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Abstract. Two secondary parametric instabilities providing cascade channels for the
Langmuir sidebands of the oscillating two-stream instability (OTSI) and parametric
decay instability (PDI), which are excited by O-mode high-frequency (HF) heating
waves, are studied. The first one decays a Langmuir pump wave into a Langmuir
sideband and an ion acoustic decay mode. Both resonant and nonresonant cas-
cade processes are considered. Nonresonant cascade of Langmuir waves proceeds
at the same location and is increasingly hampered by the frequency mismatch ef-
fect. Resonant cascade takes place in different resonant locations to minimize the
frequency mismatch effect, but it has to overcome the severe propagation loss of the
mother Langmuir wave in each cascade step. This process produces a narrow spec-
trum of frequency-downshifted (from the HP wave frequency) plasma waves. The
second employs the lower-hybrid wave as the decay mode. Only the nonresonant
cascade is of interest, because the propagation loss of the mother Langmuir wave
in each resonant cascade step is far too severe. This is a three-dimensional coup-
ling process, because the wavevectors of coupled three waves have to be matched in
three-dimensional space, rather than matched in the conventional way on the plane
of the pump wavevector and the geomagnetic field. A broad spectrum of frequency-
downshifted plasma waves can be produced by this process in a narrow altitude
range preferentially located near the matching heights of Langmuir sidebands of
the OTSI and PDI.

1. Introduction
In the high-frequency (HF) heating and modification of the ionosphere, paramet-
ric instabilities provide effective channels to convert the ground-transmitted elec-
tromagnetic (EM) heating waves into electrostatic plasma waves of high and low
frequencies. Many radar observations on plasma lines and ion lines (Carlson et al.
1972; Showen and Kim 1978; Hagfors et al. 1983; Stubbe et al. 1992; Westman et al.
1995; Lee et al. 1998, 1999) and ground measurements on stimulated electromag-
netic emissions (SEEs) in ionospheric heating experiments have been understood in
terms of the physical processes of various parametric instabilities. In midlatitude
regions such as at Arecibo, Puerto Rico, the parametric instabilities are excited
near the reflection height of the O-mode HF heating wave (Carlson et al. 1972),
which is linearly polarized in the geomagnetic field direction. Hence, the sidebands
excited by both the parametric decay instability (PDI) and the oscillating two-
stream instability (OTSI) are Langmuir waves, which are excited most strongly
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with propagation directions parallel to the geomagnetic field (Fejer and Kuo 1973;
Perkins et al. 1974; Kuo et al. 1993; Kuo and Lee 1999). Some of these waves effec-
tively detected by backscatter radars in heating experiments are termed ‘HFPLs’,
which account only for those Langmuir waves having a wavenumber twice that of
the probing radar signal and propagating in a direction parallel or antiparallel to
the pointing direction of the radar.

Likewise, in high-latitude heating experiments, the PDI and OTSI are also ex-
pected to be excited by the O-mode HF heating wave near its reflection height, to
produce Langmuir waves as the high-frequency sidebands of the instabilities. How-
ever, these instabilities have to compete with those occurring in the upper-hybrid
resonance region located at a lower height, where the O-mode heating wave is still
dominated by the field component of right-hand circular polarization. It has been
shown that thermal parametric instabilities can be effectively excited in this height
region. Sidebands of instabilities are upper-hybrid waves propagating nearly per-
pendicular to the geomagnetic field (Lee and Kuo 1983; Stenflo 1985, 1991; Stenflo
and Shukla 1988; Leyser 1991; Huang and Kuo 1994; Zhou et al. 1994; Istomin
and Leyser 1995; Kuo and Huang 1996; Kuo et al. 1997). Upper-hybrid waves were
found to play a key role in the generation of ‘stimulated electromagnetic emis-
sions (SEEs)’, observed in Tromsø heating experiments (Thide et al. 1982; Stubbe
et al. 1982, 1984, 1994; Leyser et al. 1989; Stenflo 1990; Stubbe and Kopka 1990;
Leyser 1994; Kuo 1997). Due to the field-aligned nature of upper-hybrid waves,
these waves cannot be detected directly by EISCAT’s UHF and VHF radar, and
do not contribute to Tromsø’s HFPLs.

Nevertheless, HFPLs have been detected by EISCAT’s 933 MHz (UHF) and
244 MHz (VHF) radar during the Tromsø heating experiments (Hagfors et al. 1983;
Stubbe et al. 1985, 1992; Westman et al. 1995; Stubbe 1996; Isham et al. 1999; Ri-
etveld et al. 2000), except that the zero-offset frequency plasma line was detected
only by the UHF radar, but not by the VHF radar (Stubbe et al. 1992). This sug-
gested that the OTSI, which has a higher threshold than the PDI, were suppressed
by instabilities draining heating-wave energy in the upper-hybrid resonance region.
It was then shown by Kuo et al. (1997) that the zero-offset frequency plasma line
detected by the UHF radar was excited by upper-hybrid waves generated by the
HF heating wave in the upper-hybrid resonance region. The excitation process is
also an OTSI, except that the pump wave of the instability is the upper-hybrid
wave rather than the HF heating wave. The wavelengths of the excited Langmuir
waves have an upper bound. This explains why the VHF radar did not detect the
zero-offset frequency plasma line.

Moreover, the large difference in the magnetic dip angle could also cause the
spectral features of frequency-downshifted HEPLs observed in Arecibo heating
experiments different from Tromsø’s. Usually, frequency-downshifted HEPLs ob-
served in heating experiments have narrow spectra. In Tromsø, the results of early
experiments, conducted by progressive increase of heating power within the range
of available powers (∼ 240 MW ERP), indicated that the number of cascade lines
in HFPLs recorded by EISCAT’s UHF and VHF radar was limited to two, inde-
pendent of input power (Stubbe et al. 1992; Stubbe 1996). This was also the case
in the later experiment as heating power was increased to 270 MW ERP (Rietveld
et al. 2000). As heating power was further increased to 1200 MW ERP, up to five
cascade lines in Tromsø’s HFPLs were observed for the first time by Westman et
al. (1995). Although the O-mode HF heating-wave electric field was expected to in-
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crease considerably by a swelling factor, the most intense cascade lines in Tromsø’s
HFPLs were found to originate from the matching height of the PDI line in HFPLs
(Rietveld et al. 2000), which is located at a lower altitude for UHF radar-detected
lines than that for VHF radar-detected lines (Stubbe 1996). On the contrary, with
improved spatial resolution of radar detection, Arecibo’s HFPLs detected recently
from a narrow altitude region were found occasionally to have a broad frequency-
downshifted spectrum with a bandwidth as large as 50 kHz. This spectral feature
is also characteristically different from the broad spectrum detected in Tromsø
heating experiments, which is frequency-upshifted and much wider, and originates
from the region above the HF reflection height (Isham et al. 1990; Mishin et al.
1997; Kuo et al. 1998). The physical process responsible for the generation of such
a broad frequency-downshifted spectrum in Arecibo’s HFPLs has been a subject
of considerable interest.

In the present work, the PDI and OTSI and the subsequent cascades via two
secondary parametric instability processes are analyzed systematically to explore
the underlying mechanism that impedes the cascade process, and the mechanism
that is responsible for the generation of a broad spectrum of frequency-downshifted
HFPLs originating from a narrow altitude region. The Langmuir waves generated
by the OTSI and PDI directly and indirectly can also cascade through alternative
decay channels (Kaysmov et al. 1985). They will also introduce a significant pertur-
bation to the background plasma, which, in turn, can further modify the spectral
distribution in time. Such a self-consistent analysis (Kuo et al. 1987, 1990) leading
to features such as the plasma line overshoot phenomena observed in HF heating
experiments (Showen and Behnke 1978; Showen and Kim 1978) is, however, not
included in the present work.

