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We prove the following conjecture of J. van den Berg and H. Kesten. For any events A
and B in a product probability space, Prob(A2B) 6 Prob(A)Prob(B), where A2B is the

event that A and B occur ‘disjointly’.

1. Introduction

Consider the following cooperative card game between two players, Red and Yellow. At

the start of the game, thirteen cards are dealt face up on the table. The cards contain

one of each rank: one ace, one deuce and so on. Their suits are determined in some

random fashion, independently for each rank. The players must choose hands (disjoint

subsets) from the thirteen face-up cards: one hand for Red and one for Yellow. Each

player has his or her own idea of what constitutes a good hand. Red may like many

hands, perhaps varying greatly in size and content. Let R be the event that there is a

hand Red likes in the thirteen cards and let Y be the event that there is a hand Yellow

likes. We cannot tell if Prob(R ∩ Y ) is bigger or smaller than Prob(R)Prob(Y ) without

knowing something of the preferences of the two players. If their tastes are similar, we

might expect Prob(R ∩ Y ) > Prob(R)Prob(Y ); and the opposite if their tastes conflict.

Since the hands must be disjoint, there may be in Red’s hand some cards Yellow

needs to form a good hand. For both players to be satisfied, there must be a pair of

disjoint sets, one of which satisfies Red and the other which satisfies Yellow. Denote

this event by R2Y . It was conjectured in 1987 by Van den Berg and Kesten [1] that

Prob(R2Y ) 6 Prob(R)Prob(Y ).

The above conjecture has a strong intuitive appeal. Even if Red and Yellow’s tastes

were similar, the fact that Red must remove a good hand from the table cannot possibly

help Yellow, and we might expect R2Y to reflect a sort of negative correlation between R

and Y . However, on deeper inspection, the conjecture is far from obvious. Many special

cases of the conjecture have been proved. One result [1], used in percolation theory, states
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that the conjecture is true if both R and Y are increasing events. This would be the case

in our card game if, for example, the suits were ordered and a hand could only improve

(in either player’s eyes) if the suits of some of its cards were upgraded.

In this paper we will prove the conjecture for all R and Y .

Let’s formalize the above ideas. Let Si be a finite set for i ∈ [n] := {1, 2, . . . , n} and ωi
be a probability measure on Si. Let Ω = S1 × S2 × · · · × Sn and µ = µ1 × · · · × µn. For

K ⊆ [n] and ω ∈ Ω, define the cylinder set C(K,ω) := {ω′ ∈ Ω : ω
′
i = ωi for all i ∈ K}.

Define

R2Y := {ω : ∃K ⊆ [n] such that C(K,ω) ⊆ R and C([n] \K,ω) ⊆ Y }.
The Van den Berg–Kesten conjecture can be stated as follows.

Theorem 1.1. Prob(Y2R) 6 Prob(Y )Prob(R) for all events Y and R.

Let Qn := {0, 1}n for n ∈ {0, 1, 2, . . .}. For x ∈ Qn write xi for the ith entry of x.

Intuitively, we can think of Qn in two ways: either as a set of sequences, or as the set of

vertices of an n-dimensional cube. For x ∈ Qn define xc, the antipode of x, by xci := 1−xi
for all i. For S ⊆ Qn, define Sc := {xc ∈ Qn : x ∈ S}. Define [x, y] ⊆ Qn for x, y ∈ Qn as

the set of all elements z such that, for every i ∈ [n], zi ∈ {xi, yi}. In other words, [x, y] is

the smallest subcube of Qn containing both x and y.

For a, b ∈ Qn we define the butterfly Ba,b to be the ordered pair 〈a, b〉 with the following

four associated subcubes of Qn:

Red(Ba,b) := [a, b], Yellow(Ba,b) := [a, bc],

Body(Ba,b) := {a}, Tip(Ba,b) := {b}.
A collection of butterflies, B, on Qn is called a flock. Set

Red(B) :=
⋃

Ba,b∈B
Red(Ba,b)

and define Yellow(B), Body(B) and Tip(B) in the same fashion. The main result of this

paper is as follows.

Theorem 1.2. For any flock of butterflies B with distinct bodies,

|B| 6 |Red(B) ∩Yellowc(B)|. (1.1)

Note that |Red(B)∩Yellowc(B)| = |{(r, y) ∈ Red(B)×Yellow(B) : [r, y] = Qn}|. So our

theorem states that the number of Red–Yellow antipodal pairs of Qn is at least the size

of the flock.

Our statements will become a bit simpler if we slightly change our point of view. Notice

that, if B is a flock of butterflies, then B′ := {Bb,a : Ba,b ∈ B} is also a flock of butterflies,

where

Red(B′) = Red(B) and Yellow(B′) = Yellowc(B);
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thus

|Red(B) ∩Yellowc(B)| = |Red(B′) ∩Yellow(B′)|.
Moreover, if the butterflies of B have distinct bodies, then those of B′ have distinct

tips. Thus, we can restate Theorem 1.2 as the following ‘butterfly theorem’.

