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The transient transmission of an electromagnetic wave through cold, unmagnetized
and collisionless plasmas is described both analytically and numerically for its
normal incidence from vacuum upon a plasma half-space. Exact formulas for
the electromagnetic field are written in integral forms, which are convenient for
approximate analysis and comparison with the results of direct numerical simulations.
The time when the plasma particle oscillations become self-consistent with the
electromagnetic field can be calculated from the simplified formulas for an arbitrary
distance from the plasma–vacuum interface. Special attention is paid to the formation
of the electrostatic oscillation in the case when the frequency of the incident wave is
equal to the plasma frequency. The amplitudes of the vanishing magnetic field and the
forming electrostatic oscillation are calculated as functions of time and the distance
from the plasma–vacuum interface. The formation of the electrostatic oscillation is
a slow process because the electromagnetic power penetrating into the plasma tends
to zero with time. The transmitted plasma electromagnetic field is also simulated by
the a finite-difference time-domain (FDTD) code. The difficulties of the numerical
simulation of the quasi-electrostatic field are discussed. The analytical results can be
used for the validation of the FDTD codes for plasma waves.
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1. Introduction

Present day numerical methods (in particular, the finite-difference time-domain
(FDTD) method (Yee 1966; Taflove & Hagness 2005)) allow one to simulate the
propagation of an electromagnetic signal through plasmas in real time. While the
propagation of the short-term pulses is always transient, for the long-term pulses
there is a transition time to self-consistent oscillations of plasma particles in the
external electromagnetic field. The electromagnetic wave propagation through plasmas
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with such self-consistent oscillations is well described by the plasma theory and is the
basis of classical plasma electrodynamics. But the transient plasma electromagnetic
field is still not fully described analytically, making it difficult to predict the initial
stage of the external electromagnetic wave interaction with the plasma and, especially,
to analyse the data obtained in the numerical simulations. In particular, the analytics
can predict in advance if the simulated electromagnetic field is transient or not.

The transient plasma electromagnetic filed was described already both analytically
and numerically (Pavlenko et al. 2019). But the task was somewhat artificial. A metal
antenna with alternating surface current was assumed to be placed inside the plasma.
As a result, if the plasma permittivity goes to zero, the amplitude of the plasma
electric field grows to infinity. That is why the duration of the transient processes
was very large for plasmas with small permittivities. The correlation between the
analytical and numerical data was demonstrated to be very good. The developed
analytics are applied in the present paper in order to study the normal incidence of
a single frequency plane wave on a semi-bounded uniform, cold, unmagnetized and
collisionless plasma which is initially unperturbed.

The problem of the normal wave incidence on the plasma–vacuum interface is
widely used to validate FDTD codes (Luebbers, Hunsberger & Kunz 1991; Young
1996; Gamliel 2017). Therein, the wave magnetic field is an undifferentiable function
of the coordinate at the plasma–vacuum interface. This fact always introduces a
numerical error in comparison with the analytical description because the FDTD codes
represent the differential operators in a numerical way. This error was additionally
emphasized in the Conclusion of Young (1996). It is negligible if the FDTD codes
simulate short-term pulses or are validated by short-term pulses. However, in general,
special attention should be paid in the numerical simulations to the sharp interface
between the vacuum and the plasma. This problem is discussed in the present paper
in detail.

The rather extensive review of the relevant publications can be found in the
Introduction of Pavlenko et al. (2019). However, the most important published
developments are outlined below.

The proposed problem was studied many years ago as a part of the topic related
to the electromagnetic wave incidence on plasmas. It was solved by the Laplace
transform method (Case 1964) where the transmitted field was written as the
complicated double integral of equation (61). A similar problem was considered
by Schmitt (1964, 1965), but the author did not study the transmitted signal in
detail. The transient signal propagation in isotropic plasmas (Haskell & Case 1967)
was described by the saddle-point method and by the high-frequency expansion
technique. And although a signal of the step sinusoidal wave was launched inside
the plasma (Haskell & Case 1967), the transient propagation had much in common
mathematically with the problem of the incident wave.

Pulse propagation of an arbitrary time duration in dispersive media was studied
by Oughstun (1991). The asymptotic description with the integral representation of
the propagated plane-wave pulse was used in the study. The same technique was
used to study the propagation of the step sinusoidal wave (Cartwright & Oughstun
2009). Although the obtained result was valid for all input carrier frequencies, special
attention was paid to the carrier frequency below the plasma frequency. A more
detailed description of the method and its results can be found in Oughstun (2009).

The propagation of a transverse electromagnetic plane wave of the step sinusoidal
signal variety was studied by Zablocky & Engheta (1993). The transient behaviour of
the electric field components at different locations and at various times of observation
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Transient transmission of electromagnetic waves through cold plasmas 3

was analysed using the standard Fourier transform technique. In the paper the time-
varying electric field was applied at some fixed coordinate in the medium.

