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BOUNDED RELATIVE ERROR IMPORTANCE SAMPLING
AND RARE EVENT SIMULATION 

BY
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ABSTRACT

We consider estimating tail events using exponential families of importance 
sampling distributions. When the cannonical suffi cient statistic for the exponen-
tial family mimics the tail behaviour of the underlying cumulative distribution 
function, we can achieve bounded relative error for estimating tail probabilities. 
Examples of rare event simulation from various distributions including Tukey’s 
g&h distribution are provided. 
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1. INTRODUCTION

Suppose X is a random variable with cumulative distribution function (cdf) F 
and probability density function (pdf) f with respect to Lebesgue measure. 
Suppose we wish to estimate an expected value such as

 
3-

x
3

( ( )) ( )E g X g= x( )f dx#

where g is an arbitrary integrable function and the notation E(*) denotes 
expected value with respect to the probability density function f. We wish to 
use importance sampling ( IS ) ( see for example McLeish ( 2005 ) p. 183 ): gener-
ate X from an alternative distribution in an exponential family having proba-
bility density 

 q x xx( ) ( ( ), ,f m e f1 ( )T !q q Q=
q

)  (1)

where m( q )  =  e ( )T xq#   f ( x ) dx  <  3 and Q  1 {q  !  R ;  m( q )  <  3}. The modifi -
cation of the original density by the multiplication of a term like eqT( x ) when 
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378 D.L. MCLEISH

T ( x )  =  x is variously referred to in the literature as an exponential twist or tilt 
of  the density f. We will adopt this language to include a general family of 
densities of the form ( 1 ) and use the phrase standard exponential twist in the 
special case T( x )  =  x. Expected values with respect to the density fq are denoted 
Eq (* ). Having generated independent Xi,  i  =  1,  ...,  n from fq, the IS estimator 
of E( g( X ) ) is the unbiased estimator of Eq ( [ g( X  ) f ( X  ) / fq ( X  )] ),

 (Xg )i
i( )

( )
n f X

f X1
i

n
i

1 q=

./

Our primary concern in this paper is the effi ciency or the variance of such esti-
mators in the special case of tail event g( X )  =  I ( X  >  t ) where the probability 
P( X  >  t ) is small. We defi ne 

 f x( ) .dx(t
3

t
F )t = =p #  (2)

For n independent simulations Xi from the pdf fq, the IS estimator is 

 I t
q

f i

( )
( )

( ) .n f X
X1 >t

ii

n

i
1

=
=

Xp /  (3)

Again pt is an unbiased estimator, i.e. Eq ( pt )  =  pt.
It is natural to choose the value of q  !  Q which minimizes some criterion, 

one such being the variance of the IS estimator,

 t
1 Tq x

3
( ( ) ( ) .var m e f dx p( )

t
xq -q

- 2-

t
n=p ) : D#

Because of its relationship to the very substantial literature on risk measurement 
( see McNeil, Frey and Embrechts ( 2005 ) ), there is a considerable interest in 
estimating probabilities of tail events, using either simulation or asymptotic 
approximations to the survivor function ( see for example Degen, Embrechts, 
and Lambrigger ( 2007 ) ). For a detailed discussion of Monte Carlo estimation 
techniques for rare event probabilities, see two recent books on the topic, 
Kroese and Rubinstein ( 2008 ) and Asmussen and Glynn ( 2007 ) as well as 
Asmussen, Kroese and Rubinstein ( 2005 ), and Homem-de-Mello and Rubin-
stein ( 2002 ). In Kroese and Rubinstein ( 2008 ), cross-entropy is used to moti-
vate iterative methods of choosing an appropriate parameter value q for the 
importance sampling distribution ( 1). In Asmussen and Glynn ( 2007 ) a 
number of estimators similar to ( 3 ) are discussed, including a very effi cient 
estimator obtained by conditioning. In this paper we develop some useful and 
simple rules for optimal or near optimal values of the parameter q, and discuss 
which statistics T( x ), i.e. which exponential families of distributions, can lead 
to importance sampling estimators with bounded relative error.
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 BOUNDED RELATIVE ERROR IMPORTANCE SAMPLING 379

2. MINIMIZING DIVERGENCE, IMPORTANCE SAMPLING

AND BOUNDED RELATIVE ERROR

For tail events, the variance or standard error is less suitable than a version 
scaled by the mean because in estimating very small probabilities such as 
0.0001, it is not the absolute size of the error that matters but the size of the 
error relative to the true value. This motivates the notion of relative error. 

Defi nition 1. The relative error ( RE ) of the importance sample estimator is the 
ratio of the estimator’s standard deviation to its mean.

For n independent simulations Xi from the pdf fq, the RE of the IS estimator ( 3 ) 
is 

 Tq

t

(1 )x-/ f x
3(

( ) .n
p

m
e dx 1

t

q
-2-

2

) #  (4)

Defi ne the Rényi generalized divergence Da( g;  fq ) of order a, for two probabil-
ity density functions g( x ) and fq ( x ) ( see Rényi, ( 1961 ) )

 (a

(

(q

x

x

a

a a a

( )
)

( ) 1,

1
)

( ) 0, 1.

ln

ln
D g f

f x
g

x dx

f
g

x dx1

if

if >
a 1

!

