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Abstract
The addition of a set of cohort parameters to a mortality model can generate complex identifiability issues
due to the collinearity between the dimensions of age, period and cohort. These issues can lead to robust-
ness problems and difficulties making projections of future mortality rates. Since many modern mortality
models incorporate cohort parameters, we believe that a comprehensive analysis of the identifiability issues
in age/period/cohort mortality models is needed. In this paper, we discuss the origin of identifiability issues
in general models before applying these insights to simple but commonly used mortality models. We then
discuss how to project mortality models so that our forecasts of the future are independent of any arbitrary
choices we make when fitting a model to data in order to identify the historical parameters.
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1. Introduction
Many modern models of mortality include parameters to capture the impact of lifelong mor-
tality effects which follow individuals from birth, building on the findings of studies such as
Wilmoth (1990) and Willets (1999, 2004). Understanding such “cohort” effects can be of critical
importance, especially for those interested in understanding the mortality experience of a spec-
ified group of lives, such as members of a pension scheme or policyholders in an annuity book.
Examples of models incorporating cohort parameters include those proposed in Renshaw and
Haberman (2006), Cairns et al. (2009), Plat (2009), O’Hare and Li (2012), Börger et al. (2013) and
Hunt and Blake (2014).

In Hunt and Blake (2020c), we argued that the time has come to undertake a more holistic
analysis of the class of age/period/cohort (APC) models and began this analysis by outlining their
common structure. In Hunt and Blake (2020b), we focused on the subset of this class without a
cohort term, namely on age/period (AP) models, and examined their identifiability issues.

We found that, for APmodels, there are a number of “invariant transformations” which change
the parameters but not the fitted mortality rates. The existence of these transformations leads to
identifiability issues, meaning that there are certain features of the parameters in a model which
are not defined by the data. Instead, they are only determined by the arbitrary identifiability con-
straints we impose and therefore have no independentmeaning. Consequently, wemust be careful
to ensure that our results from using mortality models do not depend upon these features of the
parameters. These issues with identifiability can lead to models which lack robustness when fitted
to data, cause us to draw faulty and erroneous conclusions when analysing the historical data and
bias our projected mortality rates in future. We also found that, unless we choose our projection
C© Institute and Faculty of Actuaries 2020
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methods carefully, our projections of mortality can depend upon the arbitrary choice of identi-
fiability constraint. This should be avoided, so we discussed how to choose projection methods
which give “well-identified” projections of mortality rates.

The addition of a set of cohort parameters to a mortality model can generate additional identi-
fiability issues which are fundamentally unlike anything present in otherwise similar AP models.
These are caused by the collinearity between age, period and cohort. In the context of the APC
mortality models discussed in this study, we find that certain deterministic trends found within
the fitted parameters are unidentifiable by the models and therefore do not possess any meaning
other than that imposed by our arbitrary identifiability constraints. This, in turn, means that it
is both more important and more difficult to ensure that projections from these models are well
identified, as we must separate these unidentified trends (which depend entirely upon the identi-
fiability constraints) from the variation around the trends, which is meaningful and needs to be
projected consistently with what has been observed in the past. Thus, although the present study
extends the work of Hunt and Blake (2020b), it is necessary to view the underlying identifiability
issues in a fundamentally different way and, consequently, develop a new set of tools to solve them.

In this paper, we study the identifiability issues present in some of the simplest APC models in
order to demonstrate the problems in action and their potential resolution. In these simple cases,
the identifiability issues can appear trivial, and their impact on our analysis of historical and pro-
jected mortality rates is relatively minor. However, we believe that it is vital to fully understand
these issues in the context of simple models, since they become considerably more important
in more complicated models. Indeed, recognising these issues and solving them were vital to
the development of the “general procedure” for constructing APC mortality models, described
in Hunt and Blake (2014), and appropriately projecting such models, as we discussed in Hunt and
Blake (2020a), Hunt and Blake (2018) and Hunt and Blake (2015).

The outline of the paper is as follows. Section 2 reviews the structure of general APC mortality
models described in Hunt and Blake (2020c). Section 3 introduces the concept of identifiability
in the context of the simplest and most widely used APC model and develops our understanding
of how cohort effects create fundamentally new identification issues in this model compared with
the simpler AP model. Section 4 generalises this by examining the issue of identifiability in more
general APC models with parametric age functions. Section 5 investigates the consequences of
identification for projection, first by looking at the model discussed in section 3 and then in a
more general case. Finally, section 6 concludes.

2. Structure of APC Models
An APC mortality model is one which assumes that mortality rates can be modelled as a series of
terms involving functions of age, x, period, t, and year of birth, y= t − x1. This can be written as

ηx,t = αx +
N∑

i= 1
β(i)
x κ

(i)
t + γt − x (1)

where
• ηx,t is a link function to transform the response variable into a form suitable for modelling

and linking it to the proposed predictor structure;
• αx is a static function of age2;
• κ

(i)
t are period functions governing the evolution of mortality with time;

1 In this paper, we assume that x ∈ [1, X] and t ∈ [1, T] and hence that years of birth, y, are in the range (1− X) to
(T − 1). In practice, x and t will be given by the range of the data being used.

2We consider models of the form of equation (1) but without a static age function in Appendix B.
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• β
(i)
x are age functions modulating the impact of the period function dynamics over the age

range; and
• γy is a cohort function describing mortality effects which depend upon a cohort’s year of birth

and follow that cohort through life as as it ages.

We also note that the general APC mortality model in equation (1) can be rewritten as

ηx,t = αx + β�
x κ t + γt − x (2)

where

κ t =
(
κ
(1)
t , . . . κ

(N)
t

)�

βx =
(
β
(1)
x , . . . β

(N)
x

)�

This form is useful when projecting these models, as discussed in section 5.
The general structure of APCmodels was discussed in detail in Hunt and Blake (2020c). In par-

ticular, we found that APC mortality models have different demographic significance3 depending
on whether the age functions β

(i)
x are non-parametric4 or parametric5.

In Hunt and Blake (2020b), we used linear algebra to analyse the structure of AP mortality
models as mappings from a space of parameters to a model space and found that in order for these
mapping to be unique, the spaces had to have the same dimension. In addition, AP models can be
subdivided into those with parametric age functions and those where the age functions are non-
parametric. While the two families have similar identifiability issues, these needed to be solved
using different methods in order to preserve the demographic significance of the parametric age
functions6. It is important to note that AP mortality models are nested within the class of APC
models, and therefore, all of the issues raised in Hunt and Blake (2020b) are still applicable for
APC mortality models.

APC models have additional identifiability issues which are fundamentally different from any-
thing present in otherwise similar AP models, hence alternative methods are necessary to analyse
them. They are caused by the collinearity between the dimensions of age, period and cohort,
because period = year of birth + age. This gives us the freedom to rewrite functions of cohort
as functions of age and period, or vice versa. The additional identifiability issues generated by
the cohort term depend fundamentally on the definition of the age functions within the model
and so are specific to the model in question. We find that APC models with non-parametric age
functions do not have any extra identifiability issues beyond those discussed for AP models in
Hunt and Blake (2020b), as shown in Appendix A. Models with certain types of parametric age
functions require additional identification as discussed in section 4.

In Hunt and Blake (2020c), we also found that difficulties with estimating and assigning demo-
graphic significance to the cohort parameters mean that, in practice, most models use only one
cohort term (without any modulating age function) and do not involve any age/cohort interac-
tions for reasons of both simplicity and robustness. We follow the same approach in this paper
and so do not consider models such as that proposed in Renshaw and Haberman (2006) or Model
M8 in Cairns et al. (2009).

3 Demographic significance is defined in Hunt and Blake (2020c) as the interpretation of the components of the mortal-
ity model being explainable in terms of the underlying biological, medical or socio-economic causes of changes in mortality
rates.

4 The values of the age functions β
(i)
x at different ages x are fitted without any a priori structure or functional form. See

Hunt and Blake (2020c).
5 The age functions β

(i)
x take a specific functional form β

(i)
x = f (i)(x; θ (i)), defined in advance of fitting the model to data.

For simplicity, the dependence of the age functions on θ (i) is suppressed in the remainder of this paper.
6 These different methods are not germane to the arguments in this paper. Interested readers should consult Hunt and

Blake (2020b).

https://doi.org/10.1017/S1748499520000123 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499520000123


Annals of Actuarial Science 503

3. Identifiability in the Classic APC Model
The simplest APC model (referred to here as the “classic APC model”) has a long history and is
widely used in the fields of medicine, epidemiology and sociology as well as in demography and
actuarial science7. It has the following form:

ln(μx,t)= αx + κt + γt − x (3)
It can be seen that the classic APC model has one AP term with f (x)= 1, which is parametric in
the sense defined in Hunt and Blake (2020c).

A model is fully identified when all the parameters in it can be uniquely determined by ref-
erence to the available data. In contrast, the classic APC model (as with most APC models) is
not fully identified, because there exist different sets of parameters which will give the same fit-
ted mortality rates and consequently the same goodness of fit for any data set. This phenomenon
is not unique to APC mortality models. However, it is very widespread in such models and has
significant implications when we come to make projections using them.

The issue of identifiability in the classic APC model also has a very long history8. It is, there-
fore, a good starting point to determine whether the issues raised in identifying the parameters in
equation (3) can be generalised to the more complex APC models used in mortality modelling.
We can see that this model is not fully identified, since if we use the transformations in equations
(4), (5) and (6) to obtain new sets of parameters, we do not change the fitted mortality rates and
hence the fit to the data

{α̂x, κ̂t , γ̂y} = {αx − a, κt + a, γy} (4)

{α̂x, κ̂t , γ̂y} = {αx − b, κt , γy + b} (5)

{α̂x, κ̂t , γ̂y} = {αx + c(x− x̄), κt − c(t − t̄), γy + c(y− ȳ)} (6)

where a bar denotes the arithmetic mean of the variable over the relevant data range9.We call such
transformations “invariant” for this reason. The existence of invariant transformationsmeans that
the model possesses identifiability issues, because no one set of parameters is determined uniquely
from the data.

The transformation in equation (6) is fundamentally unlike any of the transformations present
in AP models discussed in Hunt and Blake (2020b), since it involves functions of age, period
and year of birth rather than constants. It is a consequence of the collinearity between these
dimensions, y= t − x, which enables us to decompose a linear function of year of birth into lin-
ear functions of age and period, and vice versa. This transformation generalises for many, more
complex APC models with parametric AP terms, as we discussed in section 4.

We say that linear trends in the data are “unidentifiable” by the model, that is, they cannot be
uniquely apportioned to either age, period or year of birth (as was discussed in Wilmoth (1990)).
The linear trends observed in the parameters of the classic APC model therefore have no inde-
pendent meaning, as different sets of parameters, with different linear trends will give exactly the
same observable quantities such as fitted mortality rates.

The existence of unidentifiable linear trends in the classic APC model is of practical as well as
theoretical importance. This is because we often see features of the (transformed) mortality rates
which are approximately linear in age and time. For instance, the shape of the age function, αx,
is approximately linear across much of the age range10, whilst κt is often approximately linear11.
The structure of the model means that we are fundamentally unable to separate these linear trends
from a linear trend in the cohort parameters.

7 For instance, see Hobcraft et al. (1982), Osmond (1985), O’Brien (2000), Carstensen (2007) and Kuang et al. (2008b).
8 For instance, see Glenn (1976), Fienberg and Mason (1979), Rodgers (1982), Holford (1983), Clayton and Schifflers

(1987), Wilmoth (1990), Yang et al. (2004), Kuang et al. (2008a) and O’Brien (2011).
9 For example, x̄= 1

X
∑

x x= 0.5(X + 1).
10 If ηx,t = ln(μx,t), this is the Gompertz model, whilst if ηx,t = logit(qx,t), this is the Perks model for mortality.
11 See, for instance, Tuljapurkar et al. (2000), who went so far as to call this the “universal pattern of mortality decline”.
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Because different sets of parameters give the same fit to the data, we cannot use the data to
apportion the linear trend to either the age, period or cohort terms. One method of solving this
issue is to move to a “maximally invariant” set of parameters, as discussed in Kuang et al. (2008a)
and Nielsen and Nielsen (2014), which involves reparameterising the model in an equivalent form
with reduced dimensionality, which avoids the identifiability issues. This approach is discussed in
Appendix C.