The transient electric signal propagation in a dispersive medium (Lam 1974) was
simulated numerically as a direct solution of the integro-differential equation. In the
case of a lossless medium the equation was reduced, of course, to a differential
equation, but both coordinate and time discretization was still required.

Progress in the numerical description of transient signal propagation in plasmas was
demonstrated as the frequency-dependent finite-difference time-domain formulation
(Luebbers et al. 1991). The method is based on the recursive convolution technique
and was applied effectively to calculate the reflection and transmission coefficients
for plane-wave incidence on a plasma slab. Later, the method was used successfully
by many authors to study electromagnetic signal propagation in dispersive media.

The electromagnetic field reflected from the plasmas was studied in many other
papers (see, for example, Wait (1969), Kalluri (1988) and references in the books Wait
(1970), Kalluri (2018)), which is why it is not discussed in the present paper. Only the
transmitted plasma electromagnetic field is described. A general present day view of
transient fields in dispersive media can be found in the books Felsen (1976), Orfanidis
(2016) and Kalluri (2018).

In the present paper, the transmitted plasma electromagnetic field is written for the
cold, unmagnetized, collisionless and underdense plasmas (the incident wave frequency
is larger than the plasma frequency) in a simple integral form obtained by the Fourier
integral method (Budak, Samarskii & Tikhonov 1964). The case when the frequencies
are equal is studied in detail. The analytics of the problem are presented in § 2. The
comparison between the analytical and numerical results is provided in § 3. Practical
recommendations for analytical and numerical studies of similar problems are given
in the conclusions.

2. Analytical description of the transmitted plasma field

A uniform hydrogen plasma is assumed to occupy the semi-space x> 0 (figure 1).
The model of a sharp boundary of the homogeneous plasma is widely used to study
the propagation characteristics of the electromagnetic waves both analytically and
numerically (Thoma et al. 2009; Yuan, Zhou & Sun 2010; Zheng et al. 2014). The
electromagnetic wave from the vacuum semi-space x < 0 is incident normally upon
the plasma–vacuum interface. The y axis is directed along the wave electric field and
the z axis is directed along the wave magnetic field. The wave is partially reflected
from the interface and partially transmitted into the plasma. Both the magnetic and
electric fields of the incident wave have the following time–coordinate dependence in
the vacuum:

Bz, Ey = sin(ωt− kx), (2.1)

where ω is the angular wave frequency, k = ω/c is the vacuum wavenumber and c
is the speed of light in vacuum. The wave amplitude is normalized to be unity and
is small enough to neglect the contributions of the plasma density perturbations in
the plasma current densities and the plasma frequencies (see § 3). The objective is to
describe in detail the transmitted electromagnetic field.

Both the magnetic and electric fields are governed by the wave equation in the
vacuum

∂2v

∂x2
=

1
c2

∂2v

∂t2
(2.2)
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FIGURE 1. Schematic of the problem.

and by the telegraph equation in the plasma

∂2u
∂x2
=

1
c2

∂2u
∂t2
+
ω2

pl

c2
u, (2.3)

where ω2
pl =

∑
α ω

2
α and ωα is the plasma frequency of plasma species α.

Both the magnetic and electric fields should be continuous at the plasma–vacuum
interface

Bvac
z (0, t)= Bpl

z (0, t), (2.4)

Evac
y (0, t)= Epl

y (0, t). (2.5)

The continuity of the coordinate derivative of the electric field at the plasma–
vacuum interface follows from the continuity of the magnetic field (2.4)

∂Evac
y

∂x

∣∣∣∣
x=0

=
∂Epl

y

∂x

∣∣∣∣∣
x=0

. (2.6)

The solution of (2.2) for the electromagnetic field in the vacuum region should be
in the form (Jackson 1998)

v(x, t)= sin(ωt− kx)+ f (ωt+ kx), (2.7)

where f (ωt+ kx) is any twice differentiable functional of time-coordinate dependence
ωt + kx which describes the reflected wave. Then the boundary conditions for the
electric field (u(x, t)≡ Epl

y (x, t)) at the plasma–vacuum interface become

sinωt+ f (ωt)= u(0, t),
−k cosωt+ kf ′(ωt)= ux(0, t),

}
(2.8)

where ux means the partial derivative with respect to the coordinate and f ′(g) means
the derivative of f (g) with respect to the argument.

