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In this paper, we consider optimal components grouping in series–parallel and parallel–
series systems composed of k subsystems. All components in each subsystem are drawn
from a heterogeneous population consisting of m different subpopulations. Firstly, we
show that when one allocation vector is majorized by another one, then the series–parallel
(parallel–series) system corresponding to the first (second) vector is more reliable than
that of the other. Secondly, we study the impact of changes in the number of subsystems
on the system reliability. Finally, we study the influence of the selection probabilities of
subpopulations on the system reliability.
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1. INTRODUCTION

A system is a collection of components arranged in a specific design so as to achieve desired
functions with acceptable performance and reliability. Components allocation has a direct
effect on the system reliability. Kuo and Wan [10] described the state-of-the-art of redun-
dancy allocation problem. Recently, several components allocation policies for the system
have been developed in terms of various stochastic orders. Hu and Wang [9] studied the opti-
mal allocation problem of a k-out-of-n system and a series system with respect to stochastic
orders. Misra, Dhariyal, and Gupta [15] studied the problem of allocating k active spares
to n components of a series system in order to optimize the system reliability. Li and Ding
[12] dealt with the allocation of i.i.d. active redundancies to a k-out-of-n system with the
usual stochastic order among its components. Cha [3] studied the optimal allocation policies
for the combined stochastic risk processes and discussed its applications to various related
fields. Di Crescenzo and Pellerey [6] considered components allocation in a series or parallel
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system and supposed that components are randomly selected from two different batches.
Ding and Li [7] studied the allocation of active redundancies to a k-out-of-n system with
i.i.d. components in the sense of the hazard rate order. Li and Ding [13] reviewed the allo-
cation of active redundancies to a coherent system and presented some recent theoretical
results as well as some applications. Cha [4] studied the optimal allocation policy for the
generalized combined risk processes by the stochastic comparisons of reliability functions.
Zhuang and Li [20] studied the allocation of i.i.d. components to a k-out-of-n system with
non-i.i.d. components.

The series–parallel (parallel–series) system is composed of a certain number of subsys-
tems in series (parallel), each subsystem includes one or several components arranged in
parallel (series). Coit and Smith [5] demonstrated the use of a genetic algorithm to solve
the redundancy allocation problem for a series–parallel system. Ramirez-Marquez, Coit,
and Konak [16] studied the redundancy allocation problem in order to maximize the mini-
mum subsystem reliability for a series–parallel system. Sarhan et al. [17] studied reliability
equivalence of different designs of a series–parallel system consisting of four i.i.d. compo-
nents. Billionnet [2] studied the redundancy allocation problem of a series–parallel system by
using integer linear programming software. Levitin and Amari [11] presented an algorithm
for determining an optimal loading of elements in series–parallel system. Sun, Li, and Zio
[19] studied the redundancy allocation problem for multi-state series–parallel system.

In reality, lifetime distributions of manufactured components in different batches may
be different due to many factors (e.g., supplied material, human factors, unstable conditions
of production, etc.). Then, lots of batches of manufactured components constitute a het-
erogeneous population consisting of several different subpopulations. Since the lifetimes of
components in the same batch are i.i.d., then it is reasonable to assume that components in a
randomly selected batch belong to a fixed subpopulation of a heterogeneous population with
a certain selection probability. We have known that some authors have studied redundancy
allocation problems of different systems by means of stochastic orders. But most of the
literatures studied the components allocation problem in a system under the condition that
each allocative component is selected from a homogeneous population. Hazra, Finkelstein,
and Cha [8] firstly studied the optimal components grouping problem in a series (parallel)
system, where components of each group are selected from a subpopulation with a certain
probability.

In this paper, we consider the components grouping problem in a series–parallel
(parallel–series) system composed of k subsystems. All components in each subsystem of
the series–parallel (parallel–series) system are drawn from a heterogeneous population con-
sisting of m different subpopulations. Components grouping problems in this paper include
the decision of the number of components in each subsystem and the number of subsystems
such that the reliability of the series–parallel (parallel–series) system is maximized. We also
study the effect of the selection probabilities of subpopulations on the reliability of the
series–parallel (parallel–series) system.