An alternative and much more common approach is to impose additional identifiability con-
straints on the parameters in order to specify them uniquely12. These constraints manually
apportion the linear trend between the different terms in the model. Imposing suitable constraints
on the model involves the selection of a single set of parameters from the family of equiva-
lent parameter sets, all of which give identical fitted mortality rates. In this sense, the manual
apportionment is arbitrary – it does not depend upon any observable property of the data but
is a product of the model user’s subjective interpretation of the demographic significance of the
parameters.

For example, one set of identifiability constraints is
∑

t κt = 0,
∑

y nyγy = 0 and
∑

y nyγy(y−
ȳ)= 013. These identifiability constraints allow us to impose our interpretation of the demo-
graphic significance of the parameters onto themodel. For example, the first two of the constraints
above mean that αx can be interpreted as an “average” level of mortality at age x, over the period,
with κt and γy representing deviations from this average level. The third constraint requires that
there are no deterministic linear trends within the fitted cohort parameters, since any linear trend
in these parameters will be arbitrarily assigned to the age and period effects by using the transfor-
mation in equation (6). This is in line with the demographic significance we assign to the cohort
parameters in Hunt and Blake (2020c).

However, it is important to note that these additional identifiability constraints are arbitrary.
For instance, the constraints

∑
t κt = 0,

∑
y γy = 0 and

∑
y γy(y− ȳ)= 0 (used later in section 5.2)

could also be imposed and would give different estimated parameters with exactly the same fit to
data and have the same demographic significance. Further, the choice of having no linear trend
in the cohort parameters does not have any independent meaning, since it is entirely dependent
upon the identifiability constraints chosen. While these constraints might allow us to interpret
the demographic significance of the parameters, this interpretation nevertheless depends entirely
on the user’s judgement rather than on the underlying data. For instance, a different choice of
identifiability constraints could be used to impose that the period parameters, κt , had no linear
trend, which would give the parameters a different demographic significance but leave the fitted
mortality rates unchanged. Wemust, therefore, take care to ensure that our projections of observ-
able quantities such as mortality rates do not depend on our arbitrary identification scheme, as
discussed in section 5.

4. Identifiability in APC Models With Parametric Age Functions
Many of the more complex APC mortality models being proposed contain cohort parameters in
the same form as in the classic APC model (i.e. without an age modulating β

(0)
x function). Cairns

et al. (2009) and Haberman and Renshaw (2011) found that models with a cohort term fit the data
better than otherwise similar AP models, especially for the UK population, where a strong cohort
effect has been observed by Willets (1999, 2004) and others. It is therefore natural to ask whether
the additional issues with identifiability present in the classic APC model are also present in these
more complex models.

12We say that the transformations in equations (4), (5) and (6) cause issues with the identifiability of the model.
Identification of the model is accomplished by imposing a set of identifiability constraints and using the invariant
transformations to achieve these constraints.

13 Here ny is the number of observations of cohort y in the data and so
∑

y nyγy = ∑
x,t γt − x .
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In Appendix A, we show that APC models with non-parametric age functions do not possess
any additional, non-trivial identification issues beyond those found in similar AP models dis-
cussed in Hunt and Blake (2020b). We have already seen, however, that in the simplest case of
the classic APC model, the additional structure in the model caused by having a parametric age
function combined with the collinearity of age, period and cohort can yield new identification
issues.

For a general model with parametric age functions

ηx,t = αx +
N∑

i= 1
f (i)(x)κ (i)

t + γt − x (7)

we can try to generalise equation (6) to look for invariant transformations of the form

{α̂x, f̂ (i)(x), κ̂ (i)
t , γ̂y} = {αx − a(x), f (i)(x), κ (i)

t − k(i)(t), γy + g(y)} (8)

where a(x), k(i)(t) and g(y) are smooth functions14. Because the formulae used for the age func-
tions define the model being used, in the sense of Hunt and Blake (2020c), we desire that they
do not change under the invariant transformations, i.e., f̂ (i)(x)= f (i)(x). Transformations which
changed the age functions in the model would give a fundamentally different model, albeit one
which gave the same fit to the data. In Hunt and Blake (2020b), we called different models, with
different definitions of the age functions, that gave identical fits to the data “equivalent models”.

In order for the transformation in equation (8) to leave equation (7) unchanged, we require

g(t − x)= a(x)+
N∑

i= 1
f (i)(x)k(i)(t) (9)

If this is true, we say that the deterministic trends k(i)(t) and g(y) are “unidentifiable”, since the
model is unable to apportion them between the AP and cohort terms, in the same way as with the
unidentifiable linear trends in the classic APC model. Instead, we must manually apportion these
trends by means of additional identifiability constraints. These deterministic trends in the fitted
parameters, therefore, lack any objective meaning, since they are entirely dependent on the choice
of identifiability constraints. Nevertheless, they must be allowed for when projecting the APC
mortality model, as discussed in section 5, even if they appear to be comparatively small.

The first thing to note from equation (8) is the trivial case where equation (9) holds, i.e.,
g(y)= a(x)= b, a constant, and k(i)(t)= 0, ∀t. This is simply a transformation of the form in
equation (5). It does not involve any AP terms and so holds for all APC models, including those
with non-parametric age functions.

To find less trivial transformations, we take a Taylor expansion of g(y) around −x, assuming
that it is an infinitely differentiable function of year of birth

g(t − x)= g(− x)+
∞∑
j= 1

1
j! t

j d jg
dy j

∣∣∣∣
y=−x

(10)

Comparing this to equation (9), we can set a(x)= g(− x) and k(j)(t)= 1
j! t

j if f (j)(x)= d jg
dy j

∣∣∣
y=−x

,
i.e., the derivatives of g are a subset of the age functions of the model. Models of the form in
equation (7) have a finite number, N, of AP terms, and therefore, we require that g(y) has a finite
series of derivatives. There are two cases when g will have a finite sequence of derivatives, either

1. the derivatives terminate afterM ≤N terms say or

14While αx and κt are only defined for integer x and t, the parametric age functions f (i)(x) are defined for continuous x,
and so it make sense to look for transformations which also use continuous functions, as in the classic APCmodel in section 3.
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2. the form of the derivatives is cyclical so that dj+Mg
dyj+M

∣∣∣
y=−x

=K d jg
dy j

∣∣∣
y=−x

for some integer
M ≤N and constant K.

4.1 Polynomial age functions

For the Taylor series to terminate in a finite number of terms, we require that d jg
gy j = 0, ∀j>M and

therefore that g(y) must be a polynomial in y of orderM.

Theorem 1. APC mortality models of the form in equation (1) and age functions spanning the
polynomials to order M − 1 possess invariant transformations which add a polynomial of order M
to the cohort function.

Sketch of Proof . Take g(y), a general polynomial of order M, and expand as a function of x and t.
This can then be regrouped into an equivalent form that corresponds to the AP terms in the
model, in order to see how g(y) can be absorbed into the AP structure

g(y)=
M∑

n= 0
anyn

⇒ g(t − x)=
M∑

n= 0
an(t − x)n

=
M∑

n= 0
an

n∑
m= 0

( n
m

)
tm(− x)n−m

=
M∑

n= 0
an

[
(− x)n +

n∑
m= 1

( n
m

)
tm(− x)n−m

]

=
M∑

n= 0
an(− x)n +

M∑
n=1

n−1∑
l= 0

an
(n
l

)
tn−l(− x)l

=
M∑

n= 0
an(− x)n +

M−1∑
l= 0

(− x)l
M∑

n=l+1

an
(n
l

)
tn−l

=
M∑

n= 0
an(− x)n +

M−1∑
l= 0

(− 1)lf (l)(x)
M∑

n=l+1

an
(n
l

)
tn−l

= a(x)+
M−1∑
l= 0

f (l)(x)k(l)(t)

If there are age functions in the model of the form f (j)(x)= xj of j= 0, 1, . . .M − 1, the
expression above corresponds to equation (9) with a(x)= ∑M

n= 0 an(− x)n and k(j)(t)= (− 1)j∑M
n= j+ 1 an

(n
j

)
tn−j. More generally, we only require that the age functions span the firstM − 1
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polynomials, because these are equivalent to amodel with f (j)(x)= xj such as that in the derivation
above. �

We can think of the transformation as expanding the polynomial g(y) into terms in x and t,
grouping these and then combining them with the appropriate AP terms. A model with age func-
tions spanning the firstM − 1 polynomials therefore has an additionalM + 1 degrees of freedom
(represented by the coefficients, an, of the general polynomial) which do not affect the fit to the
data. This is similar to the analysis in Wilmoth (1990), which argues that higher order polynomial
trends in the cohort parameters will cause identifiability problems in a mortality model if suffi-
cient AP terms of suitable form exist within the model. These additional degrees of freedommean
that we need to impose an additional M + 1 identifiability constraints, which assign the M + 1
unidentifiable polynomial trends between the different AP and cohort terms in the model.

The simplest example of this is the transformation of the classic APC model described in
section 3. This has a single parametric age function f (x)= 1 which spans the polynomials to
order 0. The model will then allow first-order polynomials (i.e. linear terms) to be added to
the cohort parameters with offsets made to the static life function and the period term without
changing the fitted mortality rates. These are exactly the invariant transformations described in
equations (5) and (6). Consequently, we impose two additional identifiability constraints for the
cohort parameters in the model to identify their level and linear trend.

4.1.1 The Plat models
In Plat (2009), two new APC mortality models were introduced. These can be written15

ln(μx,t)= αx + κ
(1)
t + (x− x̄)κ (2)

t + (x̄− x)+κ
(3)
t + γt − x (11)

ln(μx,t)= αx + κ
(1)
t + (x− x̄)κ (2)

t + γt − x (12)

The second of these models was introduced as a simplification of the first, with the expectation
that it would be more suitable for modelling mortality at high ages. We call the model in equation
(11) the “Plat model” and the model in equation (12) the “reduced Plat model” for this reason16.

The first point to note is that both the Plat and reduced Plat models nest the classic APCmodel,
and therefore the invariant transformations in equations (4), (5) and (6) are also applicable for
both models.

The second point to note is that these models also nest simple AP mortality models17, and
therefore the results of Hunt and Blake (2020b) are still applicable. This means that the “locations”
of the period functions are undefined and need to be identified by imposing a constraint on their
levels. Usually, this is of the form ∑

t
κ
(i)
t = 0

These invariant transformations were noted by Plat (2009) and used to impose suitable identifia-
bility constraints.

However, the third point to note is that both of these models have age functions f (1)(x)= 1 and
f (2)(x)= (x− x̄) which span the polynomials to linear order. Using the result of Theorem 1, we
should be able to find a transformation of the parameters which adds a quadratic polynomial in y
to the cohort parameters but leaves the fitted mortality rates unchanged. Indeed, we find that the
transformation

15We define x+ ≡max(x, 0).
16 This model can also be thought of as an extension to model M6 in Cairns et al. (2009), with a static age function, or

as an extension to the extended Cairns-Blake-Dowd (CBDX) model discussed in Hunt and Blake (2020b) with a cohort term.
17 In particular, both models nest the “CBDX” model discussed in Hunt and Blake (2020b).
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{α̂x, κ̂ (1)
t , κ̂ (2)

t , γ̂y} = {αx − d(x− x̄)2,

κ
(1)
t − d(t − t̄)2, κ (2)

t + 2d(t − t̄), γy + d(y− ȳ)2} (13)

leaves the fitted mortality rates unchanged for both the Plat and reduced Plat models. We say that
these models have unidentifiable quadratic trends, which have to be manually allocated between
the different parameters via identifiability constraints.

Hence, we require three identifiability constraints on the cohort parameters in the Plat and
reduced Plat models, i.e., to apportion the level, linear trend and quadratic trend between the
different AP and cohort terms, plus identifiability constraints on the levels of the period func-
tions. This means that for full identification of the models, we require an additional identifiability
constraint to those discussed in Plat (2009).

If the model user fails to allocate the quadratic trend between the different terms via an addi-
tional identifiability constraint, then the fitting algorithm will make an apportionment in order
to achieve convergence. However, this apportionment will not be based on any particular desired
demographic significance and will depend on the specific details of fitting algorithm, such as the
starting parameter values used. To illustrate, instead of removing quadratic trends from the cohort
parameters and apportioning them to the AP terms, the fitting algorithm may split any quadratic
trends between the cohort parameters and the AP terms, giving values of γy with an apparent
quadratic trend in y. Not only is this contrary to our desired demographic significance, it can
make comparing parameters across data sets difficult due to the presence or absence of quadratic
trends which do not depend on the data.

