin
motion. It is apparent that our algorithm allows better tracking of the hand motion compared with the
algorithm proposed by Ude and also ensures correct tracking to the pose of the shoulder and elbow
that characterize the shape of the arm (i.e., its configuration).
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Fig. 6. Orientation and position errors between the recorded motion and the motion generated by our (analytical)
imitation algorithm (blue scale) and the numerical imitation algorithm proposed by Ude13 (red scale): (a) Normed
orientation errors ��ervmRightHand and ��ervmLeftHand of the right and left hand markers in quaternion; and (b) Normed
position errors Pa j (ti ) − Pr j (ti ) of the arm joints in meters.

Summing up, the hand trajectories generated through our imitation algorithm can be used as a
desired robot motion in the conversion process, in the inverse kinematic algorithm for the task with
and without contact between hands and equipment.

The imitation algorithm was tested on a set of different dual-arm motions (“rotation of valves,”
“rotation of canoe paddles,” “inflating a mattress with a pump,” “open/close drawer,” “rotation of a
steering wheel,” “cutting with knife” and “grating food”,) each performed by 19 actors. The quality
of imitation of one motion was represented as E = μ(dPahand (ti...N ),Prhand (ti...N ) ), the mean value of the
Euclidian distance between the recorded positions of the hand joints Pahand and those obtained with our
imitation algorithm Prhand for all samples of the motion. In order to present the general performance
of the imitation algorithm for each actor, we calculated μ(E ) and the mean value of E for all the
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Fig. 7. Normed position errors in following real marker Prm with virtual marker Pvm obtained with our (analytical)
imitation algorithm (blue scale) and the numerical imitation algorithm proposed by Ude13 (red scale), in meters.

Fig. 8. Quality of imitations of right and left hand motions of 19 actors, expressed by μ(E ), obtained by our
(analytical) algorithm (blue) and the numerical algorithm proposed by Ude (red).

motions performed by each actor. The general characteristics of our imitation algorithm for each
actor expressed by μ(E ) and the imitation algorithm proposed by Ude are shown in Fig. 8.

The results show that our imitation algorithm has average errors in following the desired hand
positions of about 3 mm for most actors. For some actors, these errors are somewhat bigger, about
5 mm. The reason is a large disparity between the simplified human model represented by ROMEO
and the kinematic model of the real actor (confidence in the distance between joints).

5.2. ROMEO robot motion simulation and experimental results
The conversion process is based on the results obtained from the imitation algorithm, which are applied
in the algorithm for humanoid motion generation. The trajectories of the hand motions obtained for
the scaled robot model by using the imitation algorithm are shown in Fig. 9(b). Since the size of
the robot was not equivalent to the size of the actor, the desired hand trajectories during the motion
without contact were outside the robot’s workspace and the robot was unable to perform the motion.
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Fig. 9. “Open/close drawer” task performed by the actor and the robot: (a) Actor during the task: simulation
model of the robot and calculated trajectories of the robot’s hands, (b) In the imitation algorithm, and c) In the
algorithm for humanoid motion generation.

Fig. 10. Snapshot of the “open/close drawer” motion performed by: (a) The actor; (b) And, the robot ROMEO.
The robot was able to perform the same task under the same conditions as the actor.

Therefore, the hand motions generated with the imitation algorithm had to be additionally modified
according to the robot’s characteristics, as proposed in our algorithm for humanoid motion. The
generated trajectories of the robot’s hands during the motion with and without contact, as well as the
transition strategy, are shown in Fig. 9(c).

The trajectories depicted in cyan are the motions without contact with equipment, obtained as
proposed in Section 4.2; the trajectories in magenta represent the motions obtained with the transition
strategy when the contact between the hands and equipment was calculated according to the algorithm
proposed in Section 4.3; and dark blue represents the trajectories of the actor’s hands during motion
with contact. The desired trajectories of the robot’s hands are based on the results of the actor’s motion
from the imitation algorithm and/or the motion of the robot’s arms imitating human motion. Therefore,
the robot’s hand motion was free of both the collisions with equipment and self-collision, like the
recorded human motion. The experimental results of the actor’s “open/close drawer” motion and the
same motion performed by ROMEO are shown in Fig. 10. The robot and the actor performed the task
in the same environment. The height of the robot was less that the height of the actor. Consequently,
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the robot performed the task at the level of its chest, whereas the actor did so at waist level. ROMEO
had conventional hands with flexible fingers, which were not actuated and the robot was required
to just open and close hands. This was the reason why the drawer was ajar at the beginning of the
experiment. With a robot that has complex hands with actuated joints, the contact between the hands
and the drawer would have been possible with the drawer closed, exactly in the same manner as the
actor performed the task.

