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Abstract

Benzimidazole derivatives such as albendazole (ABZ) and mebendazole are important mole-
cules used in helminthic treatment. Neurocysticercosis is the main cause of acquired epilepsy
throughout the world and is currently treated with ABZ. New molecules have been studied in
order to aid in the treatment of this neglected tropical disease, among them RCB15 and
RCB20. The aim of this study was to evaluate the metabolic impact of RCB15 and RCB20
on Taenia crassiceps cysticerci intracranially inoculated in Balb/c mice. Thirty days after the
inoculation the mice were treated with 50 mg kg−1 of RCB15, RCB20, ABZ or NaCl 0.9%.
The euthanasia and cysticerci removal were performed 24 h after the treatment. The cysticerci
were analysed through high performance liquid chromatography. After the treatments, there
was an impairment in the main energetic pathways such as glycolytic pathway, homolactic
fermentation or in mitochondrion energy production detected through the decrease in pyru-
vate, lactate, oxaloacetate, malate and fumarate concentrations. This induced the parasite to
resort to alternative energetic pathways such as proteins catabolism, propionate fermentation
and fatty acids oxidation. Therefore, benzimidazole derivatives are a promising alternative to
ABZ use as they also reach the brain tissue and induce a metabolic stress in the cysticerci.

Introduction

The benzimidazole derivatives are important molecules used in the treatment of intestinal and tis-
sue parasitosis. The best examples of these molecules are mebendazole, thiabendazole and alben-
dazole (ABZ) (Bansal and Silakari, 2012; Salahuddin et al., 2017). Other compounds have been
synthetized from benzimidazole such as 6-chloro-5-(2,3-dichlorophenoxy)-2-(trifluoromethyl)-
1H-benzimidazole (RCB15) and 6-chloro-5-(1-naphthyloxy)-2-(trifluoromethyl)-1H-benzimida-
zole (RCB20) showing important anthelminthic activity and considered promising as new
molecules that may be used in the treatment of such neglected tropical diseases (Hernández-
Luis et al., 2010).

Neurocysticercosis (NCC) is a tissue parasitosis caused by the presence of the larval stage of
Taenia solium in the nervous system. It is considered a neglected disease of great epidemiolo-
gic importance as it is the main cause of acquired epilepsy in endemic regions such as Latin
America, Africa and Asia (Garcia et al., 2014). The NCC treatment is performed through the
administration of ABZ and praziquantel (PZQ) isolated or in association (Valdez et al., 2002).
Both ABZ and PZQ are anthelminthic drugs widely used worldwide which have induced the
manifestation of some resistance reports (El-On, 2003; van den Enden, 2009; Márquez-
Navarro et al., 2012; Lopes et al., 2014). Therefore, the search for alternative NCC treatment
is of utmost importance (Hernández-Luis et al., 2010).

One of the validated experimental models used for cysticercosis studies is with the intraper-
itoneal and intracranial inoculation of Taenia crassiceps cysticerci in mice, reproducing the cysti-
cercosis host-parasite interaction (Cardona and Teale, 2002; Matos-Silva et al., 2012; Leandro
et al., 2014; Lima et al., 2019). The T. crassiceps experimental NCC model has been used as
to contribute in the clarifying of the biochemical impact of different drugs in the metabolic path-
ways of the parasite (Leandro et al., 2014; Silva et al., 2018; Lima et al., 2019).

The biochemical studies of the drugs mode of action have helped to determine their meta-
bolic target within the parasitic cell as well as how the parasite reacts when facing a stressful
environment. Such studies contribute to the development of new active compounds and
improvement of the current anthelminthic drugs, i.e. development of nanosuspensions
increasing the drug`s absorption by the parasitic cell as well as decreasing dosages and side-
effects (Vinaud et al., 2007; Picanço et al., 2017; Silva et al., 2018; Lima et al., 2019).
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The carbohydrate fermentation pathways have been previously
described in cestodes (Vinaud et al., 2007; Tielens et al., 2010).
The main end products of these energetic pathways from glucose
are lactate, acetate and propionate. The fermentation processes are
increased within the cell`s metabolism when there is a decrease in
the availability of oxygen in the habitat or when there is an abun-
dance of carbohydrate sources (Meganathan et al., 2007). It has
been reported that cestodes, such as T. crassiceps, are able to sur-
vive in anaerobic environments and accumulate succinate and
products derived from succinate, such as propionate (Saz,
1981). The anaerobic breakdown of carbohydrates by helminths
also takes in consideration the redox requirements of the environ-
ment, sources of intermediates for synthetic reactions, pH control,
nitrogenous excretion, osmotic regulation, intracellular signalling
and the suppression of host responses (Barrett, 1984).