Our model can be served as a valid formulation for a series–parallel (parallel–series) sys-
tem consisting of k subsystems, where these subsystems may be geographically separated
(e.g., radar, meteorological observation device, airports security system, etc.). We need an
optimal allocation policy to ensure that the overall system is maximally reliable subject to
the constraints of the total number of allocative components. For example, meteorological
observation devices are located in k areas of a small country, and the zone weather infor-
mation are periodically sent to a central command post. Each area includes several parallel
(series) meteorological observation devices which are drawn from a randomly selected batch.
The allocation policy, i.e., determining the number of allocative meteorological observation
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devices in each area, is to be made in order to maximize the reliability that the central
command post obtains an accurate zone weather information.

The organization of this paper is as follows. In Section 2, we describe our notations
of models and provide some definitions and lemmas which will be used in the sequel. In
Sections 3 and 4, we use the theory of stochastic orders and majorization order to present the
optimal components grouping of the series–parallel system and the parallel–series system,
respectively. In Section 5, we conclude this paper.

Throughout this paper, all random variables under consideration are nonnegative,
increasing and decreasing properties of a function are not used in the strict sense. All
expectations are assumed to exist whenever they appear.

2. PRELIMINARIES

2.1. Notations

Let n components be grouped as k groups. We draw a1 components from one of the m
subpopulations, and use these a1 components to form the first subsystem; then we draw a2

components from one of the m subpopulations, and use these a2 components to form the
second subsystem, and so on. Suppose that we select one subpopulation randomly with prob-
abilities p = (p1, p2, . . . , pm), where pi is the selection probability of the ith subpopulation,
i = 1, 2, . . . ,m.

Denote by

A =

{
(k,a,p,X ) : n ∈ N+,m ∈ N+;a = (a1, a2, . . . , ak) ∈ N

k
+ s.t.

k∑
i=1

ai = n,

k = 1, 2, . . . , n;p ∈ [0, 1]m s.t.
m∑

i=1

pi = 1 and X ∈ Ω

}

the set of all admissible models, where

Ω ={X = (X1,X2, . . . , Xm) : Xi is the lifetime of i.d.d. components in the ith

subpopulation, i = 1, 2, . . . ,m}.

Further, let S(k,a, p, X) (H(k,a, p, X)) be the random variable representing the lifetime
of a series–parallel (parallel–series) system corresponding to the model (k,a, p, X) ∈ A.

2.2. Concepts and lemmas

For ease of reference, let us recall some important concepts and lemmas closely related
to our study. Let Xi be a non-negative random variable with probability density function
fi(x), distribution function Fi(x), reliability function F̄i(x), hazard rate function hi(x) =
fi(x)/F̄i(x), and reversed hazard rate function ri(x) = fi(x)/Fi(x), respectively, i = 1, 2.

Definition 2.1: The random variable X1 is said to be smaller than X2 in the

(i) usual stochastic order (denoted by X1 ≤st X2) if F̄1(x) ≤ F̄2(x) for all x ≥ 0.
(ii) hazard rate order (denoted by X1 ≤hr X2) if F̄2(x)/F̄1(x) is increasing in x ≥ 0, or

equivalently, X1 ≤hr X2 if, and only if, h1(x) ≥ h2(x) for all x ≥ 0.
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(iii) reversed hazard rate order (denoted by X1 ≤rh X2) if F2(x)/F1(x) is increasing in
x ≥ 0, or equivalently, X1 ≤rh X2 if, and only if, r1(x) ≤ r2(x) for all x ≥ 0.

(iv) likelihood ratio order (denoted by X1 ≤lr X2) if f2(x)/f1(x) is increasing in x ≥ 0.

For more details on stochastic orders, one may refer to Shaked and Shanthikumar [18].
The majorization order enables us to compare the diversity of two real vectors. The

following definition of the majorization order can be found in Marshall, Olkin, and Arnold
[14].

Definition 2.2: Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be any two vectors, and
x(1) ≤ x(2) ≤ · · · ≤ x(n) and y(1) ≤ y(2) ≤ · · · ≤ y(n) be the increasing arrangements of the
components of x and y, respectively. The vector x is said to majorize the vector y (denoted
by x �m y) if for any j = 1, 2, . . . , n− 1, we have

j∑
i=1

x(i) ≤
j∑

i=1

y(i) and
n∑

i=1

x(i) =
n∑

i=1

y(i).