Theorem 1.3. For any flock of butterflies B with distinct tips,

|B| 6 |Red(B) ∩Yellow(B)|.

In Section 2, we will prove Theorem 1.3, or equivalently Theorem 1.2. Theorem 1.1 will

be derived from Theorem 1.2 in Section 3.

2. Proof of the Butterfly Theorem

We will actually prove a stronger, linear-algebraic version of Theorem 1.3. Let Ȳ :=

{x ∈ Qm : x /∈ Yellow(B)} and R̄ := {x ∈ Qm : x /∈ Red(B) ∪ Ȳ }. Since Red(B) ∩
Yellow(B), Ȳ and R̄ partition the elements of Qm,

|Red(B) ∩Yellow(B)|+ |Ȳ |+ |R̄| = |Qm| = 2m.

Our goal is to construct a one-to-one map, ψ, from B∪ Ȳ ∪ R̄ to <2m and show that the

vectors in the image are linearly independent; and hence

|B|+ |Ȳ |+ |R̄| 6 dimension
(<2m

)
= 2m,

which implies the theorem.

2.1. The maps

Before defining the map ψ from B∪Ȳ ∪R̄ to <2m , we need the following vector definitions.

In what follows let ⊕ represent concatenation of vectors. For example 〈a, b〉 ⊕ 〈c, d〉 =

〈a, b, c, d〉. For a ∈ <2 and x ∈ <n, define the tensor product of a and x by a⊗x := a1x⊕a2x.

For x, y ∈ Qm, define the vectors ex, fx and gx,y as follows. Set

e0 := 〈1, 1〉 , e1 := 〈0, 1〉 , f0 := 〈1, 0〉 , f1 := 〈1,−1〉 ,
g0,0 := 〈1, 0〉 , g0,1 := 〈1, 1〉 , g1,0 := 〈0, 1〉 , g1,1 := 〈1,−1〉 ,

ex :=

n⊗
i=1

exi , fx :=

n⊗
i=1

fxi , and gx,y :=

n⊗
i=1

gxi,yi .

We define the map ψ from B ∪ Ȳ ∪ R̄ to <2m as follows. If x ∈ R̄ then ψR̄(x) = ex. If

x ∈ Ȳ then ψȲ (x) = fx. If Bx,y ∈ B then ψB(Ba,b) = ga,b. Finally, ψ is the union of ψR̄ ,

ψȲ and ψB. We will show that the image vectors of ψ are independent, thus proving the

theorem.

2.2. Independence

As usual for A, B ∈ <n we write A ⊥ B when every element in A is perpendicular to every

element in B. We will write (x, y) for the standard inner product in <n, recalling (see, e.g.,
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MacLane and Birkhoff [4]) that(
n⊗
i=1

ui,

n⊗
i=1

vi

)
=

n∏
i=1

(ui, vi) (2.1)

where u1, . . . , un and v1, . . . , vn are arbitrary lists of vectors.

To show that the images of R̄, Ȳ and B form an independent set we must prove the

following six assertions:

(1) ψR̄(R̄) ⊥ ψȲ (Ȳ ),

(2) ψR̄(R̄) ⊥ ψB(B),

(3) ψȲ (Ȳ ) ⊥ ψB(B),

(4) ψR̄(R̄) is independent,

(5) ψȲ (Ȳ ) is independent,

(6) ψB(B) is independent.

where ψ(X) is the image of X under our map, ψ. In the argument we will treat ψ(X) as a

multiset, that is, a set with possible repetitions of elements, but, of course, once we show

that its elements are pairwise perpendicular it will follow that they are distinct.

(1) From their definitions, it is clear that R̄ ∩ Ȳ = φ. The definitions of ei and fi were

selected so that (e0, f1) = (e1, f0) = 0. This implies, via (2.1), that (ex, fy) = 0 since it is the

product of terms one of which is zero.

The proofs of the next two parts are similar.

(2) If By,z ∈ B and x ∈ R̄, then x /∈ Red(By,z) = [y, z]. Now, x /∈ [y, z] implies for some

i ∈ [n], xi 6= yi = zi. Since (e0, g1,1) = (e1, g0,0) = 0 it follows that (ex, gy,z) = 0.

(3) If By,z ∈ B and x ∈ Ȳ , then x /∈ Yellow(By,z) = [y, zc]. Now, x /∈ [y, zc] implies for

some i ∈ [n], xi = zi 6= yi. Since (f0, g1,0) = (f1, g0,1) = 0 it follows that (fx, gy,z) = 0.

We will now show that each of the three image sets is itself independent. To prove

independence we will use the fact that if {a, b} is a basis of <2 then
⊗m

i=1{a, b} is a basis

of <2m .

(4) Clearly ψR̄(R̄) ⊆ ψR̄(Qm) =
⊗m

i=1{e0, e1}, which is a basis of <2m since {e0, e1} is a

basis of <2.

