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Near-Optimal Separators in String Graphs
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Let G be a string graph (an intersection graph of continuous arcs in the plane) with m

edges. Fox and Pach proved that G has a separator consisting of O(m3/4
√

logm) vertices,

and they conjectured that the bound of O(
√
m) actually holds. We obtain separators with

O(
√
m logm) vertices.
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Let G = (V , E) be a graph with n vertices. A separator in G is a set S ⊆ V of vertices such

that there is a partition V = V1 ∪ V2 ∪ S with |V1|, |V2| � 2
3
n and no edges connecting V1

to V2. The graph G is a string graph if it is an intersection graph of curves in the plane,

i.e., if there is a system (γv : v ∈ V ) of curves (continuous arcs) such that γu ∩ γv �= ∅ if

and only if {u, v} ∈ E(G) or u = v.

Fox and Pach [4] proved that every string graph has a separator with O(m3/4
√

logm)

vertices, where m is the number of edges of G.

We should mention that they actually proved the result for the weighted case, where

each vertex v ∈V has a positive real weight, and the size of the components of G \ S is

measured by the sum of vertex weights (while the size of S is still measured as the number

of vertices). Our result can also be extended to the weighted case, either by deriving it

from the unweighted case along the lines of [4], or by using appropriate vertex-weighted

versions (available in the cited sources) of the tools used in the proof. However, for

simplicity, we stick to the unweighted case in this note.
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Pach and Fox conjectured that string graphs actually have separators of size O(
√
m )

(which, if true, would be asymptotically optimal in the worst case). Earlier, in [3], they

proved some special cases of this conjecture, most notably, if every two curves γu, γv in the

string representation intersect in at most k points, where k is a constant. As they kindly

informed me in February 2013, they also have an (unpublished) proof of existence of

separators of size O(
√
n ) in string graphs with maximum degree bounded by a constant.

Here we obtain the following result.

Theorem 1. Every string graph G with m � 2 edges has a separator with O(
√
m logm)

vertices.

Clearly, we may assume that G is connected, and then the theorem immediately follows

from Lemmas 2 and 3 below. Lemma 2 combines the considerations of [4] with those of

[6] and adjusts them for vertex congestion instead of edge congestion. Lemma 3 replaces

an approximate duality between sparsity of edge cuts and edge congestion due to Leighton

and Rao [7] used in [6] with an approximate duality between sparsity of vertex cuts and

vertex congestion, which is an immediate consequence of the results of Feige, Hajiaghayi

and Lee [2].

Fox and Pach [5] obtained several interesting applications of Theorem 1. Here we

mention yet another consequence.

Crossing number versus pair-crossing number. The crossing number cr(G) of a graph G is

the minimum possible number of edge crossings in a drawing of G in the plane, while the

pair-crossing number pcr(G) is the minimum possible number of pairs of edges that cross

in a drawing of G.

One of the most tantalizing questions in the theory of graph drawing is whether

cr(G) = pcr(G) for all graphs G [8], and in the absence of a solution, researchers have

been trying to bound cr(G) from above by a function of pcr(G). The strongest result so far

by Tóth [10] was cr(G) = O(p7/4(log p)3/2), where p = pcr(G). It is based on the Fox–Pach

separator theorem for string graphs discussed above, and by replacing their bound by

Theorem 1 in Tóth’s proof, one obtains the improved estimate cr(G) = O(p3/2 log2 p).

Vertex congestion in string graphs. Let P denote the set of all paths in G, and for each

pair {u, v} ∈
(
V
2

)
of vertices, let Puv ⊆ P be all paths from u to v. An all-pair unit-demand

multicommodity flow in G is a mapping ϕ : P → [0, 1] such that
∑

P∈Puv
ϕ(P ) = 1 for every

{u, v} ∈
(
V
2

)
. The congestion cong(w) of a vertex w ∈ V under ϕ is the total flow through

w where, for conformity with [2], we count only half of the flow through a path P if w is

one of the endpoints of P . That is,

cong(w) =
∑

P∈P:w internal vertex of P

ϕ(P ) +
1

2

∑
P∈P:w endpoint of P

ϕ(P ).
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We define vcong(G) := minϕ maxw∈V cong(w), where the minimum is over all all-pair

unit-demand multicommodity flows.1

Lemma 2. If G is a connected string graph, then vcong(G) � cn2/
√
m (for a suitable

constant c > 0).

Proof. Let ϕ be a flow for which vcong(G) is attained, and let (γv : v ∈ V ) be a string

representation of G. We construct a drawing of KV , the complete graph on the vertex set

V , as follows.