6. Conclusion
A conversion process for the imitation of dual-arm human motion, utilizing the upper body, has been
presented. It consists of an imitation algorithm and an algorithm for humanoid motion generation.
The imitation algorithm, defined for a scaled model of the robot ROMEO, is based on virtual markers
which follow real-marker motions and incorporates additionally recorded joint motions. The imitation
algorithm is based on the analytical expression of Jacobian matrices and is able to define the expected
motion of the scaled robot in real time. Compared to existing algorithms, our imitation algorithm
provides better accuracy of motion imitation in Cartesian space. Precise imitation of hand motion
in Cartesian space is essential for a task where the hands come into contact with the environment.
The algorithm for humanoid motion generation is based on an inverse kinematic algorithm whose
objective is to follow the desired robot hand motions and, at same time, ensure that the motion of the
humanoid resembles human motion behavior. Since our task involved motion that included phases
with and without contact between hands and equipment, we additionally defined an algorithm for
the transition between the phases. Therefore, by way of an important contribution of this work, the
proposed conversion algorithm is suitable for human motion imitation by a humanoid for a task with
and without contact, as well as complex tasks that involve both types of motion, which other imitation
algorithms are not. The results of our conversion process were experimentally tested on the real-robot
ROMEO. Ultimately, one can say that the proposed conversion methodology can be used as a universal
and robust algorithm for human to humanoid motion conversion, regardless of the type of dual-arm
motion or the characteristics of the actor.
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Appendix
The imitation algorithm proposed in this paper addresses an optimization problem, which has an
analytical solution for the value qimitation(t i) at each time sample ti, minimizing the criterion function
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given by Eq. (7). Since the initial configuration of the robot, qinit , is calculated in the initialization
process and the initial positions of the robot’s joints and virtual markers are known, the current
value qimitation(ti) can be calculated incrementally by using qimitation(ti−1) calculated in the previous
iterationqimitation(ti) = qimitation(ti−1) + �q. Therefore, the criterion function, ε(q(ti)) can be expressed
as a function of �q

ε(ti, q(ti)) = ε(ti, qimitation(ti−1) + �q)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
(
�Prm(ti) − �Pvm(qimitation(ti−1) + �q)

)
β

(
�Pa j (ti) − �Pr j (qimitation(ti−1) + �q)

)
γ

(
��ervmLeftHand (ti, qimitation(ti−1) + �q)

)
γ

(
��ervmRightHand (ti, qimitation(ti−1) + �q)

)
δ
(
Pa jLeftHand (ti) − Pr jLeftHand (qimitation(ti−1) + �q)

)
δ
(
Pa jRightHand (ti) − Pr jRightHand (qimitation(ti−1) + �q)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A1)

The current position of the kth robot joint is represented by the relation

Pr jk (q(ti)) = Pr jk (qimitation(ti−1)) + Jr jk (qimitation(ti−1))�q, (A2)

where k ∈ {LeftShoulder RightShoulder LeftElbow RightElbow }. Jr jk (q) is the Jacobian matrix
of the kth proximal robot joint, calculated analytically with SYMORO + software.35 The current
position of the lth virtual marker is calculated from the equation

Pvml (q(ti)) = Pvml (qimitation(ti−1)) + Jvml (qimitation(ti−1))�q, (A3)

where l ∈ {LeftUpperArm RightUpperArm LeftForeArm RightForeArm LeftHand RightHand }.
Jvml (q) is the Jacobian matrix of the lth virtual marker calculated from equation

Jvml (q) =
[

Ar jn −Ar jn
r jn

�

Pvml

O3 Ar jn

]
·
[

Ar jn O3

O3 Ar jn

]−1

Jr jn (q),

where Ar jn is the orientation matrix of the closest proximal frame attached to joint Tr jn via

transformation matrix r jn Tvml , and r jn
�

Pvml is a skew-symmetric matrix defined by a component of the
vector r jn Pvml . The current orientation of the virtual markers on the left hand is calculated in the same
way as the position QvmLeftHand (q(ti)) = QvmLeftHand (qimitation(ti−1)) + JQvmLeftHand (4 : 7, qimitation(ti−1))�q.
JQvmLeftHand (q) is the Jacobian matrix of the left-hand virtual marker represented in terms of quaternion
and calculated using equation

JQvmLeftHand
(q) =

[
I3x3 O3x3

O4x3 (q)