=

=

-

q

q

-;
g

g

)
d

df

n

n p> H

Z

[

\

]
]]

]
]

#

#
 (5)

We assume, of course, the integrals in ( 5 ) exist.
For a non-negative integrable function h, c  =  c( h ) denotes a normalizing 

constant so that the function ch is a pdf. For h( x )  =  f ( x ) I ( x  >  t ) and c  =  1 /pt,
the RE ( 4 ) can be written n – 1/2 q .e 1( ;D ch f2 -)  We conclude:

Proposition 1. The variance of the importance sample estimator (3 ) is minimized 
if fq is chosen to minimize Da( ch;  fq ) where h( x )  =  f ( x ) I ( x  >  t ), and a  =  2. 

If  the parametric family fq contains a density proportional to f ( x ) I ( x  >  t ), 
then this obviously minimizes ( 5) because in this case the divergence equals 
zero, its minimum possible value, for all a  >  0. Unfortunately, sampling from 
a density like ch( x )  =  cf ( x ) I ( x  >  t ) is often not possible. In the rare case when 
it is possible, it may focus too specifi cally on estimating a single probability 
P( X  >  t ) when we are interested in the whole tail behaviour of f ( x ), a point to 
be returned to shortly. The most important special case of the Rényi general-
ized divergence ( 5 ) is the Kullbach-Leibler divergence from fq to h correspond-
ing to a  =  1. Other functions have also been used in the literature replacing Da 
( see for example Ridder and Rubinstein ( 2007 ) ).
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380 D.L. MCLEISH

The following metaprinciple is often invoked to generate IS estimators. It is 
based on the idea that the closer we are to the “perfect” IS distribution ch, the 
more effi cient is our estimator.

Minimum Divergence Principle. To obtain an IS estimator of  h# ( x ) dx, choose 
an IS distribution fq which minimizes the Rényi generalized divergence Da( ch;  fq ) 
between the family fq and the target ch.

Typically a is chosen to be 1 ( minimum cross-entropy ) or a  =  2 ( minimum var-
iance ) for the application of the above, and in many cases the minimization 
problem suggested by this principle is quite tractable. Now suppose we do not 
have a single integral  h# ( x ) dx in mind that we wish to estimate, but a whole 
class of such integrals for h ! H. We would like a single exponential family 
that performs well for estimating all functions in the class. This is the notion 
of bounded RE: for each function in H, there is a member of the exponential 
family that provides fi nite RE. 

Defi nition 2. Suppose H is a class of non-negative integrable functions h. We 
say the family { fq ;  q  !  Q} has bounded relative error for the class H if

 q( )sup inf ch f <
h

2
H

3
! !q Q

;D  (6)

for c  =  c( h ) such that ch is a pdf.

Condition ( 6 ) says that the orbit of the exponential family passes close enough 
to every function h ! H  that it has bounded RE. For rare event simulation, it 
is easy to fi nd a parametric class of distributions which provides bounded RE 
for estimating the probability of events in the tail. In particular, if H is the class 
of functions I ( x  >  t ) f ( x ) for all t  >  0, we may defi ne the family of densities 

 qq x( ) ( ) ( ),f x c f I 0> for all >q=q x  (7)

for normalizing constants cq . Then for any h ! H, this family includes a mem-
ber ( choose q  =  t ) which, when used as an IS distribution, has zero variance 
for estimating  h# ( x ) dx. However the class (7 ) of IS distributions is not gener-
ally an exponential family of distributions ( in fact the distributions are not 
mutually absolutely continuous ) and it is often very diffi cult to generate from 
members of this family. Moreover, as we will see in Section 3, Example 1, the 
ideal IS distribution for I ( x  >  t ) f ( x ) may perform very badly for I ( x  >  s ) f ( x ) 
when s  >  t. Our preference is for a single exponential family (1 ) which passes 
close enough to every function h ! H that it has bounded RE. With an expo-
nential family of distributions generated by a single canonical suffi cient statis-
tic T, we can easily aggregate information collected at different parameter values 
as would be required if  the parameter q were to be sequentially updated.
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 BOUNDED RELATIVE ERROR IMPORTANCE SAMPLING 381

Our objective is therefore to answer the question Under what circumstances 
does an exponential family provide bounded relative error for rare event simulations? 
The simple answer to this question is quite informative about attempts to provide 
IS distributions using the standard exponential tilt. Bounded relative error is to 
be expected when T( x ) behaves in the tail like that of the target distribution.

Notation: 

• Denote by xF  =  sup{x;  F( x )  <  1}  ≤  3. Our asymptotics will apply as t " x–
F

  

( approaching from the left ) or equivalently as pt  =  P( X  >  t )  "  0.

• The notation ax K bx as x " x–
F  means that ax  =  O( bx ) as x " xF and ax  @  bx 

means there exist constants c1,  c0 and x0  <  xF such that

 0  <  c1  ≤   x

b
a

x
   ≤   c0  <  3  for all xF  >  x  >  x0.

For simplicity we will always assume the existence of  a pdf, so that F( x )  =

3-
f z( )dz

x#  is continuous at x–
F

 .

Proposition 2. Suppose we wish to estimate pt  =  P( X  >  t ) using an importance 
sampling pdf of the form ( 1). Moreover suppose T( x ) is non-decreasing in x 
and for some real number a, T( x )  +  a @ F( x )  –  1 as x " x–

F
  . Then the family of 

distributions ( 1 ) provides IS estimators with bounded relative error as pt "  0.

The proof all of  the results, including this proposition, is in the appendix.
The conditions assert that the function – T( x ), when translated by a constant, 
behaves like the survivor function F( x )  =  1  –  F( x ) because it is bounded above 
and below by positive multiples of the survivor function. Using importance 
sampling and guessing the correct tail behaviour pays very large dividends in 
terms of reduced variance. The following corollary specifi es the optimal value 
of the parameter and the asymptotic value of the RE and obtains from a small 
modifi cation to the proof of Proposition 2.