Excluding the unknown functional f (g) from (2.8) one can get the boundary
condition for the electric field in the plasma{

1
c

ut(x, t)− ux(x, t)
}

x=0

= 2k cosωt, t > 0. (2.9)
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Thus, the problem which has to be solved for the electric field in the plasma
consists of (2.3) with the boundary condition (2.9) and two initial conditions

u(x, 0)= 0, x > 0, (2.10)
ut(x, 0)= 0, x > 0. (2.11)

Let the function φ(x, t) be any solution of (2.3) which can be written (see chapter
II in Budak et al. (1964) and Pavlenko et al. (2019)) in the form

φ(x, t)=
∫ ct

x
ψ(g− x)J0

(ωpl

c

√
c2t2 − g2

)
dg, (2.12)

where J0(x) is the Bessel function of the first kind. The solution of (2.3) can be
written as (2.12) because J0(ωpl

√
(ct− ζ )2 − (x− ξ)2/c) is Riemann’s function of the

telegraph equation (Tikhonov & Samarskii 2011, chapter II, § 5).
However, the solution of the problem (2.3), (2.9)–(2.11) is sought in the form

u(x, t)=
∂φ

∂t
+ c

∂φ

∂x
, (2.13)

which is obviously also a solution of (2.3) if the required derivatives of the function
φ(x) can be calculated.

Then the boundary condition for the function φ(x, t) (which is not the electric field)
becomes

φ(0, t)=−2
ω

ω2
pl

cosωt. (2.14)

Luckily, the problem defined by (2.3), (2.10), (2.11) with the boundary condition
(2.14) has been solved already (Pavlenko et al. 2019), therefore

φ(x, t)=−2
k
ω2

pl

∂

∂t

∫ ct

x
cos(k
√
ε(g− x))J0

(ωpl

c

√
c2t2 − g2

)
dg, (2.15)

where ε = 1−ω2
pl/ω

2 is the plasma permittivity.
Using the notation

I1(x, t)≡
∫ ct

x
cos(k
√
ε(g− x))J0

(ωpl

c

√
c2t2 − g2

)
dg, (2.16)

the solution of the problem for the electric field due to (2.13) becomes

u(x, t)=−2
k
ω2

pl

{
∂2I1

∂t2
+ c

∂2I1

∂x∂t

}
. (2.17)

It is convenient to rewrite the second derivative with respect to time in (2.17) using
(2.3)

u(x, t)=−2
k
ω2

pl

{
c2 ∂

2I1

∂x2
+ c

∂2I1

∂x∂t
−ω2

plI1

}
. (2.18)

Calculating the partial derivatives with respect to the coordinate x in (2.18) and
introducing a new convenient notation

I2(x, t)≡
∫ ct

x
sin(k
√
ε(g− x))J0

(ωpl

c

√
c2t2 − g2

)
dg, (2.19)
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the exact solution for the electric field becomes

Ey(x, t) = −
2

(1− ε)1/2
ct− x
√

c2t2 − x2
J1

(ωpl

c

√
c2t2 − x2

)
+

2
1− ε

{
kI1 −

√
ε

c
∂I2

∂t

}
. (2.20)

The magnetic field is obtained easily from (2.17) and (2.20) using Maxwell
equations

Bz(x, t) =
2

(1− ε)1/2
ct− x
√

c2t2 − x2
J1

(ωpl

c

√
c2t2 − x2

)
−

2
1− ε

{
εkI1 −

√
ε

c
∂I2

∂t

}
. (2.21)

The expressions for the electric and magnetic fields differ in sign and multiplier ε
in the first term of the second row.

For the obtained electromagnetic field in the plasmas (2.20), (2.21) one can repeat
the asymptotic analysis of the integrals I1 and I2 in Pavlenko et al. (2019). In the
approximations ωplt�1 and x2

� (ct)2 (for plasmas with ε>0.5) or (1− ε)x2
� ε(ct)2

(for plasmas with ε 6 0.5) the plasma electric and magnetic fields become

Ey(x, t) =
2

1+
√
ε

sin(ωt− k
√
εx)

− 2

√
2
π

(1− ε)1/4

ε(ωt)1/2

(
kx
ωt
−
(kx)2

(ωt)2

)
sin(∆−π/4), (2.22)

Bz(x, t) =
2
√
ε

1+
√
ε

sin(ωt− k
√
εx)

− 2

√
2
π

(1− ε)1/4

ε(ωt)1/2

(
(kx)2

(ωt)2
−
(kx)3

(ωt)3

)
sin(∆−π/4), (2.23)

where ∆≡ωpl

√
c2t2 − x2/c.

The electric field becomes steady state when the amplitude of the second term in
(2.22) is much lower than the amplitude of the first term. Similarly, the magnetic field
becomes steady state when the amplitude of the second term in (2.23) is much lower
than the amplitude of the first term. But, in general, one can say that the steady state
is reached when the amplitude deviation of the Poynting flux from the steady state one
becomes less than some small value η. Here, the Poynting flux means the component
of the Poynting vector Sx = cEyBz/4π, since the problem is uniform in cross-section
to the direction x.