It is also worth pointing out that one- and two-dimensional models based on
driven and damped Zakharov-type equations (Zakharov 1972; Zakharov et al.
1972) have also been introduced to study wave–wave interactions in heating ex-
periments. The simulation effort represents a different approach to address dif-
ferent wave–wave interaction problems in ionospheric heating experiments. The
differences between parametric couplings considered in the present work and the
numerical simulations can be summarized as follows. The phase relationships among
coupled waves are critical to the parametric coupling, while the constraints of the
phase relationships have been significantly loosened in the formulation of the Za-
kharov equations. One of the cascade process considered in the present work has
to be a three-dimensional process, which certainly cannot be simulated by one- or
two-dimensional models. One of the significant results of the present work is to
rigorously prove that the parametric instabilities (PDI and OTSI) and the sub-
sequent cascades considered in the present work favor excitation in regions near
the matching heights of those instabilities, rather than the reflection height of the
O-mode HF pump. On the other hand, the approximations used in the derivation of
Zakharov-type equations for simulating ionospheric heating experiments are based
on the assumption that wave–wave couplings occur in the region near the HF reflec-
tion height. The approximations are not justifiable in the matching height region,
because phase variations can no longer be neglected.

The coupled mode equations for parametric excitation of Langmuir waves are
formulated in Sec. 2. The PDI and OTSI are first reviewed in Secs 3 and 4, re-
spectively. In Sec. 5, cascades of PDI- and OTSI-excited Langmuir waves through
the ion acoustic wave are studied. In Sec. 6, a three-dimensional cascade process
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based on the decay of an obliquely propagating Langmuir pump wave into another
obliquely propagating Langmuir wave (sideband) and a lower-hybrid decay mode is
analyzed. In this parametric coupling, the wavevectors of three waves are matched
in three-dimensional space, rather than matched in the conventional way on the
plane of the pump wavevector and the geomagnetic field. The results are discussed
in Sec. 7.

2. Coupled mode equations for parametric instabilities
Parametric excitation of Langmuir waves φ(ω,k) and low-frequency plasma waves
ns(ωs, ks) by electromagnetic or Langmuir pump waves Ep(ω0,kp) are considered,
where Ep, φ, and ns denote electric field of a pump wave, the electrostatic potential
of a Langmuir sideband, and the density perturbation of a low-frequency decay
mode, respectively. Langmuir waves can have large oblique propagation angles (with
respect to the background magnetic field B0 = ẑB0), and low-frequency plasma
waves include ion acoustic waves, purely growing modes, and lower-hybrid waves.

The coupled mode equation for the Langmuir sideband is derived from the elec-
tron continuity and momentum equations, and Poisson’s equation:

∂tne +∇ · (neve) = 0, (1)

(∂t + νe)neve + Ωeneve × ẑ = −∇ · (neveve)− 3v2
te∇δne −

e

m e
neE, (2)

∇2φ = 4πeδne. (3)

where ne = n0 + δne + ns;n0 and δne are the unperturbed plasma density and
electron density perturbation associated with Langmuir waves, respectively; the
electron collision frequency νe includes a phenomenological term ∼ ( 1

2π)1/2(ω4
0/k

2
zk)

exp(−ω2
0/2k

2
zv

2
te) to account for the electron Landau-damping effect, Ωe = eB0/mec

is the electron cyclotron frequency; vte = (Te/m)1/2 is the electron thermal speed;
E = EP + EL and EL = −∇φ; and the relationship ∇Pe = 3Te∇δne is used.

With the aid of (3) and the two orthogonal components of (2),

(∂t + νe)neve × ẑ = Ωeneve⊥ −∇ · (neveve)× ẑ−
(

3v2
te∇δne +

e

m e
neE

)
× ẑ (4)

and

(∂t + νe)nevez = −∇ · (nevevez)−
(

3v2
te∇zδne +

e

m e
neEz

)
, (5)

the three orthogonal components of (2) are combined into a single scalar equation:

(∂t + νe)[(∂t + νe)2 + Ω2
e]∇ · (neve)

= −[(∂t + νe)2 + Ω2
e](3v

2
te∇2δne − ω2

pδne) + Ω2
e∇2
⊥
(

3v2
teδne −

e

m e
n0φ

)
−{Ω2

e∂znevevez + Ωe(∂t + νe)∇ · ẑ× [∇ · (neveve)]
+(∂t + νe)2∇ · [∇ · (neveve)]}
− e

m e
{[(∂t + νe)2∇ + Ω2

e∇z] · (nsEp)− Ωe(∂t + νe)ẑ · (∇ns × Ep)}, (6)

where ωp = (4πn0e
2/me)1/2 is the electron plasma frequency.

The terms on the right-hand side of (6) are assembled into four groups of terms.
The first two groups contain linear response terms and the last two contain coupling

https://doi.org/10.1017/S0022377801001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377801001477


Parametric instabilities in ionospheric heating experiments 319

terms. The contribution to the parametric coupling from the third group of terms
is much smaller than that from those in the fourth group, and hence the coupling
terms in the third group will be neglected. Using (1), (3), and (6), the coupled mode
equation for the Langmuir sideband is then derived to be (Kuo et al. 1983)

{[(∂t + νe)2 + Ω2
e](∂

2
t + νe∂t + ω2

p − 3v2
te∇2)∇2 − Ω2

e(ω
2
p − 3v2

te∇2)∇2
⊥}φ

= ω2
p

{
[(∂t + νe)2∇ + Ω2

e∇z] ·
〈

Epn∗e
n0

〉
−Ωe(∂t + νe)ẑ ·

〈
∇
(
n∗e
n0

)
× Ep

〉}
, (7)

where 〈 〉 stands for a filter, which keeps only terms having the same phase function
as that of the corresponding physical quantity on the left-hand side of (7). It is
noted that one of the lowest-order kinetic effects (Dysthe et al. 1984), i.e., the
electron Landau damping, is included in (7) through νe.

Both electrons and ions can effectively respond to low-frequency wave fields.
Hence, the formulation of the coupled mode equation needs to include both electron
and ion fluid equations. Since electrons and ions tend to move together, the formula-
tion can be simplified by introducing the quasineutrality condition: nsi ≈ nse = ns.
The ion fluid equations are similar to (1) and (2), except that the subscript e is
changed to i and the charge e changed to −e. Moreover, the collision frequencies
are replaced by νei = νe−νi and νie = νi−νe in the electron and ion fluid equations,
respectively. The coupled mode equation for the low-frequency mode is derived as
(Kuo 1996){

∂3
t (∂t + νe)[∂t(∂t + νi)− C2

s∇2 + ΩeΩi]∇2
⊥

+Ω2
e{(∂2

t + Ω2
i )[∂t(∂t + νi)− C2

s∇2] + Ω2
iC

2
s∇2
⊥}
}∇2

z

(
ne
n0

)
=
m

M
[(∂2

t + Ω2
i )∇2

z + ∂2
t∇2
⊥]

×
[
∂t(∂t + νe)∇⊥ · ap⊥ + Ω2

e

(
∂zapz − ∂t∇ · JB

n0

)
−Ωe∂t∇ · ap × ẑ

]
, (8)

where

νi =
(π

2

)1/2
ksCs

(
Te
Ti

)3/2

exp
[
−1

2

(
3 +

Te
Ti

)]
is the ion Landau-damping rate, Ωi is the ion cyclotron frequency, Cs = [(Te +
3Ti)/M ]1/2 is the ion acoustic speed, and M is the ion (O+) mass; ap = 〈ve ·∇ve〉
and JB = 〈neve〉. Both (7) and (8) will be simplified for each parametric coupling
process to be studied in the following sections.

3. Parametric decay instability (PDI)
As an HP heating wave of right-hand circular polarization propogates toward its
reflection height, its wavevector and group velocity decrease gradually to zero.
The accumulation of its energy flux leads to significant enhancement in the wave
electric field. The wave polarization is also changed to the O-mode polarization in
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that region. Thus, the HF heating-wave electric field exceeds the threshold fields
of many parametric instabilities. Among them, the PDI is a favorable one excited
by the heating wave, as will be shown in the following and as also evidenced by
experimental results. It is a process effectively converting the transmitted electro-
magnetic wave energy into plasma wave energy.