Corollary 1. Suppose X has a continuous distribution with cdf F. Suppose that 
T( x ) is non-decreasing and for some real numbers a and c  >  0 we have a  +  T( x ) +
– cF( x ) as x " x–

F
 . Then the IS estimator for sample size n obtained from density

( 1) with q  =  qt  =  
t

( )
cp

k 2  has bounded RE asymptotic to 

 
n( )

( ( )) .
k

e k
n2

1 1 2 0 7382 -- -( )k 2

as pt "  0 where, for a  ≥  1, k( a ) is the unique positive solution to the equation

 ( 1)
- a1 1 ,e k 1a k

= -
- -

b l

and k( 2 )   -   1.5936. 

93216_Astin40_1_18.indd   38193216_Astin40_1_18.indd   381 11-05-2010   09:44:2511-05-2010   09:44:25

https://doi.org/10.2143/AST.40.1.2049235 Published online by Cambridge University Press

https://doi.org/10.2143/AST.40.1.2049235


382 D.L. MCLEISH

Corollary 1 appears to suggest that we should choose T( x ) to be a linear function
of a survivor function F( x ) but can we weaken this condition substantially? 
In pursuit of greater generality, we review some standard results concerning 
regularly varying functions. For more detail the reader is referred to Bingham, 
Goldie and Teugels ( 1987 ). 

Defi nition 3. We say the positive measurable function f is regularly varying at 
0  –  ( i.e. regularly varying from the left at 0 ) with index ˇ if

 (
( )

0 0f
f x

xas for all >-"
l

l lv .)x  (8)

The defi nitions of regularly and slowly varying functions at 3 are similar, and 
f ( x ) is regularly varying at a point x0

–  <  3 if  f ( x  +  x0 ) is regularly varying at 
0–. Note that f ( x ) is regularly varying at 0–   if  and only if  ( )f y

1
-  is a regularly 

varying function at 3. The function f (  x ) is said to be slowly varying if  ( 8 ) 
holds with ˇ  =  0. A simple example of a function that is defi ned on (– 3, 0 ) 
and is regularly varying at 0– is f (x )  =  ( – x )ˇ  ln(– 1/x ).

We will assume that all functions here are locally bounded ( every point 
x  <  xF has a neighborhood in which the function is bounded ), a consequence, 
for example, of continuity. 

Lemma 1.( a ) ( Karamata’s Theorem ) For an arbitrary function g which is reg-
ularly varying at 3 with index g  <  – 1,

 (g (t
3

t
) | | ) .y dy t g tas " 3+ 1+g#

( b ) For an arbitrary function g which is regularly varying at 0–   with index g  >  – 1,

 e
e

(
-

g ) ) 0.y dy g1 as .+ g
e e
+

0
(-#

Part ( a ) of Lemma 1 is proved in Mikosch ( 1999 ), Theorem 1.2.6, and part ( b ) 
in the appendix. For the following result, see, for example Bingham, Goldie 
and Teugels ( 1987 ) pp. 37-38, and Mikosch ( 1999 ), Theorem 1.2.10.

Lemma 2 ( Karamata’s Tauberian Theorem ). Let U be a right-continuous non-
decreasing function on R with U( x )  =  0 for x  <  0, with Laplace transform U( s )  =  

(su d[ , )0 3
) .e U u-#  Let L be a slowly varying function at 3 and let c and r be non-

negative constants. Then:

1. U( x )  +  cxrL( 1/x ) / G( 1 + r ) as x "  0+ if  and only if  U(s )  +  cs – rL( s )  =
 G( 1 + r ) ( )U s

1  as s " 3.

2. U( x )  +  cxrL( x ) / G( 1 + r ) as x " 3 if and only if U( s )  =  s (u-

0

3
)e dU u#   +  cs – r 

L( 1/ s )  =  G( 1 + r ) ( )U s
1  as s " 0+.
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 BOUNDED RELATIVE ERROR IMPORTANCE SAMPLING 383

If c  =  0, then 1 above is interpreted to mean that U( x )  =  o( xrL( 1/x ) / G( 1  +  r ) ) 
as x "  0+ if  and only if  U( s )  =  o( s – rL( s ) ) as s " 3.  

Regularly varying functions are closely tied to the maximum domain of 
attraction of distributions. If  there are sequences of real constants ( cn ) and 
( dn ) where cn  >  0 for all n, such that

 c xF n x( ) ( ) ,nasn " " 3+ Hdn

for some non-degenerate cdf  H( x ), then we say that F is in the maximum 
domain of attraction ( MDA ) of the cdf H and write F  ! MDA( H ). The Fisher-
Tippett Theorem ( see Theorem 7.3 of McNeil, Frey and Embrechts ( 2005 ) ) 
characterizes the possible limiting distributions H as members of the general-
ized extreme value distribution ( GEV ) which have a cdf given by

 
0,=e

/1 z

x

(
z ( )

( )

( 1 ) 0 1.

exp

exp
H x

x x

if

if and >z z z

z
=

-

+
-

-

)- ! -
*

Special cases of this distribution are the Fréchet ( z  >  0 ), the Gumbel ( z  =  0 ) 
and the Weibull ( z  <  0 ) distributions. If  two survivor functions F1 and F2 are 
in the Fréchet maximal domain of attraction ( see McNeil, Frey and Embrechts 
( 2005 ) Theorem 7.8 ), then F1( x )  =  F2 ( x ) L( x ) where L( x ) is a slowly varying 
function. Is it possible to weaken the conditions of Corollary 1 to the more 
natural requirement, from the point of  view of  extreme-value theory, that 
– T( x )  =  F( x ) L( x ) where L( x ) is a slowly varying function? The following 
standard result shows that the maximum domain of attraction is based on the 
tail behaviour.