Definition 2.3: Dsym = {X ∈ Ω : X1 ≥sym X2 ≥sym · · · ≥sym Xm} and Esym = {X ∈ Ω :
X1 ≤sym X2 ≤sym · · · ≤sym Xm}, where ‘sym’ could be ‘st’, ‘hr’, ‘rh’, ‘lr’ and DQ = {x ∈
Qm : x1 ≥ x2 ≥ · · · ≥ xm} and EQ = {x ∈ Qm : x1 ≤ x2 ≤ · · · ≤ xm}, where Q ⊆ R.

Lemma 2.4: Let B ⊆ R
m, and ϕ : B → R be a continuously differentiable function. Then,

for x, y ∈ B,

x �m y =⇒ ϕ(x) ≤ ϕ(y),

if, and only if, the following two conditions hold:

(i) ϕ is symmetric on B,
(ii) for all z ∈ B and 1 ≤ i 	= j ≤ m,

(zi − zj)
[
∂ϕ (z)
∂zi

− ∂ϕ (z)
∂zj

]
≤ 0.

Lemma 2.5: Let X and Y be two independent random variables. Then

(i) X ≤rh Y if, and only if, E[α(X)]E[β(Y )] ≥ E[α(Y )]E[β(X)] for all functions α and
β such that β is nonnegative and α/β and β are decreasing.

(ii) X ≤hr Y if, and only if, E[α(X)]E[β(Y )] ≤ E[α(Y )]E[β(X)] for all functions α and
β such that β is nonnegative and α/β and β are increasing.

The above two lemmas can be found in Marshall et al. [14] and Shaked and
Shanthikumar [18], respectively.

3. SERIES–PARALLEL SYSTEM

We consider the series–parallel system consisting of k independent subsystems in series,
and the jth subsystem has aj components connected in parallel, j = 1, 2, . . . , k. All com-
ponents in each subsystem are selected from the ith subpopulation with probability pi,
i = 1, 2, . . . ,m. Figure 1 presents the structural diagram of the series–parallel system. Note
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Figure 1. Series–parallel system

that subsystems lifetimes are independent and the jth subsystem has distribution function∑m
i=1 piF

aj

i (t), j = 1, 2, . . . , k. Hence the reliability function of S(k,a, p, X) is given by

F̄S(k,a,p,X)(t) =
k

Π
j=1

[
1 −

m∑
i=1

piF
aj

i (t)

]
, t ≥ 0.

One of the important problems is how to draw n components from m different subpop-
ulations such that the resulting system will be optimal in some stochastic sense. Let the
number of subsystems be equal to k, the following result shows that if the allocation vector
is majorized by another allocation vector, then the series–parallel system corresponding to
the first vector is more reliable than that of the other. It means that the system’s reliability
can be increased by balancing the allocation of components.

Theorem 3.1: Let (k,a, p, X) ∈ A and (k, b, p, X) ∈ A. If a 
m b, then S(k,a, p, X) ≥st

S(k, b, p, X).

Proof: For all t ≥ 0, let

φ(a) = F̄S(k,a,p,X)(t) =
k

Π
j=1

[
1 −

m∑
i=1

piF
aj

i (t)

]
.

Differentiating φ(a) with respect to aα, then we have

∂φ(a)
∂aα

= −
m∑

i=1

piF
aα
i (t) lnFi(t) Π

1≤j �=α≤k

[
1 −

m∑
i=1

piF
aj

i (t)

]
,

hence

(aα − aβ)
[
∂φ(a)
∂aα

− ∂φ(a)
∂aβ

]

= (aα − aβ)

{[
−

m∑
i=1

piF
aα
i (t) lnFi(t)

]
Π

1≤j �=α≤k

[
1 −

m∑
i=1

piF
aj

i (t)

]

−
[
−

m∑
i=1

piF
aβ

i (t) lnFi(t)

]
Π

1≤j �=β≤k

[
1 −

m∑
i=1

piF
aj

i (t)

]}
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= (aα − aβ) Π
1≤j �=α,β≤k

[
1 −

m∑
i=1

piF
aj

i (t)

]

×
{

m∑
i=1

piF
aβ

i (t) lnFi(t)

[
1 −

m∑
i=1

piF
aα
i (t)

]

−
m∑

i=1

piF
aα
i (t) lnFi(t)

[
1 −

m∑
i=1

piF
aβ

i (t)

]}
.

If aα < aβ , then

1 −
m∑

i=1

piF
aα
i (t) ≤ 1 −

m∑
i=1

piF
aβ

i (t)

and
m∑

i=1

piF
aβ

i (t) lnFi(t) ≥
m∑

i=1

piF
aα
i (t) lnFi(t).