(5) Similarly ψȲ (Ȳ ) ⊆ ψȲ (Qn) =
⊗n

i=1{f0, f1}, which is a basis of <2m since {f0, f1} is a

basis of <2.

(6) Recall that the only stipulation on B is that it has unique tips. So for each y ∈ Qn there

is at most one gx,y in ψB(B). It is thus enough to show that any set of vectors {gx(y),y}y∈Qm
is independent. We will actually prove independence even in Z2m

2 . Since g0,0 and g0,1n are

independent in Z2
2, we know that

⊗m
i=1{g0,0, g0,1} is a basis of

⊗m
i=1 Z2

2 (= Z2m

2 ). Moreover,

noting that g1,0 = g0,0 + g0,1 and g1,1 = g0,1, we have, for every i ∈ [m],

gxi,yi = g0,yi + εig0,1,

where εi :=

{
1, xi = 1, yi = 0,

0, otherwise.
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Thus

gx,y =

m⊗
i=1

gxi,yi =

m⊗
i=1

(g0,yi + εig0,1).

Expanding, we find that gx,y is the sum of
⊗
g0,yi and terms of the form

⊗n
i=1 g0,zi ,

where z > y (in the usual product order on Qm). We see that, for a suitable ordering of

indices, the change-of-basis matrix is upper triangular, with 1 s on the diagonal. Thus our

new vector set is also a basis, and in particular an independent set.

We have demonstrated all six parts, thus proving Theorem 1.2.

3. Proof of the Van den Berg–Kesten conjecture

Our goal is to show that Theorem 1.2 implies the Van den Berg–Kesten conjecture. In

1987 Van den Berg and Fiebig [2] demonstrated that Theorem 1.1 is equivalent to the

case Si = {0, 1}, µi({0}) = µi({1}) = 1
2
; that is, to the following theorem.

Theorem 3.1. Let R and Y be subsets of {0, 1}n; then |R||Y | > |R2Y |2n.

We need to translate from the notation C(K, x) to the two-vector representation used

for butterflies.

Lemma 3.2.

C(K, x) = [x, bK,x], where bK,x :=

{
xi, i ∈ K,
xci , i /∈ K.

Proof.

ω ∈ C(K, x) ⇐⇒ ∀i ∈ K,ωi = xi
⇐⇒ ∀i, ωi ∈ {xi, (bK,x)i}
⇐⇒ ω ∈ [x, bK,x].

Thus R2Y = {a ∈ Qn : ∃b ∈ Qn such that [a, b] ⊆ R and [a, bc] ⊆ Y } = {Body(Ba,b) :

Ba,b is a butterfly on Qn with Red(Ba,b) ⊆ R and Yellow(Ba,b) ⊆ Y }.
Conversely, given a flock of butterfliesB we clearly have Body(B)⊆Red(B)2Yellow(B).

Thus Theorem 3.1 is equivalent to the statement that, for any flock of butterflies B,

|Body(B)|2n 6 |Red(B)||Yellow(B)|.

Proof of Theorem 3.1. It is clearly enough to show the above when B has distinct

bodies. (The Van den Berg–Kesten conjecture was earlier considered in this form by

Fishburn and Shepp [3].) We will partition the elements, (r, y), of Red(B) × Yellow(B)

according to the subcube [r, y] of Qn, and apply Theorem 1.2 to the subcubes. Notice

that, if Q is a subcube and B a butterfly on Qn with Body(B) ∈ Q, then we have a

butterfly on Q, denoted BQ, with Red(BQ) = Red(B) ∩ Q, Yellow(BQ) = Yellow(B) ∩ Q
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and Body(BQ) = Body(B). It is easy to see that BQ is a butterfly on the cube Q. We can

then define for each Q a flock of butterflies BQ = {BQ : B ∈ B,Body(B) ∈ Q}.
Set Body(BQ) :=

⋃
BQ∈BQ

Body(BQ).

Define Red(BQ) and Yellow(BQ) in the same fashion. As we let Q range over the subcubes

of Qn, we have

|Red(B)| |Yellow(B)| = |{(r, y) ∈ Red(B)×Yellow(B)|
=

∑
Q∈Qn
|{(r, y) ∈ Red(B)×Yellow(B) : [r, y] = Q}|

>
∑
Q∈Qn
|{(r, y) ∈ Red(BQ)×Yellow(BQ) : [r, y] = Q}| (3.1)

>
∑
Q∈Qn
|Body(BQ)| (3.2)

= 2n |Body(B)| . (3.3)

Inequality (3.1) follows from Red(BQ) ⊆ Red(B) and Yellow(BQ) ⊆ Yellow(B). Notice

that [r, y] = Q means that r and y are complements relative to Q, so (3.2) follows from

Theorem 1.2; and (3.3) comes from the fact that each x ∈ Qn lies in exactly 2n subcubes.
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