Proposition 3. ( see McNeil, Frey and Embrechts ( 2005 ), Section 7.1 and 7.3.2 ).

( a ) F  ! MDA( Hz ) for z  >  0 ( Fréchet ) if and only if F is regularly varying at 
xF  =  3 with index – 1/ z.

( b ) F  ! MDA( Hz ) for z  <  0 ( Weibull ) if and only if xF  <  3 and F is regularly 
varying at xF

– with index – 1/ z.

( c ) Suppose there exists z  <  xF such that F is twice differentiable on ( z, xF ) with 
pdf f  =  F� and F �  <  0 in ( z, xF ). Then F  ! MDA( Hz ) for z  =  0 ( Gumbel ) 
if

 (
(

.x
xF ) (

)
f
f

x xas F"+ - )x

2

�

The parameter z is not the index of regular variation of the survivor function, 
but its negative reciprocal and 1/z is sometimes referred to as the tail index of 
the distribution.
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384 D.L. MCLEISH

Let us now return to the problem of fi nding IS estimators of rare event 
probabilities

 x( )f dxt
F

=
t

x
p #

which have bounded relative error as t " x–
F

  . Assume 0  <  xF since otherwise
if  xF  ≤  0 we could simply shift the distribution. We enlarge slightly the family 
of  possible IS distributions, using a more general dominating distribution. 
Specifi cally let h( x ) be an arbitrary pdf having the same support as f, let 
H( x )  =  

3
zx ( )h dz#  and assume xH  =  sup{x;  H( x )  >  0}  =  xF . Consider the 

family of  IS distributions 

 x( ) ( ( ( )) ( )expf m T x h x x x1 for < F3 #q q= -q )  (9)

for some statistic T( x ) which is non-decreasing and bounded above, where 
m( q )  =  

3-

(TF q ( ) .e h dx x)xx
#  Without loss of  generality we can assume T( x ) is 

negative and T( x )  -  0 as x " x–
F

  . The following lemma links the tail behaviours 
of h( x ),  f ( x ),  T( x ) to the existence of bounded relative error IS estimators.

Lemma 3. Suppose t (T@q -
r
t)  where:

1. T( t ) is a negative strictly increasing continuous function on (– 3,  xF ) such 
that 

F
limx x"

-  T(x)  =  0.

2. There exists a right continuous, non-decreasing function g( y ) of regular varia-
tion at 0+ with index r  >  0 such that

  ((t K FH ) ( )) .g T t t xas "- -  (10)

3.
  ( F

F
( )
( )

(
(

.E h
f

t g T t t xas "K
-

-

))
X
X

t
X >

)
= G  (11)

 Then the IS distributions ( 9 ) with q  =  qt provide a sequence of IS estimators 
with bounded relative error.

Lemma 3 allows us to use a more convenient dominating measure than f to 
construct the IS distributions provided that the tail behaviour of H is domi-
nated by a regularly varying function and, from (11 ), the tails of f and h are 
similar. The following result shows, in the case of  the Weibull MDA, that 
bounded relative error obtains as long as the IS distribution has tails that are 
suffi ciently heavy. Somewhat surprisingly, we do not need tail equivalence to 
obtain bounded relative error.

Proposition 4 ( Weibull MDA ). Suppose 0  <  xF  <  3 and f is supported on the 
interval ( 0, xF ) and is regularly varying at x–

F with index r  –  1, with r  >  0. Defi ne 
the IS pdf
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 BOUNDED RELATIVE ERROR IMPORTANCE SAMPLING 385

     fq ( x )  =  c exp{– q ( xF  –  x )h} ( xF  –  x )h –  1, for 0  ≤  x  <  xF and 0  <  h  <  2r (12)

where c is a normalizing constant. Suppose qt  @  ( xF  –  t )–  h. Then the sequence 
of distributions fqt

 provides importance sample estimators with bounded relative 
error as pt " 0. 

This shows that the standard exponential tilt ( h  =  1 ) provides bounded relative 
error for distributions within the Weibull MDA provided that r  >  2

1 . This 
includes the beta( a, b ) family of distributions for all b  >  2

1 , so in particular it 
includes the uniform distribution discussed in Example 2.

There is a parallel result that applies in the Fréchet MDA. The conditions 
of Proposition 5 imply that F is regularly varying at 3 with index r  =  – 1 / z 
for z  >  0 and F  ! MDA( Hz ). Once again the IS distributions take the form

 qH( )x- x( )ce h

for some density h( x ) and the assumptions require that tails of  h are suffi -
ciently heavy.

Proposition 5 ( Fréchet MDA ) Suppose that f is regularly varying at 3 with index 
r  –  1  <  – 1. Defi ne the IS pdf

c
1

h
+

-(
(

{ ( } 0 , 0 2expf
x

x x
1

, for < and < <3#
h

q h=
+

- + -q h)x
)

r1 )  (13)

where c is the normalizing constant. Suppose q  =  qt is chosen so that qt  @  t h as 
t " 3. Then the sequence of distributions fqt

 provides importance sample estima-
tors with bounded relative error as pt " 0.