We draw each vertex v ∈ V as a point pv ∈ γv , in such a way that all the pv are distinct.

For every edge {u, v} ∈
(
V
2

)
of the complete graph, we pick a path Puv from Puv at ran-

dom, where each P ∈ Puv is chosen with probability ϕ(P ), the choices being independent

for different {u, v}. Let us enumerate the vertices along Puv as v0 = u, v1, v2, . . . , vk = v. Then

we draw the edge {u, v} of KV in the following manner: We start at pu, follow γu until

some (arbitrarily chosen) intersection with γv1 , then we follow γv1 until some intersection

with γv2 , etc., until we reach γv and pv on it.

Let us estimate the expected number of pairs {{u, v}, {u′, v′}} of edges of KV that

intersect in this drawing.

The drawings of {u, v} and {u′, v′} may intersect only if there are vertices w ∈ Puv

and w′ ∈ Pu′v′ such that γw ∩ γw′ �= ∅, i.e., {w,w′} ∈ E(G) or w = w′. For every choice of

{w,w′} ∈ E(G) or w = w′ ∈ V , the expected number of pairs {Puv, Pu′v′ } with w ∈ Puv and

w′ ∈ Pu′v′ is easily seen to be bounded above by 4 vcong(G)2 (using linearity of expectation

and independence). Thus, the total expected number of intersecting pairs of edges of KV

is at most 4(m + n) vcong(G)2 � 4(2m + 1) vcong(G)2.

At the same time, it is well known that pcr(KV ) = Ω(n4), i.e., any drawing of KV has

Ω(n4) intersecting pairs of edges (see, e.g., [8, Theorem 3]). So m vcong(G)2 = Ω(n4) and

the lemma follows.

Vertex congestion and separators. Let us define

vcong∗(G) := min{vcong(H) : H is an induced subgraph of G on at least 2
3
n vertices}.

Lemma 3. Every graph G on n vertices has a vertex separator with O((n2 log n)/ vcong∗(G))

vertices.

Proof. The proof goes in the following steps, all of them contained in [2] (see also [1],

especially Section 5.2 there, for a similar use of [2]).

(1) Let s : V → [0,∞) be an assignment of real weights to the vertices of G, let the

weight of an edge e = {u, v} ∈ E(G) be (s(u) + s(v))/2, and let ds be the shortest-path

pseudometric in G with these edge weights. By the duality of linear programming, it

1 It is well known, and easy to check by a compactness argument, that min is attained.
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is easy to derive (see [2, Section 4])

1

vcong(G)
= min

⎧⎨
⎩

∑
v∈V

s(v) :
∑

{u,v}∈(V2)

ds(u, v) = 1

⎫⎬
⎭ .

(2) Let s∗ be a vertex weighting attaining the minimum in the last formula. By suitable

use of a famous result of Bourgain (see [2, Theorem 3.1]), we get that there exists a

function f : V → R that is 1-Lipschitz with respect to s∗, i.e., |f(u) − f(v)| � ds∗ (u, v)

for all u, v ∈ V , and such that

∑
{u,v}∈(V2)

|f(u) − f(v)| = Ω

(( ∑
{u,v}∈(V2)

ds∗(u, v)

)
/ log n

)
= Ω(1/ log n).

(3) Let (A,B, S) be a partition of the vertex set of a graph G into three disjoint subsets

with A �= ∅ �= B and no edges between A and B. Let the sparsity of (A,B, S) be

|S |
|A ∪ S | · |B ∪ S | .

By [2, Lemma 3.7], given a function f as above for G, there exists a partition (A,B, S)

of the vertex set with sparsity

O

((∑
v∈V

s∗(v)

)
log n

)
= O((log n)/ vcong(G)).

(4) A standard procedure, starting with G and repeatedly finding a sparse partition until

the size of all components drops below 2
3
n (see, e.g., [2, Section 6]), then finds a

separator of size O((n2 log n)/ vcong∗(G)) in G as claimed.

Remark. Although Lemma 3 is tight for arbitrary graphs, a possible way towards proving

the Fox–Pach conjecture, separators for string graphs of size O(
√
m ), would be removing

the log n factor in Lemma 3 under the assumption that G is a string graph. More

concretely, the improvement might be achievable in item (2) of the proof above: indeed,

if G is a planar graph or, more generally, belongs to a minor-closed class of graphs with

a forbidden minor, then, in the setting of item (2), the 1-Lipschitz f can even be made to

satisfy

∑
{u,v}∈(V2)

|f(u) − f(v)| = Ω(1)

([9]; see also [2, Theorem 3.2]). Thus, a similar improvement for string graphs is perhaps

not out of reach.
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