In addition, a failure to fully identify the model can lead to inefficient fitting algorithms, which
take a long time to converge to a solution, as discussed in Hunt and Villegas (2015). Furthermore,
they can also give parameter estimates which are not robust to small changes in the data (e.g. an
additional year of data), since such changes can cause the fitting algorithm to abruptly change the
allocation of the unidentifiable trends. For these reasons, it is very important to ensure that the
APC mortality models we use are fully identified by imposing sufficient identifiability constraints
to uniquely estimate all the parameters in the model.

Following the same approach as used for the classic APC model, we might choose to impose
the constraints in section 3 and extend these to impose

∑
y ny(y− ȳ)2γy = 0 to remove quadratic

trends in the cohort parameters and allocate them to the AP terms. However, as with the classic
APC model, this choice is arbitrary and a different choice of constraints will make no difference
to the fitted mortality rates, only to the interpretation we give to the parameters.

In section 3, we saw that the lack of identifiability of the linear trends in the model, due to
the transformation in equation (6), was of practical as well as theoretical importance because lin-
ear trends were often observed in both the age and period terms. Similarly, the transformation
in equation (13) is of practical importance when fitting the Plat model, because we usually see
some curvature in αx at high ages and also systematic departures from the linearity of the period
functions18. These quadratic trends will, therefore, not be distinguishable from a quadratic trend
in the cohort parameters in the Plat model. However, because the observed magnitude of such
trends is typically smaller than the linear trends observed in the AP terms, failure to fully identify
the quadratic trend in the data will typically have a lower, though still important, impact than a
failure to identify the linear trend.

It is worth noting that the transformation in equation (13) does not treat the different period
functions equally, i.e., a term which is quadratic in t is added to κ

(1)
t , a term linear in t is added to

κ
(2)
t , whilst κ (3)

t is unchanged by the invariant transformation for the Plat model. However, this is

18 For instance, see Booth et al. (2002), who curtailed the use of the data in the Lee and Carter (1992) model based on
when a linear assumption for κt is no longer appropriate.
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true only for the particular definition of the age functions shown. To illustrate, instead of the Plat
model in equation (11), we could instead have chosen an equivalent model of the form

ln(μx,t)= αx + κ
(1)
t + (x− x̄)+κ

(2)
t + (x̄− x)+κ

(3)
t + γt − x (14)

Such a model will trivially give the same fitted mortality rates as that in equation (11) and has the
same number of parameters and so will have the same number of identifiability issues. However,
the transformation corresponding to equation (13) for this model will now add terms linear in t
to both κ

(2)
t and κ

(3)
t . Specifically, for this model, we have the invariant transformation

{α̂x, κ̂ (1)
t , κ̂ (2)

t , κ̂ (3)
t , γ̂y} = {αx − d(x− x̄)2, κ (1)

t − d(t − t̄)2,

κ
(2)
t − 2d(t − t̄), κ (3)

t + 2d(t − t̄), γ + d(y− ȳ)2} (15)

in contrast to the transformation in equation (13). Specifically, we note that whilst the trans-
formation in equation (13) did not involve κ

(3)
t , the transformation in equation (15) does. The

invariant transformations of the model are therefore specific to the age functions present and may
be different in different models, even if those models give an equivalent fit to data.

4.2 Exponential and trigonometric age functions
The other case where equation (10) potentially yields invariant transformations of the parameters
occurs when the derivatives of g(y) are cyclical with periodM ≤N.

Theorem 2. APC mortality models of the form in equation (1) with exponential or trigonomet-
ric age functions possess invariant transformations which add similar exponential or trigonometric
functions to the cohort parameters.

Sketch of Proof . In order for the derivatives of g(y) to be cyclical with periodM, we require

dMg
dyM

=Kg (16)

for some non-zero constant K. Substituting this into equation (10) and comparing with equa-
tion (9) give

g(t − x)=
M−1∑
j= 0

d jg
dy j

∣∣∣∣
y=−x

∞∑
k= 1

1
(j+ kM)! t

j+kM

=
M−1∑
j= 0

f (j)(x)k(t)

This is of the form of equation (9) if we set k(t)= ∑∞
k= 1

1
(j+kM)! t

j+kM and have M age functions

f (j)(x)= d jg
dy j

∣∣∣
y=−x

present in the model. It is interesting to note, therefore, that transformations
of this form do not involve the static age function, as there is no term in the Taylor expansion of
g(t − x) corresponding to a(x)19.

Equation (16) has solutions of the form

g(y)=
M∑

i= 1
�[ai exp (kiy)]

19 This means that they are also present in models without a static age function, as discussed in Appendix B.
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where �[z] is the real part of the expression z, and the ki are theM roots of the equation kMi =K.
In general, these roots will be complex, and therefore, g(y) will be exponential, trigonometric or a
combination of the two. In addition

f (j)(x)= d jg
dy j

∣∣∣∣
y=−x

=
M∑

i= 1
�[aik

j
i exp (− kix)]

and so the age functions present in the model will also be exponential or trigonometric. �
Exponential AP terms can be included in models constructed using the “general procedure” of

Hunt and Blake (2014), where they are typically used to explain infant mortality. As an example,
consider a model of the form

ηx,t = αx + κ
(1)
t + e−λxκ (2)

t + γt − x (17)

This is an extension of the “exponential” model of Hunt and Blake (2020b), with an additional
cohort term. We typically require λ > 0 to give the age function the demographic significance of
governing rates of mortality at low ages. This model will allow the parameters to be transformed
using

{α̂x, κ̂ (1)
t , κ̂ (2)

t , γ̂y} = {αx, κ (1)
t , κ (2)

t − a eλt , γy + a eλy} (18)

This means that exponential trends in time within the (transformed) data are not uniquely iden-
tifiable as either AP or cohort effects20. This transformation gives us an extra degree of freedom
in the model which could be used to impose an additional identifiability constraint.

In this case, however, the imposition of an identifiability constraint will be of little practical
importance. In section 3, we said that in order to be practically important, the unidentifiable
deterministic trends must be present in both the age and period dimensions of the transformed
data. Exponential trends in the model parameters will typically correspond to super-exponential
growth or decline in the observedmortality rates if either ηx,t = ln(μx,t) or ηx,t = logit(qx,t). Super-
exponential growth in mortality rates is not typically observed. We therefore do not experience
problems when fitting the model to data as a result of any failure to be able to assign uniquely such
a trend to the either AP or the cohort terms.

As another example, consider a model with trigonometric age functions of the form

ηx,t = αx + κ
(1)
t + cos (θx)κ (2)

t + sin (θx)κ (3)
t + γt − x (19)

For this model, we can transform the parameters using

{α̂x, κ̂ (1)
t , κ̂ (2)

t , κ̂ (3)
t , γ̂y} = {αx, κ (1)

t ,

κ
(2)
t − a cos (θ t)− b sin (θ t),

κ
(3)
t + a sin (θ t)+ b cos (θ t),

γy + a cos (θy)+ b sin (θy)} 20

This means that periodic patterns are not uniquely identifiable as either AP or cohort effects21.
As with the exponential functions, the presence of unidentifiable trigonometric trends in the

model will be of little practical importance. Whilst the (transformed) data often exhibit periodic

20 Note that this transformation has g(y)= a exp (λy) and therefore dg
dy = λg as per equation (16).

21 Note that this transformation has g(y)= a cos (θy)+ b sin (θy) and therefore d2g
dy2 = −θ2g as per equation (16).
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Parametric or
non-parametric
age functions?

No exact identification issues

Non-parametric

Shape of age
functions?

Parametric

Unidentifiable polynomial
trends of order M+1

Polynomial

Unidentifiable exponential
/ trigonometric trends

Exponential / Trigonometric

No exact identification issues

Neither

Figure 1. Flow chart of identifiability issues in APCmodels.

behaviour in the cohort and period effects, it is rare to see periodic behaviour across ages22. Again,
we do not have the unidentifiable deterministic trends for the model in both the age and period
dimensions and consequently do not experience practical difficulties when fitting the model to
data as a result of any failure to be able to assign uniquely such trends to the either AP or the
cohort terms.

4.3 Other age functions
Other parametric age functions do not admit any additional invariant transformations involving
the cohort parameters, except in the case where they are actually redefined polynomials, exponen-
tials or trigonometric functions. For instance, the third AP term in the Plat model did not generate
any extra interactions with the cohort parameters, beyond those of the reduced Plat model. This
simplifies the identifiability issues of more complex mortality models with different types of age
functions, such as those produced by the “general procedure” of Hunt and Blake (2014), compared
with what would otherwise be necessary, were, for instance, only polynomial age functions to be
used.

4.4 Summary
In summary, issues with the identifiability of APC models relate to functions of year of birth
which can be decomposed into purely AP terms. However, this is only true in models where the
age functions take specific parametric forms – namely, polynomial, exponential and trigonomet-
ric functions. In such models, certain deterministic trends cannot be uniquely allocated between
the AP and cohort terms in the model and so require the imposition of arbitrary identifiabil-
ity constraints in order to uniquely specify the model23. This is summarised in the flow chart in
Figure 1.

5. Projection
In the preceding sections, we have seen that APC mortality models are not fully identified and
that we can impose arbitrary identifiability constraints on the parameters in order to fit them to

22 The lack of periodic structure across ages also explains why trigonometric age functions are not widely used in
practice.

23 As discussed in Appendix B, APC mortality models with non-parametric age functions will not have any additional
transformations that leave the fitted mortality rates exactly unchanged. However, such models may have transformations that
leave the fitted mortality rates approximately unchanged, as discussed in Hunt and Villegas (2015).
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the historical data. Two different modellers using the same data and the same model but differ-
ent arbitrary identification constraints will obtain different sets of parameters, but these will give
identical fitted mortality rates and, therefore, fit to the data.

For the majority of practical purposes, we not only need to fit a mortality model to historical
data but also to use it to project mortality rates into the future. In Hunt and Blake (2020b), we
found that we needed to be careful when doing so in AP mortality models in order to ensure
that the projected mortality rates will not depend on the arbitrary identifiability constraints
imposed when fitting the models to data. The same is true to a greater extent in APC mortal-
ity models. However, the addition of a set of cohort parameters and the presence of unidentifiable
deterministic trends complicate this analysis significantly.

The most obvious change when moving from an AP to an otherwise similar APC mortality
model is the presence of a set of cohort parameters which will also need to be projected into
the future. The period and cohort parameters in the APC model are conceptually different and
need to be treated separately when making projections. This is because cohort effects have very
different demographic significance from the period effects and are treated separately when fit-
ting the model. It is therefore common practice to project the period and cohort parameters
independently.

Some authors (e.g. Haberman and Renshaw (2011)) disagree with this approach, arguing that it
may only be appropriate to do this when the cohort parameters are estimated using the residuals
from the fitted primary AP structure. This means that the cohort structure fitted by the model is
independent of the AP structure by construction. However, such fitting techniques will not give
parameter estimates which maximise the fit to data and can lead to hierarchical issues (because
the cohort parameters are only estimated conditional on the previously fitted estimates of the AP
structure rather than being comensurate with them). We, therefore, have a clear preference for
model fitting techniques where all parameters are estimated together in order to generate the best
fit to the historical data24.

More generally, it is conceivable that events such as influenza pandemics will cause both
an immediate rise in mortality and also lifelong health effects in infants born during the pan-
demic due to selection effects, leading to correlations between extreme period and cohort effects.
However, it is difficult to analyse any dependence structure between the cohort and period
parameters as the cohort parameters will be observed over a longer time period, but potentially
at a lag of some decades. While it is possible that some extreme mortality events may generate
distinctive effects in both the period and cohort parameters, the evidence supporting this conjec-
ture is currently ambiguous (for instance, see Murphy (2009)) and will not generally be relevant
for more typical period and cohort effects. An assumption of independence is, therefore, both
practical and parsimonious.

In order to make projections of future mortality rates, we typically model the period and cohort
parameters as being generated by independent time series processes and use these to project
the parameters stochastically into the future. However, the precise form of the time series pro-
cesses generating the parameters is unknown. Therefore, we analyse the fitted parameters by
statistical methods, such as the Box–Jenkins procedure, to determine which processes from the
autoregressive integrated moving average (ARIMA) family provide the best fit.