From (2.22), (2.23), the dominant terms of the normalized Poynting flux are

Sx(x, t) =
4
√
ε

(1+
√
ε)2

sin2(ωt− k
√
εx)

− 4

√
2
π

(1− ε)1/4

ε(1+
√
ε)

1
(ωt)1/2

×

(
√
ε

kx
ωt
+ (1−

√
ε)
(kx)2

(ωt)2

)
sin(ωt− k

√
εx) sin(∆−π/4). (2.24)
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Therefore, the Poynting flux becomes steady state when the amplitude of the second
term in (2.24) is much lower than the amplitude of the first term

x
λ
<

1
2

t
T

√
ε

1−
√
ε


√

1+ 4ηπ
√
ε(1−

√
ε)3/4

(1+
√
ε)5/4

( t
T

)1/2

− 1

 , (2.25)

where λ is the vacuum wavelength and T is the wave period. The duration of the
transient processes of the magnetic and electric field formation can be obtained easily
from (2.22), (2.23) in the manner presented in Pavlenko et al. (2019), therefore these
relations are not written here.

The formulas (2.22), (2.23) are written already without the small terms which are
proportional to the small parameter 1/ωplt and do not have a coordinate dependence.
These terms can be neglected usually inside the plasma where ωplt� (ct)2/x2 but they
dominate near the plasma–vacuum interface. Therefore exactly at the plasma–vacuum
interface in the aforementioned approximations the electromagnetic field becomes

Ey(0, t)=
2

1+
√
ε

sinωt+ 2

√
2
π

1
ε(1− ε)1/4

1
(ωt)3/2

cos(ωplt−π/4), (2.26)

Bz(0, t)=
2
√
ε

1+
√
ε

sinωt− 2

√
2
π

1
ε(1− ε)1/4

1
(ωt)3/2

cos(ωplt−π/4). (2.27)

The formulas (2.26), (2.27) can be helpful for an analysis of the reflected field.
The time of the transient processes for the magnetic field (dotted line), electric

field (dashed line) and Poynting flux (thick solid line) are presented in figure 2
as a function of the distance from the plasma–vacuum interface. The curves have
been built for a plasma with ε = 0.16 and show when the ratio of the second term
amplitude in (2.23), (2.22), (2.24) to the steady state amplitude becomes η = 0.02
for the magnetic field, electric field and Poynting flux respectively. The values ε and
η are chosen because they were used when studying the case of the metal antenna
inside the plasma (Pavlenko et al. 2019). This gives the opportunity to compare the
time of the transient processes in the following two cases: the electromagnetic wave
is incident from the vacuum (the present approach) and the electromagnetic wave is
launched by the antenna inside the plasma (presented in Pavlenko et al. (2019)). The
time of the transient processes is smaller if the electromagnetic wave is incident from
the vacuum. This is discussed in the next section.

2.1. Formation of electrostatic oscillations in plasmas
There is a practical interest in the possibility of both analytical and numerical
descriptions of the formation of the electrostatic oscillation in plasmas when the
frequency of the incident wave is equal to the plasma frequency (or, in a more
general sense, when the incident wave packet includes the frequency which is equal
to the plasma frequency). Of course, thermal effects and collisions are very important
for the processes near ωpl. However, sometimes they can be left in the background
(Kylychbekov et al. 2020). Here, the transient propagation at ω = ωpl is studied
as a limit case of the developed cold collisionless model. The thermal effects and
the collisions can be included in a separate study to bring the model closer to the
experimental behaviour.
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8 I. V. Pavlenko, I. O. Girka, O. V. Trush and D. O. Melnyk

FIGURE 2. Time of transient processes for plasma with ε = 0.16 as a function of the
distance from the plasma–vacuum interface. Above each curve, the amplitude deviation of
the corresponding value from the steady state one is less than 2 %. The approximations
used are not valid below the thin solid line.

The structure of the electromagnetic field in a plasma in this case (initially the wave
field is still electromagnetic and will become electrostatic in the large time limit only)
can be obtained from (2.20), (2.21) if one puts ε = 0

Bz(x, t)= 2
ct− x
√

c2t2 − x2
J1(k

√
c2t2 − x2), (2.28)

Ey(x, t)=−2
ct− x
√

c2t2 − x2
J1(k

√
c2t2 − x2)+ 2k

∫ ct

x
J0(k

√
c2t2 − g2) dg. (2.29)

The first term in both equations describes the electromagnetic field which decays
with time. The term is referred to further as the ‘electromagnetic term’. It describes a
vanishing magnetic field. The second term of the electric field dependence (2.29) can
be rewritten with the help of the table integral 6.517 in Gradshteyn & Ryzhik (2007)

Ey(x, t) = −2
ct− x
√

c2t2 − x2
J1(k

√
c2t2 − x2)

+ 2 sinωt− 2k
∫ x

0
J0(k

√
c2t2 − g2) dg. (2.30)