Thus

m∑
i=1

piF
aβ

i (t) lnFi(t)

[
1 −

m∑
i=1

piF
aα
i (t)

]
−

m∑
i=1

piF
aα
i (t) lnFi(t)

[
1 −

m∑
i=1

piF
aβ

i (t)

]
≥ 0.

Hence

(aα − aβ)
[
∂φ(a)
∂aα

− ∂φ(a)
∂aβ

]
≤ 0.

Similarly, if aα > aβ , then

(aα − aβ)
[
∂φ(a)
∂aα

− ∂φ(a)
∂aβ

]
≤ 0.

In conclusion,

(aα − aβ)
[
∂φ(a)
∂aα

− ∂φ(a)
∂aβ

]
≤ 0

holds for all 1 ≤ α 	= β ≤ k. It is easy to see that φ(a) is symmetric with respect to a.
Therefore, by Lemma 2.4, we have that a 
m b implies φ(a) ≥ φ(b), i.e., F̄S(k,a,p,X)(t) ≥
F̄S(k,b,p,X)(t). �

The following example shows that the condition of Theorem 3.1 cannot be dropped.

Example 3.2: Let n = 109, k = 8, m = 5, a = (2, 2, 5, 6, 8, 10, 32, 44), b = (1, 4, 4, 20, 20,
20, 20, 20), p = (0.15, 0.25, 0.15, 0.35, 0.1), (γ1, γ2, γ3, γ4, γ5) = (0.2, 0.5, 0.5, 0.3, 0.9), and
F̄i(t) = e−tγi , i = 1, 2, . . . , 5. It is easy to see that a 
m b does not hold. From Figure 2,
we can see that S(k,a, p, X) ≥st S(k, b, p, X) is not established. Therefore, the condition
a 
m b of Theorem 3.1 cannot be dropped.

Under certain conditions, the next theorem shows that if the number of subsystems
becomes smaller, then the system becomes more reliable. The proof is easy and is omitted.
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Figure 2. Reliability function

Theorem 3.3: Let a = (a1, a2, . . . , ak) and b = (b1, b2, . . . , bk−1), where bj ≥ aj for all j =
1, 2, . . . , k − 1. Then S(k − 1, b, p, X) ≥st S(k,a, p, X).

It is well known that the reliability function of a coherent system is bounded below
by the reliability function of series system and above by the reliability function of parallel
system (Barlow and Proschan [1, p. 35]). Let (1, n,p, X) denote that the series–parallel sys-
tem has only one subsystem which has n components connected in parallel and (n, 1,p, X)
denote that the series–parallel system has n subsystems and each subsystem includes only
one component. The next theorem shows that (1, n,p, X) is the best model and (n, 1,p, X)
is the worst model among all admissible models in the sense of the hazard rate order.

Theorem 3.4: For any (k,a, p, X) ∈ A, S(1, n,p, X) ≥hr S(k,a, p, X) ≥hr S(n, 1,p, X).

Proof: Note that the hazard rate function of S(k,a, p, X) is given by

hS(k,a,p,X)(t) =
k∑

l=1

∑m
i=1 pialF

al
i (t)ri(t)

1 − ∑m
i=1 piF

al
i (t)

.

Since n =
∑k

i=1 ai, we see that

hS(1,n,p,X)(t) =
∑m

i=1 pinF
n
i (t)ri(t)

1 − ∑m
i=1 piFn

i (t)
=

k∑
l=1

∑m
i=1 pialF

n
i (t)ri(t)

1 − ∑m
i=1 piFn

i (t)

and

hS(n,1,p,X)(t) =
n

∑m
i=1 piFi(t)ri(t)

1 − ∑m
i=1 piFi(t)

=
k∑

l=1

∑m
i=1 pialFi(t)ri(t)

1 − ∑m
i=1 piFi(t)

.

Hence, S(1, n,p, X) ≥hr S(k,a, p, X) ≥hr S(n, 1,p, X) holds if∑m
i=1 pialF

n
i (t)ri(t)

1 − ∑m
i=1 piFn

i (t)
≤

∑m
i=1 pialF

al
i (t)ri(t)

1 − ∑m
i=1 piF

al
i (t)

≤
∑m

i=1 pialFi(t)ri(t)
1 − ∑m

i=1 piFi(t)
(3.1)
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Figure 3. The ratio of two density functions

for all l = 1, 2, . . . , k. Define

ψ(x) =
∑m

i=1 pialF
x
i (t)ri(t)

1 − ∑m
i=1 piF x

i (t)
,

then we have

ψ′(x) =

[
∑m

i=1 pialF
x
i (t)ri(t)lnFi(t)] [1 − ∑m

i=1 piF
x
i (t)]

+ [
∑m

i=1 piF
x
i (t)lnFi(t)]

∑m
i=1 pialF

x
i (t)ri(t)

[1 − ∑m
i=1 piF x

i (t)]2

≤ 0.