Nevertheless, when it comes to projecting mortality rates, we need to recognise that there is
a fundamental symmetry between the processes of estimating a model and projecting it: the for-
mer takes observations to calibrate the model, whilst the latter uses this calibration to produce
projected observations of the future. Due to this symmetry, identification issues which exist when
fitting the model may also yield problems when projecting it. When estimating the model, these

24 For example, in the general procedure of Hunt and Blake (2014), all parameters are re-estimated every time the
structure of the model is changed, in order to ensure a close fit to the data.
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identifiability issues were solved by imposing arbitrary identifiability constraints on the parame-
ters. However, any time series structure that we find in the parameters needs to be independent of
the arbitrary identification scheme used when fitting the model to historical data.

We formalise this by saying that:

Two sets of model parameters, which give identical fitted mortality rates for the past,
should give identical projected mortality rates when projected into the future.

We say that time series processes which satisfy this property are “well-identified”.
In particular, the invariant transformations of the parameters of the model which leave

the fitted mortality rates unchanged should also leave the projected mortality rates unchanged
and, hence, the time series processes used to generate the projected mortality rates unchanged.
Consequently, we should use the same time series processes for all sets of parameters from amodel
which give the same fitted mortality rates. If this is not the case, different processes will be used
for different arbitrary identifiability constraints, giving different projected mortality rates. A well-
identified time series process should be equally appropriate for all equivalent sets of parameters.
To confirm this, we need to check that applying the invariant transformations to the parameters,
which leave the fittedmortality rates unchanged, does not also affect the time series processes used
to project the parameters.

Hunt and Blake (2020b) discussed how the identification issues in the class of APmodels meant
that methods for projecting the period parameters from these models into the future needed to be
chosen with care in order to ensure they are well identified. In general, we argued that we should
choose to project the model using multivariate methods which are as unstructured as possible, i.e.,
we should not impose features such as independence, levels of mean reversion or different orders
of integration on the time series a priori but allow these to emerge during the fitting process.
However, we also saw that, in models with parametric age functions, the AP terms were no longer
interchangeable once we defined their forms in the model. This allowed us to prioritise biological
reasonableness25 over using the same processes for equivalent models, i.e., models giving the same
fitted mortality rates with different definitions of the age functions.

Current practice is to

1. fit the chosen model to data, imposing any arbitrary identifiability constraints needed in
order to specify the parameters uniquely;

2. select time series processes for projecting the parameters based on either using a statisti-
cal method (such as the Box–Jenkins procedure to select the preferred processes from the
ARIMA class of models) or by directly choosing the time series processes to ensure biolog-
ically reasonable projections by making an appeal to the demographic significance of the
parameters.

However, such an approach often leads to projections of mortality rates which are not well identi-
fied. This is because the second step assumes that the parameters found at the first step are known,
rather than merely estimated up to an arbitrary identifiability constraint. This means that current
practice builds the arbitrary identifiability constraint into the projection process, ensuring that the
projected mortality rates are also arbitrary.

To avoid this, we propose to work backwards from our desire for projections which are bio-
logically reasonable and well identified to determine the time series processes we need to use to
achieve these aims. Before fitting the model, we need to conduct a thorough analysis of the iden-
tifiability issues in the chosen model, using the principles established in section 4, to determine
which features of the parameters are set by the data and which are set by the arbitrary identifiabil-
ity constraints. Then, suitable time series processes should be selected to model only the former,

25 Introduced in Cairns et al. (2006) and defined as “a method of reasoning used to establish a causal association (or
relationship) between two factors that is consistent with existing medical knowledge”.
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identifiable features of the parameters, while still allowing for the unidentifiable trends in a way
that guarantees that they do not affect the projection of future mortality rates. By following this
procedure, we can ensure that the time series processes are well identified and that the projected
mortality rates do not depend on the arbitrary choices we make when fitting the model.

In this section, we will first look at the broad set of criteria needed for well-identified projection
methods in general APC mortality models in section 5.1. Section 5.2 looks in more detail at why
current practice can lead to projections which are not well identified and depend on the arbitrary
identifiability constraints chosen in the context of the classic APC model from section 3. We then
revisit the general case of an APC mortality model in section 5.3, in order to determine general
rules for choosing time series processes which are well identified. These are then applied in the
context of the classic APC model again in section 5.4, and it is demonstrated that projected mor-
tality rates are genuinely independent of the choice of arbitrary identifiability constraint. Section
5.5 then applies the general rules in the context of the Plat model from Plat (2009) and section 4.1.1
to see how they work in the context of more sophisticated mortality models with more complex
identifiability issues.

5.1 Projecting general APCmodels
Consider the case of projecting an APCmortality model, which has been fitted using data over the
period [1, T] to give mortality rates at time τ > T. From equation (2), we could write this as

ηx,τ = αx + β�
x κτ + γτ−x

If the model has identifiability issues, then the projected mortality rates should be unchanged
under exactly the same invariant transformations as the fitted mortality rates were, i.e., if we have
an invariant transformation of the form of equation (8), namely

α̂x = αx − a(x)

β̂x = βx
κ̂ t = κ t − k(t)
γ̂y = γy + g(y)

where a(x), k(i)(t) and g(y) satisfy equation (9), in which case

ηx,τ = α̂x + β̂
�
x κ̂τ + γ̂τ−x

The projected κτ (and potentially the γτ−x) will be random variables, whose distribution is a
function of the historical, fitted values, i.e., κτ = Pκ (τ ; {κ}) and γy = Pγ (y; {γ }). We said previ-
ously that we should use the same method of projection for all sets of parameters as a first step
to ensure that the projected mortality rates do not depend upon the identifiability constraints.
However, for different identifiability constraints, these processes will be estimated from different
sets of fitted parameters, e.g., if we use Pκ (τ ; {κ}) to project the untransformed period parameters,
we must use Pκ (τ ; {κ̂}) to project the transformed period parameters. If we combine this with the
invariance of the projected mortality rates, we have

αx + β�
x Pκ (τ ; {κ})+ Pγ (τ − x; {γ })= α̂x + β̂

�
x Pκ (τ ; {κ̂})+ Pγ (τ − x; {γ̂ })

= αx − a(x)+ β�
x Pκ (τ ; {κ − k})+ Pγ (τ − x; {γ + g})

Pγ (τ − x; {γ + g})− Pγ (τ − x; {γ })= a(x)+ β�
x (Pκ (τ ; {κ})− Pκ (τ ; {κ − k}))

Using equation (9), we can eliminate a(x)

Pγ (τ − x; {γ + g})− Pγ (τ − x; {γ })= g(τ − x)+ β�
x (Pκ (τ ; {κ})− Pκ (τ ; {κ − k})− k(τ ))
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In order for this to hold for all τ and x requires
Pκ (τ ; {κ − k})= Pκ (τ ; {κ})− k(τ ) (21)

Pγ (y; {γ + g})= Pγ (y; {γ })+ g(y) (22)
This means that we should obtain the same results if we project the transformed parameters as
if we transform the projected parameters, i.e., the processes of projection and transformation are
commutative. Consequently, we see that, in order for a projection method to be well identified
under the invariant transformation, it needs to preserve the unidentifiable trends in the model,
i.e., Pκ must preserve the trends k(t), and Pγ must preserve the trend g(y). This also means that
it does not matter in which order we perform the processes of projection and transformation,
the distribution of the transformed parameters projected into the future will be identical to the
distribution of the projected parameters which are then transformed.

In addition, since
Var(κτ )=Var(κτ − k(τ ))=Var(κ̂ t)
Var(γy)=Var(γy + g(y))=Var(γ̂y)

we note that the uncertainty of the parameters around the trend at any point in time is identifiable
and so does have a meaning independent of the identifiability constraints imposed. Therefore,
we conclude that, while the deterministic trends may be unidentifiable and not meaningful, the
variation around the trend is of genuine significance, since it is independent of the identifiabil-
ity constraints. Therefore, this variation needs to be projected consistent with our demographic
significance for the parameters and what has been observed in the historical data.

However, the time series processes selected via current practice often do not preserve the
unidentifiable trends in the period and cohort parameters, as we shall now see using the classic
APC model.

5.2 Projecting the classic APCmodel
It has long been known, at least since Osmond (1985), that the lack of identifiability in the classic
APCmodel has important consequences when making projections from the model. Different sets
of arbitrary identifiability constraints are based on different allocations of the linear trends in
the data between the age, period and cohort parameters. The outcome of current practice can
therefore be influenced by the presence or absence of a linear trend in the fitted parameters, despite
this being purely dependent upon the identifiability constraints chosen.

To illustrate this, we consider projecting the classic APC model fitted using four different sets
of identifiability constraints. The fitted mortality rates given using these four sets of constraints
are identical; however, the time series processes found by current practice differ which means
that current practice would give different projected mortality rates in the four different cases.
Consequently, these time series processes are not well identified.

We start by fitting the classic APCmodel to mortality data for the USA fromHumanMortality
Database (2014) for ages 50 to 100 and year 1950 to 2010. As discussed in section 3, a number of
equally valid identifiability constraints can be imposed on this model, which give identical fitted
mortality rates. We consider the following four sets of identifiability constraints:

Case 1:
∑

t κt = 0,
∑

y nyγy = ∑
x,t γt − x = 0 and

∑
y nyγy(y− ȳ)= ∑

x,t γt − x((t − t̄)− (x−
x̄))= 0. This was discussed in section 3 and restricts the cohort parameters to be zero
on average and without any linear trends, consistent with our desired demographic
significance for the cohort parameters.

Case 2:
∑

t κt = 0,
∑

y γy = 0 and
∑

y γy(y− ȳ)= 0. These constraints impose the same demo-
graphic interpretation on the parameters, except that the averages are not weighted by
the number of observations of each cohort.

https://doi.org/10.1017/S1748499520000123 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499520000123


516 Andrew Hunt and David Blake

Table 1. Time series parameters for the period and cohort functions in the classic APC
model fitted using different identifiability constraints.

Case 1 Case 2 Case 3 Case 4

κ2010 −0.3526 −0.3439 −0.3550 −0.3478
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μ −0.0110 −0.0107 −0.0111 −0.0109
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σκ = StDev(εt) 0.0161 0.0161 0.0161 0.0161
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ1950 −0.1459 −0.1125 −0.1422 −0.1530
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ 0.9513 0.9577 0.9499 0.9542
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σγ = StDev(εy) 0.0193 0.0184 0.0193 0.0194

Case 3:
∑

t κt = 0,
∑

x,t γt − x = 0 and
∑

x,t γt − x(x− x̄)= 0. This set of constraints is the same
as imposed on the classic APC model in Cairns et al. (2009), where it was written as
imposing

∑
x (αx − 1

T
∑

t ηx,t)(x− x̄)= 0, i.e., that the static age function, αx, explains
all the linearity across ages in the data.

Case 4:
∑

t κt = 0,
∑

x,t γt − x = 0 and
∑

x,t γt − x(t − t̄)= 0. Similar to Case 3, this set of con-
straints imposes that the period function, κt , accounts for all of the linearity across years
in the data.

The first thing to note is that all of these constraints were developed to give the cohort
parameters the same demographic significance, i.e., that they should be centred on zero and the
other functions in the model should capture any linear trends. Because of this, the fitted parame-
ters in each case are very similar. However, they are not identical, unlike the fitted mortality rates.
We therefore see that demographic significance, whilst helpful in selecting an appropriate set of
identifiability constraints, does not specify a unique set of constraints to use. Model users with
the same interpretation of the parameters can reasonably choose to impose different constraints
and obtain different fitted parameters when using the same model with the same data. The fact
that demographic significance is subjective and, in practice, different model users adopt a range
of interpretations for the different parameters highlights the fact that we must take care to ensure
that any conclusions regarding projected mortality rates are independent of the arbitrary choice
of constraints made when fitting the model, and underscores the extent to which the identifiability
constraints we choose is arbitrary.

Current practice is to take the fitted parameters and then determine which time series processes
to use to project them. This may involve performing a Box–Jenkins analysis on the fitted parame-
ters, as was done in Lee and Carter (1992) and Cairns et al. (2011). Alternatively, current practice
may appeal to the demographic significance assigned to the parameters, as in Plat (2009). Such an
appeal might determine that the period function is non-stationary (as it is primarily responsible
for the evolution of mortality) and, based on the discussion in Hunt and Blake (2020c), that the
cohort parameters are stationary around zero. It might therefore appear reasonable to choose26 to
use a random walk with drift process for κt and an AR(1) (first order autoregressive) process for
γy

κt = κt−1 + μ + εt (23)

γy = ργy−1 + εy (24)

Table 1 shows the fitted parameters for the four cases above using these time series processes.