Here the second term describes a Langmuir oscillation (or plasma oscillation)
(Krall & Trivelpiece 1973, § 4.2), (Chen 2012, § 4.3) with zero wavenumber in the
limit t→∞ and the third term corrects it at intermediate time. Usually a Langmuir
oscillation with zero wavenumber is called a plasma dipole oscillation (Kylychbekov
et al. 2020) because there is no fluctuation of the plasma density in this case. But it is
an electrostatic oscillation since there is no fluctuating magnetic field. The amplitude
of the electrostatic oscillation in a steady state is twice the amplitude of the incident
electric field. The third term is referred to below as the ‘electrostatic term’.
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Transient transmission of electromagnetic waves through cold plasmas 9

Initially the plasma is electrodynamically similar to a vacuum, therefore, at t= 0 all
incident power penetrates into the plasma. Build-up of the plasma particle oscillations
near the plasma–vacuum interface reduces the plasma’s ability to transmit the incident
electromagnetic power. Therefore, over time, an increasing fraction of the incident
power is reflected back into the vacuum. Finally, in the limit t→∞, the incident
power is fully reflected. One can calculate the time when the fraction of the power
penetrating into the plasma becomes less than η.

The electromagnetic field at the plasma–vacuum interface is

Bz(0, t)= 2J1(ωt), (2.31)
Ey(0, t)=−2J1(ωt)+ 2 sinωt. (2.32)

Therefore, the normalized Poynting flux from the vacuum to the plasma is

Sx(0, t)= 4J1(ωt) sinωt− 4J2
1(ωt). (2.33)

The Bessel function J1(ωt) can be expanded in the large time limit ωt � 1.
Therefore, the Poynting flux amplitude is less than η if the following inequality is
valid:

4

√
2
π

1
(ωt)1/2

<η. (2.34)

However, the power transfer through the plasma–vacuum interface is described by
the Poynting flux averaged over the wave period. Therefore, the ratio of the penetrated
power to the incident power becomes less than η when

t
T
>

8
π2

1
η2
. (2.35)

For example, the power flux in plasma becomes less than 5 %, 2 % and 1 % of the
incident power flux after approximately 325, 2025 and 8100 wave periods respectively.

Now one can easily separate the ranges of the electromagnetic and quasi-
electrostatic fields on the coordinate–time plane. The electromagnetic term (and
the magnetic field itself) can be expanded in the large time limit ωt� 1 as

Bz(x, t)= 2

√
2
π

(ωt− kx)1/4

(ωt+ kx)3/4
sin(k

√
c2t2 − x2 −π/4). (2.36)

It is convenient to introduce the useful notation µ ≡ kx/ωt which is not a small
parameter in this subsection. The wave field can be considered as a quasi-electrostatic
one if the magnetic field amplitude does not exceed a small ratio η of the incident
magnetic field amplitude

2

√
2
π

(1−µ)1/4

(1+µ)3/4
1

(ωt)1/2
<η. (2.37)

Thus, the wave field is quasi-electrostatic in the range

t
T
>

4
π2

(1−µ)1/2

(1+µ)3/2
1
η2
. (2.38)
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10 I. V. Pavlenko, I. O. Girka, O. V. Trush and D. O. Melnyk

FIGURE 3. Magnetic field amplitude in plasma with ε = 0 normalized by the magnetic
field amplitude of the incident wave as the contour lines on the coordinate–time plane
(see text for details). The solid thin line is x= ct.

The last relation is not resolved for both coordinate and time. However, it is
convenient for graphical analysis. The analysis is presented in figure 3. The amplitude
of the magnetic field in plasma is shown by the contour lines on the coordinate–time
plane. The lines show where the magnetic field amplitude is 5 %, 4 %, 3 % and
2 % of the amplitude of the incident magnetic field. One can see that the magnetic
field amplitude never reaches 5 %, 4 %, 3 % and 2 % at the distances from the
plasma–vacuum interface d > 32 λ, d > 49 λ, d > 87 λ and d > 195 λ respectively.
Similar data can be obtained from (2.38) for any value of the magnetic field amplitude.
Also, the magnetic field amplitude in plasma near the plasma–vacuum interface drops
to 5 %, 4 %, 3 % and 2 % at times 162 T , 253 T , 450 T and 1013 T respectively.