]
JvmLeftHand (q),

where

(q) =

⎡
⎢⎢⎢⎢⎣

−Q2
vmLeftHand

(q) −Q3
vmLeftHand

(q) −Q4
vmLeftHand

(q)

Q1
vmLeftHand

(q) Q4
vmLeftHand

(q) −Q3
vmLeftHand

(q)

−Q4
vmLeftHand

(q) Q1
vmLeftHand

(q) Q2
vmLeftHand

(q)

Q3
vmLeftHand

(q) −Q2
vmLeftHand

(q) Q1
vmLeftHand

(q)

⎤
⎥⎥⎥⎥⎦
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and

QvmLeftHand = [
Q1

vmLeftHand
(q) Q2

vmLeftHand
(q) Q3

vmLeftHand
(q) Q4

vmLeftHand
(q)

]T
.

The current orientation of the virtual marker on the right hand is calculated in the same way.
According to the previous equations, vector εα (ti, qimitation(ti−1)) and matrix εβ (ti, qimitation(ti−1))

from Eq. (10) take the form

εα (ti, qimitation(ti−1)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
(
�Prm(ti) − �Pvm(qimitation(ti−1)

)
β

(
�Pa j (ti) − �Pr j (qimitation(ti−1)

)
γ · εR

αLeftHand

γ · εR
αRightHand

δ
(
Pa jLeftHand (ti) − Pr jLeftHand (qimitation(ti−1)

)
δ
(
Pa jRightHand (ti) − Pr jRightHand (qimitation(ti−1)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A4)

εβ (ti, qimitation(ti−1)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α · �Jvm(qimitation(ti−1))

−β · �Jr j (qimitation(ti−1))

γ · εR
β

LeftHand

γ · εR
β

RightHand

−δ · Jr jLeftHand (qimitation(ti−1))

−δ · Jr jRightHand (qimitation(ti−1))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A5)

where

εR
αLeftHand

=

⎛
⎜⎝

η
vmLeftHand

(qimitation(ti−1)) · �ermLeftHand
(ti)−

ηrmLeftHand
(ti) · �e

vmLeftHand
(qimitation(ti−1))−

S(�ermLeftHand
(ti)) · �e

vmLeftHand
(qimitation(ti−1))

⎞
⎟⎠ ,

εR
αRightHand

=

⎛
⎜⎝

η
vmRightHand

(qimitation(ti−1)) · �ermRightHand
(ti)−

ηrmRightHand
(ti) · �e

vmRightHand
(qimitation(ti−1))−

S(�ermRightHand
(ti)) · �e

vmRightHand
(qimitation(ti−1))

⎞
⎟⎠ ,

εR
β

LeftHand
=

⎛
⎜⎝
�ermLeftHand

(ti) · JQvmLeftHand (4, qimitation(ti−1))−
ηrmLeftHand

(ti) · JQvmLeftHand (5 : 7, qimitation(ti−1))−
S(�ermLeftHand

(ti)) · JQvmLeftHand (5 : 7, qimitation(ti−1))

⎞
⎟⎠ ,

εR
β

RightHand
=

⎛
⎜⎝
�ermRightHand

(ti) · JQvmRightHand (4, qimitation(ti−1))−
ηrmRightHand

(ti) · JQvmRightHand (5 : 7, qimitation(ti−1))−
S(�ermRightHand

(ti)) · JQvmRightHand (5 : 7, qimitation(ti−1))

⎞
⎟⎠ .

�Jvm is the vector of the Jacobian matrices for all virtual markers and �Jr j is the vector of the Jacobian
matrices for all the proximal robot joints. �q is calculated according to Eqs. (11), (A4) and (A5). The
initial guess for the imitation algorithm at the first sample is taken to be the initial configuration, qinit,
of the scaled model of the robot. In future samples of the imitation algorithm, the solution from the
previous sample qimitation(ti−1)is used as the initial guess for the current iteration in the optimization
algorithm. The values of the cost function cannot be zero due to large differences between the kinematic
models of the human and the humanoid.
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The position and orientation of the virtual markers are defined from the scaled model of the robot
in the initial configuration. The virtual marker frame (with transformation matrix Tvml ) is attached
to the body, where it is fixed and connected with the closest proximal frame attached to the joint
Tr jn (qinit ) via transformation matrix r jn Tvml . The virtual marker holds the mean values of the real-
marker transformation matrices Trml (ti=1..ninit ) in ninit time instances of the actor’s initial configuration.
A transformation matrix r jn Tvml is calculated for each joint and remains unchanged in the imitation
algorithm.
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