Therefore, the aim of this study was to evaluate the metabolic
response of T. crassiceps cysticerci intracranially inoculated in
BALB/c mice after treatment with RCB15 and RCB20 in compari-
son to ABZ.

Materials and methods

The T. crassiceps cysticerci are maintained in the animal’s facilities
of the Tropical Pathology and Public Health Institute of the
Federal University of Goias since 2002, as described previously
(Vaz et al., 1997; Fraga et al., 2012).

Experimental infection and treatment

The BALB/c female mice, with 8–12 weeks old, used in this study
were submitted to intracranial inoculation of initial stage T. crassi-
ceps cysticerci as described previously by Matos-Silva et al. (2012).
After a period of 30 days post-inoculation the animals received a
single dose treatment of 50 mg kg−1 of ABZ (positive control
group), 50 mg kg−1 of RCB15 (test group 1), 50 mg kg−1 of
RCB20 (test group 2) or 50 µL of physiologic solution (NaCl
0.9%) (negative control group). Each experimental group was com-
posed of five animals. All the treatments were performed orally
through gavage. Twenty-four hours after the treatment the animals
were euthanized. This period of time was chosen due to the half-life
of ABZ which is approximately 8–12 h, ensuring the metabolic
effect of the drug on the parasite. The cysticerci were carefully
removed, washed with physiologic solution (NaCl 0.9%) in order
to remove host cells or other interferents, and then frozen in liquid
nitrogen and stored in −20 °C freezer for posterior biochemical
analysis (Leandro et al., 2014; Silva et al., 2018; Lima et al., 2019).

Biochemical analysis

The organic acids were extracted from the cysticerci according to
the previous description (Fraga et al., 2012). Briefly, the cysticerci
were defrosted and homogenized in 500 µL of tris-HCl 0.1 M buf-
fer supplemented with a protease inhibitor (SigmaFast protease
inhibitor cocktail tablets, EDTA-free, Sigma®), pH 7.6. The extract
obtained was centrifuged at 15 652 g (10 000 rpm) per 10 min at
4 °C and then the organic acids present in the vesicular fluid
were extracted through an ionic exchange solid phase extraction
column (Bond Elut® Agilent®). The chromatographic analysis
was performed through an exclusion column BIORAD-Aminex
HPX-87H®. The eluent used was sulfuric acid 5 mM, flow
0.6 mL min−1, spectrophotometric reading of 210 nm.

The results were analysed through the Star Chromatography
Workstation software (Agilent®), previously calibrated for the fol-
lowing organic acids identification: pyruvate and lactate (glyco-
lytic pathway), oxaloacetate, citrate, α-ketoglutarate, succinate,

fumarate and malate (tricarboxylic acid cycle), fatty acids oxida-
tion (acetate, acetoacetate, β-hydroxybutyrate).

Dosages of glucose, lactate dehydrogenase (LDH), urea and
creatinine were performed through an Architec C8000 Plus device
with commercial kits (Doles®) that employed the enzymatic
method for quantification.

Statistical analysis

All experiments were independently repeated five times. As the
amount of cysticerci removed from each mouse is not standardized,
the cysticerci were weighted and the values detected by HPLC and
spectrophotometry were adjusted per gram of cysticerci. The statis-
tical analysis was performed with the adjusted values from the
biochemical analysis of the cysticerci through the Sigma Stat 2.3
software. The descriptive analysis was performed to determine
the normal distribution and homogenous variation as well as
mean and standard deviation. As the values presented normal dis-
tribution, the analysis of variation test was performed. The differ-
ences were considered significant when P < 0.05.

Results

The analyses performed in this study allowed the determination of
the metabolic pathways used by T. crassiceps cysticerci intracrani-
ally inoculated in BALB/c mice after the in vivo treatment with
benzimidazole derivatives. This study focused on the cytoplas-
matic energetic pathways such as the glycolytic and proteins
catabolism, and on the mitochondrion energetic alternative path-
way such as the fatty acids oxidation.

All treatments influenced the glycolytic and cytoplasmic anaer-
obic energetic pathway (Table 1). The ABZ and RCB20 induced a
similar significant decrease in the concentrations of pyruvate (five
and four times, respectively) and lactate (two times for both treat-
ments) when compared to the control group. While the RCB15
treatment induced a greater decrease in this pathway, i.e. pyruvate
was not detected and lactate was 15 times decreased.