That is, ψ(x) is decreasing in x. Hence the eq. (3.1) holds. �

The following example shows that the hazard rate order of Theorem 3.4 cannot be
strengthened to the likelihood ratio order.

Example 3.5: Let n = 109, k = 8, m = 5, a = (13, 13, 13, 14, 14, 14, 14, 14), p = (0.15, 0.25,
0.15, 0.35, 0.1), (γ1, γ2, γ3, γ4, γ5) = (0.2, 0.5, 0.5, 0.3, 0.9) and F̄i(t) = e−tγi , i = 1, 2, . . . , 5.
From Figure 3, we see that S(1, 109,p, X) ≥lr S(8,a, p, X) is invalid.

Let P and Q be two discrete random variables with probability mass functions p and q,
respectively. The next theorem shows how some of the well-known stochastic orders between
P and Q translate into the stochastic orders between S(k,a, p, X) and S(k,a, q, X). It
states that the reliability of series–parallel system will become bigger with the increase of
selection probabilities of reliable subpopulations.
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Theorem 3.6: Let (k,a, p, X) ∈ A and (k,a, q, X) ∈ A.

(i) If P ≤rh Q and X ∈ Dlr, then S(k,a, p, X) ≥hr S(k,a, q, X).
(ii) If P ≤hr Q and X ∈ Elr, then S(k,a, p, X) ≤hr S(k,a, q, X).
(iii) If P ≤st Q and X ∈ Est(Dst), then S(k,a, p, X) ≤st (≥st)S(k,a, q, X).

Proof: (i) Note that

1 −
m∑

i=1

piF
aj

i (t) = E[1 − F
aj

P (t)] and 1 −
m∑

i=1

qiF
aj

i (t) = E[1 − F
aj

Q (t)].

Let α(i) = 1 − F
aj

i (t2) and β(i) = 1 − F
aj

i (t1) for any t2 ≥ t1. Suppose Xi(aj) is a
random variable with reliability function 1 − F

aj

i (t), i = 1, 2, . . . ,m. It is easy to
verify that X1 ≥lr X2 ≥lr · · · ≥lr Xm implies X1(aj) ≥lr X2(aj) ≥lr · · · ≥lr Xm(aj).
Hence X1(aj) ≥hr X2(aj) ≥hr · · · ≥hr Xm(aj). Then, we obtain that

α(1)
β(1)

≥ α(2)
β(2)

≥ · · · ≥ α(m)
β(m)

.

That is, α(i)/β(i) is decreasing in i. On the other hand, X1(aj) ≥hr X2(aj) ≥hr

· · · ≥hr Xm(aj) implies X1(aj) ≥st X2(aj) ≥st · · · ≥st Xm(aj). Then we have

β(1) ≥ β(2) ≥ · · · ≥ β(m),

that is, β(i) is decreasing in i. By Lemma 2.5 (i), if P ≤rh Q, then

1 − ∑m
i=1 piF

aj

i (t2)
1 − ∑m

i=1 qiF
aj

i (t2)
=
E[α(P )]
E[α(Q)]

≥ E[β(P )]
E[β(Q)]

=
1 − ∑m

i=1 piF
aj

i (t1)
1 − ∑m

i=1 qiF
aj

i (t1)

for any t2 ≥ t1, which means that

1 − ∑m
i=1 piF

aj

i (t)
1 − ∑m

i=1 qiF
aj

i (t)

is increasing in t. Thus,

F̄S(k,a,p,X)(t)
F̄S(k,a,q,X)(t)

=
Πk

j=1

[
1 − ∑m

i=1 piF
aj

i (t)
]

Πk
j=1

[
1 − ∑m

i=1 qiF
aj

i (t)
]

is increasing in t, that is, S(k,a, p, X) ≥hr S(k,a, q, X).
(ii) Note that X1 ≤lr X2 ≤lr · · · ≤lr Xm implies X1(aj) ≤hr X2(aj) ≤hr · · · ≤hr Xm(aj),

j = 1, 2, . . . , k. By Theorem 1.B.14 of Shaked and Shanthikumar [18], P ≤hr Q
implies that