Consider the decay of a dipole pump Ep(ω0,kp = 0) into a Langmuir sideband
φ(ω,k) and an ion acoustic decay mode ns(ωs,ks), where Ep (= ẑEp), φ, and ns
denote the pump-wave field, the sideband’s electrostatic potential, and the ion
acoustic mode’s density perturbation, respectively. The frequency and wavevector
matching conditions are

ω0 = ω + ω∗s , kp = 0 = k + ks,

where k = ẑkz + x̂k⊥ and a background magnetic field B0 = ẑB0 is assumed; the
matching conditions lead to ω = ω0 − ω∗s and ks = −k.

The coupled mode equation (7) for the Langmuir sideband is then reduced to

{[(∂t + νe)2 + Ω2
e](∂

2
t + νe∂t + ω2

p − 3v2
te∇2)∇2 − Ω2

e(ω
2
p − 3v2

te∇2)∇2
⊥}φ

= ω2
p[(∂t + νe)2 + Ω2

e]∂z
〈
Epn

∗
s

n0

〉
. (9)

As the oblique propagation angle θ (with respect to the magnetic field) of the
Langmuir sideband is not close to 90◦, the ion acoustic decay mode is mainly driven
by the parallel (to the magnetic field) component of the ponderomotive force in-
duced by high-frequency wave fields. Moreover, |∂2

t∇2
⊥|� |Ω2

e∇2
z|; thus, the coupled

mode equation (8) for the ion acoustic mode is reduced to

{(∂2
t + Ω2

i )[∂t(∂t + νi)− C2
s∇2] + Ω2

iC
2
s∇2
⊥}∇2

z

(
ns
n0

)
=
m

M
[(∂2

t + Ω2
i )∇2

z + ∂2
t∇2
⊥]∂zapz (10)

where apz = ∂z〈 1
2v

2
ez〉 for the present case where Ep = ẑEp.

Let Ep = Ep exp(−iω0t) + c.c. and express the spatial and temporal variation of
perturbations in the form p = p exp[i(κ · r − ω̃t)], with p = ϕ and n for p = φ and
n, respectively, and where κ and ω̃ are the appropriate wavevector and frequency
of each perturbation. Then (9) and (10) are reduced, respectively, to

[ω(ω + iνe)− ω2
kθ]ϕ =

ikz
k2 ω

2
pEp

n∗s
n0

(11)

and

[ωs(ωs + iνi)− k2C2
s ]

ns
n0

=
ikzk

2ω2
p

4πn0Mω0ω
Epϕ

∗ (12)

where

ω2
kθ = ω2

p + 3k2v2
te + Ω2

e sin2 θ, sin2 θ =
k2
⊥
k2 .

Equations (11) and (12) are combined to obtain the dispersion relation for the
PDI:

[ω(ω + iνe)− ω2
kθ][ω

∗
s (ω∗s − iνi)− k2C2

s ] =
k2
zω

4
p

4πn0Mω0ω
|Ep|2. (13)

We now set ω = ωr + iγk and ωs = ωsr + iγk in (13) and evaluate the threshold
field Epth(k, θ) and growth rate γk(θ) of the instability excited in the matching
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height h1 of the (k1, θ1) Langmuir wave, i.e., in the height region where ω2
r = ω2

1 =
ω2
p(h1) + 3k2

1v
2
te + Ω2

e sin2 θ1, and the sideband and decay wave of the instability are
the driven waves, rather than the eigenmodes of the plasma. The results are

|Epth(k, θ; k1, θ1)| =
(

1 +
∆ω4

1

ω2
0ν

2
e

)1/2(
mM

e2

)1/2 (νeνiωsrω3
0)1/2

k cos θωp
(14)

and

γk ≈
[
νeνi

4

(
Ep

Epth

)2

+
(νe − νi)2

16

]1/2

− νe + νi
4

(15)

where

∆ω2
1 = ω2

1 − ω2
kθ = 3(k2

1 − k2)v2
te + Ω2

e(sin
2 θ1 − sin2 θ),

ω2
sr = k2C2

s +
ωsrνi∆ω2

1

ω1νe
.

It is shown by (14) that the threshold field varies with the propagation angle θ
and wavelength λ1 of the Langmuir sideband as well as the location of excitation.
When the instability is excited at the matching height h of its Langmuir sideband
(k, θ), i.e., ∆ω1 = 0, the threshold field is the minimum given by

|Epth(k, θ)|m =
(
mM

e2

)1/2 (νeνiωsrω3
0)1/2

k cos θ ωp
. (16)

In the Arecibo heating experiments, the parameters are ω0/2π = 5.1 MHz,
Ωe/2π = 1.06 MHz, νe = 500 Hz, vte ≈ 1.3 × 105 m s−1, Cs ≈ 1.4 × 103 m s−1,
and k0 ≈ 4π (i.e., λ‖ = 0.495 m = λR/(2 sin θm), where λR = 0.7 m is the wavelength
of the 430 MHz radar signal and θm = 50◦ is the magnetic dip angle). The mini-
mum threshold field |Epth(k0, 0)|m for the (k0, 0) line evaluated from (16) is about
0.07 V m−1.

In the Tromsø heating experiments, the parameters are ω0/2π = 4 MHz, Ωe/2π =
1.35 MHz, νe = 1 kHz, vte ≈ 1.8 × 105 m s−1, Ce ≈ 1.66 × 103 m s−1, and k01 =
12.17π (i.e., λ‖1 = 0.1644 m, corresponding to 933 MHz radar) or k02 = 2.92π (i.e.,
λ‖2 = 0.685 m corresponding to 224 MHz radar). The minimum threshold fields
|Epth(k01, 0)|m for the (k01, 0) line and |Epth(k02, 0)|m for the (k02, 0) line evaluated
from (16) are about 0.16 V m−1 and 0.14 V m−1, respectively.

The minimum threshold field |Epth(k1, θ1)|m = |Epth(θ1| ∝ 1/ cos θ1, depends
weakly on the oblique propagation angle θ1 of the Langmuir sideband. The growth
rate in the strong-pump-field case, i.e., (Ep/Epth)2� 1, is proportional to k1/2

1 cos θ1.
In the same region, the nonresonant (k, θ) sideband can also be excited. The thresh-
old field of the instability is increased by a mismatch factor (1 + ∆ω4

1/ω
2
0ν

2
e)

1/2 k
1/2
1

cos θ1/k
1/2 cos θ, and consequently the growth rate of the instability decreases as

the mismatch frequency |∆ω1| of the sideband increases. Nonetheless, the excited
Langmuir waves are expected to have a spectral and angular distribution as well
as a spatial distribution over an altitude region.

However, only those spectral lines termed HFPLs, having a wavenumber twice
that of the probing radar signal and pointing in a direction parallel or antiparallel
to the pointing direction of the radar, can effectively backscatter the radar signal.
Thus, the HFPLs excited by the PDI process do not have the lowest threshold field
and highest growth rate. They are most favorably excited in a region called the
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‘matching height’, which is below the reflection height of the O-mode heating wave
by a distance d ≈ L(12k2

Rv
2
te + Ω2

e sin2 θ0)/ω2
0, where L is the linear scale length of

the background plasma, kR is the wavenumber of the backscatter radar signal, and
θ0 is the conjugate angle to the magnetic dip angle θm. As the Langmuir waves
excited by the PDI grow to large amplitudes, they become pumps of secondary
parametric instabilities, which broaden the spectral and angular distribution as
well as the frequency bandwidth of Langmuir waves.

4. Spatial distribution of the oscillating two-stream instability (OTSI)
HF heating waves can also excite the OTSI. In the following, we show that, due to
the geomagnetic field, the OTSI can be excited in a sizable region below the HF
reflection height. This is in contrast to the unmagnetized case, where the OTSI can
only be excited in a narrow region near the HF reflection height. The wavenumber
spectrum of Langmuir sidebands excited in each height region, again, has an angular
distribution centered at an oblique propagation angle (with respect to the magnetic
field) of a Langmuir eigenmode at that height.