The RCB15 treatment induced a decrease in all mitochondrion
organic acids related to the tricarboxylic acid cycle such as citrate
(10 times), non-detection of α-ketoglutarate, succinate, malate
and oxaloacetate (Tables 2 and 3).

After the RCB15 treatment, the parasite produced energy
through the catabolism of proteins (fumarate, urea and creatinine
detections), fatty acids oxidation (β-hydroxybutyrate detection)
and propionate anaerobic fermentation (Tables 2 and 3).

The RCB20 and ABZ treatment induced similar effects on the
metabolic pathways such as a decrease in tricarboxylic acid cycle
intermediates (oxaloacetate, malate and fumarate) and increase in
the fatty acid’s oxidation (β-hydroxybutyrate) (Tables 2 and 3).

The RCB20 treatment also induced the propionate anaerobic
fermentation which was not observed in the ABZ treated group
or in the control group (Table 3).

It was not possible to detect in all analysed samples
α-ketoglutarate, succinate nor acetate.

Figure 1 shows the molecular structures of ABZ, RCB15 and
RCB20 and the main metabolic impact on the experimental
NCC treatment.

Discussion

This study evaluated the metabolic alterations observed in T. cras-
siceps cysticerci intracranially inoculated in BALB/c mice after the
in vivo treatment with benzimidazole derivatives, RCB15, RCB20
and ABZ.

The main mode of action of the benzimidazole derivatives is to
impair the polymerization of tubulins (α and β) into microtubules

Parasitology 1579

https://doi.org/10.1017/S0031182019000933 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182019000933


(Martin, 1997). Microtubules are the most common component
of the cytoskeleton and are involved in several intracellular pro-
cesses such as mitosis, ciliary and flagellar motility, transport
through vesicles and organelles (Nogales, 2000). The impairment
of such structures alters the tegument integrity of cestodes
(Marquez-Navarro et al., 2013) and metabolically leads to diffi-
culties in glucose uptake and induces the increase of alternative
energetic pathways such as anaerobic fermentative pathways, pro-
teins catabolism, fatty acids oxidation and gluconeogenesis
(Martin, 1997; Vinaud et al., 2009; Fraga et al., 2017; Picanço
et al., 2017; Vinaud and Lino Junior, 2017; Lima et al., 2019).

In spite of the same concentrations of glucose detected in all
groups, the treatments induced a significant decrease in the glyco-
lytic and homolactic fermentation pathways, observed through the
smaller amounts of pyruvate and lactate concentrations detected.
The glucose uptake impairment described previously as a mode of
action of benzimidazole derivatives (Martin, 1997; Marquez-
Navarro et al., 2013) was not observed in our results. However,
the significant decrease in pyruvate concentrations may have hap-
pened due to the inhibition of one of the glycolytic enzymes such
as glucose-6-phosphate dehydrogenase which has been reported
as one of the metabolic effects of benzimidazole derivatives
(Sarwal et al., 1989). These data may also be explained by the

repressing effect of benzimidazole derivatives on the Vmax of
the glycolytic enzymes and also on their substrate affinity (Jasra
et al., 1990).

The malate dehydrogenase complex is considered one of the
most important within the parasite`s energetic pathways as it is
responsible for the malate syntheses from oxaloacetate in the cyto-
plasm as well as in the mitochondrion. The inhibition of this
enzyme by benzimidazole derivatives leads to a blockage of the
glycolytic pathways and to a significant decrease in the parasite ener-
getic reserve (Tejada et al., 1987). It is interesting to highlight that in
our results was possible to observe a significant decrease in malate
concentrations after all treatments. Also, after the RCB15 treatment
no pyruvate, oxaloacetate normalatewere detected. These data show
that this particular benzimidazole derivative presents a greater meta-
bolic effect than the other two tested in this study.

The enzymatic inhibition as a mode of action of ABZ deriva-
tives has been reported previously. The malate dehydrogenase
both cytoplasmic and mitochondrial are inhibited by ABZ
(Tejada et al., 1987) leading the decreases of malate concentra-
tions and affecting the glycolytic and tricarboxylic acid cycle
pathways. The fumarate reductase enzyme is inhibited by thiaben-
dazole (Prichard, 1970) impairing the mitochondrial pathways.
These reports show that benzimidazole derivatives may present

Table 1. Concentrations (mean ± standard error) of glucose, pyruvate, lactate dehydrogenase (LDH) and lactate per gram of cysticerci detected in Taenia crassiceps
cysticerci intracranially inoculated in BALB/c mice after treatment with albendazole, RCB15 or RCB20