1 − ∑m
i=1 qiF

aj

i (t)
1 − ∑m

i=1 piF
aj

i (t)

is increasing in t. Hence

F̄S(k,a,q,X)(t)
F̄S(k,a,p,X)(t)

=
Πk

j=1

[
1 − ∑m

i=1 qiF
aj

i (t)
]

Πk
j=1

[
1 − ∑m

i=1 piF
aj

i (t)
]

is increasing in t, that is, S(k,a, p, X) ≤hr S(k,a, q, X).
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Figure 4. Reliability function

(iii) Note that X1 ≤st X2 ≤st · · · ≤st Xm(X1 ≥st X2 ≥st · · · ≥st Xm) implies X1(aj) ≤st

X2(aj) ≤st · · · ≤st Xm(aj)(X1(aj) ≥st X2(aj) ≥st · · · ≥st Xm(aj)), j = 1, 2, . . . , k.
That is, 1 − F

aj

i (t) is increasing (decreasing) in i. By Theorem 1.A.3(a) of Shaked
and Shanthikumar [18], P ≤st Q implies E[1 − F

aj

P (t)] ≤ (≥)E[1 − F
aj

Q (t)], i.e.,

1 −
m∑

i=1

piF
aj

i (t) ≤ (≥)1 −
m∑

i=1

qiF
aj

i (t).

Thus,

F̄S(k,a,p,X)(t) =
k

Π
j=1

[
1 −

m∑
i=1

piF
aj

i (t)

]
≤(≥)

k

Π
j=1

[
1 −

m∑
i=1

qiF
aj

i (t)

]
= F̄S(k,a,q,X)(t),

that is, S(k,a, p, X) ≤st (≥st)S(k,a, q, X).
�

Example 3.7: Let n = 9, k = 3, m = 6, a = (3, 1, 5), p = (0.05, 0.1, 0.15, 0.2, 0.24, 0.26), q =
(0.05, 0.07, 0.08, 0.1, 0.3, 0.4), (γ1, γ2, γ3, γ4, γ5, γ6) = (0.9, 0.8, 0.6, 0.5, 0.3, 0.2), and F̄i(t) =
e−tγi , i = 1, 2, . . . , 5. It is easy to see that P ≤st Q is established, but X ∈ Est(∈ Dst) does
not hold. From Figure 4, we can see that S(k,a, p, X) ≤st (≥st)S(k,a, q, X) is invalid.
Hence, the condition X ∈ Est(∈ Dst) of Theorem 3.6(iii) cannot be dropped.

Let p ∈ D[0,1] and q ∈ D[0,1]. It is easy to see that p �m q is equivalent to P ≤st Q. By
Theorems 3.1 and 3.6(iii), we have the following result.

Theorem 3.8: Let p ∈ D[0,1], q ∈ D[0,1],X ∈ Dst(∈ Est), (k,a, p, X) ∈ A and (k, b, q, X)
∈ A. If a 
m (�m)b and p �m q, then S(k,a, p, X) ≥st (≤st)S(k, b, q, X).

The next theorem shows that if components are drawn from the subpopulations with
more reliable components, then the corresponding system is more reliable as well.
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Theorem 3.9: Let (k,a, p, X) ∈ A and (k,a, p, Y ) ∈ A.

(i) If Xi ≥st Yi for all i = 1, 2, . . . ,m, then S(k,a, p, X) ≥st S(k,a, p, Y ).
(ii) If Xi ≥lr Yl for all i = 1, 2, . . . ,m and l = 1, 2, . . . ,m, then S(k,a, p, X) ≥hr

S(k,a, p, Y ).