26 Note that we are not saying that these are the most appropriate time series processes to use for this set of parameters.
We use them for illustrative purposes as they are relatively simple and not atypical of the processes used in practice. However,
it is important to observe that selecting alternative time series processes on a purely statistical basis from the fitted parameters
would not solve the issues we have identified.
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Figure 2. Projectedμ60,t using different sets of identifiability constraints.

For τ − x> 195027, we find

Eηx,τ = αx + κ2010 + (τ − 2010)μ + ρτ−x−1950γ1950 (25)

We can therefore see that, inserting the fitted time series parameters from Table 1 for the four
different cases, we do not find the same expected values for the future mortality rates28. This is
shown in Figure 2. In addition, the variability of the projected parameters depends on σκ , ρ and
σγ . However, ρ and σγ differ between cases, meaning that the variability of projected mortality
rates will also be different for the different cases. These differences in the distribution of projected
mortality rates might be felt to be relatively small, although they will grow with projection time.
However, the most important point is that the differences should not exist at all – the fitted mor-
tality rates for the different cases were identical and so should be the distribution of the projected
mortality rates. We therefore see that the time series processes used above to project the classic
APC model are not well identified.

5.3 Projecting general APCmortality models: revisited
From section 5.1, we note that wemust use the same time series processes to project sets of param-
eters which give identical fitted mortality rates, i.e., if Pγ (y; {γ }) is a suitable process (with time
series parameters estimated from the fitted cohort parameters, {γy}), then Pγ (y; {γ̂ }) is a suitable
process, albeit with time series parameters estimated from the transformed cohort parameters,
{γ̂y = γy + g(y)}.

In practice, we usually describe our projection methods in terms of time series processes rather
than projection functions. However, the two are equivalent, since the projection function is found
by “solving” the difference equation form of the time series. For instance, the AR(1) process has
the difference equation form in equation (24) but has solution

27 That is, for cohort parameters that are projected rather than fitted from historical data, taking into consideration that
cohort parameters for the ten most recent years of birth are not fitted from the data due to insufficient observations.

28 For example,Eη60,2020 = −4.5449 for the Case 1 parameters,−4.5598 for the Case 2 parameters,−4.5459 for the Case
3 parameters and −4.5433 for the Case 4 parameters – a difference in the projected mortality rates of c. 1%.
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Pγ (y; {γ })= ρy−YγY +
y∑

s= Y + 1
ρy−sεs

where Y is the last year of birth for which we fitted the cohort parameters.
The general form of ARIMA difference equations for γy can be written as29

(1− L)d�(L)(γy − �(y))= �(L)εy (26)

where L is the lag operator, d is the order of integration of the process,� and� are polynomials of
order p and q governing the autoregressive andmoving average parts of the process, respectively30,
εy are the innovations and �(y) is a deterministic function of year of birth. Taking unconditional
expectations (i.e. with no conditioning on previous lags of the process), we see that

E
[
γy − �(y)

] = 0 ∀y
and that the function �(y) represents the trend around which the cohort parameters vary.

The invariant transformation of the model in equation (9) adds a deterministic function – the
unidentifiable trend g(y) – to the cohort parameters. However, this deterministic function must
not change the error term, εy, of a well-identified process and so

εy = (1− L)d�−1(L)�(L)(γy − �(y))

= (1− L)d�−1(L)�(L)(γ̂y − �̂(y))

= (1− L)d�−1(L)�(L)(γy + g(y)− �̂(y))

In order to ensure that the variation around the trend, given by the error term, remains unchanged
by the invariant transformation, we require

�̂(y)= �(y)+ g(y)

In this case, the deterministic trend, �(y), has changed under the invariant transformation but not
the variation around the trend.

We stated above that the time series processes being used for the parameters should be equally
applicable for all sets of parameters which give the same fitted mortality rates. This implies that
the form of the deterministic trends should be the same and, therefore, that �̂(y) is of the same
form as �(y). This can only be true if �̂(y), �(y) and g(y) are all of the same form. For instance,
if g(y) is a linear function of year of birth (as in the case of the classic APC model), then �(y) and
�̂(y) must also be linear functions of year of birth and so will not change form under the invariant
transformations of the model.

If we solve equation (26), we see that

γy = Pγ (y; {γ })= �(L)
(1− L)d�(L)

εy + �(y) (27)

In this form, it can also be seen that such time series processes preserve unidentified trends in the
manner discussed in section 5.1

γ̂y = γy + g(y)

= �(L)
(1− L)d�(L)

εy + �(y)+ g(y)

= �(L)
(1− L)d�(L)

εy + �̂(y)

29 For simplicity, we use the cohort function as an illustrative case. The analysis is identical for κ t , however.
30 In order to be stationary, these polynomials have roots with modulus less than unity.
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i.e., the projected parameters after applying the invariant transformation will have the same vari-
ation, �(L)

(1−L)d�(L)εy, but around a different deterministic trend, �̂(y), compared with the original
parameters projected using the same method. The use of the invariant transformations will not
affect our measurement of any coefficients in �(L) or �(L) at the fitting stage. Thus, we also see
that the two ways of looking at the projected parameters, namely, as time series processes and via
projection functions, are equivalent.

As an example, consider the cohort parameters in the classic APC model. From section 3, we
see that, in this model, the cohort parameters have an unidentified constant and linear trend, i.e.
g(y)= b+ c(y− ȳ) from equations (5) and (6). In section 5.2, we said that current practice might
use an AR(1) process for the cohort parameters, which has ARIMA form

(1− ρL)γy = εy

Comparing this with equation (26), we see that current practice assumes that �(y)= 0, which is
not of the same form as g(y) above. Therefore, the time series process changes form when using
an alternative set of parameters γ̂y = γy + g(y) in place of γy,

(1− ρL)γ̂y = (1− ρL)(γy + b+ c(y− ȳ))
= (1− ρL)γy + (1− ρ)(b+ c(y− ȳ))+ ρc
= εy + (1− ρ)(b+ c(y− ȳ))+ ρc
�= εy

and therefore the process is not well identified.
When analysed in this form, however, a solution becomes immediately apparent: we need to

introduce a linear function, �(y)= β0 + β1y, into the AR(1) process to ensure that the process is
well identified, i.e.,

(1− ρL)(γy − β0 − β1y)= εy (28)

Using the alternative parameters γ̂y would produce

(1− ρL)(γ̂y − β̂0 − β̂1y)= (1− ρL)(γy + b+ c(y− ȳ)− β̂0 − β̂1y)
= (1− ρL)(γy − β0 − β1y)
= εy

if β̂0 = β0 − b− cȳ and β̂1 = β1 − c. Therefore, the form of equation (28) does not change under
the invariant transformations of the classic APC model, and we conclude that this time series
process is well identified. Again, we also see that the variation around the linear trend, given by
εy, is unchanged by the invariant transformation, whilst the unidentifiable trend is affected by the
invariant transformation.

The time series process in equation (28) has been suggested previously for the cohort param-
eters in Cairns et al. (2009) where it was referred to as the “AR(1) process around a linear drift”.
However, in Cairns et al. (2009), it was not used for the classic APC model, nor was it selected for
being well identified, but rather on the grounds of fitting the observed cohort parameters well.

The AR(1) around linear drift process is solved to give

Pγ (y; {γ })= ρy−Y (γY − β0 − β1Y)+ β0 + β1y+
y∑

s= Y + 1
ρy−sεs

We can also verify, by substituting the forms for γ̂y, β̂0 and β̂1 found above, that this process also
satisfies the requirement of equation (22) in section 5.1, namely

Pγ (y; {γ̂ })= Pγ (y; {γ })+ a+ b(y− ȳ)
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Hence, projecting the transformed cohort parameters gives us the same results as transforming
the projected cohort parameters.

Returning to the form of the time series process in equation (26), it is common to write this in
an alternative, but equivalent form

(1− L)d�(L)γy − (1− L)d�(L)�(y)= �(L)εy
(1− L)d�(L)γy = ξ (y)+ �(L)εy (29)

where ξ (y) is a deterministic function of y and �(y) solves the difference equation

(1− L)d�(L)�(y)= ξ (y) (30)
In this form, ξ (y) is often referred to as the “drift”. Knowing the form that �(y) must take (i.e. the
same form as g(y) from the unidentifiable trends in the model in equation (8)), we can therefore
specify the correct form of ξ (y).

As an example of this, consider the classic APCmodel again, but, this time, consider the period
parameters. We know from section 3 that the period parameters have an unidentified linear trend
in much the same way as the cohort parameters, i.e., k(t)= a− c(t − t̄) if we rewrite equations
(4) and (6) using the notation of equation (9). Random walk processes are often used for the
period parameters, i.e., we assume d = 1 and �(L)= �(L)= 1. It is then important to specify the
correct form for the drift ξ (t). Based on similar arguments to the ones used above for the cohort
parameters, we should look for time series processes of the form

(1− L)(κt − ν0 − ν1t)= εt

which has a linear trend K(t)= ν0 + ν1t. To obtain a well-identified time series of the form of
equation (29), we need the drift, ξ (t), of the random walk to satisfy

ξ (t)= (1− L)(ν0 + ν1t)
= ν0 + ν1t − ν0 − ν1(t − 1)
= ν1

i.e., the drift is constant. This shows that the random walk with drift is well identified for the
period parameters in the classic APC model.

We can also verify this directly, since
εt = κt − κt−1 − μ

= κ̂t − a+ c(t − t̄)− κ̂t−1 + a− c(t − 1− t̄)− μ

= κ̂t − κ̂t−1 − μ̂

if μ̂ = μ − c. Thus, the transformed period parameters, κ̂t , follow a random walk with drift if the
original period parameters do. However, the value of the drift, which determines the unidentifiable
linear trend, will change under the invariant transformation, although the innovations, εt , which
determine the variability around this drift do not.

In summary, we have the following procedure for selecting a well-identified time series process
for any specific APC mortality model.

1. Determine the identifiability issues in the specific APC model by finding the unidentifiable
deterministic trends for the parameters which cannot be assigned between the different AP
and cohort terms in the specific model. This will need to be done prior to the fitting stage in
order to fit the model robustly to data.

2. Specify a time series process for the variation around these trends. This can either be done by
analysing this variation using statistical techniques, or by selecting a process which accords
with our demographic significance for the parameters. Doing so will set the form of �(L)
and �(L), which determine the stochastic structure of the ARIMA process.
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Table 2. Time series parameters for different identifiability constraints.

Case 1 Case 2 Case 3 Case 4

γ1950 −0.1459 −0.1125 −0.1422 −0.1530
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β0 0.1388 0.1852 0.1388 0.1388
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β1 −0.0053 −0.0056 −0.0052 −0.0055
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ 0.9636 0.9636 0.9636 0.9636
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σγ = StDev(εy) 0.0184 0.0184 0.0184 0.0184

3. Specify the deterministic trends, �(y), in the time series process in equation (26), which will
need to be of the same form as g(y). Equivalently, this can be achieved by finding a drift
function, ξ (y), in the alternative form of the time series process in equation (29), with the
requirement that (1− L)d�(L)�(y)= ξ (y).

It is important to recognise that this procedure works backwards from the variation around
the trends in the parameters, which is independent of the identifiability constraints and then
adds back in the unidentifiable trends which will depend upon the specific set of identifiability
constraints we use when fitting themodel. In this fashion, we can ensure that the projected param-
eters are both well identified and possess our desired demographic significance when specifying a
suitable form for the time series process.

5.4 Projecting the classic APCmodel: revisited
In section 5.2, it was demonstrated that the current practice approach to selecting time series
processes for the period and cohort parameters in the classic APC model yielded projections
of mortality rates which depended upon arbitrary choices made when fitting the model. In sec-
tion 5.3, we then showed that the issue in this case was not the use of the random walk with drift
for the period parameters, but the selection of an AR(1) process, rather than an AR(1) process
around a linear drift for the cohort parameters.

If we use the AR(1) around linear drift process for the cohort parameters for the four cases
discussed in section 5.2, we obtain the time series parameters in Table 2.