For the Gumbel MDA, it is more diffi cult to characterize IS distributions
with bounded relative error because this class has a greater variety of  tail 
behaviour. If we are able to approximate the tail behaviour so that Proposition 2 
applies, for example for the N( 0, 1 ) distribution, if  we choose T( x )  +  – x – 1 e – x2/2 
as x " 3 in ( 1 ), we can obtain a bounded relative error IS estimator. In gen-
eral, if  we choose T( t )  @  – F( t ) as t " x–

F and qt  @  
(tF )
1 , the IS distributions ( 1 )

provide a sequence of  IS estimators with bounded relative error. For the 
 Gumbel class, it is more diffi cult to fi nd bounded relative error IS distributions 
with tail behaviour different from that of  the underlying distribution f ( x ). 
Fortunately, distributions in the Gumbel class have smaller tails anyway, and 
so simulating tail behaviour is generally less diffi cult.

3. EXAMPLES

Example 1. ( Normal distribution ) We mentioned earlier that IS distributions such 
as ( 7), designed to estimate P( X  >  t ) for a specifi c t, may be highly ineffi cient 
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386 D.L. MCLEISH

when t is replaced by s  >  t.  Suppose for example X follows a N( 0, 1 ) distribu-
tion. The zero-variance importance sample distribution ( 7 ) is 

 (- ) ( ) )t x I t1
1 >f
F

(x  (14)

where f and F are the standard normal pdf and cdf respectively. However
suppose we wish to estimate as well P( X  >  t  +  s  | X  >  t )  +  e st s

2
2

- -  as t "3, for
s  >  0 fi xed. Sampling from ( 14) is highly ineffi cient since for n simulations
from pdf, the RE for estimating P( X  >  t  +  s  | X  >  t ) is approximately n – 1/2

st+e 1
s
2

2

-  and this grows extremely rapidly in both t and s. We would need
a sample size of around n  =  104 est s

2+
2

 ( or about 60 trillion if  s  =  3 and t  =  6 ) 
from this IS density to achieve a RE of 1%.

Is it possible to achieve bounded relative error using the usual standard 
exponential tilt with T( x )  =  x? Then fq ( x )  =  e(m

1
q

q
)    ≈  f ( x ) is the N( q,1 ) proba-

bility density function. To estimate P( X  >  t )  =  p, the expected squared value of 
the IS estimator for sample size n  =  1 is, after minimizing over the parameter value 
q, asymptotic to n  –  1 tp2

2p  and the relative error is  t//1( ) n2
4

" 3+ p  as p " 0. 
In other words, the standard exponential tilt does not provide IS estimators 
with bounded relative error, although Proposition 2 verifi es that such expo-
nential families do exist.

Example 2. ( Uniform distribution ) Suppose that f ( x )  =  1, for 0  <  x  <  1 and we 
wish an IS estimator of pt  =  1  –  t for t " 1– . For simplicity assume n  =  1. The 
standard exponential tilt, with T( x )  =  x, results in the pdf;

 
1

x( ) , 0 1, 0.f
e

e xfor < < where >xq q=
-

q q
q

Then with ch( x )  =  p
1  I ( x  >  1  –  p ), it is easy to check that 

 ( ;cha

1

a{ )}
( ) ( 1)

( ( )
.exp D f

p
e e 1a a( 1) p

q
=

- -
q

q q- - -)
a -

1
 (15)

( 15 ) is minimized when q satisfi es 

 
(a

a
1 1.

e e
p

1 1 a 1) p
q q

- -
+

-
=

q- -qd n  (16)

Unless q " 3 as p  "  0, the RE is unbounded. Denote the value of  qp satis-
fying ( 16) by k( a, p ). The limit k( a )  =  limp " 0  k( a, p ) satisfi es

 a( 1)-

a
a

1 (1 e kk
-

- =- )
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and gives a value of  k  =  k( a ) between 2 ( at a  =  1 ) and 1 ( as a " 3 ) with 
k( 2 )  -  1.5936. See Figure1. Substituting q  =  k( a ) / p in ( 15 ) as p " 0,

 (ch
a

{ ; )}
( )

,exp D f
k

e 1
a +

-
q

a( )k

2

and this leads to the RE

 a a( 1 ( 0,RE k e k1 asa( )k 2
"+ - - p) )

a bounded function with its minimum value at a  =  2. The asymptotic ( as p " 0 )

RE is graphed in Figure 2. The minimum RE is approximately 1
(k

e 1( )k

2

2

--

2)
  -

0.738 for p  ≤  0.01. This compares with the corresponding RE -
p

p1   - 100
respectively of the crude Monte Carlo estimator when p  =  0.0001, so the gain 
in effi ciency over crude Monte Carlo ( the ratio of variances ) in this case is 
around ( 100/.738 )2  -  18400. An IS estimator having sample size 106 is equiv-
alent to a crude Monte Carlo estimator of sample size 1.84  ≈  1010.

Figure 2 shows that the minimum relative error is achieved when we choose 
the IS parameter which minimizes D2( ch;  fq ) ( q  -  k( 2 ) / p ). However if  we 
instead minimize Da ( ch;  fq ) with a  !  2, we continue to have bounded RE, and 
the resulting increase in the value of the RE is relatively small. The variance 
of  the IS estimator is quite insensitive to the value of  a used in the Rényi 
generalized divergence.

FIGURE 1: The value of k( a ) as a function of  a.
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FIGURE 2: n1/2  ≈  Asymptotic Relative error: qa{ ( )}exp f 12 -,chD  when qa  =  k( a ) / p. 