Proof: (i) The proof is trivial and is omitted.
(ii) LetXi(aj) and Yl(aj) be two random variables with distribution functions F aj

Xi
(t) and

F
aj

Yl
(t), respectively. Then, it is easy to verify thatXi ≥lr Yl impliesXi(aj) ≥lr Yl(aj),

and hence Xi(aj) ≥hr Yl(aj). By Theorem 1.B.8 of Shaked and Shanthikumar [18],
we obtain that ∑m

i=1 piajF
aj

Xi
(t)rXi

(t)
1 − ∑m

i=1 piF
aj

Xi
(t)

≤
∑m

l=1 plajF
aj

Yl
(t)rYl

(t)
1 − ∑m

l=1 plF
aj

Yl
(t)

,

j = 1, 2, . . . , k. Note that

hS(k,a,p,X)(t) =
k∑

j=1

∑m
i=1 piajF

aj

Xi
(t)rXi

(t)
1 − ∑m

i=1 piF
aj

Xi
(t)

and

hS(k,a,p,Y )(t) =
k∑

j=1

∑m
l=1 plajF

aj

Yl
(t)rYl

(t)
1 − ∑m

l=1 plF
aj

Yl
(t)

.

Then, we have hS(k,a,p,X)(t) ≤ hS(k,a,p,Y )(t), t ≥ 0, that is, S(k,a, p, X) ≥hr

S(k,a, p, Y ).
�

4. PARALLEL–SERIES SYSTEM

We consider the parallel–series system consisting of k independent subsystems in parallel,
and the jth subsystem has aj components connected in series, j = 1, 2, . . . , k. All com-
ponents in each subsystem are selected from the ith subpopulation with probability pi,
i = 1, 2, . . . ,m. Figure 5 presents the structural diagram of the parallel–series system. Note
that subsystems lifetimes are independent and the jth subsystem has reliability function∑m

i=1 piF̄
aj

i (t), j = 1, . . . , k, hence the distribution function of H(k,a, p, X) is given by

FH(k,a,p,X)(t) =
k

Π
j=1

[
1 −

m∑
i=1

piF̄
aj

i (t)

]
, t ≥ 0.

The following result shows that if the allocation vector is majorized by another allo-
cation vector, then the parallel–series system corresponding to the second vector is more
reliable than that of the other. It is shown that the system reliability may be decreased by
balancing the allocation of components. Since proofs of the corresponding results here are
extremely similar to those of series–parallel system, for brevity, most results are presented
without proof.

Theorem 4.1: Let (k,a, p, X) ∈ A and (k, b, p, X) ∈ A. If a �m b, thenH(k,a, p, X) ≥st

H(k, b, p, X).
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Figure 5. Parallel–series system

Figure 6. The ratio of two density functions

Under certain conditions, the next result shows that if the number of subsystems
becomes bigger, then the system should become more reliable.

Theorem 4.2: Let a = (a1, a2, . . . , ak) and b = (b1, b2, . . . , bk−1), where bj ≥ aj for all j =
1, 2, . . . , k − 1. Then H(k − 1, b, p, X) ≤st H(k,a, p, X).

The next theorem shows that (n, 1,p, X) is the best model and (1, n,p, X) is the worst
model among all admissible models in the sense of the reversed hazard rate order.

Theorem 4.3: For any (k,a, p, X) ∈ A,H(n, 1,p, X)≥rh H(k,a, p, X)≥rh H(1, n,p, X).

The following example shows that the reversed hazard rate order of Theorem 4.3 cannot
be strengthened to the likelihood ratio order.

Example 4.4: Let n = 109, k = 8, m = 5, a = (13, 13, 13, 14, 14, 14, 14, 14), p = (0.15, 0.25,
0.15, 0.35, 0.1), (γ1, γ2, γ3, γ4, γ5) = (0.2, 0.5, 1.5, 3, 9), and F̄i(t) = e−tγi , i = 1, 2, . . . , 5.
From Figure 6, we can see that H(1, 109,p, X) ≤lr H(8,a, p, X) is invalid.
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Let P and Q be two discrete random variables which have been described in Section 3.

Theorem 4.5: Let (k,a, p, X) ∈ A and (k,a, q, X) ∈ A.

(i) If P ≤hr Q and X ∈ Dlr, then H(k,a, p, X) ≥rh H(k,a, q, X).
(ii) If P ≤rh Q and X ∈ Elr, then H(k,a, p, X) ≤rh H(k,a, q, X).
(iii) If P ≤st Q and X ∈ Est(Dst), then H(k,a, p, X) ≤st (≥st)H(k,a, q, X).

Proof: (i) Note that

1 −
m∑

i=1

piF̄
aj

i (t) = E[1 − F̄
aj

P (t)] and 1 −
m∑

i=1

qiF̄
aj

i (t) = E[1 − F̄
aj

Q (t)].