As previously mentioned in section 5.2, ρ and σγ control the variation of projected cohort
parameters. It is, consequently, important to see that these parameters do not change in the four
different cases using the well-identified time series processes. The variability of projectedmortality
rates will be identical in each of the four cases. Using the AR(1) around linear drift process, we
also find

Eηx,τ = αx + κ2010 + (τ − 2010)μ
+ ρτ−x−1950(γ1950 − β0 − β1 × 1950)+ β0 + β1 × (τ − x) (31)

From the results of section 5.3, we can see that if we transform the parameters of the classic APC
model using the transformation in equations (4), (5) and (6), and then project them using well-
identified time series processes, we obtain

α̂x = αx − a− b+ c(x− x̄)

Eκ̂τ = κ̂2010 + μ̂(τ − 2010)

= κ2010 + a− c(2010− t̄)+ (μ − c)(τ − 2010)

= κ2010 + a− c(τ − t̄)+ μ(τ − 2010)
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Eγ̂τ−x = ρτ−x−1950(γ̂1950 − β̂0 − β̂1 × 1950)+ β̂0 + β̂1 × (τ − x)

= ρτ−x−1950(γ1950 + b+ c(1950− x− ȳ)− β0 − b− cȳ− (β1 + c)× 1950)

+ β0 + b+ cȳ+ (β1 + c)× (τ − x)

= ρτ−x−1950(γ1950 − β0 − β1 × 1950)

+ β0 + β1(τ − x)+ c(τ − x− ȳ)

Hence, the expectation of ηx,t in equation (31), after applying the invariant transformations,
becomes

Eη̂x,τ = α̂x + κ̂2010 + (τ − 2010)μ̂

+ ρτ−x−1950(γ̂1950 − β̂0 − β̂1 × 1950)+ β̂0 + β̂1 × (τ − x)

= αx − a− b+ c(x− x̄)+ κ2010 + a− c(τ − t̄)+ μ(τ − 2010)

+ ρτ−x−1950(γ1950 − β0 − β1 × 1950)

+ β0 + β1(τ − x)+ c(τ − x− ȳ)

= αx + κ2010 + (τ − 2010)μ

+ ρτ−x−1950(γ1950 − β0 − β1 × 1950)+ β0 + β1 × (τ − x)

=Eηx,τ

We can therefore see how changes in the linear drift of the period functions between the differ-
ent cases cancel with the changes in the linear drift in the cohort functions to give exactly the
same expected projected mortality rates in all four cases31. We, therefore, see in practice what
was derived theoretically in section 5.3, namely that using a random walk with drift process for
the period parameters and an AR(1) around linear drift process for the cohort parameters gives
well-identified projections for the classic APC model, and so the projected mortality rates which
do not depend upon the identifiability constraints imposed.

Projections using an AR(1) process around a linear drift might be felt to conflict with our
desired demographic significance for the cohort parameters, i.e., that they should exhibit no
long-term trends. However, demographic significance is subjective and so should not be used to
override a greater concern that the projected mortality rates do not depend upon the arbitrary
identifiability constraints. Fortunately, there are methods for obtaining well-identified projec-
tions of the cohort parameters which do conform to our desired demographic significance of
trendlessness.

In order to lack trends, the drift coefficients of the process, β0 and β1, should be zero. Looking
again at Table 2, one might think that the values of β0 and β1 are quite small and therefore be
tempted to test them statistically with a view to setting them to zero. This, however, would be a
mistake. As shown in section 5.3, the values of β0 and β1 change under the invariant transfor-
mations of the classic APC model and, therefore, will depend upon the identifiability constraints
chosen. Consequently, the results of any statistical analysis of their significance will also depend
upon the arbitrary identifiability constraints, which is not desirable.

The reason that β0 and β1 are “small” is because we have imposed this via the identifiability
constraints. All four sets of identifiability constraints were chosen to set the level of the cohort
parameters to be around zero and to have no linear trends over the whole range of the data.
Therefore, we would expect to find low values of β0 and β1, which control the level and drift
to which the process mean-reverts. We could have chosen other, equally reasonable constraints

31 For example, in all four cases Eη60,2020 = −4.6413.
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based on alternative subjective interpretations of the demographic significance of the period and
cohort parameters which would have resulted in far larger values of β0 and β1 and given exactly the
same fitted and projected mortality rates. We therefore see that whether or not these parameters
are “small”, and consequently whether or not they pass a statistical test of their significance, is
solely dependent upon the arbitrary identifiability constraints we have chosen.

The four cases in section 5.2 were motivated by the same desired demographic significance
for the cohort parameters – that they should be centred around zero and not have any linear
trends. However, the four different cases used four different interpretations of these subjective
requirements and therefore arrived at four different interpretations of what it means to be centred
around zero and trendless. These different interpretations resulted in the four different sets of
identifiability constraints. Using an AR(1) around linear drift process to project the cohort func-
tions introduces a fifth interpretation for the meaning of being centred around zero and having
no linear drift, in this case, that the time series parameters β0 and β1 are equal to zero. Therefore,
we could use another set of parameters with the identifiability constraints

Case 5:
∑

t κt = 0, β0 = 0 and β1 = 0

This set of constraints gives identical fitted and projected mortality rates to the other cases but
gives projected cohort parameters which mean-revert around zero, which accords better with our
demographic significance. However, the restrictions in Case 5 cannot be known at the time of
fitting the model to data, since the appropriate time series process that will be used to project the
cohort parameters cannot be known at that stage. To use this set of constraints, we need to do the
following:

1. fit the model to data, applying some convenient set of identifiability constraints which can
be known in advance of analysing the time series structure of the parameters, e.g., those in
Case 1;

2. estimate values for β0 and β1 for these historical parameters by fitting the AR(1) around a
linear drift process in equation (28) to them;

3. use these estimated values for β0 and β1 in the transformations in equations (5) and (6) to
obtain a new set of (equivalent) age, period and cohort parameters.

The period and cohort parameters for Case 5, compared with those for Case 1, are shown in
Figure 3. Using the Case 5 parameters may appear unnatural as the cohort parameters in this case
appear to possess a linear trend. However, when we project using the well-identified AR(1) around
linear drift process, we find no linear drift in these parameters, merely mean reversion to a level
of zero, which fits well with the demographic significance for the cohort parameters discussed in
Hunt and Blake (2020c).

5.5 Projecting the Plat model
We will now use this analysis to specify a set of well-identified projection processes for the Plat
model discussed in section 4.1.1. As described in that section, the invariant transformations of the
model can be written in the form of equation (9) with

α̂x = αx − a1 − a2 − a3 − b+ c(x− x̄)− d(x− x̄)2 = αx − a(x)
κ̂
(1)
t = κ

(1)
t + a1 − c(t − t̄)− d(t − t̄)2 = κ

(1)
t − k(1)(t)

κ̂
(2)
t = κ

(2)
t + a2 + 2d(t − t̄) = κ

(2)
t − k(2)(t)

κ̂
(3)
t = κ

(3)
t + a3 = κ

(3)
t − k(3)(t)

γ̂y = γy + b+ c(y− ȳ)+ d(y− ȳ)2 = γy + g(y)

by composing the transformations in equations (4) (for each period function), (5), (6) and (13).
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Figure 3. Projecting the parameters of the classic APC model: Cases 1 and 5. (a) Period parameters κt . (b) Cohort parame-
ters γy .

Starting with the cohort parameters, wemay wish to retain the demographic interpretation that
they should be stationary and mean reverting and so wish to use an AR(1) structure. However,
from the discussion in section 5.3 and the observation that g(y) is quadratic for the Plat model,
we therefore require that �(y) in equation (26) is quadratic. In order to give well-identified pro-
jections, we would therefore project the cohort parameters using an AR(1) around quadratic drift
process, i.e.,

(1− ρL)(γy − β0 − β1y− β2y2)= εy (32)

Simple insertion of γ̂y = γy + g(y) into this shows that it does not change structure under the
invariant transformation and so is well identified. In principle, we could then decide to switch
to an equivalent set of parameters with the constraints β0 = β1 = β2 = 0 in the same manner as
for the classic APC model. This may be desirable as it gives projected cohort parameters which
mean-revert around zero, in line with our demographic significance. In addition, when more
complicated methods are used to project the cohort parameters, it might be felt to simplify the
process of projection32.

For the period parameters, we may wish to use a random walk with drift structure as we did
for the classic APC model on the demographic interpretation that the period functions should be
non-stationary. This would be written as

(1− L)κ t = ξ (t)+ εt (33)

where κ =
(
κ
(1)
t , κ (2)

t , κ (3)
t

)�
as discussed in section 2 and similarly for ξ (t) and εt .

Using this notation, we can group the transformations of the period functions as

κ̂ t = κ t +
⎛
⎜⎝
a1 + ct̄ − dt̄2

a2
a3

⎞
⎟⎠ +

⎛
⎜⎝

−c+ 2dt̄
2d
0

⎞
⎟⎠ t +

⎛
⎜⎝

−d
0
0

⎞
⎟⎠ t2

= κ t + k0 + k1t + k2t2

32 For an example where this is the case, see Hunt and Blake (2020a).
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In section 5.3, we showed that in order to ensure identifiability, we needed

ξ (t)= (1− L)(k0 + k1t + k2t2)
= k0 + k1t + k2t2 − k0 − k1(t − 1)+ k2(t − 1)2

= k1 − k2 + 2k2t

=
⎛
⎝−c+ 2dt̄ + d

2d
0

⎞
⎠ + 2

⎛
⎝−d

0
0

⎞
⎠ t

Therefore, we see that, in order for the Plat model to have well-identified projections, we require a
constant drift component for κ

(2)
t (i.e. ξ (2)(t)= μ

(2)
0 , a constant) and a linear drift component for

κ
(1)
t (i.e. ξ (1)(t)= μ

(1)
0 + μ

(1)
1 t, a linear function of time). This can be written as

κ t = κ t−1 + μXt + εt (34)

where

μ =
⎛
⎜⎝

μ
(1)
0 μ

(1)
t

μ
(2)
0 0
0 0

⎞
⎟⎠

and Xt =
(
1, t

)�. We can see that this form of the random walk with drift process extends
naturally to allow for other unidentifiable trends by choosing the “trend” matrix, Xt , and cor-
responding “drift” matrix, μ, appropriately. The need to use a random walk with linear drift is
often overlooked, for instance in Plat (2009) and Börger et al. (2013) (who used a model which
nests the reduced Plat model).

We also see that different drifts are required for different period functions in order to give
well-identified projections of mortality rates. This runs counter to the desire to treat all the period
functions the same, as discussed in Hunt and Blake (2020b). However, using the same drifts for
all the period functions can give projections which are not biologically reasonable. For exam-
ple, allowing for a quadratic trend in κ

(3)
t can result in apparent changes in trend which are

inconsistent with the historical data. In Hunt and Blake (2020b), we also found that we can treat
different period functions differently in models with parametric age functions, because there were
no invariant transformations of the model which could be used to interchange the AP terms. It
may, therefore, be preferable to allow for different drifts in different period functions in the Plat
(2009) model to obtain well-identified projected mortality rates which are also biologically rea-
sonable33. We should, therefore, be prepared to override the desire to treat the period functions
identically if the alternative is to put biological reasonableness at stake.

5.6 Summary
APCmortality models which have unidentifiable trends at the fitting stage require extra care when
projected to ensure that the projections do not depend on the identifiability constraints chosen. In
general, we find that the projection method used must preserve whatever trends were unidentifi-
able at the fitting stage. For example, the processes which were well identified for the classic APC
model discussed in section 5.4 preserved linear trends, which were shown to be unidentifiable in
section 3.

33 Using different drifts for the different period functions will mean, however, that time series processes will be required
for equivalent models.
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Such an approach generalises naturally for more complicated mortality models, such as the
Plat model discussed in sections 4.1.1 and 5.5. However, models with higher order polyno-
mial age functions have higher order unidentifiable trends (as shown in section 4.1) and so
require projection processes which allow for these trends. This may cause problems for long-term
projections.

For example, consider the model

ηx,t = αx + κ
(1)
t + (x− x̄)κ (2)

t + ((x− x̄)2 − σx)κ (3)
t + γt − x (35)

which extends model M7 of Cairns et al. (2009) with a static age function (as was done in
Haberman and Renshaw (2011)). We can see that a model of this form possesses age functions
which span the polynomials to quadratic order. From section 4.1, we know, without performing
any additional analysis, that it has unidentifiable cubic trends in both the cohort parameters and
κ
(1)
t which will need to be allowed for in projection. However small they may be in the historical
data, these cubic trends will eventually come to dominate the long-term evolution of mortality
rates, potentially yielding projected mortality rates which lack biological reasonableness due to
apparent changes in trend.