The OTSI process involves the decay of a dipole pump Ep(ω0, kp = 0) into two
Langmuir sidebands φ1(ω1,k1) and φ′1(ω′1,k

′
1) and a purely growing mode ns (ωs =

iγs, ks), where Ep = ẑEp, φ1 and φ′1, and ns are the pump-wave field, the sidebands’
electrostatic potentials, and the purely growing mode’s density perturbation, re-
spectively, and γs is the growth rate of the instability. The frequency and wavevector
matching conditions imposed by this parametric coupling process are given by

ω0 = ω1 + ω∗s = ω′1 − ωs, kp = 0 = k1 + ks = k′1 − ks,

where k1 = ẑk0 + x̂k⊥ and, again, a background magnetic field B0 = ẑB0 is assumed.
The matching conditions lead to ω1 = ω′1 = ω0 + iγs and k′1 = ks = −k1. From (7),
the coupled mode equations for Langmuir sidebands are

{[(∂t + νe)2 + Ω2
e](∂

2
t + νe∂t + ω2

p − 3v2
te∇2)∇2

−Ω2
e(ω

2
p − 3v2

te∇2)∇2
⊥}φ1± = ω2

p[(∂t + νe)2 + Ω2
s]∂z

〈
Epns±
n0

〉
, (17)

where the notation φ1+ = φ1, φ1− = φ′1, and n∗s+ = ns = ns− is used.
The parallel (to the magnetic field) component of the wavevector of the short-

scale purely growing mode is not negligibly small; thus, the short-scale purely
growing mode, similar to the ion acoustic mode, is also mainly driven by the parallel
component of the ponderomotive force induced by the high-frequency wave fields.
Therefore, the coupled mode equation for the purely growing mode has the same
form as (10).

Equations (17) and (10) are analyzed in the same way as (9) and (10). The dis-
persion relation of the OTSI is then derived to be

{(γ2
s + Ω2

i )[γs(γs + νi) + k2
1C

2
s ]− Ω2

ik
2
⊥C

2
s}

=
2e2

mM
k2

1 cos2 θ(γ2
s + Ω2

i cos2 θ)
∆ω2

∆ω4 + ω2
0(2γs + νe)2

|Ep|2, (18)

where

∆ω2 = ω2
p + 3k2

1v
2
te + Ω2

s sin2 θ − ω2
0 , θ = sin−1

(
k⊥
k1

)
.
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We first set γs = 0 in (18) to determine the threshold condition of the instability.
The threshold field is obtained to be

|Ep(θ)|th =
(
mM

2e2

)1/2

Cs

(
∆ω4 + ω2

0ν
2
e

∆ω2

)
1

cos θ
. (19)

Similar to (14) for the PDI, (19) shows that the threshold field of the OTSI also
varies with the propagation angle θ and wavelength λ1 of the Langmuir sidebands
as well as the location of excitation. For each propagation angle θ and wavelength
λ1, the instability has the minimum threshold field

|Ep(k1, θ)|m =
(
mM

e2

)1/2
Cs(ω0νe)1/2

cos θ
, (20)

when it is excited in a preferential height layer with ∆ω2(k1, θ) = ω0νe, i.e., ω2
p(h) =

ω2
p(k1, θ) = ω0(ω0 +νe)−3k2

1v
2
te−Ω2

e sin2 θ, where h is the altitude of the preferential
layer. In other words, the spectral lines of the Langmuir sidebands excited by the
OTSI have an angular ((θ) and a spectral (k1) distribution, as well as a spatial (h)
distribution in a finite altitude region. This minimum threshold field (20) increases
with the oblique propagation angle θ of (k1, θ) lines, but it is independent of k1. The
altitude h of the preferentially excited region for (k1, θ) lines moves downward as
the oblique propagation angle θ of these lines increases.

Considering a family of spectral lines having k0 = ẑk0 as the common parallel
component of their wave vectors, the oblique angle θ of (k1, θ) lines increases with
k⊥ (i.e., k1 = k0 +k⊥). The threshold fields for (k1, θ) lines excited in the layer h = h0

with ωp(h0) = ωp(k0, 0) and in the layer h = h1 with ωp(h1) = ωp(k1, θ) (i.e., near the
matching height), expressed in terms of the minimum threshold field |Ep(k0, 0)|m
of the (k0, 0) line, are

|Ep(k1, θ)|th = f (θ, 0)|Ep(k0, 0)|m
and

|Ep(k1, θ)|m =
|Ep(k0, 0)|m

cos θ
,

respectively, where

|Ep(k0, 0)|m =
(
mM

e2

)1/2

Cs(ω0νe)1/2,

f (θ, 0) =
1

cos θ

[
1 +

∆ω4
m

2ω0νe(ω0νe + ∆ω2
m)

]1/2

, (21)

and

∆ω2
m = Ω2

e sin2 θ + 3k2
0V

2
te tan2 θ.

Using the parameters of the Arecibo and Tromsø heating experiments given in
Sec. 2, the minimum threshold fields for the (k0, 0) lines, at the two respective heat-
ing sites, evaluated from (20) are about 0.17 V m−1 and 0.255 V m−1, respectively,
which are about 2.4 and 1.65 times larger than those of the PDI at the two sites
exciting similar (k0, 0) plasma lines in the corresponding nearby regions.

The strong increasing dependence of f (θ, 0) on θ, from (21), however, indicates
that the threshold field of (k1, θ) lines excited in the same height layer h = h0

with ωp(h0) = ωp(k0, 0) increases rapidly with the obliquely propagating angle θ
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Figure 1. Angular distribution of Langmuir sidebands excited by the OTSI in the region
near the reflection height of the O-mode HF heating wave.

of (k1, θ) lines. Thus, the angular distribution of the spectral lines of the Langmuir
sidebands excited by the OTSI in the region near the HF wave reflection height,
i.e., h = h0, is expected to be confined in narrow cones around the geomagnetic
field, as shown in Fig. 1. On the other hand, f (θ, 0) cos θ also increases rapidly
from 1 with the obliquely propagating angle θ, for example, in the Arecibo case
f (θ, 0) cos θ = 27.3 for θ = 40◦ and in the Tromsø case, f (θ, 0) cos θ = 13.75 and 8.4
for θ = 12◦ and k0 = k01 (corresponding to 933 MHz radar) and k02 (corresponding
to 224 MHz radar), respectively. Thus, in Arecibo, the threshold field for (k1, 40◦)
lines excited at their matching layer h = h1 with ωp(h1) = ωp(k1, 40◦) is 0.22 V m−1,
which is 27.3 times lower than the threshold field 6.06 V m−1 for the same lines
excited in the layer h = h0. In Tromsø, the threshold field for (k1, 12◦) lines excited
at their matching layer h = h1 with ωp(h1) = ωp(k1, 12◦), for both k1 = k11 and
k12, is 0.26 V m−1, which is 13.75 and 8.4 times lower than the threshold fields
3.575 V m−1 and 2.184 V m−1 for the same lines excited in the layers h = h01 and
h02, respectively.

The results clearly show that the oblique-angle line is preferentially excited in
its matching height region, rather than in the region near the HF reflection height.
However, in the Tromsø heating experiments, the OTSI was suppressed by insta-
bilities draining heating wave energy in the upper-hybrid resonance region. As the
excitation region moves downward to the matching height h10 of the (k10, θ0) lines,
the threshold field of (k1, θ) lines becomes

|Ep(k1, θ)|th = f1(θ, θ0)|Ep(k0, 0)|m,
where

f1(θ, θ0) =
1

cos θ

[
1 +

(∆ω2
m − ∆ω2

m0)2

2ω0νe(ω0νe + ∆ω2
m − ∆ω2

m0

]1/2

(22)

and

∆ω2
m0 = Ω2

e sin2 θ0 + 3k2
0v

2
te tan2 θ0.