Let α(i) = 1 − F̄
aj

i (t1) and β(i) = 1 − F̄
aj

i (t2) for any t2 ≥ t1. Suppose Xi(aj) is a
random variable with distribution function 1 − F̄

aj

i (t), i = 1, 2, . . . ,m. It is easy to
verify that X1 ≥lr X2 ≥lr · · · ≥lr Xm implies X1(aj) ≥lr X2(aj) ≥lr · · · ≥lr Xm(aj).
Hence X1(aj) ≥rh X2(aj) ≥rh · · · ≥rh Xm(aj). Then, we obtain that

α(1)
β(1)

≤ α(2)
β(2)

≤ · · · ≤ α(m)
β(m)

.

That is, α(i)/β(i) is increasing in i. On the other hand, X1(aj) ≥rh X2(aj) ≥rh

· · · ≥rh Xm(aj) implies X1(aj) ≥st X2(aj) ≥st · · · ≥st Xm(aj). Then we have

β(1) ≤ β(2) ≤ · · · ≤ β(m),

that is, β(i) is increasing in i. By Lemma 2.5 (ii), if P ≤hr Q, then

1 − ∑m
i=1 piF̄

aj

i (t1)
1 − ∑m

i=1 qiF̄
aj

i (t1)
=
E[α(P )]
E[α(Q)]

≤ E[β(P )]
E[β(Q)]

=
1 − ∑m

i=1 piF̄
aj

i (t2)
1 − ∑m

i=1 qiF̄
aj

i (t2)

for any t2 ≥ t1, which means that

1 − ∑m
i=1 piF̄

aj

i (t)
1 − ∑m

i=1 qiF̄
aj

i (t)

is increasing in t. Therefore,

FH(k,a,p,X)(t)
FH(k,a,q,X)(t)

=
Πk

j=1

[
1 − ∑m

i=1 piF̄
aj

i (t)
]

Πk
j=1

[
1 − ∑m

i=1 qiF̄
aj

i (t)
]

is increasing in t, that is, H(k,a, p, X) ≥rh H(k,a, q, X).
(ii) Note that X1 ≤lr X2 ≤lr · · · ≤lr Xm implies X1(aj) ≤rh X2(aj) ≤rh · · · ≤rh Xm(aj),

j = 1, 2, . . . , k. By Theorem 1.B.52 of Shaked and Shanthikumar [18], P ≤rh Q
implies that

1 − ∑m
i=1 qiF̄

aj

i (t)
1 − ∑m

i=1 piF̄
aj

i (t)
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is increasing in t. Hence
FH(k,a,q,X)(t)
FH(k,a,p,X)(t)

is increasing in t, that is, H(k,a, p, X) ≤rh H(k,a, q, X).
(iii) It may be proved in a very similar manner to Theorem 3.6 (iii).

�

By Theorems 4.1 and 4.5 (iii), we have the following result.

Theorem 4.6: Let p ∈ D[0,1], q ∈ D[0,1],X ∈ Dst(∈ Est), (k,a, p, X) ∈ A, and (k, b, q, X)
∈ A. If a �m (
m)b and p �m q, then H(k,a, p, X) ≥st (≤st)H(k, b, q, X).

The next result shows that if components of a system are drawn from the subpopulations
with more reliable components, then the corresponding system is more reliable as well.

Theorem 4.7: Let (k,a, p, X) ∈ A and (k,a, p, Y ) ∈ A.

(i) If Xi ≥st Yi for all i = 1, 2, . . . ,m, then H(k,a, p, X) ≥st H(k,a, p, Y ).
(ii) If Xi ≥lr Yl for all i = 1, 2, . . . ,m and l = 1, 2, . . . ,m, then H(k,a, p, X) ≥rh

H(k,a, p, Y ).

5. CONCLUDING REMARKS

This paper compares two different components grouping policies in a series–parallel
(parallel–series) system composed of several subsystems. Components of each subsystem
are drawn from a heterogeneous population composed of m different subpopulations. Com-
ponents grouping policies in this paper include the decision of the number of components
in each subsystem and the number of subsystems such that the series–parallel (parallel–
series) system is more reliable. We also study the effect of the selection probabilities of
subpopulations on the reliability of the series–parallel (parallel–series) system. We can
mathematically prove that the majorization order of Theorem 3.1 (Theorem 4.1) can be
weakened to the supermajorization order. This paper considers the series–parallel system
and the parallel–series system, respectively. It would be of interest to further study the
corresponding components grouping policy in the k-out-of-n system.
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