The standard exponential tilt is not the only exponential family of distribu-
tions providing a bounded relative error for this problem. By Proposition 2 
any family with the same tail behaviour has the same property. For example 
T( x )  =  1  +  ln( x ) has similar behaviour to T( x )  =  x since in both cases T( x ) + x 
as x " 1. When T( x )  =  1  +  ln( x ), the IS distribution fq is a Beta( 1  +  q, 1 ) den-
sity. Once again the value of q which minimizes Da( ch;  fq ) is of the form q  = 

p
(k a, )p  where the limiting value of the solution k( a )  =  limp " 0  k( a, p ) satisfi es 

a
a

1-  ( 1  –  e – ( a  –  1 ) k( a ) )  =  k( a ), exactly the same equation we obtained earlier 
using the standard exponential tilt. Thus, the beta IS distribution is equivalent 
to the using standard exponential tilt and also results in bounded RE. 

Example 3. ( Exponential distribution ) Suppose X has an exp( 1 ) distribution, 
f ( x )  =  e – x, for x  >  0 and we use the standard exponential tilt with T( x )  =  x to 
estimate p  =  pt  =  P(X  >  t ), where t  =  – ln p. Then the IS distribution ( 1 ) is 
exponential with rate parameter 1  –  q, for 0  <  q  <  1. The parameter q minimizing 
Da( ch;  fq ) solves the quadratic equation

 a1 a( ) ( ) 1 0,tq q+ - + - =
q22a -

so

 
2t

,p a

a

a
a a a a a

1,

2 ( 1)
( ) ( 4 2 )

1,

t
t

t
t t t t

1 if

if >
2q =

+
=

-
- + + + - +a-a

Z

[

\

]
]

]
]

 (17)
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FIGURE 3: The dependence on a of  the min Da value of parameter
for the exponential distribution with e – t  =  p.

is plotted in Figure 3 for various values of p. From ( 17 ), qp, a  =  1  –  ( )ot t
1 1+  

as p  "  0 for all a  ≥  1, explaining the insensitivity in Figure 3 to the value of 
a. The RE of the IS estimators with parameters qp, a are, for n simulations, 

0."
1 1(f/ /

(
,p

x
x3

p a

a)
)

1n f n e p1 1 2 for all as
/

lnp

2 2
1 2

+ $
q

-

-

-
2 t-( )f x dx d n#  (18)

This implies that the criteria minimizing Da( ch;  fq ) for different choices of a 
all behave equivalently in the tail. However, since t  =  – ln p " 3 as p  "  0, it 
follows from ( 18 ) that RE  "  3. A standard exponential tilt does not result 
in a bounded RE, not because importance sampling is ill-suited to estimating 
the tails for the exponential distribution but because of a sub-optimal choice 
of family of IS distributions. If  we use instead a Gumbel or Type I extreme 
value pdf

 x-
(

x x
p
a

( ) { },
)
,expf e

k
whereq q q= - =q

-

we do get bounded relative error by Corollary 1, and RE  -  0.738n – 1/2 when 
a  =  2.

Example 4. ( Sums of subexponentially distributed random variables ) The condi-
tion T( x )  +  a  +  –  cF( x ) as x  "  3 of  Corollary 1 allows us to use in place of 
T( x ) any function which is tail-equivalent to F. Suppose we wish to simulate 
the probability of the tail event pt  =  P( Sd  >  t ) for partial sums Xd 1S i

d
i= =/   of  

independent random variables Xi having a subexponential or wide-tailed dis-
tribution such as the Pareto. For such subexponential distributions, it is well-
known that

 tX t>i ( ) ( )P t P X d X t> > as(
i

d

d
1

1 " 3+
=

P+ )e o/
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where X( d ) denotes the largest Xi . Therefore by Corollary 1, the IS distribution 
with pdf

 f( ) ( ),expc x xi
i

d

1
1

q- d
=

F# - %  (19)

with .
p

1 594-q  results in bounded relative error with asymptotic value as t " 3 
around 0.738n – 1/2. The distribution ( 19) is equivalent to that obtained by 
 generating the maximum value x( d  ) ( assume using symmetry that x( d  )  =  x1 ) 
from the appropriate tilted distribution with pdf exp{– qF( x1 )}  f ( x1 ) and then 
generating the remaining values independently from the original density f ( x ). 

For example suppose f ( x ) is the density of Tukey’s g&h distribution, used in 
insurance operational risk applications ( see McNeil, Frey and Embrechts ( 2005 ) 
and Degen, Embrechts and Lambrigger ( 2007 ) ). f ( x ) is defi ned as the pdf of 

 , , , 0X g e g h1 for >R
/hZ2

!m s m s= +
-gZ

,2e  (20)

where Z is standard normal and g and h are parameters governing the skew-
ness and elongation of X. Typical values of the parameters used by Dutta and 
Perry ( 2006 ) to model operational risk are g  !  [1.79, 2.30] and h  !  [0.10, 0.35]. 
The probability density function is inconvenient but it is obviously very easy 
to simulate values for this distribution: for a U [0,1] random variable U, if  F – 1 
is the inverse standard normal cdf, 

 
2

( )X U g
e e1

1
1

m s= +
-)(g U-

-( ( )) /h U
F

F 2 (21)

As well as insurance applications, the g&h distribution has been used to model 
maxima wind speed data ( see for example Dupuis and Field ( 2004 ), Field and 
Genton ( 2006 ) where it is concluded that the g&h distribution provides a bet-
ter fi t than the generalized extreme value distributions ).