Thus, the angular distribution of Langmuir sidebands excited in this layer be-
comes a hollow shape from θ1 to θ2, where θ1 ≈ θ0 (i.e., lines around θ = 0 cannot
be excited), and has a narrower angular range, as shown in Fig. 2. For example, in
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Figure 2. Angular distribution of Langmuir sidebands excited by the OTSI in the matching
height region of the obliquely propagating Langmuir sidebands at the angle θ0.

the Arecibo case, the threshold field evaluated from (19) for θ = 10◦ lines excited
in the region near the HF reflection height (i.e., h = h0) is about 1.22 V m−1, which
can be exceeded by the HF wave field after the swelling factor is included. Using
the parameters of the Tromsø heating experiments, this threshold field for lines
having θ = 10◦ and k0 = k02 (corresponding to 224 MHz radar) is about the same,
but it increases considerably for lines having θ = 10◦ and k0 = k01 (corresponding
to 933 MHz radar). The angular distribution of excited Langmuir sidebands at the
Tromsø site is expected to be much narrower than that at the Arecibo site.

The analysis presented in this section shows that the OTSI can occur in a much
wider altitude range than was previously thought. Its effect on geophysical pro-
cesses during HF heating experiments should not only be evaluated locally in the
region near the HF wave reflection layer.

5. Cascade of PDI and OTSI-excited Langmuir waves via ion acoustic
waves
In the preceding two sections, we have shown that Langmuir waves excited by the
OTSI and PDI in the region below the HF wave reflection height have an angu-
lar distribution around the geomagnetic field. These waves have a frequency either
equal to the frequency of the HP wave or lower than that of the HP wave by an ion
acoustic wave frequency. As these Langmuir waves grow to large amplitudes, they
become pump waves to excite secondary parametric instabilities. The secondary
parametric decay instability considered in this section is the decay of a Langmuir
pump, excited by the OTSI or by the PDI, into an ion acoustic decay mode and a
Langmuir sideband. Through this process, as shown in the following, those Lang-
muir waves excited by the OTSI and PDI can cascade several times to broaden the
frequency spectrum.

The secondary parametric decay instability can occur at the same location as
that of the primary parametric decay instability, which generates the mother line
of the first cascade line in the HFPLs. However, the cascading process is a nonres-
onant decay, namely, the sideband of the secondary parametric decay instability
cannot satisfy the local dispersion relation of the Langmuir wave. This is because
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the HFPLs have the same wavevector but different frequencies. In order to achieve
a resonant decay, the mother line as the pump has to propagate downward to a
location where the sideband of the secondary parametric decay instability is also a
local plasma mode. Thus, different cascade steps occur at different altitudes, and
the wavelength of the mother line in each cascade step is slightly shorter than that
of the daughter line. In this case, the propagation loss of each mother line propa-
gating from its generation region to the resonance region of its daughter line has to
be taken into account in determining the threshold field of each resonant cascade
step.

This secondary parametric decay instability excited by the OTSI- or PDI-excited
Langmuir waves is analyzed first. It represents the first cascade process. The decay
mode is the ion acoustic wave, which propagates in the same direction as that of the
pump wave and has a wavelength about half that of the pump wave. The Langmuir
sideband propagates in the direction opposite to that of the pump wave and has a
wavelength about the same as that of the pump wave. This Langmuir sideband is
called the first cascade line of a Langmuir wave excited by the OTSI or PDI. It will
continue to cascade through the same instability process if its saturation amplitude
exceeds the instability threshold. The analysis for the first cascade process can eas-
ily be generalized for the subsequent cascade. The number of cascades of Langmuir
waves excited by the OTSI and PDI is the focus of the following analysis.

Considering the parametric decay of a Langmuir pump wave φ(ω,k) into a Lang-
muir sideband φ1(ω1,k1) and an ion acoustic mode ns1(ωs1,ks1), the frequency and
wavevector matching conditions are

ω = ω1 + ω∗s1, k = k1 + ks1,

where k1 ≈ −k and thus ks1 ≈ 2k.
Because the Langmuir pump is an electrostatic mode, both parallel and per-

pendicular divergent components of the first term on the right-hand side of (7)
contribute to the coupling. Moreover, the coupling function on the right-hand side
of (10), apz = 〈ve ·∇vez〉 = ∂z〈 1

2v
2
ez〉 + 〈ve⊥ ·∇⊥vez〉, also contains an extra term.

Including these additional coupling terms, the coupled mode equations for the
Langmuir sideband and ion acoustic decay mode become

[ω1(ω1 + iνe)− ω2
kθ]ϕ1 = ω2

pg(θ, ω)ϕ
n∗s1
n0

(23)

and

[ωs1(ωs1 + iνi)− 4k2C2
s ]

ns1
n0

=
k4g(θ, ω)ω2

p

πn0Mω2 ϕϕ∗1 , (24)

where k1 ≈ k, ks1 ≈ 2k, and |ω1| ≈ ω are assumed;

g(θ, ω) = cos2 θ +
sin2 θ ω2

ω2 − Ω2
e

and ω ≈ ωkθ.
From (23) and (24), the dispersion relation of the instability is derived to be

[ω1(ω1 + iνe)− ω2
kθ][ω

∗
s1(ω∗s1 − iνi)− 4k2C2

s ] = k4g(θ, ω)2 ω4
p

πn0Mω2 |ϕ2|. (25)

Equation (25) is analyzed for the cases of resonant and nonresonant decay.
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5.1. Resonant decay

Introducing ωs1 = 2kCs + iγ1 and ω1 = ωkθ + iγ1 in (25), where γ1 is the linear
growth rate of the instability, it becomes

2kCsωkθ(2γ1 + νe)(2γ1 + νi) = k4g(θ, ωkθ)2 ω4
p

πn0Mω2
kθ

|ϕ|2. (26)

Setting γ1 = 0 in (26), the threshold field of the instability is obtained as

k|ϕ|th = k|ϕ|0 ≈ |Epth(θ)| cos θ√
2g(θ, ωkθ)

, (27)

where

|ϕ|0 =
(2πn0MkCsω

3
kθνeνi)

1/2

k2g(θ, ωkθ)ω2
p

.

The threshold field (27) for the first cascade step of the Langmuir sidebands of
the OTSI or PDI through a resonant decay process is quite small. A similar anal-
ysis leads to about the same threshold field for the subsequent cascades. However,
the Langmuir pump wave has to propagate downward a distance from its excita-
tion altitude z0 to the decay altitude z1. When the wave propagates outside of its
excitation region, its field amplitude decays exponentially due to the collision and
collisionless losses. Therefore, the actual threshold field is increased by an expo-
nential factor eα∆z, where α is the spatial damping rate of the Langmuir wave and
∆z = |z0 − z1| is the distance between the two altitudes.

The spatial damping rate can be derived from the dispersion relation ω(ω +
iνe) − ω2

kθ = 0, obtained from the left-hand side of (11), where νe is the total
effective collision frequency including the Landau-damping effect. Setting k = kr +
iα in the dispersion relation for a real ω, the damping rate α ≈ νe/2vg is derived,
where vg = 3krv2

te/ω is the group velocity of the Langmuir wave. The distance ∆z
can be determined in terms of the inhomogeneous scale length L of the plasma
density. Since the mother line and the daughter line in the HFPLs have the same
wavevector at their respective originating altitudes z0 and z1, ω2 − ω2

1 = ω2
p(z0) −

ω2
p(z1), which leads to ∆z = 4ωkrCsL/ω2

p(z0). Hence, α∆z = 2Csνeω2L/3ω2
pv

2
te > 1

for L = 20–50 km, Ti ≈ Te, and νe > 500 Hz.
Normally, the daughter line saturates at about the same intensity level as that

of the mother line in the excitation region of the daughter line. Thus, the spectral
intensity ratio of the mother line to the daughter line in HFPLs will be about e2α∆z,
which leads to about a 10 dB power difference. The same analysis and results are
applicable for the subsequent cascades. Therefore, the spectral intensities of the
cascade lines in HFPLs should decrease consecutively by a factor e−2α∆z (i.e. 10 dB
down consecutively) if they are generated by the resonant cascading process.