And, finally, let us look at the electrostatic term which defines the electric field
amplitude of the forming electrostatic oscillation as a function of coordinate and time.
Lommel’s expansion (Watson 1944) allows one to integrate the term∫ x

0
J0(k

√
c2t2 − g2) dg=

∞∑
m=0

1
m!(2m+ 1)

(
ωx2

2c2t

)m

xJm(ωt). (2.39)

In the large time limit ωt� 1, the sum on the right-hand side, after multiplying by
k, can be rewritten through the Fresnel integrals C(g) and S(g) defined as 8.250 in
Gradshteyn & Ryzhik (2007), therefore

Ey(x, t) = −2

√
2
π

(ωt− kx)1/4

(ωt+ kx)3/4
sin(k

√
c2t2 − x2 −π/4)

+ 2 sinωt− 2
√

2 cos(ωt−π/4)C
(

kx
√

2ωt

)
− 2
√

2 sin(ωt−π/4)S
(

kx
√

2ωt

)
. (2.40)
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At small distances from the plasma–vacuum interface

kx
√

2ωt
� 1 (2.41)

the electrostatic term becomes

−
2
√

2kx
√

πωt
cos(ωt−π/4). (2.42)

It’s amplitude can be compared with the amplitude of the steady state electrostatic
oscillation (which is equal to 2) or with the amplitude of the incident electric field
(which is equal to 1). An amplitude deviation of the electric field γ can be introduced
as √

2
π

kx
√
ωt
< γ . (2.43)

Here, if γ is equal to 0.1, 0.3 or 0.5, then the relation (2.43) gives the
coordinate–time range where the amplitude of the electric field oscillation exceeds
90 %, 70 % or 50 % of the steady state electric field amplitude respectively. It should
be noted once again that γ = 0.5 gives the range where the amplitude of the electric
field oscillation in the plasma exceeds the amplitude of the incident electric field.
The results of the electric field analysis are demonstrated in figure 4. The amplitude
of the electric field oscillation is shown as the contour lines on the coordinate–time
plane. At the plasma–vacuum interface, the amplitude of the electric field oscillation
is almost twice the amplitude of the incident electric field. At the time t= 325 T , for
example, when the power flux into plasma becomes 5 % of the incident power flux,
the amplitude of the electric field oscillation is 1.8, 1.4 and 1.0 of the amplitude
of the incident electric field at the distances of 0.9, 2.7 and 4.5 wavelengths from
the plasma–vacuum interface respectively. For all these distances the magnetic field
amplitude is approximately 3.5 % of the incident wave amplitude. That is why the
field oscillation is almost electrostatic (quasi-electrostatic). If the approximation (2.41)
is violated (below the thin solid line of the graph), the amplitude has to be calculated
from the formula (2.40).

3. Numerical simulations of the transmitted plasma field
The obtained analytical results are compared with the results of numerical

simulations by the FDTD code. The FDTD code solves Maxwell’s equations and
the momentum equation for each plasma species α

∇×E=−
1
c
∂B
∂t
,

∇×B=
1
c
∂E
∂t
+

4π

c

∑
α

Jα,

∂

∂t
Jα =

ω2
α

4π
E+ [Jα ×Ωα].


(3.1)

where E is the electric field in the medium, B is the magnetic field in the medium, Jα
is the current density of plasma species α based on the unperturbed plasma density,
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FIGURE 4. Electric field amplitude in plasma with ε = 0 normalized by the electric field
amplitude of the incident wave as the contour lines on the coordinate–time plane (see text
for details). The approximation used is not valid below the thin solid line.

ω2
α ≡ 4πnαq2

α/mα is the square of the plasma frequency of plasma species α based
on the unperturbed plasma density nα, Ωα ≡ qαB0/cmα is the cyclotron frequency of
plasma species α, B0 is the external magnetic field, qα is the charge of the plasma
species α, mα is the mass of the plasma species α. Other features of the code have
been described in Pavlenko et al. (2019). Therefore these details are not repeated here.

For the purpose of the present analysis the code uses the model of non-magnetized
plasmas which consist of electrons and hydrogen ions. The pointwise hard source
(Taflove & Hagness 2005) is realized numerically for the electric field with the time
dependence from (2.1). It is far away (in the vacuum) from the plasma–vacuum
interface, therefore the wave reflected by the plasma does not reach it. The second
boundary of the computational domain is also far away from the plasma–vacuum
interface, so the transmitted plasma wave is not reflected from it. The incident
electromagnetic wave in the vacuum at t = 0 is prescribed in the code as an initial
condition. Therefore, numerical modelling starts from the moment when the incident
electromagnetic wave just reaches the plasma–vacuum interface.

3.1. Case of electromagnetic steady state field (ε > 0)

The wave frequency (1 GHz) and the plasma density (1.0414 × 1010 cm−3) are
chosen as in similar calculations in Pavlenko et al. (2019) to enable a comparison
of the transient propagations. The analytical formulas (2.22), (2.23), (2.25) are used
to calculate the times when the amplitude deviations at the distance of 5 plasma
wavelengths (12.5 vacuum wavelengths) from the plasma–vacuum interface are
5 %. For the plasma with ε = 0.16 these times are 48, 67 and 87 wave periods
for the magnetic field, electric field and Poynting flux respectively. The calculated
electromagnetic field for t = 48 T is shown in figure 5. The shaded areas show the
ranges of 5 % deviation from the steady state amplitudes. The vertical solid line at five
plasma wavelengths divides the coordinates into the left side, where the amplitude of
the magnetic field is inside the range (the magnetic field is close to the steady state),
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FIGURE 5. Electromagnetic field as a function of the distance from the plasma–vacuum
interface for t= 48 T and for a plasma with ε= 0.16. The magnetic field data are marked
by the letter ‘B’. The electric field data are marked by the letter ‘E’. The shaded areas
show the ranges of 5 % amplitude deviation from the steady state field.

and the right side, where its amplitude goes out of the range. However, the electric
field amplitude leaves the range on both the left and right sides (the electric field is
far enough from the steady state on both sides).