Control ABZ RCB15 RCB20

Glucose (mg dL−1) 54.14 ± 9.42 41.19 ± 5.21 39.84 ± 1.53 54.25 ± 7.95

Pyruvate (μM) 155.60 ± 82.40 28.79 ± 7.29* ND 38.44 ± 9.17*

LDH (UI L−1) 266.52 ± 110.84 96.52 ± 7.75* 239.02 ± 9.18ª 280.27 ± 37.95ª

Lactate (μM) 6765.81 ± 2471.65 3087.28 ± 692.10* 427.62 ± 296.48*a 3366.41 ± 863.78*b

ND, non-detected, control group: treatment with NaCl 0.9%; ABZ, albendazole treated group; RCB15, 6-chloro-5-(2,3-dichlorophenoxy)-2-(trifluoromethyl)-1H-benzimidazole treated group;
RCB20, 6-chloro-5-(1-naphthyloxy)-2-(trifluoromethyl)-1H-benzimidazole treated group. The bold marking alongside with * indicates the statistical significant difference.
*P < 0.05 when compared to the control group; a: P < 0.05 when compared to the concentrations detected in the positive control group (albendazole treated group); b: P < 0.05 when
compared to the concentrations detected in the RCB15 treated group.

Table 2. Concentrations (mean ± standard error) of citrate, malate, oxaloacetate and fumarate detected per gram of cysticerci in Taenia crassiceps cysticerci
intracranially inoculated in BALB/c mice after treatment with albendazole, RCB15 or RCB20

Control ABZ RCB15 RCB20

Citrate (μM) 1487.00 ± 303.09 1385.78 ± 148.22 160.33 ± 42.42*a 1074.07 ± 376.15

Oxaloacetate (μM) 183.78 ± 148.22 162.77 ± 11.21 ND 127.94 ± 51.38*

Malate (μM) 1167.72 ± 86.03 894.65 ± 228.25* ND 827.25 ± 109.82*

Fumarate (μM) 251.79 ± 49.58 205.84 ± 63.41 48.05 ± 11.66*a 99.31 ± 27.09*ab

ND, non-detected, control group: treatment with NaCl 0.9%; ABZ, albendazole treated group; RCB15, 6-chloro-5-(2,3-dichlorophenoxy)-2-(trifluoromethyl)-1H-benzimidazole treated group;
RCB20, 6-chloro-5-(1-naphthyloxy)-2-(trifluoromethyl)-1H-benzimidazole treated group. The bold marking alongside with * indicates the statistical significant difference.
*P < 0.05 when compared to the control group; a: P < 0.05 when compared to the concentrations detected in the positive control group (albendazole treated group); b: P < 0.05 when
compared to the concentrations detected in the RCB15 treated group.

Table 3. Concentrations (mean ± standard error) of urea, creatinine, propionate and β-hydroxybutyrate detected per gram of cysticerci in Taenia crassiceps cysticerci
intracranially inoculated in BALB/c mice after treatment with albendazole, RCB15 or RCB20

Control ABZ RCB15 RCB20

Urea (mg dL−1) 26.67 ± 4.62 16.84 ± 0.80* 31.87 ± 1.22*a 28.84 ± 6.64ab

Creatinine (mg dL−1) 1.13 ± 0.28 0.64 ± 0.05 1.59 ± 0.06a 1.49 ± 0.37a

Propionate (μM) ND ND 411.27 ± 180.39 1087.36 ± 733.71

β-hydroxybutyrate (μM) ND 3429.76 ± 665.44 1309.22 ± 571.53a 3403.46 ± 352.00b

ND, non-detected, control group: treatment with NaCl 0.9%; ABZ, albendazole treated group; RCB15, 6-chloro-5-(2,3-dichlorophenoxy)-2-(trifluoromethyl)-1H-benzimidazole treated group;
RCB20, 6-chloro-5-(1-naphthyloxy)-2-(trifluoromethyl)-1H-benzimidazole treated group. The bold marking alongside with * indicates the statistical significant difference.
*P < 0.05 when compared to the control group; a: P < 0.05 when compared to the concentrations detected in the positive control group (albendazole treated group); b: P < 0.05 when
compared to the concentrations detected in the RCB15 treated group.
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different sites of inhibition regarding the varied enzymes of
the parasites. This was probably observed in our results regarding
the LDH activity when the parasite was exposed to ABZ, RCB15
and RCB20. The first drug partially inhibited the enzyme as
reported previously (Veerakumari and Munuswamy, 2000),
while the other two derivatives presented no effect in its activity.