5.2. Nonresonant decay

Setting ωs1 = ωs1r+ iγ1 and ω1 = ωkθ−ωs1r+ iγ1 in (25) leads to two real equations:

(2γ1 + νe)[4k2C2
s + γ1(γ1 + νi)− ω2

s1r] = 2ω2
s1r(2γ1 + νi) (28)

and

2ωkθωs1r[4k2C2
s + γ1(γ1 + νi)− ω2

s1r] + ωkθωs1r(2γ1 + νe)(2γ1 + νi)

= k4g(θ, ωkθ)2 ω4
p

πn0Mω2
kθ|ϕ|2

(29)
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At the threshold field, γ1 = 0. Thus, ω2
s1r = [νe/(νe + 2νi)]4k2C2

s is obtained from
(28), and the threshold field of the instability is obtained from (29) as

|ϕ|2th =
[
1 +

16k2C2
s

νe(νe + 2νi)

](
νe

νe + 2νi

)1/2

|ϕ|20

≈ 8C2
s cos2 θ

[νe(νe + 2νi)3]1/2
|Epth(θ)|2, (30)

where Ω2
e� ω2

kθ has been used to simplify the result.
Equation (30) determines only the threshold field for exciting the first cascade

line of the Langmuir sideband of the OTSI or PDI through a nonresonant decay
process. However, the analysis can easily be extended to determine the threshold
field for the excitation of the Nth cascade line φN (ωN ,−k). In this case, the pump
is the (N − 1)th cascade line φN−1(ωN−1,k) and the decay mode is again an ion
acoustic mode nsN (ωs, 2k). Equations (23) and (24) are generalized to become the
coupled mode equations for the Nth cascade:

[ωN (ωN + iνe)− ω2
kθ]ϕN = ω2

pϕN−1
n∗sN
n0

(31)

and

[ωsN (ωsN + iνi)− 4k2C2
s ]

nsN
n0

= k4g(θ, ωN−1)2 ω2
p

πn0Mω2
n−1

ϕN−1ϕ
∗
N . (32)

Setting ωsN ≈ ωsNr + iγN and ωN ≈ ωkθ −
∑N
q−1 ωsqr + iγN in (31) and (32), the

dispersion relation for this cascade step is derived as[
iω0(2γN + νe)− 2ω0

N∑
q=1

ωsqr

]
×[−iωsNr(2γN + νi) + ω2

sNr − 4k2C2
s − γN (γN + νi)]

= k4g(θ, ω0)2 ω4
p

πn0Mω2
0
|ϕN−1|2, (33)

where ωkθ ≈ ω0 ≈ ωN−1 are assumed.
Equation (33) is solved to determine the threshold field |ϕN−1|th by setting γN =

0. The result is found to be

|ϕN−1|2th =
[
1 +

16N 2k2C2
s

νe(νe + 2Nνi)

](
νe

νe + 2Nνi

)1/2

|ϕ|20

≈ N 2
(

νe + 2νi
νe + 2Nνi

)3/2

|ϕ|2th, (34)

where
∑N
q=1 ωsqr ≈ NωsNr and 16N 2k2C2

s/νe(νe + 2Nνi)� 1 are assumed.
Consider two extreme cases that νe� 2Nνi and νe� 2Nνi for comparison; then

(34) reduces to

|ϕN−1|2th ≈
{

N 2|ϕ|2th for νe� 2Nνi,

N 1/2|ϕ|2th for νe� 2Nνi.
(35)

The results presented in (35) suggest that the spectral features of the cascade plasma
lines, produced via the ion acoustic decay process, depend strongly on νe/νi, i.e.,
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the latitude of the heating site, the time of the experiment, and the frequency of
the heating wave. In general, Langmuir waves excited by the OTSI and PDI will
cascade several times through the considered proces to broaden their frequency
spectrum. However, the bandwidth of produced HFPLs is quite narrow, because
the ion acoustic frequency is low and the achievable number of cascades is limited
by the increasing dependence of the instability threshold on the number of cascades.

6. Cascade of Langmuir waves via the lower-hybrid decay mode
Langmuir waves excited in heating experiments by the OTSI in the region h = h0

(where ω2
p = ω0(ω0 + νe) − 3k2

0v
2
te) near the HF reflection height have a small

(≈ 10◦–20◦ for |Ep| ≈ 2 V m−1) angular distribution around the geomagnetic field.
These waves have the same frequency as the HF wave. Likewise, a similar spectral
distribution of Langmuir waves can also be excited by the PDI – however, in the
slightly lower region h = hp < h0, where ω2

p = ω(ω + νe) − 3k2
0v

2
te and ω = ω0 − ωs

is the frequency of the Langmuir wave. It takes a continuous cascade of Langmuir
waves by secondary parametric instabilities to broaden the downshifted frequency
spectrum of Langmuir waves. However, the permissible number of cascades and the
required pump threshold field for producing a broadband of frequency-downshifted
Langmuir waves depend on the secondary parametric instability process. For exam-
ple, the secondary parametric decay instability considered in the preceding section,
which decays a Langmuir pump wave into an ion acoustic decay mode and a Lang-
muir sideband, cannot significantly broaden the frequency spectrum of Langmuir
waves. Thus, other processes were explored to account for the broad frequency-
downshifted spectrum of HFPLs observed occasionally in recent Arecibo heating
experiments. One feasible process, which could cascade Langmuir waves contin-
uously in the same region (i.e., a nonresonant cascading process) to produce a
broadband of frequency-downshifted Langmuir waves was found to be the decay
of a Langmuir pump wave into a Langmuir sideband and a lower-hybrid decay
mode. This decay process requires that the wavevectors of three waves be matched
in three-dimensional space, rather than the conventional two-dimensional arrange-
ment matching them on the plane of the pump wavevector and the geomagnetic
field. Through the filamentation instability (Kuo et al. 1993) or scattering with the
short-scale field-aligned density irregularities, some of these Langmuir waves were
converted into plasma lines propagating at 40◦, becoming detectable by the Arecibo
430 MHz backscatter radar. This process together with the OTSI were considered
by Kuo and Lee (1999) to show the possible generation of a broad downshifted spec-
trum of HFPLs originating from the same altitude near the reflection height of the
O-mode HF heating wave in the Arecibo heating experiments. However, it has been
shown in the preceding sections that the 40◦ Langmuir sidebands contributing to
HFPLs can also be directly generated by the OTSI as well as the PDI in the match-
ing height regions of the respective sidebands. In the following, we show that the
cascade of these 40◦ Langmuir sidebands, excited by either instability through the
same secondary parametric instability considered by Kuo and Lee (1999), can also
lead to a broad downshifted spectrum of HFPLs originating from the same altitude
in the Arecibo heating experiments. However, this altitude is the matching height
of the 40◦ Langmuir waves rather than that near the O-mode HF reflection height.

Considering the decay of a Langmuir pump φ1(ω1,k1) into a Langmuir sideband
φ2(ω2,k2) and a lower-hybrid decay mode n3(ω3,k3) in a layer at h = h10, where
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Figure 3. Wave vector matching diagram of the cascading via the proposed secondary
parametric decay process.

ω2
p(h10) = ω0(ω0 +νe)−3k2

10v
2
te−Ω2

e sin2 θ0, the frequency and wavevector matching
conditions are

ω1 = ω2 + ω∗3 , k1 = k2 + k3,

where k1 = ẑk0 + x̂k⊥, k2 = ẑ(k0 − kz) + ŷk⊥, and thus k3 = (x̂ − ŷ)k⊥ + ẑkz;
k⊥/k0 = tan θ and |kz/k⊥|� 1. The wavevector matching condition is plotted in
Fig. 3. It is noted that there will be no instability if k1,k2, and the z axis are in the
same plane. This is because the product of the coupling terms of the two-coupled
mode equations has a wrong sign. In other words, the proposed decay and cascading
processes have to develop in three-dimensional space.