In fact, both the magnetic field data and the electric field data in figure 5 consist
of three different curves. Two of them were calculated by the FDTD code using the
different spatial resolutions of the numerical grid (50 and 100 points per vacuum
wavelength). The third curve was calculated directly from the exact formulas
(2.20) (for the electric field) or (2.21) (for the magnetic field). These curves are
indistinguishable from each other in figure 5. Therefore, the coordinates near the
plasma–vacuum interface of figure 5 are zoomed in figure 6. It is seen in figure 6
that the data of the FDTD code with the spatial resolution of 50 points per vacuum
wavelength differ essentially from other numerical data. But, at the same time, the
curve from the FDTD code with the spatial resolution of 100 points per vacuum
wavelength and the curve from the exact formulas are indistinguishable from each
other. The spatial resolution of 50 points per vacuum wavelength is not enough
to reproduce the exact formula data because the sharp plasma–vacuum interface
introduces a numerical error which is discussed in the next subsection. The time
resolution of the numerical grid (number of the points per wave period) is twice as
large as the spatial resolution in all calculations in order to ensure numerical stability
(Cummer 1997).

One can see that the duration of the transient processes is shorter in the case of the
wave incidence from the vacuum in comparison with the case of the metal antenna
inside the plasma (Pavlenko et al. 2019). This is easy to explain. According to the
wave theory of steady state plasmas, the amplitude of the magnetic field in the plasma
should be less (by a factor

√
ε) than the amplitude of the electric field. For example,

in the simulated case the magnetic field amplitude is 2.5 times smaller, since
√
ε=0.4.

Since the metal antenna inside the plasma sets the amplitude of the wave magnetic
field, the electric field amplitude has to increase with time (initially they are equal to
each other). If in the numerical simulations ε goes to 0 the electric field amplitude has
to increase to infinity. The latter requires an unrestricted amount of power. Therefore,
the steady state cannot be reached for ε = 0 at all, as was shown in Pavlenko et al.
(2019).
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FIGURE 6. Electromagnetic field as a function of the distance from the plasma–vacuum
interface for t= 48 T and for a plasma with ε= 0.16. The magnetic field data are marked
by the letter ‘B’. The electric field data are marked by the letter ‘E’. The thin horizontal
lines indicate the amplitudes of the steady state field. The graph consists of the curves
obtained from the different numerical sources (see text for details).

However, in the case of the wave incidence from the vacuum the magnetic field
amplitude in the plasma is not fixed by the antenna. For the underdense plasmas
(ω > ωpl or 0 < ε < 1) the magnetic field amplitude decreases and the electric field
amplitude increases with time. If the incident wave amplitude is 1, then in the steady
state the amplitude of the plasma magnetic field is 2

√
ε/(1+

√
ε) (belonging to the

range [0; 1]) and the amplitude of the plasma electric field is 2/(1+
√
ε) (belonging

to the range [1; 2]). In other words, the electric field amplitude in the plasma tends
to 2 when ε→ 0. Therefore the build-up of the plasma particle oscillations requires
much less power in comparison with the case of the metal antenna inside the plasma
(for small ε).

3.2. Case of electrostatic steady state field (ε = 0)
The formation of the electrostatic oscillation in the plasma is also studied numerically
by the FDTD code. Since the frequency of the incident wave is chosen to be 1 GHz,
the density of the hydrogen plasma is taken as 1.23976753 × 1010 cm−3 to provide
the case ω=ωpl exactly.

The analytical formulas (2.28), (2.30) describe exactly the magnetic and electric
fields at any distance from the plasma–vacuum interface for any time. It is known
from the discussions in the previous sections that the power flux into the plasma
becomes less than 5 % of the incident power flux after 325 wave periods. That is
why the FDTD code is used to simulate the electromagnetic field inside the plasma
at this time but with the shift by a quarter of the wave period to get the maximum
of the electric field. Thus, the electromagnetic field in the plasma is simulated for
t= 325.25 T . Initially, the simulations were carried out with a spatial resolution of 50
points per vacuum wavelength and with the time resolution of 100 points per wave
period but the results were not accurate enough. The reason for this is clear. The
magnetic field as the exact analytical solution of the problem is an undifferentiable
function of the coordinate at the plasma–vacuum interface, while the FDTD code
operates with the differential operators in a numerical way. Therefore, the numerical
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FIGURE 7. Magnetic field in plasma with ε = 0 normalized by the magnetic field
amplitude of the incident wave as a function of the distance from the plasma–vacuum
interface for the time t= 325.25 T . The solid line represents the exact analytical solution
of the problem. Other lines are the results of numerical simulations by the FDTD code
with different resolutions of the numerical grid (see text for details).