Consequently, it may be prudent to avoid unidentifiable cubic (and higher) order polynomial
trends in an APC mortality model. Such trends arise when we use more complicated models with
higher order polynomial age functions. It is therefore useful, when selecting such models, to have
a larger “toolkit” of age functions for use in the models than simply extending existing models
by using higher order polynomial terms. Hunt and Blake (2014) proposed such a toolkit, which
allows for more complicated mortality models that do not suffer from excessive identifiability
issues and can give biologically reasonable, well-identified projections of mortality rates, as shown
in Hunt and Blake (2020a), (2015).

6. Conclusions
In Hunt and Blake (2020b), we saw how AP mortality models are not fully identified and that in
order to identify these models, most users impose additional arbitrary identifiability constraints
on them when fitting the models to data. Some APC mortality models have extra identifiability
constraints, caused by the collinearity between age, period and cohort, which are unlike anything
found in similar APmodels. These depend upon the form of the age functions in the model and so
are specific to individual models. The identifiability issues involve deterministic trends which can-
not be uniquely allocated between the age, period or cohort terms and so an arbitrary allocation
must be made via additional arbitrary identifiability constraints. The nature of the unidentifiable
trends present in specific models are summarised in Figure 1.

These unidentifiable deterministic trends have important consequences when we come to
project the model. We must first determine the identifiability issues in the specific model we are
using, in order to find which deterministic trends are unidentifiable. When this is done, we can
specify suitable time series processes for the variation around these trends. Only by doing this
can we ensure that our projected mortality rates are independent of the arbitrary identifiability
constraints imposed when fitting the model.

By understanding these identifiability issues, however, we can build more complex mortality
models, for instance, via the “general procedure” of Hunt and Blake (2014), and be confident
that they are founded on a secure knowledge of the underlying mathematical structure of APC
mortality models. We are also able to use more sophisticated time series projection methods, as in
Hunt and Blake (2020a) and Hunt and Blake (2015), knowing that our projections are free from
dependence on the arbitrary choices we made when fitting the model to data.
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Appendix
A. Identifiability in APC Models With Non-Parametric Age Functions
In discussing whether a model with non-parametric age functions has any additional issues with
identifiability when a cohort term is added, it is useful to begin with a recap of some of the notation
used and results from Hunt and Blake (2020b).

A.1 Identifiability in APmodels
In Hunt and Blake (2020b), we found that it was helpful to write equation (1) in matrix form as

H = α1�
T + βκ (A.1)

where
• H is the (X × T) matrix of transformed data (i.e. H = {ηx,t}),
• α is a (X × 1) matrix of the static age function,
• 1T is a (T × 1) matrix of ones, and
• β and κ are the (X ×N) and (N × T) matrices of age and period functions constructed above,

respectively.

When expressed in this form, AP models can be analysed through the prism of matrix algebra
and linear mathematics. We can then see that there is a lack of identifiability in the model which
allowed us to perform certain transformations on the parameters given in equations (A.2) and
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(A.3) without affecting the fitted mortality rates

{α̂, β̂ , κ̂} = {α, βA−1,Aκ} (A.2)

{α̂, β̂ , κ̂} = {α − βB, β , κ + B1�
T } (A.3)

These invariant transformations can be used to impose additional arbitrary identifiability con-
straints to set the “level” and “normalisation” of the AP terms and potentially to orthogonalise
them34. These freedoms allowed us to impose our desired demographic significance on the
parameters, but meant that care had to be taken to ensure that projections from the model were
identifiable, i.e., were independent of our arbitrary identifiability constraints. In Hunt and Blake
(2020b), we also found that our treatment of the identification issues was subtly different depend-
ing on whether the model had parametric or non-parametric age functions, as by defining the age
functions a priori, we were unable to use the transformations in equation (A.2) without altering
the age functions and therefore fundamentally changing the model.

A.2 Identifiability in APCmodels
Equation (A.1) can be extended to allow for cohort effects

H = α1�
T + βκ + γ (A.4)

where γ is an (X × T) Toeplitz matrix, i.e., a matrix where the diagonal elements are constant. It
is clear that the transformations in equations (A.2) and (A.3) are still invariant transformations of
equation (A.4), and therefore, the conclusions of Hunt and Blake (2020b) are still applicable in the
wider context of APC mortality models. Indeed, the transformation in equation (4) of the classic
APC model is simply the transformation in equation (A.3) applied to this specific model.

Generalising equation (5) in this context, we can see that the transformation

{α̂, β̂ , κ̂ , γ̂ } = {α − c1X , β , κ , γ + c1X1�
T } (A.5)

is common to all APC models of the form in equation (A.4) (where 1X has a similar definition as
1T above). This transformation was also discussed (using alternative notation) in section 4. This
allows us to set the level of the cohort parameters – typically to be around zero to impose the
demographic significance discussed in Hunt and Blake (2020c).

To generalise the transformation in equation (6) for more complicated invariant transforma-
tions, if we can find a Toeplitz matrix � such that35

� = a1�
T + βk (A.6)

(with a an (X × 1) matrix and k an (N × T) matrix), we then have the transformation

{α̂, β̂ , κ̂ , γ̂ } = {α − a, β , κ − k, γ + �} (A.7)

In the case of the classic APC model, we have β = 1X and so can find a Toeplitz matrix � =
c(1XT� − X1�

T ) where X is the (X × 1) column vector Xi = {i− x̄} where i runs from 1 to X (and
similarly for T).

Theorem 3. There are no invariant transformations of general APC mortality models with non-
parametric age functions, i.e., no such A, k and � exist unless a specific shape for β is assumed in the
model.

34 In the sense of ensuring that
∑

x β
(i)
x β

(j)
x = 0 and

∑
t κ

(i)
t κ

(j)
t = 0 for i �= j.

35We actually require the more general statement that � = a1�
T + bk with b a (X ×N) matrix such that β = bA, i.e.,

the columns of b lie within the span of the columns of β . However, without loss of generality, we define k̃=Ak to obtain the
result shown.
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Sketch of Proof . Consider the general term a1�
T + βk, which is analogous to the predictor structure

of an APmortality model. As we argue in Hunt and Blake (2020b), this has dimension X +N(X +
T)−N(N + 1), i.e., the X parameters in a, the NX parameters in β and the NT in k reduced by
the N(N + 1) degrees of freedom in the transformations in equations (A.2) and (A.3).

In contrast, in the general case, � has dimension X + T − 1, i.e., one degree of freedom for
each diagonal. For equation (A.6) to be true, these matrices must have the same dimension and
therefore

X +N(X + T)−N(N + 1)= X + T − 1
N2 +N(1− X − T)+ T − 1= 0 (A.8)

However, N, X and T are integers, set by the structure of the model and the range of the data, and
therefore equation (A.8) will not generally be true. Hence, equation (A.7) will not be an invariant
transformation of a general APC mortality model with non-parametric age functions.

The argument used in this proof relies on a1�
T + βk being of full rank and therefore breaks

down if β is of lower dimension than themaximum possible. However, this is equivalent to impos-
ing a parametric form on the age functions, and accordingly, the line of reasoning above is not
possible in the general case.

Therefore, general non-parametric APC mortality models do not possess any other invariant
transformations apart from the ones in equations (A.2), (A.3) and (A.5). They require only identi-
fiability constraints which set the normalisation scheme of the age functions, impose orthogonality
between the age and period functions (both using the transformation in (A.2)), set the levels of
the period functions κ

(i)
t using equation (A.3), and the level of the cohort parameters γt − x using

equation (A.5). �
For instance, we see that for the H1 model of Haberman and Renshaw (2009) and Hunt and

Villegas (2015),

ηx,t = αx + βxκt + γt − x (A.9)

we cannot find an invariant transformation of the parameters similar to that in equation (6). This
is because of the lack of shape in either age or period in the βxκt term which can be used to
decompose the cohort term. However, this model does possess an “approximate” identifiability
constraint, which leaves the fitted mortality rates almost unchanged in the majority of cases. This
is caused by κt often having a form that is close being parametric, which is discussed in detail in
Hunt and Villegas (2015).

Some, especially demographers, have argued that all cohort effects are simply misspecified AP
effects and are best modelled as such36. Although this may be true in a strictly mathematical sense,
a large number of AP terms are required to replicate any general cohort term in the model. It is
therefore more parsimonious to include a set of cohort parameters rather than multiple AP terms.
This, again, is similar to the argument in Wilmoth (1990), which states that it is plausible and
parsimonious to include a single set of cohort parameters rather than an excessive number of AP
terms which achieve the same effect.

Some data sets may show little or no structure across years of birth, in which case the decision to
include a cohort term becomes one decided on the basis of the demographic and statistical signif-
icance of the parameters for that data set. Such a decision can be made only after all significant AP
terms have been identified.We therefore recommend a procedure, such as the “general procedure”
in Hunt and Blake (2014), which only adds such a term when justified by the data.

36 For instance, Cairns et al. (2011) raised “the possibility that cohort effects might be partially or completely replaced
by well-chosen age and period effects” and also see Murphy (2010)
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B. Models Without a Static Age Function
As we discussed in Hunt and Blake (2020c), a number of APC mortality models have been pro-
posed which do not have an explicit static age function, αx, the most prominent of which being
the extensions of the Cairns-Blake-Dowd (CBD) model in Cairns et al. (2009). If the model does
not have an explicit static age function, the age functions in the model must be parametric and
therefore known in advance of fitting the model to data. The structure of the APC model in this
case is therefore

ηx,t =
N∑

i= 1
f (i)(x)κ (i)

t + γt − x

The identifiability issues in such models can be considered in the same fashion as in section 4.
In particular, we noted in section 4.2 that the invariant transformations of models with exponen-
tial or trigonometric age functions did not involve the static age function and therefore are also
applicable in models without one.

The invariant transformations of models with polynomial age functions, in contrast, did
involve the static age function explicitly. The proof of Theorem 1 involves expanding a polyno-
mial function of year of birth, g(y), into polynomial terms in x and t and then combining these
in the appropriate AP terms. In particular, the term in this expansion with no t dependence was
combined into the static age function. This is seen most clearly in the transformation in equation
(6), but also in the transformation in equation (13) for the Plat model.

However, we can see that the lack of a static age function to absorb this term in the expansion
of g(y) is not an insurmountable problem as long as there is an AP term with the appropriate age
function. This means that if g(y) is a polynomial of order M, we must have age functions in the
model up to order M as well. This contrasts with models with a static age function, which only
require age functions up to orderM − 1.

Theorem 4. APC mortality models with no static age function and age functions spanning the poly-
nomials to order M possess invariant transformations which add a polynomial of order M to the
cohort function.

Sketch of Proof . The proof is similar to that of Theorem 1. Take g(y), a general polynomial of order
M, and expand as a function of x and t. This can then be regrouped into an equivalent form that
corresponds to the AP terms in the model, in order to see how g(y) can be absorbed into the AP
structure

g(y)=
M∑

n= 0
anyn

⇒ g(t − x)=
M∑

n= 0
an(t − x)n

=
M∑

n= 0
an

n∑
m= 0

( n
m

)
tm(− x)n−m

=
M∑

n= 0

n∑
l= 0

an
(n
l

)
tn−l(− x)l

=
M∑
l= 0

(− x)l
M∑

n= l
an

(n
l

)
tn−l
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=
M∑
l= 0

(− 1)lf (l)(x)
M∑

n= l
an

(n
l

)
tn−l

=
M∑
l= 0

f (l)(x)k(l)(t)

which is of the form of equation (9) if the age functions in the model are of the form f (j)(x)= xj
of j= 0, 1, . . .M. �

To see this in practice, consider model M6 of Cairns et al. (2009)

ηx,t = κ
(1)
t + (x− x̄)κ (2)

t + γt − x (B.1)

and compare it with the reduced Plat model of equation (12) in section 4.1.1. For the reduced
Plat model, we saw that the transformation in equation (13) was invariant, and involved adding
a quadratic function of year of birth to the cohort parameters, with adjustments to κ

(1)
t , κ (2)

t and
the static age function αx. For model M6, this transformation is not permitted, as there is no
static age function to adjust in this model. Instead, the model only has the simpler linear invariant
transformation

{κ̂ (1)
t , κ̂ (2)

t , γ̂y} = {κ (1)
t − c(t − t̄), κ (2)

t − c, γy − c(y− ȳ)} (B.2)

We can also see this using the analysis of Hunt and Blake (2020c), where it was shown that models
without a static age function can be written as though they do have one of a specific, parametric
form that has been combined with the other AP terms in the model. In the case of model M6, we
see that this implies a static age function which is a linear function of age, which then could not
be used to absorb a quadratic age term coming from the addition of a quadratic function of year
of birth to the cohort parameters. Consequently, there is a trade-off: models without a static age
function have simpler identifiability issues than (otherwise similar) models possessing one but are
unable to provide a good fit to mortality data across the full age range, as discussed in Hunt and
Blake (2020c).