The cascading process is described as follows. When the k2 line grows to a level ex-
ceeding the threshold of the subsequent cascading, the wavevectors of the sideband
and decay mode will be k′1 = ẑk0− x̂k⊥ and k′3 = (x̂+ ŷ)k⊥− ẑkz, which are separated
from the k1 and k3 lines. This decay process continues when the k′1 line becomes
strong enough to be a pump, which decays into a sideband with k′2 = ẑ(k0+k′z)−ŷk⊥
and a decay mode with k′′3 = −(x̂− ŷ)k⊥ − ẑk′z; again |k′z/k⊥|� 1.

From (7), the coupled mode equation for the Langmuir sideband is obtained as

{[(∂t + νe)2 + Ω2
e] (∂2

t + νe∂t + ω2
p − 3v2

te∇2)∇2 − Ω2
e(ω

2
p − 3v2

ts∇2)∇2
⊥}φ2

= −ω2
p

{
[(∂t + νe)2∇ + Ω2

e∇z] ·
〈
∇φ1

(
n∗3
n0

)〉

−Ωe(∂t + νe)ẑ ·
〈
∇
(
n∗3
n0

)
×∇φ1

〉}
. (36)

For the lower-hybrid decay mode n3(ω3,k3), Ω2
i � |ω3|2 � Ω2

e, and |∂2
t∇2
⊥| and

|Ω2
e∇2

z| are of the same order of magnitude. Thus, the coupled mode equation (8) is
reduced to

∂t

{
∇2
⊥(∂t + νe)[∂t(∂t + νi)− C2

s∇2] + ΩeΩi

(
∇2
⊥ +

M∇2
z

m

)
∂t

}
n3

n0

=
m

M
∇2
[
(∂t + νe)∂t∇⊥ · ap + Ω2

e∂zapz −
Ω2
e∂t∇ · JB

n0 − Ωe∂t∇ · ap × ẑ

]
. (37)
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It is found that the third and fourth coupling terms on the right-hand side of (37)
cancel each other. This leaves the first two terms on the right-hand side of (37),
attributed to the transverse convective force and parallel ponderomotive force, as
the dominant coupling terms.

Again, considering spatial and temporal harmonic perturbations having a general
expression p = p exp[i(κ · r)− ω̃t)], where κ and ω̃ are the appropriate wavevector
and frequency of each perturbation, (36) and (37) can be combined to obtain the
dispersion relation of the instability as

[iω0(2γ + νe)− ∆ω2
l ][−iω30(2γ + ν3)− ∆ω2

3]

= 2ξ−1 e2

mMω2
p

cos2 θ
1 + iΩe/ω0

ω2
0 − Ω2

e

(
1 + iΩeω0 tan2 θ

ω2
0 − Ω2

e

)
k2

0k
2
⊥|ϕ1|2, (38)

where ω3 = ω30 + iγ is assumed and γ is the growth rate of the instability;

∆ω2
l = 2ω0(Nω30 + 1

2νe) + ∆ω2
m − ∆ω2

m0

for the Nth cascade

∆ω2
3 = 2k2

⊥C
2
s +ΩeΩiξ+νeνi−ω2

30, ν3 = νi+νe

(
1− 2k2

⊥C
2
s

ω2
30

)
, ξ = 1+

Mk2
z

2mk2
⊥
,

and
νe
ω30
�

Ωe
ω0
,

k2
⊥Ω2

e

k2
1ω

2
0
� 1

are assumed. Equation (38) leads to two real equations for determining the real
frequency ω30 of the decay mode and the growth rate γ of the instability. We first
determine the threshold field by setting γ = 0 in (38). The resulting equation is
then solved to obtain

ω30 ≈
[
2k2
⊥C

2
s + ΩeΩiξ − ξν3ω0Ωi

(cos2 θ − Ω2
e/ω

2
0)(2k2

⊥C2
s + ΩeΩiξ)1/2

]1/2

(39)

and

|ϕ1|2th =
(m
e

)2 νeΩe
2ω30ω0

ξ(ω2
0 − Ω2

e)
2∆ω2

l

(ω2
0 cos2 θ − Ω2

e)k
2
0k

2
⊥
. (40)

The growth rate is found to be

2γ =
[
ν2
e +
(
ν2
e +

∆ω2
l νeΩi
ω2

30

)( |ϕ1|2
|ϕ1|2th

− 1
)]1/2

− νe, (41)

where the slight frequency shift of the decay mode with the pump field is neglected.
Since the threshold field of (40) increases with ∆ωl, and ∆ω2

l increases with the
number of the cascading process, the cascading process eventually stops when the
threshold field becomes too high. Using the ionospheric parameters of the Arecibo
heating experiments given in the preceding section, (40) is expressed numerically
as

|E|th = 0.636ξ1/2[N + 3.22ξ−1/2(tan2 θ − tan2 θ0)

+17.86ξ−1/2(sin2 θ − sin2 θ0)]1/2/ cos2 θ sin θ (in V m−1). (42)

Therefore, the threshold field for theNth cascade of (k1, 40◦) lines occurring near the

https://doi.org/10.1017/S0022377801001477 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377801001477


332 S. P. Kuo

HF wave reflection height in the layer at h = h0, where ω2
p(h0) = ω0(ω0 +νe)−3k2

0ν
2
te,

i.e., θ0 = 0, is given by

|E1(h0)|th = 1.69ξ1/2(N + 9.65ξ−1/2)1/2 (in V m−1) (43)

and for those occurring in their matching height layer at h = h1, where ω2
p(h1) =

ω0(ω0 + νe)− 3k2
l v

2
te − Ω2

e sin2 40◦, i.e., θ0 = 40◦, it becomes

|E1(h1)|th = 1.69ξ1/2N 1/2 (in V m−1) (44)

The threshold field (44) is smaller than that given by (43). Using the case ξ = 1 as
an example, the OTSI threshold fields for exciting (k1, 40◦) sidebands in the layers
at h = h0 and h1 are 6.06 V m−1 and 0.222 V m−1, respectively. Since the threshold
fields in (43) and (44) are proportional to ξ1/4, the decay instability prefers to excite
the field-aligned lower-hybrid resonance mode having ξ = 1.

We now examine the threshold conditions for producing broad frequency-
downshifted HFPLs of 50 kHz bandwidth, as an example, in different altitude re-
gions. It is noted that the lower-hybrid frequency is proportional to ξ1/2; thus,
a larger ξ will need fewer cascades to obtain the same bandwidth. However, the
threshold field of each cascade, as shown by (43) and (44), increases with increasing
ξ. It turns out that the pump threshold field for the overall process is minimum in
the case of ξ = 1, which has f30 ≈ 6.2 kHz. Thus, N = 8 is needed. The threshold
field evaluated from (43) for the case N = 8 is 4.77 V m−1. In general, Langmuir
waves excited by the OTSI saturate at amplitudes about twice of that of the HF
pump wave. Thus, the HF field amplitude required in order to reach N = 8 in the
matching height layer of the HFPLs is estimated to be about 2.4 V m−1. On the
other hand, the threshold field required for producing the same broad downshifted
HFPLs indirectly (involving scattering or filamentation instability) or directly in
the layer at h = h0 near the reflection height of the O-mode HF heating wave
is 3.6 V m−1 or 6.06 V m−1, respectively. The cascades produce HFPLs of 50 kHz
bandwidth, whose frequencies are downshifted continuously from the HF wave
frequency.

However, it is also noted that, due to the swelling effect, the HF wave electric field
amplitude increases with altitude in the region near the HF reflection height. The
ratio of the heating wave field amplitudes at the two heights should be estimated in
order to draw a proper conclusion about where the preferential altitude is. Without
considering anomalous absorption, one can estimate the field amplitude ratio at
the two heights by applying the continuity of HF energy fluxes in the upward
and downward directions as follows: E1/H1 = η1 and E2/H2 = η2, where η =
(µ/ε)1/2 is the characteristic impedance of the medium (background plasma), and
the subscripts 1 and 2 represent the locations at the reflection height and matching
height, respectively.