differentiation at the plasma–vacuum interface introduces a computational error. If this
explanation is correct then the computational error can be decreased by increasing
the numerical grid resolution. That is why the resolution was increased several times.
The results of the calculations are presented in figure 7 (for the magnetic field) and
in figure 8 (for the electric field). The insets in the figures zoom in on the range
of the small coordinates to see the differences in the results. The solid line presents
the exact analytical solutions (2.28) and (2.30) respectively. The lines with numbers
100 (dash-dotted), 200 (dotted) and 500 (dashed) correspond to the simulations
with spatial resolutions of 100, 200 and 500 grid points per vacuum wavelength
respectively. The time resolution of the numerical grid was twice as large as the
spatial one. One can see that the line 100 is sufficiently far from the analytical data
but the line 500 is in good agreement with them. No doubt that a subgridding near
the plasma–vacuum interface can essentially accelerate the numerical calculations;
however, it is not realized in the current version of the FDTD code.

4. Conclusions
The exact formulas (2.20), (2.21) for the electromagnetic field transmitted into

cold, unmagnetized and collisionless plasmas are written in the integral form for
the case when the electromagnetic wave is incident normally upon the plasma
half-space. The simplified formulas (2.22), (2.23) describe the electromagnetic field
near the steady state propagation of the electromagnetic wave in the plasmas when
the plasma particle oscillations are almost self-consistent with the electromagnetic
field. The steady state propagation of the electromagnetic wave through the plasmas
is known from plasma electrodynamics and does not require numerical simulation.
The developed analytics make it possible to analyse the numerical data at transient
times. The time of the transient processes (the time of the plasma transition from the
initially quiet state to the state of the self-consistent plasma particle oscillations in
the external electromagnetic field) can be easily calculated from (2.25). The analytics
were developed for the sinusoidal incident wave defined by the equation (2.1). Of
course, a change in time dependence of the incident signal can have a significant
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FIGURE 8. Electric field in plasma with ε = 0 normalized by the electric field amplitude
of the incident wave as a function of the distance from the plasma–vacuum interface for
the time t=325.25 T . The solid line represents the exact analytical solution of the problem.
Other lines are the results of numerical simulations by the FDTD code with different
resolutions of the numerical grid (see text for details).

effect on the physics of the transient processes. But any long-term periodic signal
can easily be expanded into the sinusoidal waves to be analysed by the developed
analytics.

The formulas (2.20), (2.21) are also applicable when the frequency of the incident
wave is equal to the plasma frequency. In this case they describe the build-up of
the electrostatic oscillation in plasmas (2.28), (2.30). The last formulas provide one
with the possibility to calculate the amplitude of the vanishing magnetic field and the
amplitude of the forming electrostatic oscillation as functions of time and the distance
from the plasma–vacuum interface.

If the frequency of the incident wave is equal to the plasma frequency, the power
flux into the plasma drops below 1 % of the incident flux after approximately 8100
wave periods. The build-up of the plasma particle oscillations near the plasma–vacuum
interface reduces the ability of the plasma to transmit the incident electromagnetic
power, therefore, over time, an increasing part of the incident power is reflected back
into the vacuum. As a result, the power flux into the plasma is not sufficient to build
up the electrostatic oscillations at large distances from the plasma–vacuum interface.
According to the theory (2.43), the distance where the amplitude of the electric field
oscillation in the plasma is equal to the electric field amplitude of the incident wave,
is proportional to the square root of the incidence time. Therefore, for example, these
amplitudes are equal at the distance of 4 wavelengths after 250 wave periods, at the
distance of 8 wavelengths after 1000 wave periods and so on.

Any plasma electromagnetic code operating in the time domain should be able
to reproduce the analytical results. In the present paper the FDTD code is used to
simulate two cases: the propagation of the electromagnetic wave through plasmas and
the build up of the electrostatic oscillation in plasmas. In the first case the agreement
between the analytical and numerical results is very good. However, the second case
is much more difficult for the numerical simulations. Since the exact solution of
the problem is an undifferentiable function of the coordinate at the plasma–vacuum
interface, the numerical data of the FDTD code always contain the related numerical
error. However, it is shown that the analytical and numerical results are the same if
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the resolution of the numerical grid is sufficiently large. One can conclude that an
electromagnetic wave’s propagation through a sharp boundary between two media is
a good challenge for the FDTD codes. It can be simulated, but additional attention
should be paid to the boundary.
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