Suppose X  =  ( X1, X2 ) has independent identically g&h distributed compo-
nents as in (20 ). We chose d  =  2 for simplicity and m  =  0, g  =  0.1, h  =  0.2, 
s  =  1. For example if  X1,  X2 are losses from two independent time periods, we 
might wish to estimate the probability of a large loss, L( X1, X2 )  =  X1  + X2, such 
as p  =  P( L( X1, X2 )  >  t ) for t large. We are also interested in the individual 
losses given that a large loss has occurred, obtained from the joint distribution 
of the order statistics ( X( 1 ), X( 2 ) ) given that X1  + X2  >  t. If t  =  50, then ,p 1000000

4-
so a crude simulation of 1,000,000, which has relative error around 50%, is
of  little value. As in ( 21 ), assume are able to transform uniform[0,1] ran-
dom variables U to generate a value of X using an increasing transformation, 
say X( U ). For general dimension d, we begin with an initial guess at the tail
 probability t>XP ( i 1 )p i=

d
=/  and initialize q  =  .( )

p
k 2  Since in subexponential
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distributions such as the g&h distribution, the partial sum S is essentially 
controlled by the maximum value, we need only apply importance sampling 
to this random variable. Since X( U ) is increasing, we can generate the maxi-
mum U( d  ) from a standard exponential tilt of its original distribution, and then 
generate U( i ),  i  = 1, 2, ...,  d  –  1 conditionally uniform on ( 0,U( d  ) ), transforming 
all to obtain the sample X( Ui ),  i  =  1, 2, ...,  d. There are many asymptotically 
equivalent alternatives: for example we can generate U( d  ) either under the beta 
IS cdf  [FU( d )

( u )]q where FU( d )
( u )  =  ud, for 0  <  u  <  1, and q  =  ,( )

p
k 2  or under an 

exponential tilt, with pdf proportional to exp( qu ) ud  – 1, 0  <  u  <  1. Note that for 
the former, the cdf of the random variable Z  =  qd( 1  –  U( d  ) ) is P( qd( 1  –  U( d  ) )  ≤  z )  
=  P( U( d  )  ≥  1  –  d

z
q  )  =  1  –  ( 1  –  d

z
q  )qd  "  1  –  e – z for z  >  0 as q  "  3 so that rather 

than use a beta generator we can transform a standard exponential condition-
ing the generated value of U( d  ) to the unit interval. Our simulation, with a 
couple of other modest simplifi cations, was conducted as follows:

1. Simulate the random variable 1  –  Ud  =  qd
1-   ln( V1 ) where V1 + U [e  – qd, 1]. 

Generate Uj,   j  =  1,  ...,  d  –  1 as independent U [0,1] random variables.

2. Transform the Ui to obtain tilted g&h random variables

  Xi   =  X ( Ui ),   i  =  1, 2,  ...,  d

3. Record the value of the sum Xi 1S i=
d
=/  as well as the IS weight attached 

to this simulation,

  de1
q= )d Uq ( -1W

4. After n simulations, re-estimate the probability p, the variance and relative 
error and any other features of the distribution using a weighted average 
of the values, e.g.

 pt 5   =   WI t( )n
1 >

j

n

1=

S/

Revise the estimate of p and hence q and repeat if  necessary until a desired 
precision is obtained.

We began with an estimated value of p  =  4   ≈  10  –  6 determined from a crude 
simulation of  n  =  4  ≈  106 values, resulting in q  -  398,400. The IS estimate 
from n  =  4  ≈  106 simulations was 3.782  ≈  10 – 6 with relative error around 0.83 
per simulation ( i.e. .

2000
0 83   -  0.0004 for 4  ≈  106 simulations ) reasonably close to 

the theoretical value of approximately .
n

0 738  of the RE. This provides a very 
accurate estimate of the tail behaviour of the loss function and relative errors 
are close to those experienced in the uniform case ( Example 2 ). The total time 
required for this simulation was about 6 seconds running Matlab on Windows 
with an Intel Core 4 CPU @2.5 GHZ with 4 GB RAM.
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We plot in Figure 4 the joint distribution of the two components, ( X( 1 ), X( 2 ) ) 
given that the loss X1  +  X2 is greater than 50 with the marker area roughly 
proportional to the weight on the point. 

FIGURE 4: Simulated distribution of ( X( 1 ),  X( 2 )) given X1  +  X2  >  50 for the g&h distribution.

FIGURE 5: Monte Carlo Estimate of P( X1  +  X2  >  x  |  X1  +  X  +  2  >  50 )
for g&h distributed random variables 
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The conditional survivor function of the sum X1  +  X2 given that X1  +  X2  >  50 
can be quite accurately determined by the same simulation and is plotted on 
a log scale in Figure 5. The considerable regularity in this graph out to the 
region where the conditional survivor function is of the order of 10 – 4, and so 
the unconditional survivor function is of the order of 10 – 10, is remarkable, and 
renders a relative error of approximately 4  ≈  10 – 4 for 4  ≈  106 simulations cred-
ible. To attempt to validate the simulation, the estimated probability 3.782  ≈  10 – 6 
was compared to that obtained by performing 2.4  ≈  109 crude simulations. The 
crude estimate was p  =  3.812  ≈  10 – 6 with standard error around 3.96  ≈  10 – 8. 
The crude estimate was not signifi cantly different from the IS estimate, 
( although this is only a rough verifi cation of  the estimate since the time 
required for the crude simulations was around 51 minutes, achieving a much 
more precise estimator by crude Monte Carlo is virtually infeasible ).