Continuity of the energy flux of the HF heating wave, E1H1 = E2H2, leads to(
E1

E2

)4

=
ε2
ε1

=
1− ω2

p2/ω
2
0

1− ω2
p1/ω

2
0

=
3k2

1v
2
te + Ω2

e sin2 θ0 − ω0νe
3k2

0v
2
te − ω0νe

. (45)

Using the values of the parameters given in Sec. 2 yieldsE1/E2 < 1.5. Therefore, the
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matching height of the HFPLs is shown to be the preferential altitude of exciting
a broad downshifted spectrum of HFPLs in the Arecibo heating experiments.

7. Discussion
Cascades of Langmuir sidebands of the PDI and OTSI excited in the ionospheric
heating experiments via two secondary parametric instability processes have been
studied. One process cascades Langmuir waves through ion acoustic waves, the
other through lower-hybrid waves.

In the first case, cascading through ion acoustic waves, both resonant and non-
resonant cascading processes have been analyzed. In the resonant decay case, the
propagation loss of Langmuir waves imposes a large power ratio e2α∆z (≈ 10 dB) on
the two consecutive cascade lines in the HFPLs. However, since such a large power
ratio was not shown in experimental results, the cascade of the PDI is not likely to
be through the resonant cascading process.

Through the nonresonant cascading processes, it is shown from (35) that the
threshold power for exciting the Nth cascade line is proportional to N 2 in the
parameter range where 2Nνi < νe and k2C2

s/ν
2
e � 1. The threshold field of this

secondary parametric instability as the cascading process is much higher than that
of the PDI (as shown by (30)), and it increases with the square of the number N
of cascade steps (as shown by (35)). Thus, the maximum number of cascade lines
excited by an HF heating wave turns out to be much less than that determined
by the condition: 2 Int(P0/Pth − 1) 6 N 6 2 Int(P0/Pth − 1) + 1 (Stubbe et al.
1992), where P0 and Pth are the heating wave power and the threshold power of
the PDI, respectively, and Int(. . .) denotes the integer part of (. . .). For example,
the threshold power for the excitation of the third cascade line is about 3.5 dB
higher than that for the excitation of the second cascade line. The experimental
result shows that the saturation intensity of the second cascade line can be larger
than that of the first cascade line, but the difference rarely exceeds 3.5 dB. This
explains why the second cascade line hardly generates a third in Tromsø early
heating experiments. In Arecibo, with νi ≈ νe, the increase rate of the threshold
field with the number of the cascade step (∝ N 1/2) is not as fast as that (∝ N 2)
in Tromsø heating experiments. Consequently, more cascade steps can occur in the
Arecibo heating experiments.

The second case of cascading through the lower-hybrid wave studies the feasibil-
ity of generating a broad spectrum of frequency-downshifted HFPLs in the same
altitude region by O-mode HP heating waves in the Arecibo heating experiments.
It is, however, noted that the theory is also applicable for heating experiments
conducted at other heater sites. This process starts with the OTSI or PDI. It was
first shown that the excitation of the OTSI is not restricted to the region near
the reflection height of the O-mode HF heating wave. Owing to the geomagnetic
field and smooth plasma density gradient in the F region of the ionosphere, the
OTSI can be excited in a sizable spatial region below the HF reflection height. In
fact, obliquely propagating Langmuir sidebands are preferentially excited in their
matching heights by the OTSI (as well as by the PDI), where the altitudes move
downward as their oblique propagation angles increase. Therefore, the OTSI and
PDI generate Langmuir waves in a sizable altitude range. Once these Langmuir
waves grow to large enough amplitudes, they decay into frequency-downshifted
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Langmuir sidebands and lower-hybrid waves. A conventional two-dimensional ar-
rangement matching them on the plane of the pump wavevector and the geomag-
netic field was first chosen, and it was found that the product of the coupling
terms of the two-coupled mode equations has the wrong sign, i.e., there is no in-
stability. This sign changes when the wavevectors of three waves are matched in
three-dimensional space. In other words, this secondary parametric instability is a
three-dimensional process. Continuous cascades of Langmuir sidebands through the
same process lead to a broad spectrum of frequency-downshifted Langmuir waves.

Lower-hybrid waves, in general, have a broad and continuous spectrum. The fre-
quency of the lower-hybrid wave increases with increasing parallel component of
its wavevector. For a given bandwidth of the cascade spectrum, the required num-
ber of cascades decreases as the frequency of the lower-hybrid decay mode in the
cascade process increases. However, the threshold field of the Langmuir pump wave
in each cascade step also increases with increasing frequency of the lower-hybrid
decay mode. The two effects counterbalance each other. It turns out that the cas-
cading process having the field-aligned lower-hybrid resonance mode as the decay
mode requires the minimum threshold field from the HF heating wave. But the HF
threshold field for the overall process is, in fact, quite independent of the frequency
of the lower-hybrid decay mode. Considering the field-aligned lower-hybrid reso-
nance mode as the decay mode, the results of the analysis for the Arecibo heating
experiments show that for the OTSI-excited Langmuir waves to be able to cas-
cade eight times in the HF reflection height region, the HF wave field amplitude
has to exceed 3.6 V m−1. Then the generated Langmuir waves will have a 50 kHz
bandwidth below the HF wave frequency, but their propagation directions will be
confined in a narrow cone (< 30◦) around the geomagnetic field. Therefore, an ad-
ditional process, such as the filamentation instability (Kuo et al. 1993) or scattering
with the short-scale field-aligned density irregularities, is also involved to convert
some of these Langmuir waves into HFPLs detected by the Arecibo UHF radar.

However, the threshold fields of the OTSI and PDI excited in matching height
regions of their vertically propagating Langmuir sidebands are much lower than
the corresponding fields required to generate vertically propagating Langmuir side-
bands in the HF reflection height region. Thus, the HFPLs at the frequency of the
HF heating wave and at the frequency downshifted from that of the HF heating
wave by the ion acoustic frequency can be generated directly by the O-mode heating
wave via the OTSI and PDI, respectively, in the respective matching height regions
of the HFPLs. Hence, the cascade of 40◦ Langmuir sidebands excited directly by
the O-mode heating wave via the OTSI and PDI in their matching height region
were also analyzed for comparison. It was shown that the cascade of these 40◦

Langmuir sidebands can lead directly to a broad downshifted spectrum of HFPLs
originating from the same altitude in the Arecibo heating experiments; however,
this altitude is the matching height of the 40◦ Langmuir sidebands of the OTSI or
PDI, rather than the reflection height of the O-mode heating wave. The threshold
field of the heating wave is about 2.4 V m−1, which is less than the 3.6 V m−1 re-
quired for the same instabilities excited in the region near the HF reflection height.
The swellling factor on the HF wave electric field amplitude increases with alti-
tude in the region near the HF reflection height; however, the result of the analysis
shows that the ratio of the swelling factors in the two regions is not large enough
to make up the difference in threshold fields. It is also noted that the generated
cascade spectrum is not in discrete form. This is because lower-hybrid waves have a
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broad and continuous spectrum, which can be excited simultaneously as different
frequency decay modes in the cascade process.

In summary, this work has shown the following.

1. The threshold power of the cascading process through the ion acoustic wave
has an N 2 dependence for νe� 2Nνi and an N 1/2 dependence for νe� 2Nνi.
This explains why the second cascade line generates hardly a third in the early
Tromsø heating experiments before the superheater was in operation and why
more cascade steps can occur in the Arecibo heating experiments.

2. In a magnetized plasma, the OTSI can be excited in a wide layer extending
from the HF reflection height to a distance below that altitude. In fact, it
is preferentially excited near the matching height of its Langmuir sidebands,
which moves downward as the oblique propagation angles of sidebands increase;
this is contrary to the unmagnetized case, where the OTSI can only be excited
in a narrow layer near the reflection height of the HF pump wave.

3. A three-dimensional parametric instability process is feasible to generate a
broad downshifted spectrum of HFPLs in the HF heating experiments. The
preferential originating altitude of such a spectrum of HFPLs in the Arecibo
heating experiments is found to be the matching height of HFPLs rather than
the HF wave reflection height.
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