C. Maximal Invariants
An alternative approach to using an arbitrary identification scheme was suggested by Kuang et al.
(2008a, b) and Nielsen and Nielsen (2014) for the classic APCmodel. This is to change the param-
eterisation of the model to an equivalent form with reduced dimensionality which does not suffer
from identifiability issues. The new parameters are known as “maximal invariant” parameters,
since they are the set with the largest number of parameters (i.e. are “maximal”), and are injective37
and give the same fitted mortality rates as the original model in equation (1) (i.e. the reparame-
terisation is “invariant”). We can think of this as finding a parameterisation of the model which
gives the same fit to data, but where every possible degree of freedom in the model is fully utilised
in fitting the data.

Kuang et al. (2008b) and Nielsen and Nielsen (2014) proposed an approach to generating a
maximally invariant parameterisation for the classic APC model based on finding the second dif-
ferences of the age, period and cohort terms. These second differences do not change under the
invariant transformations of the model and so have a meaning independent of the identifiability
constraints. In this appendix, we review this approach and discuss how it can be extended to deal
with the identifiability issues in some of the more complex APC mortality models. However, we

37 A transformation is injective if different points in the domain get mapped to different points in the image of the
transformation.

https://doi.org/10.1017/S1748499520000123 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499520000123


Annals of Actuarial Science 533

also find that it suffers from a number of limitations which make it unsuitable for many APC
models and which can cause projections to be biologically unreasonable.

First, the age, period and cohort functions in the classic APC model are expanded as telescopic
sums in terms of their second differences, i.e.,

αx = αX −
X∑

i= x+1
�αi

= αX −
X∑

i= x+1

⎛
⎝�αX −

X∑
j= i+ 1

�2αj

⎞
⎠

= αX − (X − x)�αX +
X∑

i= x+1

X∑
j= i+ 1

�2αj

κt = κ1 + (t − 1)�κ2 +
t∑

i= 2

t∑
j= 3

�2κj

γy = γ1−X + (y− 1+ X)�γ2−X +
y∑

i= 2−X

y∑
j= 3− X

�2γj

In the case of the age function, αx, we work backwards from αX due to the negative dependence of
cohort on age. However, it is important to note that this expansion has not changed the number
of parameters in the model, merely written them in a new form. This, of itself, will not solve the
identifiability issues. However, Kuang et al. (2008b) and Nielsen and Nielsen (2014) then substi-
tuted the second difference expansions of the parameters into the classic APC model and group
the deterministic terms together

ηx,t = a0 + (X − x)a1 + (t − 1)b1 +
X∑

i= x+1

X∑
j= i+ 1

�2αj +
t∑

i= 2

i∑
j= 3

�2κj +
t−x∑

i= 2−X

i∑
j= 3− X

�2γj

(C.1)
where

a0 = αX + κ1 + γ1−X
a1 = �γ2−X − �αX
b1 = �κ2 + �γ2−X

In Kuang et al. (2008b) and Nielsen and Nielsen (2014), these new parameters were introduced
by considering three points of the fitted mortality surface. The most important point about the
procedure is that it replaces six parameters in the original parameterisation with only three in the
maximally invariant parameterisation. The maximally invariant parameterisation therefore con-
tains 3+ (X − 2)+ (T − 2)+ (T + X − 3)= 2X + 2T − 4 free parameters. This compares with
2X + 2T − 1 parameters and the three additional identifiability constraints required by the three
invariant transformations – equations (4), (5) and (6) – for the original parameterisation of the
classic APC model. Hence, the maximally invariant parameterisation gives the same fitted mor-
tality rates with the same number of effective parameters but without the over-parameterisation
and consequent need for identifiability constraints in the original formulation of the model.

However, by doing this, we have lost much of the demographic significance associated with
the original parameters in the classic APC model. For example, whilst αx in the original param-
eterisation of the classic APC model relates to an age effect specific to age x, �2αx relates to the
curvature of the mortality curve in the age dimension at age x and will impact mortality rates
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Figure 4. Second differences from the classic APCmodel. (a)�2κt .(b)�2γy .

at all ages below x. It is therefore harder to explain its demographic significance to other model
users or develop an intuition about what values are reasonable in order to check the validity of the
model. Although demographic significance is subjective, it is still not desirable to lose it if it can
be avoided. This may restrict the usefulness of the maximally invariant approach.

In order to project the model into the future, we need to analyse the�2κt and�2γy parameters
as time series. These are shown in Figure 4 for the same data set as used in section 5.2. As can
be seen38, these parameters appear to be stationary and so it is natural to project them using a
stationary time series process.

If we were to “integrate up” the double differences to recover our original κt and γy parameters,
these would both be I(2) processes. This conflicts with the demographic significance for the cohort
parameters discussed inHunt and Blake (2020c). I(2) processes are also not likely to be biologically
reasonable, as the uncertainty in projected mortality rates would grow very quickly. This would
have important ramifications if the model is projected.

The maximal invariant approach also works with some other APC mortality models. For
instance, consider the reduced Plat model of equation (12). This model has X + 2T + (X + T − 1)
= 2X + 3T − 1 parameters, and as discussed in section 4.1.1, we know that it requires five identi-
fiability constraints to fully identify (two for the level of the period functions and one each for the
level, linear trend and quadratic trend in the cohort parameters).

In order to find a maximally invariant parameterisation, we follow the same logic as in Kuang
et al. (2008b) and consider the telescopic sums of the parameters. However, as αx, κ (1)

t and γy all
possess unidentifiable quadratic trends, we need to consider the third differences of these param-
eters, but only consider the second differences of κ (2)

t , since it only has unidentifiable linear trends

αx = αX − (X − x)�αX + 1
2
(X − x)(X − 1− x)�2αx −

X∑
i= x+1

X∑
j= i+ 1

X∑
k= j+ 1

�3αk

κ
(1)
t = κ

(1)
1 + (t − 1)�κ

(1)
2 + 1

2
(t − 1)(t − 2)�2κ (1)

3 +
t∑

i= 2

t∑
j= 3

t∑
k= 4

�3κ (1)
k

38We have removed the large outlier cohort effects for years of birth 1918/19 using indicator variables, as they are
believed to be data artefacts resulting from the surge of births due to the demobilisation of soldiers after the First World War,
based on similar reasons as those presented in Richards (2008) and Cairns et al. (2015).
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κ
(2)
t = κ

(2)
1 + (t − 1)�κ

(2)
2 +

t∑
i= 2

t∑
j= 3

�2κ (2)
j

γy = γ1−X + (y− 1+ X)�γ2−X + 1
2
(y− 1+ X)(y− 2+ X)�2γ3−X

+
y∑

i= 2−X

y∑
j= 3− X

y∑
k= 4−X

�3γk

Combining these in equation (12) and grouping the deterministic terms of the same type reduce
the dimension of the parameter set in the same manner as for the classic APC model. Therefore,
we find the maximally invariant form of the reduced Plat model

ηx,t = a0 + (x− x̄)a1 + (x− x̄)2a2 + (t − t̄)b1 + (t − t̄)2b2 + (x− x̄)(t − t̄)c1

−
X∑

i= x+1

X∑
j= i+ 1

X∑
k= j+ 1

�3αk +
t∑

i= 2

t∑
j= 3

t∑
k= 4

�3κ (1)
k + (x− x̄)

t∑
i= 2

t∑
j= 3

�2κ (2)
j

+
y∑

i= 2−X

y∑
j= 3− X

y∑
k= 4−X

�3γk (C.2)

The final step to prove that this is a maximally invariant parameterisation would be to check that
each of the parameters can be estimated uniquely from the data. Alternatively and more easily, we
can see that it is maximally invariant from a dimensional argument, since the parameterisation
has 6+ (X − 3)+ (T − 3)+ (T − 2)+ (X + T − 4)= 2X + 3T − 6 free parameters, which is the
same as the number of parameters in the original reduced Plat model less the number of identifia-
bility constraints imposed. Therefore, the freely varying parameter space has the same dimension
as the model space and gives the same fitted mortality rates as the original model, and so the
parameters represent maximal invariants. Because of this, the revised model does not possess any
identification issues.

As in the case of the classic APC model, moving to a maximally invariant form for the model
means losing the demographic significance of the parameters. The maximally invariant form of
the reduced Plat model is highly unintuitive compared with the original parameterisation, and it
would be difficult to communicate the impact of the various parameters to anyone not intimately
familiar with the maximally invariant approach. As discussed in Hunt and Blake (2020c), since
demographic significance is a major reason for choosing a model with parametric, as opposed to
non-parametric age functions, this is highly undesirable. Also, and again similar to the classic APC
model, the use of third differences for κ

(1)
t and γy leads naturally to using I(3) processes when we

project the model, which are unlikely to give biologically reasonable projections.
Further, the maximal invariant approach does not work with all APC mortality models. If we

follow the same logic to try to find themaximally invariant parameterisation for the full Plat model
in equation (11), we obtain

ηx,t = a0 + (x− x̄)a1 + (x− x̄)2a2 + (t − t̄)b1 + (t − t̄)2b2 + (x− x̄)(t − t̄)c1

−
X∑

i= x+1

X∑
j= i+ 1

X∑
k= j+ 1

�3αk +
t∑

i= 2

t∑
j= 3

t∑
k= 4

�3κ (1)
k + (x− x̄)

t∑
i= 2

t∑
j= 3

�2κ (2)
j

+ (x− x̄)+κ
(3)
1 + (x− x̄)+

t∑
i= 2

�κ
(3)
i +

y∑
i= 2−X

y∑
j= 3− X

y∑
k= 4−X

�3γk (C.3)
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We know, from section 4.1.1, that the Plat model has X + 3T + (X + T − 1)= 2X + 4T − 1
parameters and requires six identifiability constraints (three on the levels of the period functions
and one each for the level, linear trend and quadratic trend in the cohort parameters). However,
the maximally invariant parameterisation in equation (C.3) has 7+ (X − 3)+ (T − 3)+ (T −
2)+ (T − 1)+ (X + T − 4)= 2X + 4T − 6 free parameters, i.e., one toomany. This is because the
(x− x̄)+κ

(3)
1 term cannot be combined with the expanded form of αx, since it is not a polynomial.

Consequently, there is no dimensional reduction with respect to this AP term.
Because of this, we will still require an additional identifiability constraint to fit the model in

equation (C.3) to data. However, it is no longer clear what this should be or what the underlying
invariant transformation of the parameters is. The maximally invariant approach has therefore
not solved the identifiability issues for this model but has made making an arbitrary identification
considerably more difficult.

This will be true for any AP term which does not have a polynomial age function. As discussed
in section 4.3, such terms do not generate any additional identifiability issues beyond the uniden-
tifiable level of the period function, as discussed in Hunt and Blake (2020b). It therefore may be
possible to deal with this using an approach similar to that proposed for the model of Lee and
Carter (1992) in Nielsen and Nielsen (2014) and discussed in the appendix of Hunt and Blake
(2020b). However, as these two techniques for obtaining maximally invariant parameterisations
are fundamentally different, it is unclear how to combine them in models which mix polynomial
and non-polynomial age functions, such as the Plat model.

In summary, the maximally invariant approach proposed in Kuang et al. (2008b) and Nielsen
and Nielsen (2014) for the classic APC model can be generalised but only to models with
purely polynomial age functions. For models with other forms for the age functions (or which
mix polynomial and non-polynomial age functions), the maximally invariant approach, at best,
offers a partial solution. However, in using such an approach, we lose our desired demographic
significance regarding the parameters in the model and are likely to obtain projected mortality
rates which are not biologically reasonable, so this approach is not, in general, recommended.
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