4. CONCLUSION

We have shown that it is always possible to fi nd an exponential family of dis-
tributions which provide bounded relative error for estimating the probability 
of rare events if   – T( x )  @  F( x ) and when  – T( x ) + F( x ), we specify the value 
of the parameter q  =  k( 2 ) / p that achieves the minimum asymptotic variance. 
Under regularly varying conditions, and when the target distribution lies in 
the Fréchet or the Weibull MDA, we are able to achieve bounded relative error 
when  – T( x ) has tail behaviour within a substantially wider range than that of 
F( x ). The effi ciency of IS with appropriately chosen importance distribution 
is verifi ed in several examples including the g&h distribution. Examples verify 
that the relative error is typically around its minimum asymptotic value of 
0.738n – 1/2 for n simulations. 
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5. APPENDIX

Proof of Proposition 2. By assumption, T is non-decreasing and there exist 
a  !  R such that T( x )  +  a  @ F( x )  –  1. Therefore there exists x0  <  xF with 
F( x0 )  <  1 and c1,  c0  >  0 such that

 

(T
(

( ( (

F )
)

) ) ) .

c
x

a x
c x x

a c x T x a c x

for all > > or equivalentlyF1 0 0

1 0

# #

# #

- -

+ - +F F

,x

We wish to show that the relative error ( 4 ) is bounded. Defi ning F  – 1 to be the 
generalized inverse of F and for e  >  0 with t  =  t( e )  =  F  – 1( e ), we wish to show

 
3- ( )t e

F ( ( ) .lim sup inf e f e f x dx1 <
0

( ) ( )T xx T xx

0 >

F
3

e"e q

q q-

2 )x dx# #
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Note that under a linear transformation ( replacing T by a  +  bT with b  >  0 ), 
the infi mum is unchanged since

 
3

3

-

-

( )

( )

t

t

e

e

F F

F F

( (

( (

inf

inf

e f f

e f e f

0

x x

x x

0

>

>
=

q

q

( ( )) ( ( ))

( ) ( )

a bT x a bT x

T x T x

q q

q q

+ - +

-

) )

) ) .

x dx x dx

x dx x dx

e# #

# #

Therefore by replacing T by T  +  a we can assume without loss of generality that

 F- (( ) ( ) .c x T c x x x xfor all > >1 0 0# #xF F)

Then for q  >  0, provided e  ≤  F( x0 ), 

 

( (f fF F q

q

q

0
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0

q

e
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) )
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e x dx e x dx

e du

e1

since is continuous
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q
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e e

e

-

c

F# #

#

Consider q " 3 as e  "  0. Then since F( x0 )  >  0,
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x
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3
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Therefore, as e " 0 +,
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1 0
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e q q -
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The right side is minimized over q when q  =  c
k
0 e  where k  =  k( 2 ), the positive root 

to the equation e – k  =  1  –  k
2  and the minimum value is then 

k
1

1

0
2c

c  ( ek  –  1 ).
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Proof of Corollary 1. We are given that a  +  T( x )  +  – cF( x ) and so the condi-
tions of Proposition 2 hold for any pair of values ( c1, c0 ) for which c1  <  c  <  c0 . 
In the proof of  Proposition 2 we obtained the asymptotic bound 
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0c . The result 

of Corollary 1 follows on letting c1 " c –  and c0 " c + . ¬

Proof of Lemma 1, ( b ). Note that g is regularly varying at 0 – with index g  >  – 1 
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Proof of Lemma 3. Assume for simplicity and without loss of  generality that 
n  =  1. Then as t " xF

– so that qt " 3,
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From Karamata’s Tauberian theorem, since g( y ) + cxrL( 1/x ) / G( 1  +  r ) as 
x  "  0+ is a right continuous non-decreasing regularly varying function at 0+, 
its Laplace transform  r+e ( ( ) ( )dg g1y 1q

q
- Gy +)#  as q " 3 and U1( y )  K g( y ) 

implies, since qt  >  0, 
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Proof of Proposition 4. We verify the conditions of Lemma 3. Here h( x )  = 
c1( xF  –  x )h – 1 for 0  <  x  <  xF where c1  =  h / x h

F is the normalizing constant, and 
H( x )  =  c1

h  ( xF  –  x )h  =  – c1
h  T( x ) where T( x )  =  – ( xF  –  x )h is continuous and 

strictly increasing to 0 as x " xF
– verifying 1. With g( y )  =  y, we have H( x )  K 

g( – T( x ) ) verifying ( 10). Finally for ( 11 ) we need
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and this holds since 2r  –  h  >  0 and r  >  0. ¬
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Proof of Proposition 5. Again, we verify the conditions of Lemma 3. Here
h( x )  =  h( 1  +  x ) –  h – 1 and H( x )  =  ( 1  +  x ) –  h  =  – T( x ) where T( x )  =  –  ( 1  +  x ) –  h, 
for 0  <  x  <  3. T( x ) is continuous, increasing to 0 as x  "  3 verifying 1. With 
g( y )  =  y, we have H( x )  K g( – T( x ) ) verifying 2. Finally we need to show 
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f ( x ) and f 2( x ) ( 1  +  x )h + 1 are functions of regular variation with index r  –  1  <  – 1 
and 2r  +  h  –  1  <  – 1 respectively, so using Karamata’s Theorem, Lemma 1, the left 
side of ( 25 ) is ( )f x23

t
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which holds under the conditions as t " 3. ¬
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