On the other hand, RCB15 treatment induced a significant
decrease in lactate concentrations. This probably occurred due
to the non-detection of pyruvate which is the precursor of lactate.
It is possible that this derivative has a greater inhibition effect on
the pyruvate kinase enzyme leading to a decrease in pyruvate pro-
duction and, therefore, impacting the homolactic fermentation.
The inhibition of pyruvate kinase by benzimidazole derivatives
has been described previously by Cornish and Bryant (1976).

At this point it is interesting to observe that the parasite after
the benzimidazole treatments could not perform the main ener-
getic pathway, i.e. the glycolysis and presented an impairment
in the tricarboxylic acid (TCA) cycle with significant decreases
in the concentrations of oxaloacetate, malate and fumarate as
well as the non-detection of α-ketoglutarate and succinate. In
other words, the TCA cycle was not functioning nor the fumarate
reductase pathway. These two important energetic pathways have
been reported previously in T. crassiceps cysticerci intracranially
inoculated in mice (Leandro et al., 2014).

In order to ensure survival and a minimum energetic production,
the parasites intensified other biochemical pathways: the proteins
catabolism, fatty acids oxidation and propionate fermentation.
These pathways have already been described in T. crassiceps cysticerci
inoculated both intracranially and intraperitoneally (Leandro et al.,
2014; Fraga et al., 2016; Nasareth et al., 2017; Lima et al., 2019).

Regarding the protein’s catabolism, the ABZ treatment did not
influence this energetic pathway. While both benzimidazole deriva-
tives, RCB15 and RCB20, showed a slight increase in the urea con-
centrations while there was a decrease in the fumarate ones. Again,
RCB15 showed greater influence in this pathway than RCB20.
These results are in accordance with the previously described effect
of benzimidazole derivatives on T. crassiceps cysticerci (Fraga et al.,
2016; Picanço et al., 2017). The proteins catabolism plays an
important role in several physiologic processes such as growth, dif-
ferentiation and reproduction within the host (Zhang et al., 2018).
Therefore, its impairment as a result of benzimidazole derivative
exposures represents an important impact on their survival in
such a significant site, the central nervous system.

On the other hand, after such important metabolic decreases,
the parasite ensured survival at short term by increasing signifi-
cantly the fatty acids oxidation and the propionate fermentation
as energy production pathways. These two metabolic pathways
were able to maintain the parasite`s survival within the analysed
period of time. The increase in these alternative pathways after
drugs exposure is in accordance with the previous description
of the metabolic elasticity of T. crassiceps cysticerci (Vinaud
et al., 2009; Fraga et al., 2017; Picanço et al., 2017).

The metabolic studies of T. crassiceps responses to benzimida-
zole drugs show that this parasite tends to resort to fermentative
pathways such as the production of propionate from lactate or
from succinate (Fraga et al., 2017; Picanço et al., 2017). It is
important to highlight that when there is no interference in the
glycolytic pathway, homolactic fermentation or in mitochondrion
energy production the propionate fermentation pathway is not
activated or, if present, found in small concentration, as detected
in our control group. But when there is some kind of impairment
of the main energetic pathways it is activated and becomes the
main energetic source. These data show how this pathway is
important as a survival escape used by the parasite.

When comparing both benzimidazole derivatives, RCB15 and
RCB20, regarding the treatment of experimental NCC, it was pos-
sible to observe that the first one presented greater metabolic
impact on the cysticerci regarding the homolactic fermentation,
citric acid cycle and protein`s catabolism. Hypothetically, this
probably was observed due to a greater impact on tubulins forma-
tion, since drugs of the benzimidazole group are known to affect
both α and β microtubules polymerization (Martin, 1997;
Aguayo-Ortiz et al., 2013). Further studies are needed in order
to demonstrate the precise effect of each benzimidazole derivative
in the cytoskeleton proteins and tegumental structures.

In conclusion, the benzimidazole derivatives are able to influ-
ence the energetic metabolism of T. crassiceps cysticerci forcing
the parasite to resort to alternative energetic pathways in order
to survive. Both RCB15 and RCB20 showed promising anthel-
minthic activity although the first one was found to present a
more significant impact on the parasite`s metabolism.
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2016-9).
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Fig. 1. Molecular structures of albendazole; RCB15: 6-chloro-5-(2,3-dichlorophenoxy)-2-(trifluoromethyl)-1H-benzimidazole; RCB20: 6-chloro-5-(1-naphthyloxy)-
2-(trifluoromethyl)-1H-benzimidazole used in the in vivo treatment of experimental neurocysticercosis with Taenia crassiceps cysticerci. On the right the main meta-
bolic impact of the drugs, red arrows indicate a decrease in the metabolite after treatment, blue arrows indicate an increase in the metabolite after treatment.
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